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We discuss the influence of a helicity imbalance on the phase diagram of dense QCD at finite
temperature. The helical quark number counts the difference between the axial charges carried by quarks
and antiquarks. We argue that the helical chemical potential is a thermodynamically relevant quantity in
theories with the mass gap generation. Using the linear sigma model coupled to quarks, we show that the
presence of the helical density substantially affects the phase diagram of dense quark matter. A moderate
helical density makes the chiral phase transition softer while shifting the critical end point towards lower
temperatures and higher baryon chemical potentials. As the helical density increases, the segment of the
first-order transition disappears, and the chiral transition becomes a soft crossover. At even higher helical
chemical potentials, the first-order transition reappears again at the zero-density finite-temperature
transition and extends into the interior of the phase diagram. This evolution of the chiral transition
reflects the existence of a thermodynamic duality between helical and vector (baryonic) chemical
potentials. We also show that the presence of the helicity imbalance of quark matter increases the curvature
of the chiral pseudocritical line in QCD.
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I. INTRODUCTION

Unusual properties of quark-gluon plasma attract inten-
sive attention of the scientific community. Nowadays, this
ultrahot state of matter is routinely created in relativistic
heavy-ion collisions [1–3] thus making it possible to probe
experimentally its thermodynamics, phase diagram, equation
of state, as well as various transport phenomena [4–6].
Recently, the ultraperipheral collisions opened the door to
the investigation of the highly rotating plasma seen exper-
imentally via the quarks’ spin degrees of freedom [7,8].
The spin degree of freedom of an ultrarelativistic quark

can be quantified via its helicity h ¼ s · p=jpj, which is the
projection of the quark’s spin s onto the quark’s momentum
p. The definition of helicity h applies in exactly the same
way both to quarks and to antiquarks. One distinguishes the
right- and left-handed quarks with, respectively, positive
and negative values of the helicity [9].
The notion of helicity is usually used as an intermediate

step to describe the physical sense of a very similar
quantity, called chirality. For a Dirac fermion, the chirality
is even under the charge conjugation (C) transformation,

while the helicity is odd. For example, a quark with a right-
handed helicity has a right-handed chirality while an
antiquark with the very same right-handed helicity has
an opposite, left-handed chirality. The chirality is deter-
mined as an eigenvalue of the fifth gamma matrix γ5.
In the context of QCD, the transformations generated by

the matrix γ5 are usually associated with the “axial” Uð1ÞA
subgroup of a larger group of global QCD symmetries (the
latter group carries the very name “chiral”). Therefore
below we will use mostly the term “axial symmetry”
simultaneously referring to the “chirality” of quarks.
The importance of the axial symmetry is determined by

its significant influence on the properties of QCD, in
particular, to the topological structure of the QCD vacuum.
The axial symmetry, which is respected by the massless
Dirac Hamiltonian, is broken at the quantum level via an
axial anomaly. This feature leaves an imprint on the
particularities of the meson spectrum [10] and generates
anomalous transport effects in the quark-gluon plasma
(QGP) created in relativistic heavy-ion collisions [11,12].
The axial density of quarks modifies the thermodynamic
properties of the plasma and its phase diagram [13–18].
While the axial properties of QCD are discussed in great

details, the helical quantum numbers have not been studied
with due attention. Despite the chirality and helicity being
very similar to each other, they, nevertheless, possess quite
different features. For example, at a classical level, the axial
charge is conserved only for massless fermions, while the
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helical charge is conserved for any value of the fermion
mass. The axial charge is determined with the help of a
local Lorentz-invariant operator, while the definition of the
helical charge relies on the local frame (the latter feature,
however, is not important for theories at finite density
and/or temperature).
One could also expect the existence of similarities

between the axial and helical quantum numbers. On the
quantum level, the helical degrees of freedom—similarly to
their axial counterparts [12,19]—may lead to new non-
dissipative transport phenomena, the helical vortical
effects, that emerge in a helically imbalanced rotating
fermionic system [20]. Both chirality [21] and helicity
[22] may have the equilibration times close to the relaxation
time of the spin degrees of freedom [23].
Experimentally, the helicity-flip transitions of multi-

quark systems, for example, of protons, can be measured
in the elastic proton-proton collisions [24]. The effects of
helicity in the quark-gluon plasma can leave an exper-
imentally accessible imprint onto the spin polarizations of
the Λ hyperons and Λ̄ antihyperons [25].
In our paper, we discuss the influence of a global helical

charge density on thermodynamics of strong interactions.
We assume that the helical charge, similarly to the axial
charge, may be generated due to thermal fluctuations of a
nonequilibrium environment at the early stages of heavy
ion collisions. To address the thermalized phase, we use the
effective approach based on the linear sigma model coupled
to quarks (LSMq), which also serves as an effective low-
energy model of QCD [26].
As we discuss at the end of the paper, the net helicity is

expected to be a reasonably good quantum number to
characterize the thermal evolution of the quark-gluon plasma
until the hadronization time. Indeed, it is well-known that the
helicity of massless quarks is conserved in perturbative QCD
interactions due to the vector nature of the coupling between
quarks and gluons (see, for example, the discussions in
Refs. [22,23,27]). This statement is applied, in particular, to
the high-temperature phase of QCD where the light quark
masses are small compared to their thermal energy.
The structure of our paper is as follows. In Sec. II, we

discuss differences and similarities between the thermody-
namics of vector, axial, and helical charges and corre-
sponding chemical potentials. Surprisingly, we find that the
helical density is closer to the vector density rather than to
its axial counterpart. We recall, after Ref. [28], how the
presence of mass for free fermions makes the axial
chemical potential thermodynamically inconsistent. We
demonstrate that the helical chemical potential does not
suffer from this drawback. We describe LSMq in Sec. III.
We use this model to discuss, in Sec. IV C, the thermo-
dynamics of the dense QCD matter in the presence of the
helical chemical potential. We calculate the phase diagram
of the model and study the evolution of the chiral transition
as the helical chemical potential increases. The last section

is devoted to our conclusions. We employ the ðþ;−;−;−Þ
signature for the space-time metric and the convention
ϵ0123 ¼ þ1 for the Levi-Civita symbol.

II. CHIRALITY AND HELICITY IN
THERMODYNAMICS OF FREE FERMIONS

Before going into the details of QCD thermodynamics,
let us discuss first the role of chirality and helicity in the
thermodynamic properties of free Dirac fermions.

A. Chirality vs helicity for Dirac fermions

Consider free massive Dirac fermions with the following
Lagrangian:

L ¼ ψ̄ði=∂þmÞψ ; ð1Þ

where we use the slashed notation =∂ ¼ γμ∂μ expressed via
the Dirac γμ matrices (μ ¼ 0;…; 3) and ψ̄ ¼ ψ†γ0. We will
also use the fifth gamma matrix, γ5 ¼ iγ0γ1γ2γ3.
The axial charge (chirality) χ ¼ �1 of a fermion state ψ

is defined according to an eigenvalue χ of the γ5 matrix,
γ5ψ ¼ χψ . One distinguishes the right-handed (R) and left-
handed (L) chiral eigenstates, respectively:

γ5ψR ¼ þψR; γ5ψL ¼ −ψL: ð2Þ

As we mentioned in the introduction, the chirality χ of a
fermion state is closely related to the helicity λ of the same
state. Classically, the helicity is determined by the projec-
tion of the spin s on the direction of motion of the fermion
given by its momentum p. At the quantum level, the helicity
λ is an eigenvalue of the helicity operator:

h ¼ s · p
p

≡ γ5γ0

2

γ · p
jpj ; ð3Þ

where p ¼ −i∂ is the momentum operator, p ¼ jpj is its
absolute value, and si ¼ 1

2
ε0ijkΣjk is the spin operator

which is constructed from the covariant antisymmetric
tensor Σμν ¼ i

4
½γμ; γν�.

Since the fermion is a spin 1=2 particle, the helicity
operator (3) takes two values, �1=2. It is convenient to
rescale, by the factor of two, both the helicity operator
h ¼ 2h and the corresponding helicity eigenvalue ϰ with
hψ ¼ ϰψ . The rescaled helicity operator h has the con-
venient eigenvalues�1. One distinguishes the right-handed
(↑) and the left-handed (↓) helicity eigenstates:

hψ↑ ¼ þψ↑; hψ↓ ¼ −ψ↓: ð4Þ

At the level of the classical Dirac equation, it can be
easily seen that the helicity is a conserved quantity, as
follows. Consider the Dirac equation, ði=∂ −mÞψ , in the
following form:
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i∂tψ ¼ Hψ ; H ¼ −iγ0γ · ∇þmγ0; ð5Þ

where H is the Hamiltonian of the system. In order to be
conserved, the helicity should satisfy

hi∂tψ ¼ i∂tðhψÞ; ð6Þ

or, equivalently, ½h; H� ¼ 0. This latter equality is readily
checked by noting that

hH ¼ γ5γ0
�
−i

γ · ∇
jpj

�
ð−iγ0γ · ∇þmγ0Þ;

¼ γ5γ0ðiγ0γ · ∇ −mγ0Þ
�
−i

γ · ∇
jpj

�
;

¼ Hh: ð7Þ

The chirality and helicity are different quantities. For a
single particle, these quantum numbers are firmly related to
each other: the chirality of a particle is equal to its helicity
(for example, a right-chiral particle has a right-handed
helicity) while the chirality of an antiparticle is opposite to
its helicity (for instance, a right-chiral antiparticle has a left-
handed helicity). However, the total helicity of an ensemble
of particles cannot be determined only by its total vector
charge and total axial charge. Therefore the helicity, given
its conservation for free massive fermions, may serve—in
addition to a vector (baryonic) charge—as a useful quantity
to characterize the thermodynamic ensembles of fermions.
We would like to stress that it is important for us to

consider the theory with massive fermions in view of its
further applicability to QCD. Although the mass gap
generation emerges at the purely gluon sector of QCD,
this phenomenon is accompanied by the chiral symmetry
breaking at the quark sector which gives masses to quarks
via a dynamical mechanism [29]. In the next section, we
discuss thermodynamics of free massive fermions for a
number of chemical potentials. First, we consider the well-
known case of the vector (related to baryonic) chemical
potential. Then we show, following Ref. [28], that the
presence of nonzero fermionic mass is absolutely incon-
sistent with the presence of a finite axial chemical potential
starting at the level of zero-point fluctuations. Finally, we
discuss the helical chemical potential and show its con-
sistency with the mass gap generation.

B. Thermodynamics of free fermions with vector,
axial, and helical chemical potentials

1. General formalism

A free fermion with the mass m in the presence of
the vector (μV), axial (μA), and helical (μH) chemical
potentials can be described by the following effective
Lagrangian [30]:

L ¼ ψ̄ði=∂þ μVγ
0 þ μAγ

0γ5 þ μHγ
0h −mÞψ : ð8Þ

It is convenient to rewrite the corresponding Dirac
equation,

ði=∂þ μVγ
0 þ μAγ

0γ5 þ μHγ
0h −mÞψ ¼ 0; ð9Þ

in terms of the plane waves:

ψðxÞ ¼ χpe−ipμxμ ; ð10Þ

where x ¼ ðt; xÞ and pμ ¼ ðp0; pÞ and the momentum-
dependent spinor χp. In the momentum space, the Dirac
equation (9) reduces to the set of linear equations:

MðpÞχp ¼ 0; ð11Þ

determined by the following matrix:

MðpÞ ¼ =pþ μVγ
0 þ μAγ

0γ5 þ μHγ
0h −m: ð12Þ

A consistent solution of Eq. (9) requires the determinant
of the matrix (12) to vanish. This condition leads to a
polynomial equation:

detMðpÞ ¼ 0; ð13Þ

which has four roots in terms of the zeroth component of

the momentum p0 ¼ pðsÞ
0;ϰðpÞ:

detMðpÞ ¼
Y
ϰ¼�1

Y
s¼�

h
p0 − pðsÞ

0;ϰðpÞ
i
: ð14Þ

The roots p0 are labeled by the helicity ϰ ¼ �1, determined
via Eq. (4), and the kind s ¼ �1 of the solution for particle
ðs ¼ þÞ and antiparticle ðs ¼ −Þ energy branches. The
solutions of Eq. (14) depend on the spatial momentum p,
the mass m, and the full set of chemical potentials,
ðμV; μA; μHÞ, being given by

pðsÞ
0;ϰðpÞ ¼ −μV − ϰμH þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðjpj − ϰμAÞ2

q
: ð15Þ

Although we call the variety of these solutions as the

“energy branches,” the quantity pðsÞ
0;ϰðpÞ does not have

the literal sense of energy. For example, the condition

pðsÞ
0;ϰðpÞ ¼ 0 defines, depending on the existence of the real-

valued solution, the position of the Fermi surface for
particle (s ¼ þ1) or antiparticle (s ¼ −1) states of fermions
carrying the helicity ϰ.
It is convenient to compute the free energy of the Dirac

system in the Euclidean spacetime after performing the
Wick rotation, p0 → ip4 → iϖn:
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Ω ¼ −T
X
n∈Z

Z
d3p
ð2πÞ3 ln det

MðpÞ
T

����
p0¼iϖn

; ð16Þ

where ϖn ¼ πTð2nþ 1Þ is the fermionic Matsubara fre-
quency at temperature T labeled by the index n ∈ Z [30].
The free energy (16) may be rewritten using Eq. (14):

Ω ¼ −T
X
ϰ¼�1

X
s¼�

X
n∈Z

Z
d3p
ð2πÞ3 ln

ϖn þ ispðsÞ
0;ϰðpÞ

T
; ð17Þ

where the additional multiplier s takes into account the
correct contour of integration along the momentum p0.
After the Wick rotation, the integration becomes a sum over
the Matsubara frequencies ϖn in the Euclidean represen-
tation of the free energy (17).
We take into account the identity

ln
ϖn þ ip0

T
¼ i

Z
p0=T

0

dθ
πð2nþ 1Þ þ iθ

þ Cn; ð18Þ

and neglect the inessential constant Cn ¼ ln πð2nþ 1Þ in
the following. The summation over n in Eq. (17) can be
performed with the help of Eq. (18) and the following
relation:

X
n∈Z

1

ϖn þ ip0

¼ i
T

�
nTðp0Þ −

1

2

�
ð19Þ

where

nTðωÞ ¼
1

eω=T þ 1
ð20Þ

is the Fermi-Dirac distribution. The integral over the
variable θ may be taken using the identity:

Z
x

0

dθ
eθ þ 1

¼ − ln ð1þ e−xÞ þ ln 2: ð21Þ

Below we will again neglect an inessential constant ln 2.
Finally, we get the following expression for the free

energy:

Ω ¼ ΩZP þΩT; ð22aÞ

ΩZP ¼ −
1

2

X
ϰ¼�1

X
s¼�

Z
d3p
ð2πÞ3 sp

ðsÞ
0;ϰðpÞ; ð22bÞ

ΩT ¼ −
X
ϰ¼�1

X
s¼�

Z
d3p
ð2πÞ3 T ln ð1þ e−sp

ðsÞ
0;ϰðpÞ=TÞ: ð22cÞ

This expression is the most convenient representation of the
free energyΩT as it contains all four branches of the energy
dispersion. The zero-point term ΩZP is usually associated

with the vacuum contribution while the term ΩT represents
the thermal and matter contributions to the free energy.
The densities of all three charges which can be obtained

via the differentiation of the free energy (22) with respect to
the corresponding chemical potential:

nl ¼ −
∂Ω
∂μl

; l ¼ V; A;H: ð23Þ

These densities correspond to the vacuum expectation
values of the zero components, nl ¼ hJ0li, of the vector,
axial, and helical currents, respectively,

JμV ¼ ψ̄γμψ ; JμA ¼ ψ̄γμγ5ψ ; JμH ¼ 1

2
ψ̄γμhψ þ 1

2
h̄ψγμψ :

ð24Þ
These currents form a “triad” of classically conserved Uð1Þ
quantities for massless (m ¼ 0) Dirac fermions. In this
article, however, we will be interested in properties of quarks
with a dynamically generated mass. One can check that the
vector and helical charges are still classically conserved as
the classical solutions of massive fermions (8) satisfy the
equations ∂μJ

μ
V ¼ ∂μJ

μ
H ¼ 0 identically. We will see that the

fact that the axial charge is not conserved for massive
fermions, ∂μJ

μ
A ≠ 0, will profoundly affect the thermody-

namics of fermions with the axial chemical potential.
Below we discuss the effects of each chemical potential

on the thermodynamics of the system. In order to get a clear
picture, we consider a single nonzero chemical potential
and require that the other two vanish.

2. Vector chemical potential (μV ≠ 0, μA = μH = 0)

First we consider the well-known case with a finite
vector density. The Dirac Lagrangian with the vector
chemical potential μV ,

LV ¼ ψ̄ði=∂þ μVγ
0 −mÞψ ; ð25Þ

describes particles, for which the temporal p0 and spatial
components p of the four momentum are related, via
Eq. (13), as follows:

pðsÞ
0;ϰðpÞ ¼ −μV þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: ð26Þ

The vector chemical potential μV shifts the particle
ðs ¼ þ1Þ and antiparticle ðs ¼ −1Þ energy branches by
the same value of energy μV which does not depend neither
on particle type s nor on the helicity quantum number ϰ. We
find that each of the levels (26) is doubly degenerate with
respect to helicity ϰ.
Using the dispersion relations (26), the free energy (22)

can be represented as the sum

ΩVðT; μVÞ ¼ ΩV
vac þΩV

T ðT; μVÞ: ð27Þ
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The total free energy contains the divergent vacuum part

ΩV
vac ≡ΩV

ZP ¼ −2
Z

d3p
ð2πÞ3 ωpðmÞ ð28Þ

and the finite thermodynamic contribution:

ΩV
T ¼ −2T

X
s¼�1

Z
d3p
ð2πÞ3 ln

�
1þ e−

ωp−sμV
T

	
; ð29Þ

where

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; ð30Þ

is the one-particle energy. The vacuum part (28) does not
contribute to the thermodynamics of the system as it
depends neither on temperature T nor on the chemical
potential μV .
The density of the vector (“electric”) charge is then given

by the thermodynamic part (29) with the help of Eq. (23)
with l ¼ V:

nV ¼ 2

Z
d3p
ð2πÞ3

�
1

e
ωp−μV

T þ 1
−

1

e
ωpþμV

T þ 1

�
: ð31Þ

The vacuum part (28) does not contribute to the density.
At small mass, the explicit integration in Eq. (31)

gives [31]:

nVðT; μVÞ ¼
μVT2

3
þ μ3V
3π2

−
μVm2

2π2
þOðm4Þ: ð32Þ

3. Axial chemical potential (μA ≠ 0, μV = μH = 0)

The Dirac particles at the axial chemical potential μA is
described by the Lagrangian:

LA ¼ ψ̄ði=∂þ μAγ
0γ5 −mÞψ : ð33Þ

For simplicity of our analysis, we keep the vector and
helical chemical potentials vanishing, μV ¼ μH ¼ 0.
Repeating all the steps of the previous section, we find

that, in the present case, the energy dispersions, constrained
by the relation (13), are as follows:

pðsÞ
0;ϰðpÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − ϰμAÞ2 þm2

q
: ð34Þ

These states are characterized by the particle/antiparticle
number s ¼ �1 and the helicity ϰ ¼ �1.
In a sharp contrast with Dirac fermions at a non-

zero vector charge density, the would-be vacuum term
ΩA

ZP (22b) of the μA ≠ 0 fermions depends explicitly on the

axial chemical potential μA. Indeed, when pðsÞ
0;ϰðpÞ is given

by Eq. (34),ΩA
ZP contains the truly vacuum partΩA

vac, which
is equal toΩV

vac given in Eq. (28), as well as a “density” part
that depends on the axial chemical potential, ΩA

dens:

ΩA
ZP ¼ ΩA

vac þ ΩA
dens: ð35Þ

Thus we divide the free energy (22) into the following three
terms:

ΩAðT; μAÞ ¼ ΩA
vac þΩA

densðμAÞ þ ΩA
TðT; μAÞ: ð36Þ

The finite-density part in Eq. (36),

ΩA
densðμAÞ ¼ −

X
ϰ¼�1

Z
d3p
ð2πÞ3

·

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − ϰμAÞ2 þm2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
;

ð37Þ

also comes from the “vacuum fluctuation” termΩZP, which
gets this unconventional (and, as we show below, somewhat
artificial) contribution.
The thermal contribution to the free energy is given by

the following finite expression:

ΩA
T ¼ −2T

X
ϰ¼�1

Z
d3p
ð2πÞ3 ln

�
1þ e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj−ϰμAÞ2þm2

p
T

�
: ð38Þ

Its form is somewhat unusual due to the fact that the
dispersion relation in Eq. (38) is different from the conven-
tional one-particle dispersion relation (30).
The appearance of the finite-density part (37) has the

self-contradictory “vacuum” origin. This term determines
the axial density (23) of Dirac fermions at vanishing
temperature:

nAðμAÞjT¼0 ¼ −
∂ΩA

densðμAÞ
∂μA

;

¼
X
ϰ¼�1

Z
d3p
ð2πÞ3

μA − ϰjpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμA − ϰjpjÞ2 þm2

p : ð39Þ

The axial density (39) for massless fermions (m ¼ 0) has
a conventional, nondivergent expression:

nAðμAÞjT¼0
m¼0

¼ 2

Z
d3p
ð2πÞ3ΘðμA − pÞ ¼ μ3A

3π2
; ð40Þ

where ΘðxÞ is the Heaviside step function.
It is remarkable to notice that the cutoff in Eq. (40) at

the Fermi momentum p ¼ μA appears not in the thermo-
dynamic part (38)—which is always zero for T ¼ 0
and μA ≠ 0—but it comes naturally in the “vacuum”
contribution.
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At finite temperature, the contribution nA;T ¼−∂ΩA
T=∂μA

from ΩA
T to the axial charge density is

nA;T ¼ 1

π2
X
ϰ¼�1

Z
∞

0

dp
p2ðϰp − μAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϰp − μAÞ2 þm2

p

×



exp

�
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϰp − μAÞ2 þm2

q �
þ 1

�
−1
: ð41Þ

Adding now the vanishing temperature contribution
nAðμAÞjT¼0, coming from ΩA

dens, we obtain

nAðTÞ ¼ −
1

2π2
X
ϰ¼�1

Z
∞

0

dp
p2ðϰp − μAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϰp − μAÞ2 þm2

p

× tanh

�
1

2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϰp − μAÞ2 þm2

q �
: ð42Þ

At vanishing mass, the above expression simplifies to

nAðTÞjm¼0 ¼ −
1

2π2
X
ϰ¼�1

Z
∞

0

dpp2 tanh
ϰp − μA

2T
;

¼ 1

π2
X
ϰ¼�1

Z
∞

0

dpp2
ϰ

eðp−ϰμAÞ=T þ 1
;

¼ μAT2

3
þ μ3A
3π2

: ð43Þ

For massive fermions, however, the interpretation of
the axial density, generated by the unexpected “vacuum”
contribution (39), becomes less clear [28]. For example,
consider the axial density at high chemical potential
(μA ≫ m) for massive fermions. At high momenta,
jpj ≫ μA, the expression under the integral (39) vanishes
as fast as 2m2μA=jpj3, which is not, however, enough to
make the whole integral convergent. In fact, the axial
density diverges logarithmically in the ultraviolet region:

nAðμAÞj T¼0
m≪jμA j

¼ μ3A
3π2

þm2μA
π2

ln
ΛUV

m
þ…; ð44Þ

where the ellipsis indicate nondivergent terms of the order
of OðμAÞ and ΛUV indicates the ultraviolet cutoff.
The logarithmic divergence of the axial density (44)

appears as a result of the lack of axial symmetry for massive
Dirac fermions [28]. The axial density QA is not a
conserved quantity if the Dirac fermions are massive.
Indeed, the chemical potential cannot be introduced self-
consistently for a nonconserved charge. Therefore, the
presence of both μA ≠ 0 and m ≠ 0 cannot be set in a
physically self-consistent manner.
The physical situation becomes even more subtle in the

case of theories where the mass is generated dynamically,
as it happens, for example, in interacting field theories such
as QCD. In this case, the axial chemical potential may lead

to an additional renormalization which is discussed in
details in Ref. [28]. Basically, the infinite zero-point energy
cannot be removed by the usual subtraction procedure as it
contains both the vacuum part and the contribution coming
from matter (35).

4. Helical chemical potential (μH ≠ 0, μV = μA = 0)

Finally, we consider the helical chemical potential which
is the central topic of our paper. In the theory of free
massive fermions, the helical potential μH appears in the
Lagrangian as follows:

L ¼ ψ̄ði=∂þ μHγ
0h −mÞψ : ð45Þ

We keep the vector and axial chemical potentials equal to
zero, μV ¼ μA ¼ 0.
The energy dispersion condition (13) for the Lagrangian

(45) give us the following four energy branches:

pðsÞ
0;ϰðpÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− ϰμH: ð46Þ

Thus, the helical chemical potential μH shifts the particle
ðs ¼ þ1Þ and antiparticle ðs ¼ −1Þ branches with the
energy which has the standard form (30). The sign of
the shift now depends explicitly on the helicity ϰ of the
branch, as one could expect from a quantity that is invoked
to distinguish the helicity.
Surprisingly, the effects of nonzero vector (26) and

helical (46) chemical potentials on the energy branches
are quite similar to each other in the sense that both
potentials shift the spectra without modifying the functional
dependence of the energy on momentum. Both vector and
helical potentials differ significantly from the axial chemi-
cal potential, which alters the very form of the energy
levels (34).
The free energy in the presence of the helical chemical

potential contains two terms:

ΩHðT; μAÞ ¼ ΩH
ZP þ ΩH

T ðT; μAÞ: ð47Þ

The zero-point fluctuations lead to the conventional vac-
uum term (28)ΩH

ZP ¼ ΩH
vac ¼ ΩV

vac, which is independent of
temperature and chemical potential. The thermodynamic
part of the free energy is

ΩH
T ðμHÞ ¼ −T

X
s¼�1

X
ϰ¼�1

Z
d3p
ð2πÞ3 · ln

�
1þ e−

ωp−sϰμH
T

	
:

ð48Þ

Remarkably, the dependence of the free energy (48)
on the helical chemical potential μH mimics exactly the
one (29) of the vector chemical potential μV :
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ΩHðμHÞ ¼ ΩVðμVÞjμV→μH
: ð49Þ

Of course, the relation (49) does not mean that the
effects of the helical and vector potentials on the Dirac
fermions are identical to each other: it is the parametric
dependence of the free energy that is the same in both
cases. In order to demonstrate this fact, we will con-
sider, in the next subsection, the free energy of Dirac
fermions in the presence of both these chemical poten-
tials. Meanwhile, we give the explicit expression for the
helical density [31]:

nHðT; μHÞ ¼
μHT2

3
þ μ3H
3π2

−
μHm2

2π2
þOðm4Þ: ð50Þ

5. Duality of helical and vector chemical potentials

Now we consider the thermodynamics of Dirac
fermions in the presence of both vector and helical
densities. This physical environment is described by the
Lagrangian:

L ¼ ψ̄ði=∂þ μVγ
0 þ μHγ

0h −mÞψ ; ð51Þ

which gives the following Dirac equation:

ði=∂þ μVγ
0 þ μHγ

0h −mÞψ ¼ 0: ð52Þ

The spectrum is described by the four energy branches:

pðsÞ
0;ϰðpÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− μV − ϰμH; ð53Þ

which are immediate generalizations of the vector (26) and
helical (46) energy solutions.
The vacuum contribution to the free energy may tradi-

tionally be neglected below as it depends neither on
temperature nor on chemical potentials. The thermody-
namic contribution is as follows:

ΩVH
T ðμV; μHÞ ¼ −T

X
s¼�1

X
ϰ¼�1

Z
d3p
ð2πÞ3

× ln
�
1þ e−

ωp−sðμVþϰμH Þ
T

	
; ð54Þ

The form of the thermodynamic potential (54) demon-
strates the independence of the physical effects of vector
and helical chemical potentials. The potentials appear to
enter the partition function symmetrically, exhibiting the
symmetry of thermodynamic functionΩT ≡ΩVH

T under the
flip of the chemical potentials

�
μV

μH

�
→

�
μH

μV

�
ð55Þ

namely:

ΩTðμV; μHÞ ¼ ΩTðμH; μVÞ: ð56Þ

The free energy (54) depends on the absolute values and not
on the signs of the chemical potentials μV and μH. Thus, the
thermodynamics of the theory is also invariant under the
sign flips μV → �μV and μH → �μH. In the small mass
limit, nV and nH are given by

nV ¼ μVT2

3
þ μ3V þ 3μVμ

2
H

3π2
−
μVm2

2π2
þOðm4Þ;

nH ¼ μHT2

3
þ μ3H þ 3μHμ

2
V

3π2
−
μHm2

2π2
þOðm4Þ: ð57Þ

We conclude this section by stressing that the presence of
vector and helical chemical potentials and the appropriate
densities is, expectedly, consistent with the thermodynam-
ics of the massive Dirac fermions. A nonzero axial density
is not consistent with the fermion’s mass. Despite its rather
exotic definition, the helical chemical potential shares
many features with its vector counterpart.

III. LINEAR SIGMA MODEL WITH QUARKS

In order to explore the chiral properties of QCD in the
presence of the helical vector potential, we use LSMq [26].
This low-energy effective model of QCD contains two
types of fields: the doublet of the light quarks ψðxÞ ¼
ðu; dÞT and the light pseudoscalars ðσ; π⃗Þ, which include
the pseudoscalar field σ and the isotriplet of the pseudo-
scalar pions π⃗ ¼ ðπ1; π2; π3Þ. Each of the light quarks is a
triplet in the color space. Since the theory does not contain
the gluon (color gauge) fields, the color degeneracy of the
quark fields will only lead to the factor Nc ¼ 3 in the
fermionic contribution to the free energy of the system.
The LSMq Lagrangian has two terms:

L ¼ Lqðψ̄ ;ψ ; σ; π⃗; LÞ þ Lσðσ; π⃗Þ; ð58Þ

The quark part of the Lagrangian (58),

Lq ¼ ψ̄ ½i=∂ − gðσ þ iγ5τ⃗ · π⃗Þ�ψ ; ð59Þ

includes the kinetic term and the interaction between the
quark field ψ , and the chiral fields σ and π⃗. We do not
consider the bare (current) quark mass, which is too small
to be important for our considerations below.
The dynamics of the pseudoscalar pions is described by

the second term in the Lagrangian (58):

Lσðσ; π⃗Þ ¼
1

2
ð∂μσ∂μσ þ ∂μπ

0
∂
μπ0Þ þ ∂μπ

þ
∂μπ

− − Vðσ; π⃗Þ;
ð60Þ

where we have introduced the fields of the charged and
neutral mesons, respectively:
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π� ¼ 1ffiffiffi
2

p ðπ1 � iπ2Þ; π0 ¼ π3: ð61Þ

The potential V in the pionic Lagrangian (60) contains
two terms:

Vðσ; π⃗Þ ¼ λ

4
ðσ2 þ π⃗2 − v2Þ2 − hσ: ð62Þ

The first term describes the spontaneous breaking of the
chiral symmetry. It leads to a nonzero expectation value of
the pseudoscalar field hσi ≠ 0 and, in general, could also
give rise to the emergence of the condensate of pseudo-
scalar pions hπ⃗i. However, the second term in the same
potential (62) breaks explicitly the symmetry between the
components of the pseudoscalar mesons ðσ; π⃗Þ and pref-
erentially maximizes the pseudoscalar condensate hσi. In
addition, this term energetically disfavors the pion con-
densate: hπ⃗i ¼ 0. As a result, the quarks acquire the
dynamical mass M ¼ ghσi via the scalar-quark interaction
term of the quark Lagrangian (59).
In our paper, we work in a mean field (MF) approxi-

mation thus neglecting quantum fluctuations of the scalar
fields σ and π⃗. The Lagrangian (58) reduces to

LMF ¼ ψ̄ði=∂ − gσÞψ − VðσÞ; ð63Þ

where we take the advantage of the MF approximation to
simplify the notations for the potential (62), VðσÞ≡Vðσ; 0⃗Þ,
and for the mean field σ ≡ hσi. In the MF theory (63),
the integral over the Dirac fields is taken exactly.
Following the logic of Ref. [32], we adopt the following

set of values of the phenomenological parameters of the
model:

g¼ 3.3; λ¼ 19.7; v¼ 87.7 MeV; h¼ ð121 MeVÞ3:
ð64Þ

With these parameters, the vacuum expectation value of the
pseudoscalar field is fixed to the pion decay constant,
hσi ¼ fπ ¼ 93 MeV, the dynamical quark mass

M ¼ ghσi; ð65Þ

gives us the expected one-third of the mass of a nucleon,
M ¼ 307 MeV, while the tree-level pion mass mπ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðhσi2 − v2Þ

p
¼ 138 MeV falls in the range of physical

pion masses. The mass of the σ meson is mσ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λf2π þm2

π

p
¼ 600 MeV, while the value of h is consis-

tent with the partially conserved axial vector current
relation, i.e., h ¼ fπm2

π .
Notice that we perform our analysis within the sigma

model which possesses only two (Nf ¼ 2) flavors of light
quarks. At the same time, we use the phenomenological

parameters obtained from the realistic QCD which
includes, in addition, the heavier strange quark. As the s
quark plays an essential role around the QCD phase
transition, it would be more appropriate to adapt an
Nf ¼ 2þ 1 sigma model for the analysis. However, in
order to keep our calculations as simple as possible, and
noticing that our work is concentrated on the analysis of the
new effects that could be brought by the inclusion of the
helical degrees of freedom rather than on a detailed analysis
of the temperature-density phase diagram, we continue to
work with the Nf ¼ 2 flavors following Ref. [32].

IV. PHASE STRUCTURE

A. Thermodynamics of the sigma model

We start our investigation of the effects of finite helical
density with the phase diagram at vanishing temperature
T ¼ 0 and then continue to explore the effects of finite
helical density on dense quark matter at finite temperature.
We consider the dense matter in the plane of the baryonic
(μB) and helical (μH) chemical potentials. The helical
chemical potential has been defined earlier, for example,
in Eq. (51). The baryonic chemical potential is taken
according to the standard prescription: μB ¼ NcμV , where
the vector chemical potential is equal to the quark chemical
potential μV ≡ μq and Nc ¼ 3 is the number of colors
(three colored quarks constitute one colorless nucleon).
The fermionic part of the LSMq Lagrangian in the MF

approximation (63) is captured by the free-field Lagrangian
(51). The full thermodynamic potential of the model
contains the pure pion contribution, given by the potential
VðσÞ and fermionic part, respectively:

Ωðσ; μV; μHÞ ¼ VðσÞ þ Ωqðσ; μV; μHÞ: ð66Þ

The fermionic free energy is the sum

Ωqðσ; μV; μHÞ ¼ ΩvacðσÞ þΩTðσ; μV; μHÞ; ð67Þ

of the zero-point (vacuum) part,

ΩvacðσÞ ¼ −12
Z

d3p
ð2πÞ3 ωpðσÞ ð68Þ

and the thermodynamic contribution

ΩTðσ;μV;μHÞ¼−6T
X
s¼�1

X
ϰ¼�1

Z
d3p
ð2πÞ3

· ln

�
1þexp



−
ωpðσÞ−sðμVþϰμHÞ

T

��
:

ð69Þ

The energy dispersion of the fermions depends on the value
of the σ condensate:
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ωpðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ g2σ2

q
: ð70Þ

Notice that both matter and temperature influence, via
the thermodynamic part (69), the value of the condensate σ.
The latter quantity determines the fermionic spectrum (70),
which, in turn, appears in the vacuum part of the free energy
(68). Thus, the matter and temperature effects may modify
the value of the vacuum energy in an indirect way [32,33].1

The vacuum stability conditions in the one-loop renormal-
ized model may be fixed self-consistently in such a way
that the dynamically generated mass and the position of the
minimum of the effective potential remain at their tree-level
values [34,35]. Thus, we ignore the vacuum energy in our
approach.
Taking Eq. (69) by parts, we get the more convenient

expression for the thermal part of the free energy:

ΩTðσ;μV;μHÞ ¼ −
1

π2
X
s¼�1

X
ϰ¼�1

Z
∞

0

p4dp
ωpðσÞ

×

�
exp



ωpðσÞ− sðμV þ ϰμHÞ

T

�
þ 1

�−1
:

ð71Þ

The ground state of the model is given by the condensate
σ which is defined via the minimization of the thermody-
namic energy:

Ωðσ; μV; μHÞ ¼ VðσÞ þ ΩTðσ; μV; μHÞ: ð72Þ

Specifically, the zero of the function fðσÞ ¼ ∂Ω=∂σ cor-
responding to the lowest value of Ω must be found, with

fðσ; μV; μH; TÞ

¼ λσðσ2 − v2Þ − hþ 3g2σ
π2

X
s;ϰ

Z
∞

0

p2dp
ωpðσÞ

×

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1
; ð73Þ

where μs;ϰ ¼ sμV þ sϰμH. The minimization can generally
be carried out numerically. Once the value of σ is known, it
allows us to find the dynamical mass (65) and determine the
phase of the theory. In particular, we shall be interested in
the nature of the transition between the chirally broken
(σ close to fπ) and chirally restored (σ close to 0) regimes.
We highlight the presence of first-order transitions (when σ
exhibits a discontinuity with respect to infinitesimal
variations of μV , μH, and/or T) and crossover transitions,
when σ remains continuous. The boundary between the

phase-space regions where the first-order and crossover
transitions occur is represented by a critical line. In the case
of the crossover transition, we choose to define the value of
σ at which the transition occurs as that value for which the
gradient of σ with respect to the phase space variables μV ,
μH, and T,

j∇σj ¼
��

∂σ

∂μV

�
2

þ
�

∂σ

∂μH

�
2

þ
�
∂σ

∂T

�
2
�
1=2

; ð74Þ

reaches its maximum value. The above derivatives of σ can
be computed starting from Eq. (73) as follows:

j∇σj ¼
���� ∂f
∂σ

����
−1
��

∂f
∂μV

�
2

þ
�

∂f
∂μH

�
2

þ
�
∂f
∂T

�
2
�
1=2

; ð75Þ

where the partial derivatives of f are taken by considering
that σ, μV , μH, and T are independent variables, as follows:

∂f
∂μV

¼ 3g2σ
π2

X
s;ϰ

s
Z

∞

0

dp

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1
;

∂f
∂μH

¼ 3g2σ
π2

X
s;ϰ

sϰ
Z

∞

0

dp

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1
;

∂f
∂T

¼ 3g2σ
π2T

X
s;ϰ

Z
∞

0

dp
p2 þω2

p

ωp

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1
;

ð76Þ

and

∂f
∂σ

¼ 2λσ2 þ h
σ
−
3g4σ2

π2
X
s;ϰ

Z
∞

0

dp
ωp

×

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1
: ð77Þ

In the above, ωp ≡ ωpðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ g2σ2

p
. Furthermore, we

took advantage of the fact that σ is a solution of Eq. (73)
by replacing

3g2σ
π2

X
s;ϰ

Z
∞

0

dpp2

ωp

�
exp

�
ωp − μs;ϰ

T

�
þ 1

�
−1

¼ h − λσðσ2 − v2Þ: ð78Þ

In the same spirit, the derivative ∂f=∂T can be written as

∂f
∂T

¼ 1

T

�
3hþ 2λσv2 − σ

∂f
∂σ

�
: ð79Þ

We note that the transition from the crossover to the first-
order transition regimes is only possible when j∇σj → ∞ as
the critical point is approached from the crossover region.
This implies that on the critical line, ∂f=∂σ ¼ 0. While this

1Notice that the chirally (axially) imbalanced matter with μA
modified the vacuum energy in a direct way [28] thus leading to
an explicit divergence (44).
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equation apparently fixes only one of the three phase space
parameters, it offers only two one-dimensional families of
solutions that describe the critical lines, which will be
addressed in the following sections.
We finish this section by providing the expressions for

the vector and helical densities, which may be obtained
from Eq. (67) with the help of Eq. (23):

nV ¼ 3

π2
X
s¼�1

X
ϰ¼�1

s
Z

∞

0

p2dp

×

�
exp



ωpðσÞ − sðμV þ ϰμHÞ

T

�
þ 1

�−1
; ð80Þ

nH ¼ 3

π2
X
s¼�1

X
ϰ¼�1

sϰ
Z

∞

0

p2dp

×

�
exp



ωpðσÞ − sðμV þ ϰμHÞ

T

�
þ 1

�−1
: ð81Þ

B. Dense matter at zero temperature

In the zero-temperature limit, T → 0, the free energy
(69) reduces to a simpler form:

ΩTðσ; μV; μHÞ ¼ −
1

π2
X
s¼�1

X
ϰ¼�1

Z
∞

0

p4dp
ωpðσÞ

× θ½sðμV þ ϰμHÞ − ωpðσÞ�: ð82Þ

The integral in Eq. (82) can be performed analytically with
the help of the identity

Z
q

0

p4dp
εp

¼ 1

8

�
qεqð2q2 − 3m2Þ þ 3m4arctanh

q
εq

�
; ð83Þ

where we denoted εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Equations (82) and

(83) simplify the numerical calculations.
In Fig. 1 we show the behavior of the order parameter σ

as the function of the baryonic chemical potential μB at
various values of the helical chemical potential μH. At zero
helical density, μH ¼ 0, the model resides in the chirally
broken phase at low baryon densities with μV < μc with

F∶

0
B@

μV

μH

T

1
CA ¼

0
B@

μc

0

0

1
CA ≃

0
B@

305 MeV

0

0

1
CA; ð84Þ

where μc ≃ 305 MeV denotes the critical value of the
(vector) chemical potential in LSMq. The letter “F” in
Eq. (84) marks the point at the T ¼ 0 phase diagram in the
(μV , μH) plane, Fig. 3, which will be discussed later.
As the helical density increases, the position of the

chiral phase transition shifts towards smaller values of
the baryon chemical potential μB. At the same time, the

presence of the helical density softens the transition. Both
these effects are seen in Fig. 1 at the helical chemical
potential μH ¼ 100 MeV.
A further increase of the helical chemical potential

moves the transition to even smaller values of the baryon
chemical potential and leads to the disappearance of the
first-order phase transition which is replaced by a smooth
crossover. These features are seen at μH ¼ 200 MeV.
At higher helical densities, the transition starts to

strengthen and turns again to a first-order phase transition
(examples are at μH ¼ 250 MeV and μH ¼ 300 MeV in
Fig. 1). Finally, as μH is increased, the transition point
reaches the lowest possible value at μV ¼ 0 and the first-
order phase transition disappears altogether. In agreement
with the mentioned duality between the vector and helical
sectors of the theory, the critical helical potential is tightly
related to its vector (baryonic) counterpart (84):

G∶

0
B@

μV

μH

T

1
CA ¼

0
B@

0

μc

0

1
CA ≃

0
B@

0

305 MeV

0

1
CA; ð85Þ

where μc is given in Eq. (84). At a larger helical density,
μH > μH;c, the system resides in the chirally restored phase.
The point “G” introduced in Eq. (85) is also highlighted
in Fig. 3.
It is instructive to discuss the behavior of the densities

of the vector charge2 (80) and the helical charge (81),
shown in Fig. 2.
At small helical potentials μH ≪ μc, the first-order chiral

phase transition is characterized by a large increase of the

FIG. 1. The chiral order parameter σ (in units of the pion decay
constant in vacuum, fπ) as a function of the baryonic chemical
potential μB ≡ 3μV at various values of the helical chemical
potential μH at zero temperature.

2Due to the relation of the baryon and vector (quark) chemical
potentials, μB ¼ 3μV ¼ 3μq, the baryon density nB is propor-
tional to the vector (quark) charge density, nB ¼ nV=3 ¼ nq=3.
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baryon density and a small (vanishing at μH ¼ 0) change in
the helical density.
At moderate values of the helical chemical potential,

μH ∼ μc=2, the chiral crossover transition appears. It is
characterized by a smooth change in both vector and helical
densities.
The picture reverses at high values of the helical

chemical potential, μH ∼ μc, where the chiral transition
disappears and the helical density prevails over the bar-
yonic (vector) density.
The phase diagram in the plane of the chemical poten-

tials (μV , μH) is shown in Fig. (3). There are two separate
segments of the first-order phase transitions.
The baryonic segment of the first-order transition begins

at the point “F” at the zero-helical-density axis (84) and
ends at the end point “C” with the parameters:

C∶

0
B@

μV

μH

T

1
CA ≃

0
B@

248 MeV

123 MeV

0

1
CA ≃

0
B@

0.81μc
0.40μc

0

1
CA: ð86Þ

This segment separates the chirally broken phase (the green
region) from the chirally restored region “B” where the
vector (baryonic) density dominates over the helical charge
density.
The helical segment begins at the point “G” at the zero-

baryon-density axis (85) and ends at the end point “D”:

D∶

0
B@

μV

μH

T

1
CA ≃

0
B@

123 MeV

248 MeV

0

1
CA ≃

0
B@

0.40μc
0.81μc

0

1
CA: ð87Þ

The G–D segment separates the chirally broken phase (the
green region) from the chirally restored region “H” where
the helical charge density dominates over the baryonic
density. In order to fix the value of σ at which the crossover
transition takes place, we seek to maximize the gradient
j∇σj in Eq. (75). Since we are working in the vanishing
temperature limit, it is clear that the ∂f=∂T term dominates
due to its T−1 prefactor, which we will ignore in the
following discussion. Computing now the integral in
Eq. (77), we find

∂f
∂σ

¼ 2λσ2 þ h
σ
−
3g4σ2

π2
X
s¼�

θs ln
Es
f þ ps

f

gσ
; ð88Þ

(a)

(b)

FIG. 2. The density of (top) the vector charge nV and (bottom)
the helical charge nV ¼ 3nB as a function of the baryonic
chemical potential μB ¼ 3μV at various values of the helical
chemical potential μH at zero temperature.

FIG. 3. The phase diagram in the (μV-μH) plane at zero
temperature (μV ≡ μq). The thick lines mark the first-order phase
transitions between the chirally broken phase (at low μV and μH)
and predominately baryonic (blue) and predominately helical
(red) regions. The positions of the points “F” and “G” are given
in Eqs. (84) and (85), respectively. The filled circles “C” and “D”
are the end points with the second-order phase transitions
[Eqs. (86) and (87)]. The dashed line “C–D” shows the position
of a smooth crossover which connects the endpoints.
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where θ� ≡ θðE�
f − gσÞ, E�

f ¼ jμV � μHj and p�
f ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE�
f Þ2 − g2σ2

q
. From the condition fðσÞ ¼ 0, the loga-

rithms can be replaced via

3g4σ3

2π2
X
s¼�

θs ln
gσ

Es
f þ ps

f
¼ h − λσðσ2 − v2Þ

−
3g2σ
2π2

X
s¼�1

θsps
fE

s
f; ð89Þ

leading to the simpler expression

∂f
∂σ

¼ 3h
σ

þ 2λv2 −
3g2

π2
X
s¼�1

θsps
fE

s
f: ð90Þ

A common solution of the system of two equations
fðσÞ ¼ 0 and ∂f=∂σ ¼ 0 can give the values of, e.g., μV
and σ at fixed μH. However, such solutions are not possible
for all values of μH. A careful analysis reveals that the
solution is also compatible with the principle of minimizing
the free energy when μH ¼ 123.451 MeV ¼ 0.40μc, μV ¼
248.290 MeV ¼ 0.81μc, and σ ¼ 34.653 MeV ¼ 0.37fπ ,
confirming the results in Eqs. (86) and (87).
Away form the critical point, we find the crossover point

by maximizing j∇σj. Using Eq. (79), we obtain

lim
T→0

ðTj∇σjÞ ¼ σð3hþ 2λσv2Þ
3hþ 2λσv2 − 3g2σ

π2
P

s¼�1θsp
s
fE

s
f

− σ:

ð91Þ

The above expression diverges in the vicinity of the
critical points C and D. As we move away from these
points, this initially infinite peak subsides and σ travels
along a continuous path from the first-order transition
region into the crossover transition region. At ðμV; μHÞ ¼
ð125.8 MeV; 246.5 MeVÞ, a second peak maximizes
Eq. (91) and σ jumps from the value σ ¼ 33.7 to
48.7 MeV. Along most of the crossover line, this second
peak represents the global maximum of Eq. (91),
while σ ≃ 48.7 MeV, μV þ μH ≃ 370 MeV, and Tj∇σj ≃
2.15 MeV remain constant.
The pair of points “F” and “G” as well as the pair of end

points “C” and “D” are related to each other by the vector-
helical duality (55).
At the end points “C” and “D” a second-order phase

transition takes place. These end points are connected to each
other by a smooth crossover (the dashed thin line “C–D”).
The phase diagram in Fig. (2) is insensitive to the signs

of the chemical potentials, being invariant under the
independent flips μV → −μV and μH → −μH.

C. Finite-temperature phase diagram

The presence of the helical density leads to a substantial
modification of the finite-temperature phase diagram of
QCD. In Fig. 4, we show the position of the chiral phase
transition in the μV-T plane at a dense grid of values of the
helical chemical potential μH. The temperature is plotted in
units of the pseudocritical temperature Tc;0 of the chiral
crossover in LSMq at zero density:

Tc;0 ≃ 146.5 MeV ðin LSMq at μB ¼ μH ¼ 0Þ: ð92Þ

This point is shown by the triangle “P” in Fig. 4.
Notice that the exact position of the crossover

transition—which is not associated with a thermodynamic
singularity—depends on the quantity which is used to
reveal the crossover. We determine the position of the
crossover as a submanifold of the parameter space at
which the slope of the condensate j∇σj, given in
Eq. (75), reaches its maximum. Due to imprecise notion
of the position of the crossover, it is customary to call the
temperature of the crossover as the “pseudocritical” rather
than critical temperature.
The value of the critical temperature (92) in LSMq is

slightly (less than 10%) lower than the value of the critical
temperature TQCD

c ¼ 156.5ð1.5Þ MeV of the chiral phase
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FIG. 4. The phase diagram in the (μV-T) plane at various
helical chemical potentials μH (the values of μH in units of GeV
are marked at each line). The thick lines mark the first-order
phase transitions between the chirally broken phase (the region
closer to the origin) and the chirally restored phase (the outer
region). The dashed lines show the position of the smooth
crossovers. The end points of the first-order phase transitions,
denoted by the filled circles, are the second-order phase
transitions. The segments of the lines of the first-order phase
transitions form two “islands,” with mostly baryonic (blue) and
mostly helical (red) chirally restored phases. The self-duality
line μV ¼ μH is shown in the pink color. The meaning of all
marked points is discussed in the text.
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transition determined via the inflection point of the light-
quark chiral condensate in the first-principle simulations of
lattice QCD with real quark masses [36].
At a vanishing helical chemical potential, μH ¼ 0, we

recover the standard chiral transition which is plotted at
the outer blue line in Fig. 4. At small values of the
chemical potential μV , the chiral transition is a smooth
thermodynamic crossover (the dashed line), which reaches
the zero-density axis at the point “P” with T ¼ Tc;0 and
μV ¼ μH ¼ 0.
As the μV ≡ μB=3 chemical potential increases, the

crossover turns into the first-order phase transition
(the solid line) passing via the second order end point
“E” (the filled circle). This end point is located at

E∶

0
B@

μV

μH

T

1
CA ≃

0
B@

204 MeV

0

99.6 MeV

1
CA ≃

0
B@

0.67μc
0

0.68Tc;0

1
CA: ð93Þ

At higher baryon densities, the first-order transition line
segment hits the T ¼ 0 axis at the point “F,” given in
Eq. (84). At even higher μV, the model resides in the
chirally restored phase.
Figure 4 demonstrates that the presence of a nonzero

helical density changes the chiral phase transition substan-
tially. Let us consider what happens with the chiral phase
transition as the helical density increases.
First, as the helical chemical potential μH rises, the line

of the chiral transition gradually shrinks towards the origin
ðμV; TÞ ¼ ð0; 0Þ. In other words, both the critical temper-
ature Tc at a fixed chemical potential μB and the critical
chemical potential μB at fixed temperature T are mono-
tonically decreasing functions of the helical chemical
potential μH.
Second, the presence of a moderate helical density

makes the chiral phase transition weaker: the line of the
first-order phase transition shrinks, in favor of the smooth
crossover. As μH is increased from 0 up to μH ¼ 125 MeV,
the high-temperature end point E descends towards smaller
temperatures and larger values of μV .
When μH reaches the value 121.7 MeV, the region of

first-order phase transition is broken in two disconnected
segments separated by a crossover domain. This region
emerges at point L0 having parameters

L0∶

0
B@

μV

μH

T

1
CA ≃

0
B@

249 MeV

122 MeV

6.7 MeV

1
CA ≃

0
B@

0.82μc
0.40μc

0.046Tc;0

1
CA: ð94Þ

The first-order transition region occurring in the small
temperature region gradually disappears as μH reaches the
value 123 MeV corresponding to coordinates of the critical
point C in Eq. (86).

When μH > 123 MeV, the chiral phase transition exhib-
its a second end point, now at the low-temperature end of
the first-order line. The rest of the transition line is occupied
by the smooth crossover all the way down to the T ¼ 0
axis. The structure of the chiral transition line with multiple
end points is clearly seen in Fig. 4 for values of μH between
μHðL0Þ ¼ 122 MeV and μHðLÞ ¼ 133 MeV, where the
point “L” is described below.
Increasing μH above 123 MeV (point C) causes both the

higher- and the lower-temperature end points to approach
each other. This effect is seen at the line with the fixed value
of the helical potential μH ¼ 130MeV. At a higher, critical
value of μH, the first-order segment shrinks to zero and the
chiral transition turns into a smooth crossover. The first-
order phase transition disappears at the point “L” with the
parameters

L∶

0
B@

μV

μH

T

1
CA ≃

0
B@

225 MeV

133 MeV

40.5 MeV

1
CA ≃

0
B@

0.74μc
0.44μc
0.28Tc;0

1
CA; ð95Þ

which is shown in Fig. 4 as a bright green dot.
After the system goes beyond the point “L,” the chiral

phase transition keeps the crossover type for a while
until the helical chemical potential reaches the value
μH ≃ 225 MeV. The first-order phase transition reappears
at the point “K” of the phase diagram:

K∶

0
B@

μV

μH

T

1
CA ≃

0
B@

133 MeV

225 MeV

40.5 MeV

1
CA ≃

0
B@

0.44μc
0.74μc
0.28Tc;0

1
CA: ð96Þ

It is easy to see that the points L and K are related to each
other via the vector-helical duality (55).
In the below range of values of the helical chiral

potential,

0.44μc ≃ 133 MeV≲ μH ≲ 225 MeV ≃ 0.74μc; ð97Þ

the whole line of the chiral transition is of the crossover
type. The crossover region of the phase diagram is cut in
two parts by the self-duality line, μV ¼ μH, shown in the
pink color in Fig. 4.
As μH increases beyond the pointK (μH ≃ 208 MeV), the

first-order phase transition reappears. Contrary to the low-
helicity case, now the first-order chiral segment is located at
higher temperatures, while the crossover transition is now
realized at the colder part of the phase diagram.
The line of the first-order phase transition reaches the

zero-baryon density μV ¼ 0 at the point
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A∶

0
B@

μV

μH

T

1
CA ≃

0
B@

0

204 MeV

99.6 MeV

1
CA ≃

0
B@

0

0.67μc
0.68Tc;0

1
CA; ð98Þ

which is exactly dual to the end point “E,” Eq. (93), of the
usual standard finite density transition. As μH increases
past the value μHðDÞ ¼ 248 MeV corresponding to the
critical point D (87), a first-order phase transition line
emerges from the T ¼ 0 axis upwards, joining the high-
temperature first-order phase transition line at point K0,

K0∶

0
B@

μV

μH

T

1
CA ≃

0
B@

122 MeV

249 MeV

6.7 MeV

1
CA ≃

0
B@

0.40μc
0.82μc

0.046Tc;0

1
CA; ð99Þ

which is the dual of point L0 in Eq. (94).
At point K0, when μH reaches the value

μH ≃ 249 MeV ≃ 0.82μc, the crossover shrinks to zero
and the whole chiral phase transition becomes of the
first order.
The phase transition temperature and the vector chemical

potential decrease monotonically as μH increases. The
chiral transition disappears altogether when the helical
chemical potential reaches the value μH ¼ μc with μc given
in Eq. (85). This position is marked by point G, Eq. (85),
shown in Figs. 3 and 4.
Qualitatively, the phase diagram in the μV-T plane,

Fig. 4, has five distinct regions, including the strait of
the crossover transition at intermediate values of the helical
potential (97) which separates the high-μV island of the
baryonic-rich first-order transitions and the low-μV island
of the helical-rich first-order transitions (cf. Fig. 3). The
crossover strait is cut in two pieces by the self-duality
line, μV ¼ μH.
The evolution of the structure of the chiral transition in

the μV-T plane as the helical chemical potential is increased
is shown in Fig. 5. The top row highlights the position on
the μH=μc axis of the points E, L0, C, L, A, D, K0, and E

introduced in Fig. 4. The bottom row shows qualitatively
the phase diagram in the μV-T plane via 15 representative
configurations at or around these points.

D. Curvature of the chiral transition

One of the most important characteristics of the chiral
transition is the curvature κ of the transition temperature at
small values of the baryon chemical potential μB ≡ 3μV :

TcðμB; μHÞ
Tc;0

¼ TcðμHÞ
Tc;0

− κðμHÞ
�
μB
Tc;0

�
2

þ…; ð100Þ

where TcðμHÞ≡ TcðμB ¼ 0; μHÞ is the (pseudo)critical
temperature of the chiral transition at zero baryonic density,
and Tc;0 ≡ TcðμB ¼ 0; μH ¼ 0Þ is the position of the
crossover when both chemical potentials vanish (92).
Due to the vector-helical duality (55), the dependence of
the (pseudo)critical temperature TcðμHÞ≡ Tcð0; μHÞ on
helical chemical potential μH at μV ¼ 0 is the same as
the dependence TcðμVÞ≡ Tcð3μV; 0Þ on μV at μH ¼ 0,
given by the outer transition line in Fig. 4.
The series in Eq. (100) is valid provided the baryon

potential is much smaller than the chiral transition temper-
ature at zero density (92), μB ≪ Tc;0. The linear term is
absent due to the C symmetry of the theory at the baryonic
neutrality point, μB ¼ 0. The dots in the series (100)
represent higher-order terms in μB=Tc;0. The curvature
κðμHÞ appearing in Eq. (100) can be extracted from the
values TcðμB; μHÞ of the (pseudo)critical temperature of
the chiral phase transition computed at low values of the
baryon chemical potential, μB. The validity of the quadratic
ansatz in Eq. (100) is demonstrated in Fig. 6(a), where the
numerical data is plotted using symbols. The lines represent
the best fit curves with κðμHÞ as a free parameter and the
values of μH span the range from 0 to 0.3 GeV ¼ 0.98μc.
It turns out that the first two terms in Eq. (100) may

indeed describe very well the curvature of the chiral
transition lines, shown in Fig. 4, at any helical chemical
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FIG. 5. The evolution of the structure of the chiral transition in QCD as μH (given in units of μc ≃ 305 MeV) is increased. The points
E, L0, C, L, A, D, K0, and E correspond to the ones given in Fig. 4.
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potential μH. The effect of the helical density on the
curvature κ of the chiral transition is shown in Fig. 6(b).
The curvature of the phase transition is a slowly rising

function of the helical chemical potential μH. After the
helical density passes the critical second-order end point
“A,” Eq. (98), the crossover turns into a first-order phase
transition with the rising curvature. The evolution of the
curvature slope suggests the presence of a singularity at
the point “G,” Eq. (85), where the curvature becomes
infinite.
Both the crossover and the first-order regions may be

successfully described by a single fitting function in the
whole region of μH:

κfitðμHÞ ¼ κ0

�
1þ α

�
μH
μH;c

�
2
�
1 −

μH
μH;c

�
−γ
�
; ð101Þ

where

κ0 ≡ κðμH ¼ 0Þ ≃ 0.016; ð102Þ

is the curvature at vanishing helical chemical potential.
The fitting parameters are the coefficients α and γ,
which control both the small μH polynomial behavior
and the exponent of the divergence as μH → μH;c ¼ μc ¼
305 MeV.
The best fit, shown in Fig. 6(b) by the green line, gives

the following values for the parameters α and γ:

α ≃ 0.70; γ ≃ 0.58: ð103Þ

The value of the curvature (102) at zero helical density,
predicted by LSMq with Nf ¼ 2 flavors, is well compatible
with the QCD result κQCD ¼ 0.0132ð18Þ of the pseudoc-
ritical line of the chiral transition obtained with the help of
first-principle lattice simulations of QCD with Nf ¼ 2þ 1

fermions [37]. This unexpected approximate agreement
may, most probably, be explained by the fact that we use,
following Ref. [32], the Nf ¼ 2 flavor sigma model with
the Nf ¼ 2þ 1 phenomenological parameters. Indeed, the
curvature of the phase transition κ obtained in lattice QCD
simulations with Nf ¼ 2 dynamical quarks [38–41] give
two to three times smaller values compared to the curvature
obtained in the Nf ¼ 2þ 1 lattice QCD.
A few words on the validity of our results are in order. As

the LSMq is an effective low-energy (infrared) model of
QCD, at large values of massive parameters (for example,
at high chemical potentials) the model may give somewhat
inaccurate results. Therefore, as a standard word of caution,
our quantitative predictions should be considered with
certain care.
In addition, following the traditional approach, we

characterized the vacuum of the theory with a single
parameter: the pseudoscalar condensate σ. This single
condensate can indeed describe the vacuum at low baryon
densities both in the chirally broken phase and around the
chiral transition. Due to the vector-helical duality, the single
pseudoscalar condensate may be used in the similar range
of values of the helical chemical potential μH (at low helical
densities). However, the presence of large helical and
baryonic chemical potentials—for example, around the
crossover transition—may lead to the formation of new
types of condensates, which may not be reduced to the
single parameter σ.

(b)

(a)

FIG. 6. (a) The ratio ½TcðμB; μHÞ − TCð0; μHÞ�=Tc;0 vs the
baryonic chemical potential μB. This ratio quantifies the depar-
ture of the (pseudo)critical temperature TcðμB; μHÞ at finite
baryon chemical potential from its value Tcð0; μHÞ at μB ¼ 0,
normalized with respect to the pseudocritical temperature Tc;0 at
vanishing μB and μH. (b) Curvature κ of the chiral transition (100)
as the function of the helical chemical potential μH at zero baryon
density μB ¼ μV ¼ 0. As the helical density rises, the crossover
(the blue dots) changes into the first-order phase transition (the
orange squares). The position of the second-order end point
(point “A” in Fig. 4) is shown by the vertical magenta line. The
green curve represents the best fit (101).
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V. DISCUSSION AND CONCLUSION

A. Thermodynamic relevance of helicity

In our paper we discussed the influence of the presence
of a finite helical density on the phase diagram of QCD at
finite temperature and finite baryon density.
For quarks, a difference between the helicity and

chirality appears at the level of their transformations under
the charge conjugation operation (C).3 The right- (left-)
handed helicity corresponds to a positive (negative) value
of the projection of the quark’s spin on its momentum. The
chirality of the quark is given by its helicity times the sign
of the particle’s charge: the chirality of a particle is equal to
its helicity (for example, a right-chiral particle has a right-
handed helicity) while the chirality of an antiparticle is
opposite to its helicity (for instance, a right-chiral anti-
particle has a left-handed helicity).
Physically, the notions of helicity and chirality are very

close to each other as they differ only by an application
of the vector charge operator, QV . However, the helicity
can be defined for free massive quarks while the
chirality cannot. Indeed, the helicity operator h, given in
Eq. (3), commutes with the Hamiltonian of a massive free
fermion (7) while the axial operator, given by the γ5 matrix,
does not.
Mathematically, the axial charge density is determined

via the local operator γ5, while the helical density involves a
more complicated expression (3). Moreover, the definition
of the axial charge is a Lorentz invariant while the helical
density depends on the choice of the local reference frame.
The latter property, however, is not important for systems at
a finite density and temperature (as the one considered in
this paper), where the Lorentz symmetry is explicitly
broken by the presence of matter.
We argue that the helical density is a thermodynamically

relevant quantity in theories with the mass gap generation
such as QCD. For example, both the helical charge and the
helical chemical potential μH are well-defined quantities in
a thermodynamic ensemble of free massive fermions. On
the contrary, the axial symmetry is inconsistent with the
massive quarks: the axial chemical potential μA modifies
the energy spectrum of the massive fermions and leads to a
μA-dependent divergence of zero-point fluctuations [28].
The latter property casts a shadow on the very definition of
the vacuum of the theory at nonzero μA: the zero-point
fluctuations are associated with the vacuum and should,
therefore, be independent of the presence of matter given
by a nonvanishing chemical potential.
It is worth discussing the relevance of the effects of a

finite helical density to quark-gluon plasma created in
relativistic heavy-ion collisions. The helicity fluctuations
are likely to emerge in the initial stages of heavy-ion

collisions in an off-equilibrium regime. While the quarks
may be created with a net helicity, the magnitude of the
helical charge remains yet to be estimated. Nevertheless, the
global helicity number is expected to be approximately
conserved in the high-temperature phase before the hadro-
nization stage is reached. Indeed, it is well known that the
helicity of massless quarks is conserved in perturbative QCD
elastic scatterings due to the vector coupling to gluons (see,
for example, the discussions in Refs. [22,23,27]). For an
ultrarelativistic quark with a mass small compared to its
energy, the perturbative helicity-flip cross section is propor-
tional to the quark mass squared. Inelastic scatterings, such
as pair annihilation and creation, can lead to helicity number
nonconservation. The characteristic relaxation time for such
processes can be expected to increase with temperature;
however, we leave a more in-depth analysis of such effects as
a future avenue of research.
Nonperturbative interactions and Uð1Þ symmetry break-

ing may increase the helicity flip rate [22] (see also
Ref. [21] where the chirality-flip rate in the QGP was
addressed in an effective approach as well as [42]).
Therefore it is reasonable to expect that the helicity is a
good conserved quantity at the timescale of the lifetime of
the quark-gluon plasma.
In the present paper, we restrict ourselves to the simplest

case of two light quarks u and d. It is worth noticing that the
helicity flip should occur in interactions with a massive
quarks and can become relevant for the thermalization of
the spin of a massive s quark with a (rotating, for example)
environment. The thermalization can occur—via a mecha-
nism involving breaking of an axial Uð1Þ symmetry—
shortly before the QGP reaches the hadronization stage
[22]. For the realistic parameters of the QGP, the quark’s
helicity and its spin equilibrate at the same rate [23].
Therefore, the spin of an s quark could pick up the direction
of the local vorticity of the rotating quark-gluon plasma
during its evolution after a heavy-ion collision, thus leaving
an experimentally observed imprint on polarization of Λ
hyperons. In Ref. [25] it was shown that the helicity
fluctuations could indeed play a dominant important role
in the spin polarization of the hyperons: the ratio of the
mean polarizations of Λ̄ and Λ hyperons was shown to be
described by the helical and axial currents without any
fitting parameters.
Summarizing, it is generally expected that the quarks are

kinetically thermalized within a short time of the order of
0.5 fm=c after the collision. For the next 5–10 fm=c until
hadronization, the fireball evolution is described by an
approximately thermalized QGP [5]. The thermalized light
quarks carry the conserved net helicity which should, as we
show in our article, affect the QCD phase diagram and thus
may influence the evolution of the QGP.
We would like also to comment that we have restricted

our attention to the two-quark system in order to stress
the direct effects of the helicity imbalance on the

3The term “axiality,” which would be a more appropriate term
than “chirality,” is not adopted in the current QCD literature.
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thermodynamic properties of the quark-gluon plasma.
While the s quark could also be considered in our model,
its addition would require the consideration of the appro-

priate helical chemical potential μðsÞH . Since the mass of the
s quarks breaks explicitly the SUð3Þ chiral group down to
the SUð2Þ group of the light-quark sector, the helical
imbalances in the s-quark and u, d-quark sectors should

not generally be the same (μðsÞH ≠ μðu;dÞH ≡ μH). Therefore,
the introduction of the s quark would necessarily lead to
enlargement of the parameter space and the complication of
the phase diagram. On the other hand, the simplest two-
flavor model clarifies the effects of the helical imbalance
concisely, which motivates our choice.

B. Effects of net helicity on QGP thermodynamics

After establishing the consistency of the helical density
with the mass gap generation, we studied the influence of
the helical chemical potential on the chiral properties of
QCD. To this end, we used the linear sigma model coupled
to quarks. We demonstrated that the presence of the helical
density affects the phase diagram of dense quark matter in a
rather complicated way both at zero (Fig. 3) and finite
(Fig. 4) temperatures. We used for the analysis the vector
chemical potential μV , which is equivalent to the quark
chemical potential μq and three times smaller than the
baryon chemical potential, μB: μV ≡ μB=3≡ μq.
The evolution of the structure of the chiral transition in

dense QCD as a function of the helical chemical potential is
summarized in Fig. 5. Here we summarize the main effects
of the helical chemical potential on the chiral transition:
(1) A moderate helical density makes the chiral phase

transition softer while shifting the critical end point
towards lower temperatures and lower baryon
chemical potentials.

(2) In a certain narrow range of the helical chemical
potential μH, the chiral phase transition acquires
additional second-order end points.

(3) At intermediate helical density, the segment of the
first-order transition disappears and the chiral tran-
sition becomes a soft crossover at any temperature or
baryonic density.

(4) At even higher helical chemical potentials, the first-
order transition reappears: the finite-T phase tran-
sition at zero baryon density (μB ¼ 0) becomes of
first order, which turns into crossover at a non-
zero μV .

(5) Finally, the chiral transition turns into a first-order
transition at any temperature and baryonic density,
before disappearing altogether when the helical
chemical potential reaches the critical value, μH ¼ μc.

We have also demonstrated the existence of a thermo-
dynamic duality between the helical and vector (baryonic)
chemical potentials (55): the fermionic free energy is
invariant under a permutation of the vector and helical
chemical potentials (56). This duality should (softly) be
broken by the electromagnetic interactions that were not
considered in this article.
In relativistic heavy-ion collisions, the quark-gluon

plasma is created in a low-density regime characterized
by small values of the baryon chemical potential. The region
of a low baryon chemical potential is well accessible in the
first-principle simulations of lattice QCD. At small baryonic
densities, the chiral transition is a smooth crossover with the
pseudocritical temperature diminishing quadratically as a
function of the baryonic chemical potential (100).
In the limit of vanishing global helicity, μH ¼ 0, our

result for the curvature of the pseudocritical temperature
(103) agrees reasonably well with the results of the lattice
simulations [37]. The presence of a nonvanishing density of
helical quark charges enhances the curvature of the
(pseudo)critical line of the chiral transition at low baryon
density, Fig. 6(b). The curvature diverges as the helical
chemical potential reaches the critical point, μH ¼ μc≃
305 MeV.
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