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Evolution equations for leading-twist operators in high orders of perturbation theory can be restored
from the spectrum of anomalous dimensions and the calculation of the special conformal anomaly at one
order less using conformal symmetry of QCD at the Wilson-Fisher critical point at noninteger d ¼ 4 − 2ε
space-time dimensions. In this work, we generalize this technique to axial-vector operators. We calculate
the corresponding three-loop evolution kernels in Larin’s scheme and derive explicit expressions for the
finite renormalization kernel that describes the difference to the vector case to restore the conventional
modified minimal subtraction scheme. The results are directly applicable to deeply virtual Compton
scattering and the transition form factor γ�γ → π.
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I. INTRODUCTION

The QCD description of hard exclusive reactions in the
framework of collinear factorization involves matrix ele-
ments of leading-twist operators between hadron states
with different momenta—generalized parton distributions
(GPDs) or light-cone distribution amplitudes (LCDAs).
Such processes are attracting increasing attention because
they provide complementary information on the hadron
structure as compared to inclusive reactions, and because of
the very high quality of experimental data from the JLab
12 GeV upgrade [1], SuperKEKB [2], and, in the future,
from the electron ion collider (EIC) [3]. The main moti-
vation for this study is provided by the applications to
deeply virtual Compton scattering (DVCS), but the results
are also relevant for reactions of the type γγ� → π etc.
The theoretical description of such reactions has to match

the experimental accuracy. In particular, evolution equations
for GPDs and related quantities have to be derived to similar
precision as for the usual parton distributions, currently
completely known at next-to-next-leading order (three-loop)
[4,5]. The difference in these two cases is that for GPDs

(and LCDAs) mixing with operators containing total deriv-
atives must be taken into account. The complete next-to-
leading order (NLO) (two-loop) evolution kernels for GPDs
were calculated long ago [6–8] using an approach developed
by Müller [9]. These results were later rederived and
confirmed [10,11] by a somewhat different technique
[10,12] that makes use of (exact) conformal symmetry of
QCD at the Wilson-Fisher critical point in noninteger
d ¼ 4 − 2ε dimensions. Since renormalization constants
in dimensional regularization with minimal subtraction, by
construction, do not depend on the space-time dimension,
evolution equations in physical QCD at d ¼ 4 are the same
as in the critical theory at d ¼ 4 − 2ε and possess a “hidden”
conformal symmetry: the evolution kernels in QCD com-
mute with the generators of conformal transformations.
These generators in the interacting theory are modified
(“deformed”) by quantum corrections and the corresponding
modification can be calculated order by order in perturbation
theory using conformal Ward identities [8,10,12,13]. With
this approach, the three-loop evolution kernels for GPDs
[14] and the corresponding two-loop coefficient functions
[15] for DVCS were calculated for flavor-nonsinglet vector-
like distributions.
The extension of this technique to axial-vector distribu-

tions requires special considerations due to known issues
with the definition of the γ5-matrix in noninteger dimen-
sions. Having in mind applications to two-photon reactions
the well-known prescription by Larin [16] suggests itself;
see also Refs. [17–21]. In this work, we study axial-vector
operators defined in Larin’s scheme under conformal
transformations at NLO and, following the method devel-
oped in [14], use this result to restore the corresponding
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three-loop evolution kernel. In QCD, it is natural to fix the
conventional modified minimal subtraction renormaliza-
tion schemeMS such that the evolution equations for vector
and axial-vector flavor-nonsinglet operators coincide iden-
tically. Starting from Larin’s prescription, this requires a
finite renormalization which is then used to redefine the
coefficient functions. This finite renormalization kernel is
known for the forward case to three loops [22]; see also
[23]. In this paper, we derive the corresponding expression
for the general off-forward case.
The presentation is organized as follows. In Sec. II, we

introduce axial-vector light-ray operators of leading twist in
noninteger dimensions. Section III contains a brief dis-
cussion and comparison of the symmetries and renormal-
ization properties of vector and axial-vector operators. We
present our results for the two-loop conformal anomaly for
axial-vector operators in Sec. IV and for the three-loop
evolution kernel in Sec. V. The rotation matrix from Larin’s
scheme to the MS scheme is given in Sec. VI. We conclude
in Sec. VII and the rotation matrix in the local operator
basis is presented in the Appendix.

II. DEFINITION

GPDs (and LCDAs) are defined as off-forward matrix
elements of leading-twist light-ray operators. For the
vector case

OVðz1; z2Þ ¼ q̄ðz1nÞγþ½z1n; z2n�qðz2nÞ; ð1Þ

where nμ is an auxiliary lightlike vector, n2 ¼ 0, z1;2 are
real numbers, γþ ¼ =n ¼ nμγμ, and ½z1n; z2n� is the Wilson
line. The light-ray operator (1) can be viewed as the
generating function for local operators, Oμ1…μN

V that are
symmetric and traceless in all indices μ1…μN .
The corresponding axial-vector light-ray operator in four

dimensions is naturally given by

O5ðz1; z2Þ ¼ q̄ðz1nÞγþγ5½z1n; z2n�qðz2nÞ: ð2Þ

However, this definition is not suitable for theories in
noninteger d ¼ 4 − 2ε dimensions as the γ5-matrix is not
defined.
Note that in applications to two-photon reactions one

needs the operator product expansion (OPE) of two vector
(electromagnetic) currents, which is perfectly well defined
in noninteger dimensions. The products of γ-matrices
which occur in loop diagrams can be reduced to the basis
of antisymmetric products,

Γμ1…μn ¼ γ½μ1…γμn�; ð3Þ

where ½…� stands for antisymmetrization in the enclosed
Lorentz indices. It is easy to see that for leading-twist
operators the antisymmetric products of more than three

γ-matrices cannot appear (in other words, there are no
evanescent operators) so that only one light-ray operator
can contribute in addition to (1),

Oμνðz1; z2Þ ¼ q̄ðz1nÞΓμναnα½z1n; z2n�qðz2nÞ: ð4Þ

In four dimensions, this operator can be rewritten in terms
of the axial-vector operator (2),

Oμνðz1; z2Þ ¼ iεμναβnα
∂
∂nβ

Z
1

0

duO5ðz1u; z2uÞ þ…; ð5Þ

where ellipses stand for higher-twist terms.
The addenda appear because the operator (4) does not

have a definite twist yet. The reason is that when going over
to local operators,

nαnν1…nνN−1 q̄ð0ÞΓμναDν1…DνN−1
qð0Þ; ð6Þ

the multiplication with the auxiliary lightlike vector nμ does
not yield a traceless result in pairs of indices ðμ; νkÞ and
ðν; νkÞ. An additional subtraction is needed to separate the
leading-twist part. The corresponding condition in the
light-ray operator formalism is that the leading-twist-two
part of the operator Oμνðz1; z2Þ must obey the constraint

∂μOμνðz1; z2Þjl:t: ¼ 0: ð7Þ

For a generic matrix element between states with different
momenta, this constraint reduces to

ΔμhP0jOμνðz1; z2ÞjPi ¼ 0; Δμ ¼ ðP0 − PÞμ: ð8Þ

Since in addition (by construction)

nμhP0jOμνðz1; z2ÞjPi ¼ 0; ð9Þ

it follows that the leading-twist part of the operator
Oμνðz1; z2Þ corresponds to the transverse components with
respect to the n, Δ plane. Let

Δμ ¼ αnμ þ βn̄μ; ð10Þ

with n̄2 ¼ n2 ¼ 0, ðnn̄Þ ¼ 1, and choose two orthogonal
unit vectors in transverse directions, aμ and bμ, such that
ða · nÞ ¼ ða · n̄Þ ¼ 0 and ðb · nÞ ¼ ðb · n̄Þ ¼ 0.
The leading-twist-two axial-vector operator in nonin-

teger dimensions can be defined as

OAðz1; z2Þ ¼ aμbνOμνðz1; z2Þ ¼ q̄ðz1nÞΓþ½z1n; z2n�qðz2Þ;
ð11Þ

where
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Γþ ¼ aμbνΓμναnα: ð12Þ

Note that in four dimensions aμbνεμνασnα ∼ nσ so that
Γþ ∼ iγþγ5 and the operator in (11) reduces to the one in
(2), as desired. Our definition is, of course, a version of
Larin’s scheme [16].

III. RENORMALIZATION AND SYMMETRIES

Here and in what follows we consider QCD in
d ¼ 4 − 2ε dimensions and tacitly imply that all operators
are renormalized in the MS scheme.
Renormalized light-ray operators satisfy the renormali-

zation group (RG) equations,

�
μ
∂
∂μþ βðaÞ ∂

∂aþ HpðaÞ
�
Opðz1; z2Þ ¼ 0; ð13Þ

where p ¼ V, A, the strong coupling is a ¼ αs=ð4πÞ, and
βðaÞ is the d-dimensional beta function,

βðaÞ ¼ −2aðεþ β0aþ β1a2 þOða3ÞÞ; ð14Þ

β0 ¼ 11=3Nc − 2=3nf, etc. for an SUðNcÞ gauge theory
with nf quark flavors. At the critical point, the d-
dimensional beta function vanishes. This can be achieved
either by fine-tuning the coupling a ↦ a� for fixed
ε ¼ ð4 − dÞ=2, or fine-tuning ε ↦ ε� ¼ −β0a − β1a2 −
� � � for a fixed value of the coupling. In what follows,
we use both notations intermittently.
The evolution kernels HpðaÞ are integral operators

in z1, z2,

HpðaÞ ¼
X∞
l¼1

alHðlÞ
p : ð15Þ

They can be written in the form

½HðlÞ
p f�ðzÞ ¼

Z
1

0

dαdβhlpðα; βÞfðzα12; zβ21Þ; ð16Þ

where z abbreviates the set of z1;2, i.e., z≡ fz1; z2g and

zα12 ≡ z1ᾱþ z2α; ᾱ≡ 1 − α: ð17Þ

The one-loop kernels for the vector and axial-vector

operators coincide, Hð1Þ
V ¼ Hð1Þ

A , and are given by the
following expression [24]:

½Hð1Þ
p f�ðzÞ ¼ 4CF

�
1

2
fðzÞ −

Z
1

0

dα
Z

ᾱ

0

dβfðzα12; zβ21Þ

þ
Z

1

0

dα
ᾱ

α
ð2fðzÞ − fðzα12; z2Þ − fðz1; zα21ÞÞ

�
:

ð18Þ

At the classical level, vector (1) and axial-vector light-ray
operators (11) transform under conformal transformations
in the same way. As a consequence, the one-loop evolution
kernels in both cases commute with the canonical gen-
erators of the collinear conformal subgroup,

½S�;0;H
ð1Þ
p � ¼ 0; ð19Þ

where

S− ¼ −∂z1 − ∂z2 ;

S0 ¼ z1∂z1 þ z2∂z2 þ 2;

Sþ ¼ z21∂z1 þ z22∂z2 þ 2z1 þ 2z2: ð20Þ

This property follows from the conformal invariance of
the QCD Lagrangian at the classical level. Beyond tree
level the scale and conformal symmetries are broken by
quantum corrections. In noninteger dimensions, however,
there exists a nontrivial fixed point, a ¼ a�, such that
βða�Þ ¼ 0, so that for this special choice of the coupling
both scale and conformal invariance of the theory are
restored. The symmetry generators in the critical theory,
S�;0, satisfy the usual SL(2) algebra but differ from the
canonical generators (20) by quantum corrections. These
deformed symmetry generators commute with the evolu-
tion kernels,

½Spαða�Þ;Hpða�Þ� ¼ 0: ð21Þ

It can be shown, see Ref. [13] for details, that this
modification affects the generators of dilatations and
special conformal transformations which take the form

Sp0 ¼ S0 þ
�
−εþ 1

2
Hpða�Þ

�
;

Spþ ¼ Sþ þ ðz1 þ z2Þ
�
−εþ 1

2
Hpða�Þ

�
þ z12Δpða�Þ;

ð22Þ

whereas the generator S− (corresponding to translations
along the light ray) does not receive any corrections,
Sp− ¼ S−. These expressions are valid for both cases,
p ¼ V, A. Note that the modification of the generator of
dilatations is expressed in terms of the evolution kernel
whereas for the conformal transformations there is an
additional contribution. This additional term is usually
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referred to as the conformal anomaly. It can be calculated
order by order in perturbation theory,

Δpða�Þ ¼
X
l

al�Δ
ðlÞ
p ; ð23Þ

from the conformal Ward identities for the corresponding
light-ray operators; see [8,13] for details. At one-loop
order, the conformal anomaly for the vector and axial-

vector operators coincide, Δð1Þ
V ¼ Δð1Þ

A . The corresponding
expression was first obtained in Ref. [8],

½Δð1Þ
p f�ðzÞ ¼

Z
1

0

dαωð1ÞðαÞ½fðzα12; z2Þ − fðz1; zα21Þ�; ð24Þ

where the weight function ωð1Þ reads

ωð1ÞðαÞ ¼ −2CF

�
ᾱ

α
þ ln α

�
: ð25Þ

The two-loop conformal anomaly for the vector case, Δð2Þ
V ,

was derived in [13], the resulting expression being too
lengthy to be presented here.
It is convenient to write the evolution kernels, Hp, as a

sum of two terms of which the first one is invariant and the
second one is noninvariant with respect to the canonical
symmetry transformations. Suppressing the V=A subscript,
we define

H ¼ Hinv þ Hnoninv; ½Sα;Hinv� ¼ 0: ð26Þ

It was shown in [8–10] that the operator Hnoninv at l-loop
order is completely determined (up to invariant terms) by
the conformal anomaly at one order less, l − 1. Once this
noninvariant operator is fixed, the invariant part Hinv can be
restored from the corresponding anomalous dimensions
(at l loops). These are known for vector and axial-vector
operators (in Larin’s scheme) to three-loop accuracy [4,22].

Since Hð1Þ
V ¼ Hð1Þ

A and Δð1Þ
V ¼ Δð1Þ

A , the generators of
special conformal transformations for vector and axial-
vector operators coincide to this accuracy. From the
commutation relations (19), it follows then that the leading
two-loop term for the difference of the evolution kernels,

HA−VðaÞ ¼ HAðaÞ − HVðaÞ ¼ a2Hð2Þ
A−V þOða3Þ; ð27Þ

is a canonically invariant operator. It is completely deter-
mined by its spectrum which is given by the difference of
anomalous dimensions of vector and axial-vector operators,
γVðNÞ − γAðNÞ, where N denotes the spin of the operator.
We obtain after a short calculation

½Hð2Þ
A−Vf�ðzÞ ¼ 16CFβ0

Z
1

0

dα
Z

ᾱ

0

dβfðzα12; zβ21Þ: ð28Þ

In order to calculate the difference of the vector an axial-
vector kernels to Oða3Þ, one needs the difference in the
corresponding conformal anomalies at two loops.

IV. CONFORMAL ANOMALY FOR
AXIAL-VECTOR OPERATORS TO Oða2Þ

The calculation of the conformal anomaly for vector
operators is discussed at length in [10,13]. The only
modification for the axial-vector operators is to replace
the γþ matrix by Γþ defined in Eq. (12) in the operator
vertex in the corresponding diagrams. Simplifying the
numerators, one uses the following properties of the γþ
matrix in d ¼ 4 − 2ε:

γþγþ ¼ 0; γμγþγμ ¼ −2ð1 − εÞγþ: ð29Þ

The corresponding identities for Γþ take the form

γþΓþ ¼ Γþγþ ¼ 0; γμΓþγμ ¼ 2ð1þ εÞΓþ: ð30Þ

The diagrams to be calculated are shown in Fig. 2,
Ref. [13]. One is interested in the residues of the simple
poles in ε. It is easy to see that the replacement γþ → Γþ
does not affect the diagrams with one interacting quark in
Figs. 2(a)–2(g). For the remaining diagrams in Figs. 2(h)–2
(p), the modifications due to the substitution γþ → Γþ
can easily be tracked down and are related to the factors
ð1 − εÞk vs ð1þ εÞk arising in the calculation. The expres-
sion for a generic diagram has the form

γα1…γα2kΓγβ1…γβ2m

�
1

ε2
ðT1Þβ1…β2m

α1…α2k þ
1

ε
ðT2Þβ1…β2m

α1…α2k

�
;

where Γ ¼ γþ or Γþ and T1;2 are certain tensors which
depend on the external momenta. Since we are interested
in the 1=ε pole only, contracting the Lorentz indices on
the string of γ-matrices with T2, one can use the four-
dimensional algebra and replace Γþ by iγþγ5. The 1=ε
contributions due to T2 are therefore the same for the vector
and axial-vector operators. Hence, one needs to consider
the double-pole contributions of T1 only, which are related
to divergent subgraphs and are easy to calculate. Such
double-pole contributions for a given diagram take the form

1

ε2
X
m

Dmðε� 1Þ2m; ð31Þ

with coefficients Dm, where � corresponds to the axial and
vector cases, respectively, and we take into account that
the factors (ε� 1) can only appear in even powers since the
residues of the double poles have to coincide. Thus, the
difference between the axial-vector and vector operators for
a given diagram takes the form
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1

ε

X
m

4mDm þOðε0Þ: ð32Þ

The coefficients Dm are sufficiently easy to calculate. We
have checked that the difference of the two-loop evolution
kernels (27) calculated in this way diagrammatically
coincides with the result in Eq. (28).
The difference of two-loop conformal anomalies (22) for

axial-vector and vector operators, Δð2Þ
A−V ¼ Δð2Þ

A − Δð2Þ
V , can

be written as a sum of two terms

Δð2Þ
A−V ¼ 1

4
½Hð2Þ

A−V; z1 þ z2� þ Δ̂ð2Þ
A−V; ð33Þ

where the operator Δ̂ð2Þ
A−V is defined as

½Δ̂ð2Þ
A−Vf�ðzÞ ¼

Z
1

0

dα
Z

ᾱ

0

dβ½ωð2ÞðαÞ − ωð2ÞðβÞ�fðzα12; zβ21Þ;

ð34Þ

with the kernel

ωð2ÞðαÞ ¼ 8C2
F

�
3

2
αþ ln α

�
1

ᾱ
− ᾱ

�
þ ᾱ ln ᾱ

�
: ð35Þ

Contributions with the color factors β0CF and CFCA cancel
in the sum of all diagrams.

V. THREE-LOOP EVOLUTION KERNEL

The canonically noninvariant part of the evolution kernel
is completely determined by the commutation relations in
Eq. (21). The analysis of these equations becomes much
simpler after making a similarity transformation of the
operators at the intermediate step [14],

Spα ¼ U−1
p Sp

αUp; Hp ¼ U−1
p HpUp; ð36Þ

where the rotation matrix Up is chosen in such a way that
the new (boldfaced) symmetry generators do not include
the conformal anomaly term,

Sp
− ¼ S−;

Sp
0 ¼ S0 þ

�
−εþ 1

2
Hp

�
;

Sp
þ ¼ Sþ þ ðz1 þ z2Þ

�
−εþ 1

2
Hp

�
: ð37Þ

The rotation matrix can be written in the form [14]

Up ¼ expfaXð1Þ
p þ a2Xð2Þ

p þOða3Þg: ð38Þ

The one-loop X-kernels for the vector and axial-vector
operators are equal to each other,

½Xð1Þ
p f�ðzÞ

¼ 2CF

Z
1

0

dα
ln α
α

½2fðzÞ − fðzα12; z2Þ − fðz1; zα21Þ�;

ð39Þ

and obey the equation ½Sþ;Xð1Þ
p � ¼ z12Δ

ð1Þ
p . The expression

for the two-loop kernel for the vector case, Xð2Þ
V , can be

found in [14]. The difference

Xð2Þ
A−V ¼ Xð2Þ

A −Xð2Þ
V ð40Þ

is defined as a solution of the equation [25]

½Sþ;Xð2Þ
A−V � ¼

1

4
½Hð2Þ

A−V; z1 þ z2� þ z12Δ̂
ð2Þ
A−V: ð41Þ

The solution can be written as a sum of two terms

Xð2Þ
A−V ¼ 1

4
T ð2Þ
A−V þ ΔXð2Þ

A−V; ð42Þ

corresponding to the two contributions on the rhs of
Eq. (41), respectively. We find

½T ð2Þ
A−Vf�ðzÞ¼16CFβ0

Z
1

0

dα
Z

ᾱ

0

dβ lnð1−α−βÞfðzα12;zβ21Þ

ð43Þ

and

½ΔXð2Þ
A−Vf�ðzÞ ¼

Z
1

0

dα
Z

ᾱ

0

dβ½χðαÞ þ χðβÞ�fðzα12; zβ21Þ;

ð44Þ

with the weight function

χðαÞ ¼ 8C2
F

�
−
1

2
ln ᾱþ α

ᾱ
ln αþ Li2ðᾱÞ − Li2ðαÞ

�
: ð45Þ

Using these results for the rotation matrix (38) and the
expression given in Ref. [14] [Eq. (3.12)] for the three-loop

kernel Hð3Þ
V , we can restore the Oða3Þ contribution to the

difference HA−V , Eq. (27). The result reads

Hð3Þ
A−V ¼ Hð3Þ;inv

A−V þ 1

2
T ð1Þ
V Hð2Þ

A−V þ T ð2Þ
A−V

�
β0 þ

1

2
Hð1Þ

V

�

þ ½Hð1Þ
V ;Xð2Þ

A−V � þ ½Hð2Þ
A−V;X

ð1Þ
V �: ð46Þ

The expressions for T ð2Þ
A−V, H

ð2Þ
A−V , H

ð1Þ
V ,Xð1Þ

V ,Xð2Þ
A−V are given

above and
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½T ð1Þ
V f�ðzÞ ¼ −4CF

�Z
1

0

dα
ᾱ ln ᾱ
α

½fðzα12; z2Þ þ fðz1; zα21Þ�

þ
Z

1

0

dα
Z

ᾱ

0

dβ lnð1 − α − βÞfðzα12; zβ21Þ
�

ð47Þ

is defined as a solution of the equation

½Sþ; T ð1Þ
V � ¼ ½Hð1Þ

V ; z1 þ z2�: ð48Þ

The last missing element in Eq. (46) is the invariant kernel

Hð3Þ;inv
A−V . It is completely determined by its eigenvalues

Hð3Þ;inv
A−V ðz1 − z2ÞN−1 ¼ γð3Þ;invA−V ðNÞðz1 − z2ÞN−1; ð49Þ

which can be found as

γð3Þ;invA−V ðNÞ ¼ γð3ÞA−VðNÞ − γð3Þ;ninvA−V ðNÞ: ð50Þ

Here γð3ÞA−VðNÞ is the difference of the three-loop anomalous
dimensions of vector and axial-vector operators (i.e., the

eigenvalues of the kernel Hð3Þ
A−V) and γð3Þ;ninvA−V ðNÞ are the

eigenvalues of the noninvariant operators on the rhs of
Eq. (46). One easily finds (note that the commutator terms

do not contribute to γð3Þ;ninvA−V ðNÞ)

γð3Þ;ninvA−V ðNÞ ¼ 8β0CF
d
dN

�
γð1ÞV ðNÞ þ 2β0
NðN þ 1Þ

�
; ð51Þ

where

γð1ÞV ðNÞ ¼ 4CF

�
S1ðN þ 1Þ þ S1ðN − 1Þ − 3

2

�
ð52Þ

is the eigenvalue of the one-loop kernel Hð1Þ
V where Sm⃗ðNÞ

are harmonic sums, cf. Ref. [26]. The difference in the
three-

loop anomalous dimensions, γð3ÞA−VðNÞ, was calculated in
Ref. [22]. The result reads

γð3ÞA−VðNÞ ¼ −2
Z

1

0

dxxN−1Pð3Þ
A−VðxÞ; ð53Þ

with the splitting function written in terms of two functions,

zð1Þns ðxÞ, zð2Þns ðxÞ, and their convolutions “⊗,”

Pð3Þ
A−VðxÞ ¼ β1z

ð1Þ
ns ðxÞ − β0ð½zð1Þns ⊗ zð1Þns �ðxÞ − 2zð2Þns ðxÞÞ;

ð54Þ

see [22] [Eqs. (A.1), (A.2)]. Starting from these expres-
sions, we find the eigenvalues of the invariant kernel after

some algebra as

γð3Þ;invA−V ðNÞ ¼ 16CFβ1
NðNþ 1Þ þ 16CFβ0

�
5

3
β0

1

NðN þ 1Þ

þCA

�ð−1ÞN−12ð2S−2ðNÞ þ ζ2Þ
NðNþ 1Þ −

2ζ2
NðN þ 1Þ

þ 16

3

1

NðNþ 1Þ þ
6

N2ðNþ 1Þ2 þ
4

N3ðN þ 1Þ3
�

− 4CF

�ð−1ÞN−1ð2S−2ðNÞ þ ζ2Þ
NðNþ 1Þ þ 1

NðNþ 1Þ

þ 13

4

1

N2ðN þ 1Þ2 þ
2

N3ðNþ 1Þ3
��

: ð55Þ

It can easily be verified that this expression possesses the
so-called reciprocity property [27–30]: its asymptotic
expansion at large N is invariant under the substitu-
tion N → −N − 1.

The last step is to restore the invariant operator Hð3Þ;inv
A−V

from its spectrum. Any invariant operator can be written in
the form

½Hinvf�ðz1; z2Þ ¼
Z

1

0

dα
Z

ᾱ

0

dβhðτÞfðzα12; zβ21Þ; ð56Þ

where τ ¼ αβ=ᾱβ̄ is the so-called conformal ratio. The
eigenvalues are given by moments of the function hðτÞ,

γinvðNÞ ¼
Z

1

0

dα
Z

ᾱ

0

dβhðτÞð1 − α − βÞN−1; ð57Þ

so that hðτÞ can be restored uniquely by a Mellin transform.

Since the expressions for γð3Þ;invA−V ðNÞ are relatively simple,
this calculation is rather straightforward. We find

hð3Þ;invA−V ðτÞ ¼ 16CF

�
β1 þ β0

�
5

3
β0 þ 4CF

�
1

4
ln τ̄ − ζ2 þ

5

3

�

þ 2

Nc

�
Li2ðτÞ − ζ2 þ ln2τ̄ − ln τ̄ þ 8

3

���
:

ð58Þ

With this last piece, the difference in the three-loop

evolution kernel, Hð3Þ
A−V and, therefore, also in the axial-

vector kernel Hð3Þ
A itself, is completely fixed.

VI. MATCHING

Vector and axial-vector operators in the d-dimensional
theory at the critical point have different scaling dimensions,
i.e., different evolution equations in the chosen scheme
for γ5. In four dimensions, this difference is avoidable:
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There exist four-dimensional regularization schemes in
which the (flavor-nonsinglet) vector and axial-vector oper-
ators satisfy the same evolution equation. Hence, it is
possible to define a new operator OAðzÞ ↦ O5ðzÞ by the
transformation (finite renormalization)

O5ðzÞ ¼ UOAðzÞ ð59Þ

such that O5ðzÞ obeys the same evolution equation as the
vector operator OVðzÞ in Eq. (1), which is convenient for
applications and conventionally defines the MS scheme.
In this section, we derive the explicit expression for the
matching kernel U.
Inserting Eq. (59) in Eq. (13), it is easy to see that

the operator O5ðzÞ satisfies the RG equation (in d ¼ 4)
with the evolution kernel H5 which is related to HA as
follows:

U−1ðaÞH5ðaÞUðaÞ þ U−1ðaÞβðaÞ∂aUðaÞ ¼ HAðaÞ: ð60Þ

We require that H5ðaÞ ¼ HVðaÞ and make an ansatz for the
U-kernel in the form

UðaÞ ¼ P exp
�Z

a

0

ds
βðsÞVðsÞ

�
; ð61Þ

so that βðaÞ∂aUðaÞ ¼ VðaÞUðaÞ and Eq. (60) takes the
form

HVðaÞ þ VðaÞ ¼ UðaÞHAðaÞU−1ðaÞ: ð62Þ

Expanding VðaÞ ¼ a2V1 þ a3V2 þOða4Þ, one obtains

UðaÞ ¼ 1−
a
2β0

V1 −
a2

4β0

�
V2 −

1

2β0
V2
1 −

β1
β0

V1

�
þOða3Þ;

ð63Þ

and from (62)

VðaÞ ¼ a2Hð2Þ
A−V þ a3Hð3Þ

A−V þ a2

2β0
½Hð1Þ

A ; V1�

þ a3

2β0

�
½Hð2Þ

A ; V1� þ
1

2
½Hð1Þ

A ; V2�
�
þOða4Þ: ð64Þ

Comparing the leading contributions Oða2Þ on both sides
of this relation, one gets

V1 ¼ Hð2Þ
A−V þ 1

2β0
½Hð1Þ

A ; V1�: ð65Þ

Note thatHð2Þ
A−V ∝ β0, cf. Eq. (28). Assuming that V1 cannot

contain terms ∼1=β0, the only possibility to match the
powers of β0 in this relation is to require that

V1 ¼ Hð2Þ
A−V and ½Hð1Þ

A ; V1� ¼ 0: ð66Þ

Note that these two conditions are self-consistent since

Hð2Þ
A−V is an invariant operator; any two invariant operators

commute.
Next, comparing theOða3Þ contributions, one obtains an

equation for V2,

V2 þ
1

4β0
½V2;H

ð1Þ
A � ¼ Hð3Þ

A−V −
1

2β0
½V1;H

ð2Þ
A �: ð67Þ

The kernel Hð3Þ
A−V is given in Eq. (46), Hð1Þ

A ¼ Hð1Þ
V ; see

Eq. (18) and Ref. [14] [Eq. (3.12)],

Hð2Þ
A ¼ Hð2Þ;inv

A þ T 1

�
β0 þ

1

2
Hð1Þ

V

�
þ ½Hð1Þ

V ;Xð1Þ
V �; ð68Þ

with Hð2Þ;inv
A ¼ Hð2Þ;inv

V þ Hð2Þ
A−V .

Since V1 and Hð1Þ
V are invariant operators, the invariant

parts of V2 and Hð2Þ
A drop out from the commutators on the

lhs and rhs of Eq. (67), respectively. Thus, if we write

V2 ¼ Hð3Þ;inv
A−V þ V 0

2; ð69Þ

the terms in Hð3Þ;inv
A−V cancel out and one ends up with the

equation for the noninvariant part of the two-loop matching
kernel,

V 0
2 þ

1

4β0
½V 0

2;H
ð1Þ
V � ¼ 1

2
T ð1Þ
V Hð2Þ

A−V þ T ð2Þ
A−V

�
β0 þ

1

2
Hð1Þ

V

�

þ 1

4
½Hð1Þ

V ; T ð2Þ
A−V �

−
1

2β0
½Hð2Þ

A−V; T
ð1Þ
V �

�
β0 þ

1

2
Hð1Þ

V

�

þ ½Hð1Þ
V ;ΔXð2Þ

A−V � þ ½Hð2Þ
A−V;X

ð1Þ
V �

−
1

2β0
½Hð2Þ

A−V; ½Hð1Þ
V ;Xð1Þ

V ��: ð70Þ

The expression on the rhs of this equation is a second order
polynomial in β0 and we expect the matching kernel U and,
hence, VðaÞ to be polynomials in β0 as well (e.g., since
Feynman diagrams are trivially polynomials in the number
of flavors nf).
We write

V 0
2 ¼ β20V

0
2;2 þ β0V 0

2;1 þ V 0
2;0 ð71Þ

and collect the contributions of different powers of β0
separately. One obtains four equations,
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ðβ0Þ2∶ β20V
0
2;2 ¼ β0T

ð2Þ
A−V; ð72Þ

ðβ0Þ1∶ β0V 0
2;1 þ

β0
4
½V 0

2;2;H
ð1Þ
V �

¼ 1

2
T ð1Þ
V Hð2Þ

A−V þ 1

2
T ð2Þ
A−VH

ð1Þ
V þ 1

4
½Hð1Þ

V ; T ð2Þ
A−V �

−
1

2
½Hð2Þ

A−V; T
ð1Þ
V � þ ½Hð2Þ

A−V;X
ð1Þ
V �; ð73Þ

ðβ0Þ0∶ V 0
2;0 þ

1

4
½V 0

2;1;H
ð1Þ
V �

¼ ½Hð1Þ
V ;ΔXð2Þ

A−V � −
1

4β0
½Hð2Þ

A−V; T
ð1Þ
V �Hð1Þ

V

−
1

2β0
½Hð2Þ

A−V; ½Hð1Þ
V ;Xð1Þ

V ��; ð74Þ

ðβ0Þ−1∶
1

4β0
½V 0

2;0;H
ð1Þ
V � ¼ 0: ð75Þ

From Eqs. (72), (73), and (75), we obtain

β0V 0
2;2 ¼ T ð2Þ

A−V; ð76Þ

β0V 0
2;1 ¼

1

2
T ð1Þ
V Hð2Þ

A−V þ 1

2
T ð2Þ
A−VH

ð1Þ
V þ ½Hð2Þ

A−V;X
ð1Þ
V �; ð77Þ

V 0
2;0 ¼ 0: ð78Þ

The first two expressions follow readily from Eqs. (72)
and (73), respectively. For the last one, from Eq. (75),

we conclude that ½V 0
2;0;H

ð1Þ
V � ¼ 0, i.e., V 0

2;0 is an invariant
operator. By virtue of Eq. (74), however, V 0

2;0 is expressed
in terms of commutators that have zero spectrum. Hence,
V 0
2;0 has zero spectrum and must vanish, V 0

2;0 ¼ 0.
Collecting all terms, we obtain the final result

V2 ¼ Hð3Þ;inv
A−V þ β0T

ð2Þ
A−V þ 1

2
T ð1Þ
V Hð2Þ

A−V þ 1

2
T ð2Þ
A−VH

ð1Þ
V

þ ½Hð2Þ
A−V;X

ð1Þ
V �: ð79Þ

Note that Eq. (74) was not used to derive the expressions
in (76)–(78) and provides a highly nontrivial consistency
check,

0 ¼ 1

4
½Hð1Þ

V ; V 0
2;1� þ ½Hð1Þ

V ;ΔXð2Þ
A−V � −

1

4β0
½Hð2Þ

A−V; T
ð1Þ
V �Hð1Þ

V

−
1

2β0
½Hð2Þ

A−V; ½Hð1Þ
V ;Xð1Þ

V ��: ð80Þ

Using V 0
2;1 from Eq. (77), the expression on the rhs of this

relation can be brought to the form ½Hð1Þ
V ; F � where

F ¼ ΔXð2Þ
A−V −

1

8β0
ð2½Hð2Þ

A−V;X
ð1Þ
V �− T ð1Þ

V Hð2Þ
A−V þ T ð2Þ

A−VH
ð1Þ
V Þ:

ð81Þ

The equation ½Hð1Þ
V ; F � ¼ 0 implies that F is an invariant

operator and, therefore, it commutes with the canonical
conformal symmetry generators, ½Sþ; F � ¼ 0. Since

½Sþ;ΔXð2Þ
A−V � ¼ z12Δ̂

ð2Þ
A−V , cf. Eq. (41), it follows from

½Sþ; F � ¼ 0 that

z12Δ̂
ð2Þ
A−V ¼ 1

8β0
ð2½Hð2Þ

A−V; z12Δ
ð1Þ
þ � − ½Hð1Þ

V ; z1 þ z2�Hð2Þ
A−V

þ ½Hð2Þ
A−V; z1 þ z2�Hð1Þ

V Þ: ð82Þ

We have verified that this equation holds true.
Alternatively, Eq. (82) can be used to obtain the conformal

anomaly Δ̂ð2Þ
A−V avoiding the diagrammatic calculation

described in Sec. IV.
The result for the matching kernel in Eq. (79) can be

written as an integral operator in momentum fraction
representation. This is, however, not necessary as the
matching can be implemented more efficiently starting
from position-space kernels as explained in Ref. [15]. For
the applications to LCDAs, the expansion in local operators
is more useful. We derive the corresponding expressions in
the Appendix.

VII. SUMMARY

We have calculated the three-loop evolution kernel for
flavor-nonsinglet axial-vector operators in general off-
forward kinematics in Larin’s scheme. In QCD applica-
tions, axial-vector operators are usually defined in such a
way that their scale dependence coincides with that for
the vector operators, which can be achieved starting from
Larin’s scheme and applying a finite renormalization
(matching) to arrive at the conventional choice for the
MS scheme. Of course, the coefficient functions in the OPE
have to be modified accordingly. We have derived the
explicit expression for the matching kernel for the light-ray
operators and also for local operators.
Our method of calculation is based on using the

restrictions on off-forward operator mixing that are due
to conformal symmetry of the QCD Lagrangian and can
most naturally be taken into account going over to the
Wilson-Fisher critical point at noninteger d ¼ 4 − 2ε
space-time dimensions. In this work, the technique has
been generalized to axial-vector operators and we have
derived the two-loop expression for the special conformal
anomaly for axial-vector operators.
The results are relevant for QCD studies of hard

exclusive reactions involving momentum transfer between
the initial and the final states, e.g., DVCS and γ�γ → π form
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factor. Concrete applications are beyond the scope of
this study.

ACKNOWLEDGMENTS

This project was supported by Deutsche
Forschungsgemeinschaft (DFG) through the Research
Unit FOR 2926, “Next Generation pQCD for Hadron
Structure: Preparing for the EIC,” Project No. 40824754.
The work of A.M. was supported in addition by the DFG
Grants No. MO 1801/4-1 and No. KN 365/13-1 and RSF
Project No. 19-11-0013.

APPENDIX: MATCHING KERNEL
FOR LOCAL OPERATORS

Light-ray operators are nothing but the generating
functions for the renormalized local operators. The results
in the local form are required for several applications, e.g.,
the calculation of moments of the LCDAs and GPDs using
lattice QCD techniques. Our notations in this Appendix
closely follow Sec. VI in Ref. [14].
Instead of using mixing matrices for the operators with a

given number of left and right derivatives, it proves to be
more convenient to go over to the Gegenbauer polynomial
basis,

OA
nk ¼ ð∂z1 þ ∂z2ÞkC3=2

n

�∂z1 − ∂z2

∂z1 þ ∂z2

�
OAðz1; z2Þ

����
zi¼0

:

ðA1Þ

Here k ≥ n is the total number of derivatives. The rationale
for using Gegenbauer polynomials is that any invariant
kernel is diagonal in this basis. Note that the Lorentz spin
of the operator with the lowest dimension for given n
is N ¼ nþ 1.
The RG equation for the operators OA

nk has the form

�
μ
∂
∂μþ βðaÞ ∂

∂a
�
OA

nk ¼ −
Xn
n0¼0

γAnn0O
A
n0k: ðA2Þ

The mixing matrix γAnn0 is triangular and its diagonal
elements are equal to the anomalous dimensions

γAnn0 ¼ 0 if n0 > n; γAnn ¼ γAðnþ 1Þ: ðA3Þ

The light-ray operator can be expanded over local operators
as follows:

OAðz1; z2Þ ¼
X∞
n¼0

X∞
k¼n

Φnkðz1; z2ÞOA
nk: ðA4Þ

The coefficients Φnkðz1; z2Þ in this expansion are homo-
geneous polynomials in z1, z2 of degree k,

Φnkðz1; z2Þ ¼ ωnkðSþÞk−nzn12: ðA5Þ

The normalization factor reads [14]

ωnk ¼ 2
2nþ 3

ðk − nÞ!
Γðnþ 2Þ

Γðnþ kþ 4Þ : ðA6Þ

The action of any integral operator A on the light-ray
operator OA can be translated into the matrix form

½AOA�ðz1; z2Þ ¼
X
nk

½AΦnk�ðz1; z2ÞOA
nk

¼
X
nk

Φnkðz1; z2Þ
X
n0k0

Akk0
nn0On0k0 ; ðA7Þ

where the matrix Akk0
nn0 is defined as

½AΦnk�ðz1; z2Þ ¼
X
n0k0

Ak0k
n0nΦn0k0 ðz1; z2Þ: ðA8Þ

See Ref. [14] [Sect. 6] for more details. Here we only note
that if the operator A commutes with the canonical
generator of scale transformations S0, then its matrix
elements are nonzero only if k ¼ k0, Akk0

nn0 ≡ δkk0Ann0 ðkÞ.
If, in addition, A commutes with S−, then the matrix
elements Ann0 do not depend on k, Ann0 ðkÞ ¼ Ann0 .
Our goal in this Appendix is to work out this represen-

tation for the matching kernel (64), VðaÞ ↦ ½VðaÞ�kk0nn0 .
Since the operator VðaÞ satisfies the both requirements,
the k-indices are redundant,

½VðaÞ�kk0nn0 ¼ δkk0Vnn0 ðaÞ: ðA9Þ

Following [8], we split Vmn in the diagonal m ¼ n and
nondiagonal n > m parts,

VmnðaÞ ¼ δmnVD
n ðaÞ þ VND

mn ðaÞ: ðA10Þ

The diagonal part is given in terms of the difference in the
anomalous dimensions,

VD
n ðaÞ ¼ aγð2ÞA−Vðnþ 1Þ þ a2γð3ÞA−Vðnþ 1Þ þ � � � : ðA11Þ

The leading contribution is

γð2ÞA−Vðnþ 1Þ ¼ 16CFβ0
ðnþ 1Þðnþ 2Þ : ðA12Þ

The three-loop result γð3ÞA−Vðnþ 1Þ ¼ γð3ÞA−VðNÞ is available
from Ref. [22] and we have presented it in the form

γð3ÞA−Vðnþ 1Þ ¼ γð3Þ;invA−V ðnþ 1Þ þ γð3Þ;ninvA−V ðnþ 1Þ: ðA13Þ
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See Eqs. (53) and (55) for the explicit expressions. The off-
diagonal part of the matching matrix

VND
mn ðaÞ ¼ a2Vð2Þ;ND

mn þOða3Þ ðA14Þ

is a new result. We obtain

Vð2Þ;ND
mn ¼ −

1

aðm;nÞ
�
ðγð2ÞA−Vðmþ 1Þ− γð2ÞA−Vðnþ 1ÞÞ

×

��
β0 þ

1

2
γð1ÞV ðnþ 1Þ

�
bmn þwð1Þ

mn

�

þ 1

2
ðγð1ÞV ðmþ 1Þ− γð1ÞV ðnþ 1ÞÞγð2ÞA−Vðnþ 1Þbmn

�
:

Here

aðm; nÞ ¼ ðm − nÞðmþ nþ 3Þ; ðA15Þ

and the matrices bmn, w
ð1Þ
mn have the form [14]

bmn ¼ −2ð2nþ 3Þϑmn; ðA16Þ

wð1Þ
mn ¼ 4CFð2nþ 3Þaðm; nÞ

×
�
Amn − S1ðmþ 1Þ
ðnþ 1Þðnþ 2Þ þ 2Amn

aðm; nÞ
�
ϑmn; ðA17Þ

where

ϑmn ¼
�
1 if m − n > 0 and even

0 else
ðA18Þ

and

Amn ¼ S1

�
mþ nþ 2

2

�
− S1

�
m − n − 2

2

�

þ 2S1ðm − n − 1Þ − S1ðmþ 1Þ: ðA19Þ

The first few nondiagonal elements (0 ≤ m, n ≤ 7) for
Nc ¼ 3 and nf ¼ 4 are equal to

V2;ND ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2000
9

0 0 0 0 0 0

0 2800
729

0 0 0 0 0

4640
27

0 − 1120
81

0 0 0 0

0 52000
1701

0 − 12512
945

0 0 0

29800
243

0 1580
243

0 − 4312
405

0 0

1
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