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We discuss the influence of a helicity imbalance on the phase diagram of dense QCD at finite
temperature. The helical quark number counts the difference between the axial charges carried by quarks
and antiquarks. We argue that the helical chemical potential is a thermodynamically relevant quantity in
theories with the mass gap generation. Using the linear sigma model coupled to quarks, we show that the
presence of the helical density substantially affects the phase diagram of dense quark matter. A moderate
helical density makes the chiral phase transition softer while shifting the critical end point towards lower
temperatures and higher baryon chemical potentials. As the helical density increases, the segment of the
first-order transition disappears, and the chiral transition becomes a soft crossover. At even higher helical
chemical potentials, the first-order transition reappears again at the zero-density finite-temperature
transition and extends into the interior of the phase diagram. This evolution of the chiral transition
reflects the existence of a thermodynamic duality between helical and vector (baryonic) chemical
potentials. We also show that the presence of the helicity imbalance of quark matter increases the curvature

of the chiral pseudocritical line in QCD.
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I. INTRODUCTION

Unusual properties of quark-gluon plasma attract inten-
sive attention of the scientific community. Nowadays, this
ultrahot state of matter is routinely created in relativistic
heavy-ion collisions [1-3] thus making it possible to probe
experimentally its thermodynamics, phase diagram, equation
of state, as well as various transport phenomena [4-6].
Recently, the ultraperipheral collisions opened the door to
the investigation of the highly rotating plasma seen exper-
imentally via the quarks’ spin degrees of freedom [7,8].

The spin degree of freedom of an ultrarelativistic quark
can be quantified via its helicity 7 = s - p/|p|, which is the
projection of the quark’s spin s onto the quark’s momentum
p- The definition of helicity & applies in exactly the same
way both to quarks and to antiquarks. One distinguishes the
right- and left-handed quarks with, respectively, positive
and negative values of the helicity [9].

The notion of helicity is usually used as an intermediate
step to describe the physical sense of a very similar
quantity, called chirality. For a Dirac fermion, the chirality
is even under the charge conjugation (C) transformation,
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while the helicity is odd. For example, a quark with a right-
handed helicity has a right-handed chirality while an
antiquark with the very same right-handed helicity has
an opposite, left-handed chirality. The chirality is deter-
mined as an eigenvalue of the fifth gamma matrix y°.

In the context of QCD, the transformations generated by
the matrix y° are usually associated with the “axial” U(1) 4
subgroup of a larger group of global QCD symmetries (the
latter group carries the very name ‘“chiral”). Therefore
below we will use mostly the term ‘“axial symmetry”
simultaneously referring to the “chirality” of quarks.

The importance of the axial symmetry is determined by
its significant influence on the properties of QCD, in
particular, to the topological structure of the QCD vacuum.
The axial symmetry, which is respected by the massless
Dirac Hamiltonian, is broken at the quantum level via an
axial anomaly. This feature leaves an imprint on the
particularities of the meson spectrum [10] and generates
anomalous transport effects in the quark-gluon plasma
(QGP) created in relativistic heavy-ion collisions [11,12].
The axial density of quarks modifies the thermodynamic
properties of the plasma and its phase diagram [13-18].

While the axial properties of QCD are discussed in great
details, the helical quantum numbers have not been studied
with due attention. Despite the chirality and helicity being
very similar to each other, they, nevertheless, possess quite
different features. For example, at a classical level, the axial
charge is conserved only for massless fermions, while the
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helical charge is conserved for any value of the fermion
mass. The axial charge is determined with the help of a
local Lorentz-invariant operator, while the definition of the
helical charge relies on the local frame (the latter feature,
however, is not important for theories at finite density
and/or temperature).

One could also expect the existence of similarities
between the axial and helical quantum numbers. On the
quantum level, the helical degrees of freedom—similarly to
their axial counterparts [12,19]—may lead to new non-
dissipative transport phenomena, the helical vortical
effects, that emerge in a helically imbalanced rotating
fermionic system [20]. Both chirality [21] and helicity
[22] may have the equilibration times close to the relaxation
time of the spin degrees of freedom [23].

Experimentally, the helicity-flip transitions of multi-
quark systems, for example, of protons, can be measured
in the elastic proton-proton collisions [24]. The effects of
helicity in the quark-gluon plasma can leave an exper-
imentally accessible imprint onto the spin polarizations of
the A hyperons and A antihyperons [25].

In our paper, we discuss the influence of a global helical
charge density on thermodynamics of strong interactions.
We assume that the helical charge, similarly to the axial
charge, may be generated due to thermal fluctuations of a
nonequilibrium environment at the early stages of heavy
ion collisions. To address the thermalized phase, we use the
effective approach based on the linear sigma model coupled
to quarks (LSM,), which also serves as an effective low-
energy model of QCD [26].

As we discuss at the end of the paper, the net helicity is
expected to be a reasonably good quantum number to
characterize the thermal evolution of the quark-gluon plasma
until the hadronization time. Indeed, it is well-known that the
helicity of massless quarks is conserved in perturbative QCD
interactions due to the vector nature of the coupling between
quarks and gluons (see, for example, the discussions in
Refs. [22,23,27]). This statement is applied, in particular, to
the high-temperature phase of QCD where the light quark
masses are small compared to their thermal energy.

The structure of our paper is as follows. In Sec. II, we
discuss differences and similarities between the thermody-
namics of vector, axial, and helical charges and corre-
sponding chemical potentials. Surprisingly, we find that the
helical density is closer to the vector density rather than to
its axial counterpart. We recall, after Ref. [28], how the
presence of mass for free fermions makes the axial
chemical potential thermodynamically inconsistent. We
demonstrate that the helical chemical potential does not
suffer from this drawback. We describe LSM,, in Sec. III.
We use this model to discuss, in Sec. IV C, the thermo-
dynamics of the dense QCD matter in the presence of the
helical chemical potential. We calculate the phase diagram
of the model and study the evolution of the chiral transition
as the helical chemical potential increases. The last section

is devoted to our conclusions. We employ the (+, —, —, —)
signature for the space-time metric and the convention
€"123 = 11 for the Levi-Civita symbol.

II. CHIRALITY AND HELICITY IN
THERMODYNAMICS OF FREE FERMIONS

Before going into the details of QCD thermodynamics,
let us discuss first the role of chirality and helicity in the
thermodynamic properties of free Dirac fermions.

A. Chirality vs helicity for Dirac fermions

Consider free massive Dirac fermions with the following
Lagrangian:

L =yl(ig+my, (1)

where we use the slashed notation ¢ = y#d, expressed via
the Dirac y* matrices (u = 0, ..., 3) and i = w'y°. We will
also use the fifth gamma matrix, y° = iy%'y?y>.

The axial charge (chirality) y = +1 of a fermion state y
is defined according to an eigenvalue y of the y° matrix,
v w = yy. One distinguishes the right-handed (R) and left-
handed (L) chiral eigenstates, respectively:

PR =+Wr WL =-wL (2)

As we mentioned in the introduction, the chirality y of a
fermion state is closely related to the helicity 1 of the same
state. Classically, the helicity is determined by the projec-
tion of the spin s on the direction of motion of the fermion
given by its momentum p. At the quantum level, the helicity
A is an eigenvalue of the helicity operator:

5,0
S . .
p=SP_rrvp (3)
p 2
where p = —i0 is the momentum operator, p = |p| is its

absolute value, and s; = &0;4X/* is the spin operator
which is constructed from the covariant antisymmetric
tensor T = L[y*,y*].

Since the fermion is a spin 1/2 particle, the helicity
operator (3) takes two values, +1/2. It is convenient to
rescale, by the factor of two, both the helicity operator
h = 2h and the corresponding helicity eigenvalue » with
hy = xy. The rescaled helicity operator h has the con-
venient eigenvalues 1. One distinguishes the right-handed
(1) and the left-handed (| ) helicity eigenstates:

hyy =4y, by = -y, (4)

At the level of the classical Dirac equation, it can be
easily seen that the helicity is a conserved quantity, as
follows. Consider the Dirac equation, (ig — m)y, in the
following form:
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ioy =Hy,  H=—iy%-V+mP, (5)

where H is the Hamiltonian of the system. In order to be
conserved, the helicity should satisfy

hidy = i, (hy), (6)

or, equivalently, [h, H] = 0. This latter equality is readily
checked by noting that

.V
hH = y°° <—i}'w> (=iy% - V+my?),
. .y-V
=77 (ir"y - V= my°) (—l 7l )

— Hh. (7)

The chirality and helicity are different quantities. For a
single particle, these quantum numbers are firmly related to
each other: the chirality of a particle is equal to its helicity
(for example, a right-chiral particle has a right-handed
helicity) while the chirality of an antiparticle is opposite to
its helicity (for instance, a right-chiral antiparticle has a left-
handed helicity). However, the total helicity of an ensemble
of particles cannot be determined only by its total vector
charge and total axial charge. Therefore the helicity, given
its conservation for free massive fermions, may serve—in
addition to a vector (baryonic) charge—as a useful quantity
to characterize the thermodynamic ensembles of fermions.

We would like to stress that it is important for us to
consider the theory with massive fermions in view of its
further applicability to QCD. Although the mass gap
generation emerges at the purely gluon sector of QCD,
this phenomenon is accompanied by the chiral symmetry
breaking at the quark sector which gives masses to quarks
via a dynamical mechanism [29]. In the next section, we
discuss thermodynamics of free massive fermions for a
number of chemical potentials. First, we consider the well-
known case of the vector (related to baryonic) chemical
potential. Then we show, following Ref. [28], that the
presence of nonzero fermionic mass is absolutely incon-
sistent with the presence of a finite axial chemical potential
starting at the level of zero-point fluctuations. Finally, we
discuss the helical chemical potential and show its con-
sistency with the mass gap generation.

B. Thermodynamics of free fermions with vector,
axial, and helical chemical potentials

1. General formalism

A free fermion with the mass m in the presence of
the vector (uy), axial (u,), and helical (uy) chemical
potentials can be described by the following effective
Lagrangian [30]:

L =y(id+ pvr® + par®r® + ugy’h —m)y.  (8)

It is convenient to rewrite the corresponding Dirac
equation,

(ig + uy?® + pa?’y’ + ppy®h—myy =0, (9)

in terms of the plane waves:

w(x) :)(pe_ip”ﬂv (10)

where x = (#,x) and p* = (pg,p) and the momentum-
dependent spinor y,. In the momentum space, the Dirac
equation (9) reduces to the set of linear equations:

M(p)x, =0, (11)

determined by the following matrix:

M(p) = F+u?* + pua?’y’ + upy’h—m. (12)

A consistent solution of Eq. (9) requires the determinant
of the matrix (12) to vanish. This condition leads to a
polynomial equation:

det M(p) =0, (13)

which has four roots in terms of the zeroth component of

the momentum py = pl (p):

dem(p) = [T IT [po-plhw)].  (14)

x=%1s==%

The roots p are labeled by the helicity » = 41, determined
via Eq. (4), and the kind s = %1 of the solution for particle
(s =+) and antiparticle (s = —) energy branches. The
solutions of Eq. (14) depend on the spatial momentum p,
the mass m, and the full set of chemical potentials,

(W, Has pp ), being given by

PYLP) =~y =i + s\ Jm? + (p| = sp)?. (1)

Although we call the variety of these solutions as the

“energy branches,” the quantity p(()si(p) does not have
the literal sense of energy. For example, the condition
p((f}){(p) = 0 defines, depending on the existence of the real-
valued solution, the position of the Fermi surface for
particle (s = +1) or antiparticle (s = —1) states of fermions
carrying the helicity x.

It is convenient to compute the free energy of the Dirac
system in the Euclidean spacetime after performing the
Wick rotation, py — ipy — iw,:
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Q:—TZ/éjﬂlndetMT(p) ., (16)

) Po=iw,

where @, = zT(2n + 1) is the fermionic Matsubara fre-
quency at temperature 7 labeled by the index n € Z [30].
The free energy (16) may be rewritten using Eq. (14):

3 @, + isp’)
TSR e

x==+1 s=+ nezZ

where the additional multiplier s takes into account the
correct contour of integration along the momentum py.
After the Wick rotation, the integration becomes a sum over
the Matsubara frequencies @, in the Euclidean represen-
tation of the free energy (17).

We take into account the identity

w, +ipy . [p/T do
In———= —+C,, (18
T ’/) sens e Cr (1Y
and neglect the inessential constant C,, = Inz(2n + 1) in
the following. The summation over n in Eq. (17) can be
performed with the help of Eq. (18) and the following
relation:

1 i 1
—=—1n - = 19
Lo, ¥ ipg T[ r(Po) 2} (19)
where
(@) : (20)
np(w) = ———
! e/ +1

is the Fermi-Dirac distribution. The integral over the
variable € may be taken using the identity:

x do .
AeeJr]——ln(l—l—e ) +1n2. (21)

Below we will again neglect an inessential constant In 2.
Finally, we get the following expression for the free
energy:

Q = QZP + QT’ (223)
1 &dp
S N [ R U

&p _opl
S i, o

x==1s==+

This expression is the most convenient representation of the
free energy Qr as it contains all four branches of the energy
dispersion. The zero-point term Qp is usually associated

with the vacuum contribution while the term € represents
the thermal and matter contributions to the free energy.

The densities of all three charges which can be obtained
via the differentiation of the free energy (22) with respect to
the corresponding chemical potential:

0Q

ny,=——o),
‘ Opty

=V,A H. (23)
These densities correspond to the vacuum expectation
values of the zero components, n, = (Jg), of the vector,
axial, and helical currents, respectively,

1. 1 -
Ty =507y + Sy,

Jy =y, 5
(24)

Jy =y,

These currents form a “triad” of classically conserved U(1)
quantities for massless (m = 0) Dirac fermions. In this
article, however, we will be interested in properties of quarks
with a dynamically generated mass. One can check that the
vector and helical charges are still classically conserved as
the classical solutions of massive fermions (8) satisfy the
equations 9,,J}, = 9,J;; = 0 identically. We will see that the
fact that the axial charge is not conserved for massive
fermions, 0,,]% # 0, will profoundly affect the thermody-
namics of fermions with the axial chemical potential.

Below we discuss the effects of each chemical potential
on the thermodynamics of the system. In order to get a clear
picture, we consider a single nonzero chemical potential
and require that the other two vanish.

2. Vector chemical potential (py # 0, py =pg=0)

First we consider the well-known case with a finite
vector density. The Dirac Lagrangian with the vector
chemical potential puy,

Ly =w(igd + puyy® — my, (25)

describes particles, for which the temporal p, and spatial
components p of the four momentum are related, via
Eq. (13), as follows:

P (p) = —uy + s\/p? + m?. (26)

The vector chemical potential uy shifts the particle
(s =+1) and antiparticle (s = —1) energy branches by
the same value of energy yy which does not depend neither
on particle type s nor on the helicity quantum number ». We
find that each of the levels (26) is doubly degenerate with
respect to helicity x.

Using the dispersion relations (26), the free energy (22)
can be represented as the sum

QV(T’ ﬂV) = Q\‘//ac =+ QZ‘{(Tv ﬂV)' (27)
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The total free energy contains the divergent vacuum part

d*p
(27)?

and the finite thermodynamic contribution:

f=2ry [ Sl (1+e), @9
" ()’ |

s==%1

Q. =QY, — - / w,(m) (28)

where

w, =\/p* +m?, (30)

is the one-particle energy. The vacuum part (28) does not
contribute to the thermodynamics of the system as it
depends neither on temperature 7" nor on the chemical
potential .

The density of the vector (“electric””) charge is then given
by the thermodynamic part (29) with the help of Eq. (23)
with 2 = V:

dp 1 1
nV — 2/ 3 p 1y p*ﬂv N (31)
(27) F1 &

The vacuum part (28) does not contribute to the density.
At small mass, the explicit integration in Eq. (31)
gives [31]:

3. Axial chemical potential (uy # 0, uy =pg=0)

The Dirac particles at the axial chemical potential y, is

described by the Lagrangian:
Ly = p(ig+ pay’y’ —my. (33)

For simplicity of our analysis, we keep the vector and
helical chemical potentials vanishing, uy = py = 0.

Repeating all the steps of the previous section, we find
that, in the present case, the energy dispersions, constrained
by the relation (13), are as follows:

sy/(pl=xun)? + 2 (34)

These states are characterized by the particle/antiparticle
number s = +1 and the helicity »x = +£1.

In a sharp contrast with Dirac fermions at a non-
zero vector charge density, the would-be vacuum term
Q4 (22b) of the py # 0 fermions depends explicitly on the

axial chemical potential y4. Indeed, when p(()s}){(p) is given

PoLp) =

by Eq. (34), Q4p contains the truly vacuum part Q%,, which
is equal to QY. given in Eq. (28), as well as a “density” part

that depends on the axial chemical potential, QF,

Q= Ol + O (35)

dens*

Thus we divide the free energy (22) into the following three
terms:

QA(T7 ﬂA) = Qvac + Qdenﬂ (luA) + Q‘?‘(Tv /’tA) (36)

The finite-density part in Eq. (36),

Qdem :uA) /(
x==1

. <\/(Ip| —xpa) +m? = \/p2 + mz),

(37)

also comes from the “vacuum fluctuation” term Q,p, which
gets this unconventional (and, as we show below, somewhat
artificial) contribution.

The thermal contribution to the free energy is given by
the following finite expression:

7

( + -W> (38)

x==1

Its form is somewhat unusual due to the fact that the
dispersion relation in Eq. (38) is different from the conven-
tional one-particle dispersion relation (30).

The appearance of the finite-density part (37) has the
self-contradictory “vacuum” origin. This term determines
the axial density (23) of Dirac fermions at vanishing
temperature:

agzdem (/’lA )

4 = X|p|
foam :tl/ Iu_ x[p|)? +m? )

The axial density (39) for massless fermions (m = 0) has
a conventional, nondivergent expression:

(MA)|T 0=

&p Ty
mallg =2 [ SE0u=p) =45, @0

where ©(x) is the Heaviside step function.

It is remarkable to notice that the cutoff in Eq. (40) at
the Fermi momentum p = u, appears not in the thermo-
dynamic part (38)—which is always zero for 7 =0
and u, #0—but it comes naturally in the “vacuum”
contribution.

094015-5



M. N. CHERNODUB and VICTOR E. AMBRUS

PHYS. REV. D 103, 094015 (2021)

At finite temperature, the contribution n,.; = —0Q4 /ou,
from Qf to the axial charge density is

%P ﬂA)

e 2;{2;1/ \/%P Ha) m?
x{exp {T\/(J{p 1a)? —l—m]—i-l} @)

Adding now the vanishing temperature contribution
1 (pa)|7—o> coming from Q4 , we obtain

dens?

all) = 2”2;:21/ \/KP}{I;A & m?*
X tanh [ZT \/(}{p Ua)? +m] (42)

At vanishing mass, the above expression simplifies to

o XD — Ha
n ( ‘m -0 = 2 ) Z/ dpp2tanh—2T s
x==1
= d T
P jE1/ pp? e ”ﬂA)/T+1
uaT? ﬂA
= —T 43
3 3n? (43)

For massive fermions, however, the interpretation of
the axial density, generated by the unexpected “vacuum”
contribution (39), becomes less clear [28]. For example,
consider the axial density at high chemical potential
(uy > m) for massive fermions. At high momenta,
[p| > pa, the expression under the integral (39) vanishes
3 which is not, however, enough to
make the whole integral convergent. In fact, the axial
density diverges logarithmically in the ultraviolet region:

3 A
na(ua)| 10 = -+’" PAp 20 (44)
71' 71'

el

where the ellipsis indicate nondivergent terms of the order
of O(p,) and Ayy indicates the ultraviolet cutoff.

The logarithmic divergence of the axial density (44)
appears as a result of the lack of axial symmetry for massive
Dirac fermions [28]. The axial density Q4 is not a
conserved quantity if the Dirac fermions are massive.
Indeed, the chemical potential cannot be introduced self-
consistently for a nonconserved charge. Therefore, the
presence of both 4 #0 and m # 0 cannot be set in a
physically self-consistent manner.

The physical situation becomes even more subtle in the
case of theories where the mass is generated dynamically,
as it happens, for example, in interacting field theories such
as QCD. In this case, the axial chemical potential may lead

to an additional renormalization which is discussed in
details in Ref. [28]. Basically, the infinite zero-point energy
cannot be removed by the usual subtraction procedure as it
contains both the vacuum part and the contribution coming
from matter (35).

4. Helical chemical potential (ug # 0, py =p, =0)

Finally, we consider the helical chemical potential which
is the central topic of our paper. In the theory of free
massive fermions, the helical potential xy appears in the
Lagrangian as follows:

L = y(ig + pupy’h — m)y. (45)

We keep the vector and axial chemical potentials equal to
zero, py = py = 0.

The energy dispersion condition (13) for the Lagrangian
(45) give us the following four energy branches:

PUL(p) = s/p? + m? — sy (46)

Thus, the helical chemical potential yy shifts the particle
(s =+1) and antiparticle (s = —1) branches with the
energy which has the standard form (30). The sign of
the shift now depends explicitly on the helicity » of the
branch, as one could expect from a quantity that is invoked
to distinguish the helicity.

Surprisingly, the effects of nonzero vector (26) and
helical (46) chemical potentials on the energy branches
are quite similar to each other in the sense that both
potentials shift the spectra without modifying the functional
dependence of the energy on momentum. Both vector and
helical potentials differ significantly from the axial chemi-
cal potential, which alters the very form of the energy
levels (34).

The free energy in the presence of the helical chemical
potential contains two terms:

QY (T, pa) = Qfp + QF (T pa). (47)
The zero-point fluctuations lead to the conventional vac-
uum term (28) QF, = Qf . = QY ., which is independent of
temperature and chemical potential. The thermodynamic
part of the free energy is

d
=135 [ !

s=+1 x==+1

_Wp=sapy
+e T .

(48)

Remarkably, the dependence of the free energy (48)
on the helical chemical potential yy mimics exactly the
one (29) of the vector chemical potential py:
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QH(MH) = QV(/‘V)lﬂV—mH' (49)
Of course, the relation (49) does not mean that the
effects of the helical and vector potentials on the Dirac
fermions are identical to each other: it is the parametric
dependence of the free energy that is the same in both
cases. In order to demonstrate this fact, we will con-
sider, in the next subsection, the free energy of Dirac
fermions in the presence of both these chemical poten-
tials. Meanwhile, we give the explicit expression for the
helical density [31]:

MHT —1—@ Hum
3 3z 277

ny(T,p) = + O(m*). (50)

5. Duality of helical and vector chemical potentials

Now we consider the thermodynamics of Dirac
fermions in the presence of both vector and helical
densities. This physical environment is described by the
Lagrangian:

L =y (ig + pyy° + puy’h — my, (51)

which gives the following Dirac equation:

(id + uyy° + upyh — m)y = 0. (52)

The spectrum is described by the four energy branches:

PoLp) = s\/p* + m® — uy — xuy. (53)

which are immediate generalizations of the vector (26) and
helical (46) energy solutions.

The vacuum contribution to the free energy may tradi-
tionally be neglected below as it depends neither on
temperature nor on chemical potentials. The thermody-
namic contribution is as follows:

Qi (uv, )

s=%1 x==%1

x In (1+e w) (54)

The form of the thermodynamic potential (54) demon-
strates the independence of the physical effects of vector
and helical chemical potentials. The potentials appear to
enter the partition function symmetrically, exhibiting the
symmetry of thermodynamic function Q; = QY under the
flip of the chemical potentials

()= G 59

namely:

Qr(uy, ) = Qr(pps py)- (56)

The free energy (54) depends on the absolute values and not
on the signs of the chemical potentials yy and py. Thus, the
thermodynamics of the theory is also invariant under the
sign flips py — £py and pyy — £py. In the small mass
limit, ny and ny are given by

wyT? ol + 3uyud,  pym? .
ny = 3 + 37[2 - 2”2 + O(m )7
uaT? | iy + Sugpy  pm’
g =Ly B _JUT )(57)

We conclude this section by stressing that the presence of
vector and helical chemical potentials and the appropriate
densities is, expectedly, consistent with the thermodynam-
ics of the massive Dirac fermions. A nonzero axial density
is not consistent with the fermion’s mass. Despite its rather
exotic definition, the helical chemical potential shares
many features with its vector counterpart.

III. LINEAR SIGMA MODEL WITH QUARKS

In order to explore the chiral properties of QCD in the
presence of the helical vector potential, we use LSM,, [26].
This low-energy effective model of QCD contains two
types of fields: the doublet of the light quarks w(x) =
(u,d)" and the light pseudoscalars (o, 7), which include
the pseudoscalar field ¢ and the isotriplet of the pseudo-
scalar pions 7 = (7, 75, 73). Each of the light quarks is a
triplet in the color space. Since the theory does not contain
the gluon (color gauge) fields, the color degeneracy of the
quark fields will only lead to the factor N, =3 in the
fermionic contribution to the free energy of the system.

The LSM,, Lagrangian has two terms:

L=L,Wy 0.7 L)+L,(0.7), (58)
The quark part of the Lagrangian (58),

L, =plig—glo+ir7 a)ly, (59)
includes the kinetic term and the interaction between the
quark field y, and the chiral fields ¢ and 7. We do not
consider the bare (current) quark mass, which is too small
to be important for our considerations below.

The dynamics of the pseudoscalar pions is described by
the second term in the Lagrangian (58):

L,(0.7) == (0,060"c + 0,n°#7°) + 0,n0,n~ — V(0. 7),

| =

(60)

where we have introduced the fields of the charged and
neutral mesons, respectively:
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1
at = —(z' £ in?), 7 = (61)

V2

The potential V in the pionic Lagrangian (60) contains
two terms:

V(o,7) == (c* + 7> — v*)* — ho. (62)

IS

The first term describes the spontaneous breaking of the
chiral symmetry. It leads to a nonzero expectation value of
the pseudoscalar field (¢) # 0 and, in general, could also
give rise to the emergence of the condensate of pseudo-
scalar pions (7). However, the second term in the same
potential (62) breaks explicitly the symmetry between the
components of the pseudoscalar mesons (o, 7) and pref-
erentially maximizes the pseudoscalar condensate (o). In
addition, this term energetically disfavors the pion con-
densate: (7) =0. As a result, the quarks acquire the
dynamical mass M = g(o) via the scalar-quark interaction
term of the quark Lagrangian (59).

In our paper, we work in a mean field (MF) approxi-
mation thus neglecting quantum fluctuations of the scalar
fields ¢ and 7. The Lagrangian (58) reduces to

Lyir = y(id — go)y — V(o), (63)

where we take the advantage of the MF approximation to
simplify the notations for the potential (62), V(c) =V (o, 6),
and for the mean field 6 = (s). In the MF theory (63),
the integral over the Dirac fields is taken exactly.

Following the logic of Ref. [32], we adopt the following
set of values of the phenomenological parameters of the
model:

g=33, 4=197, v=877MeV, h=(121 MeV)3.

(64)

With these parameters, the vacuum expectation value of the
pseudoscalar field is fixed to the pion decay constant,
(6) = fr» =93 MeV, the dynamical quark mass

M = g{o). (65)

gives us the expected one-third of the mass of a nucleon,
M =307 MeV, while the tree-level pion mass m, =

A({c)? — v*) = 138 MeV falls in the range of physical
pion masses. The mass of the ¢ meson is m, =
V2Af2 + m2 = 600 MeV, while the value of & is consis-
tent with the partially conserved axial vector current
relation, i.e., h = f,m>.

Notice that we perform our analysis within the sigma
model which possesses only two (N, = 2) flavors of light
quarks. At the same time, we use the phenomenological

parameters obtained from the realistic QCD which
includes, in addition, the heavier strange quark. As the s
quark plays an essential role around the QCD phase
transition, it would be more appropriate to adapt an
N;=2+1 sigma model for the analysis. However, in
order to keep our calculations as simple as possible, and
noticing that our work is concentrated on the analysis of the
new effects that could be brought by the inclusion of the
helical degrees of freedom rather than on a detailed analysis
of the temperature-density phase diagram, we continue to
work with the Ny =2 flavors following Ref. [32].

IV. PHASE STRUCTURE

A. Thermodynamics of the sigma model

We start our investigation of the effects of finite helical
density with the phase diagram at vanishing temperature
T =0 and then continue to explore the effects of finite
helical density on dense quark matter at finite temperature.
We consider the dense matter in the plane of the baryonic
(up) and helical (uy) chemical potentials. The helical
chemical potential has been defined earlier, for example,
in Eq. (51). The baryonic chemical potential is taken
according to the standard prescription: up = N.uy, where
the vector chemical potential is equal to the quark chemical
potential yy =u, and N. =3 is the number of colors
(three colored quarks constitute one colorless nucleon).

The fermionic part of the LSM, Lagrangian in the MF
approximation (63) is captured by the free-field Lagrangian
(51). The full thermodynamic potential of the model
contains the pure pion contribution, given by the potential
V(o) and fermionic part, respectively:

Q(U;ll\/,MH) = V(U) + Qq(U;MVvﬂH)' (66)
The fermionic free energy is the sum

Q (o3 py, 1) = Quac(0) + Qr(os v, pp),  (67)

of the zero-point (vacuum) part,

3
Quulo) =12 [ S hap(o) (68)

and the thermodynamic contribution

3
QT(G;P‘V’/"H):_6TZ Z /(clep)%

s=x1x==%1

n (1o {2l )

(69)

The energy dispersion of the fermions depends on the value
of the o condensate:
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w,(0) = \/p* + g*0>. (70)

Notice that both matter and temperature influence, via
the thermodynamic part (69), the value of the condensate o.
The latter quantity determines the fermionic spectrum (70),
which, in turn, appears in the vacuum part of the free energy
(68). Thus, the matter and temperature effects may modify
the value of the vacuum energy in an indirect way (32,33]."
The vacuum stability conditions in the one-loop renormal-
ized model may be fixed self-consistently in such a way
that the dynamically generated mass and the position of the
minimum of the effective potential remain at their tree-level
values [34,35]. Thus, we ignore the vacuum energy in our
approach.

Taking Eq. (69) by parts, we get the more convenient
expression for the thermal part of the free energy:

s=%1x= i]/

X <exp{wp(a> _S(;fv +WH>} + 1>_1.
(71)

pdp

Qr(oipy, py) =

The ground state of the model is given by the condensate

o which is defined via the minimization of the thermody-
namic energy:

Q(ospy.py) = V(o) + Qr(ospy.py).  (72)

Specifically, the zero of the function f(c) = 0Q/do cor-
responding to the lowest value of Q must be found, with

flospy, uy. T)

= lo(c? — v?

h+39_"z/ de

<o (2 5) 1] 73)

where g, = suy + sxpy. The minimization can generally
be carried out numerically. Once the value of ¢ is known, it
allows us to find the dynamical mass (65) and determine the
phase of the theory. In particular, we shall be interested in
the nature of the transition between the chirally broken
(o close to f) and chirally restored (o close to 0) regimes.
We highlight the presence of first-order transitions (when o
exhibits a discontinuity with respect to infinitesimal
variations of uy, py, and/or T) and crossover transitions,
when ¢ remains continuous. The boundary between the

'Notice that the chirally (axially) imbalanced matter with s,
modified the vacuum energy in a direct way [28] thus leading to
an explicit divergence (44).

phase-space regions where the first-order and crossover
transitions occur is represented by a critical line. In the case
of the crossover transition, we choose to define the value of
o at which the transition occurs as that value for which the
gradient of o with respect to the phase space variables py,
uy, and T,

Jdo \ 2 0o \?2 oo\ 2 1/2
Vo= [{— | +|=— | + |= , (74)
oy Opy or
reaches its maximum value. The above derivatives of ¢ can
be computed starting from Eq. (73) as follows:

Of1-1T/ of \2 of \ 2 of\271/2

_f _f + _f + _f , (75)
oo ouy ouy oT

where the partial derivatives of f are taken by considering
that o, uy, uy, and T are independent variables, as follows:

3 T Msx -1
a_ g st/ dp {exp(wp%) + 1] ,
Hy s
3g g Wp — K x -l
J o st/ dp expT' +1 ,
H
0 — -1
f 3902/ {exp(wp Tﬂ,>+1] ’

(76)

Vol =

and

af
pCap— ] 2
3 Ao

o

dp

S %

x [exp <@> + 1}_1. (77)

In the above, w), = +/p?* + g*c°. Furthermore, we
took advantage of the fact that ¢ is a solution of Eq. (73)

by replacing
Wy — P 5 -
exp T‘ +]

3¢ o
|

= h—Jo(c® = v?). (78)

dpp®

In the same spirit, the derivative df /0T can be written as

Z—; ; <3h + 2A0v? — 63—f> (79)

We note that the transition from the crossover to the first-
order transition regimes is only possible when |Vo| — oo as
the critical point is approached from the crossover region.
This implies that on the critical line, df /do = 0. While this
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equation apparently fixes only one of the three phase space
parameters, it offers only two one-dimensional families of
solutions that describe the critical lines, which will be
addressed in the following sections.

We finish this section by providing the expressions for
the vector and helical densities, which may be obtained
from Eq. (67) with the help of Eq. (23):

=Y s [T

s==x1 x==%1

x <exp{wp(6) - S(;fv +””H)} + 1>_1, (80)

S PIDIY AT

s==+1 x==%1

x <exp{wp(6) _S(;V +””H)} + 1>_l. (81)

B. Dense matter at zero temperature

In the zero-temperature limit, 7 — 0O, the free energy
(69) reduces to a simpler form:

=DM |

x Os(uy + }fﬂH) —wy(0)].  (82)

o ptdp

Qr (o3 py. Hu)

The integral in Eq. (82) can be performed analytically with
the help of the identity

*dp 1
/q Pap _ [qeq(Zq —-3m?) + 3m4arctanhi], (83)
0o & 8 £y

where we denoted ¢, = +/ p* + m?. Equations (82) and
(83) simplify the numerical calculations.

In Fig. 1 we show the behavior of the order parameter ¢
as the function of the baryonic chemical potential up at
various values of the helical chemical potential yy. At zero
helical density, uy = 0, the model resides in the chirally
broken phase at low baryon densities with py < u,. with

Hy Ue 305 MeV
T 0 0

where u,.~305 MeV denotes the critical value of the
(vector) chemical potential in LSM,. The letter “F” in
Eq. (84) marks the point at the T = 0 phase diagram in the
(uy, ug) plane, Fig. 3, which will be discussed later.

As the helical density increases, the position of the
chiral phase transition shifts towards smaller values of
the baryon chemical potential pp. At the same time, the

~ . o .
I \ \
| . \
0.8 | | 1
: \ ' ‘| 1, GeV
) 1
06 | \ 0.1, 0 1
13 1 I}
= ' | L 0.2 '
S | : 1
04 0.25 - 1
| | !
. g .
021/ los AR ¢ 1
l—— _ ~._ " A
~0.35—-- ST m i
0 ‘ ‘ TTT T TR e
0 0.2 0.4 0.6 0.8 1 1.2
Hp = 3#\/, GeV
FIG. 1. The chiral order parameter o (in units of the pion decay

constant in vacuum, f,) as a function of the baryonic chemical
potential up = 3uy at various values of the helical chemical
potential uy at zero temperature.

presence of the helical density softens the transition. Both
these effects are seen in Fig. 1 at the helical chemical
potential py = 100 MeV.

A further increase of the helical chemical potential
moves the transition to even smaller values of the baryon
chemical potential and leads to the disappearance of the
first-order phase transition which is replaced by a smooth
crossover. These features are seen at uy = 200 MeV.

At higher helical densities, the transition starts to
strengthen and turns again to a first-order phase transition
(examples are at uy = 250 MeV and uy = 300 MeV in
Fig. 1). Finally, as uy is increased, the transition point
reaches the lowest possible value at yy, = 0 and the first-
order phase transition disappears altogether. In agreement
with the mentioned duality between the vector and helical
sectors of the theory, the critical helical potential is tightly
related to its vector (baryonic) counterpart (84):

Hy 0 0
G:lpug | = | pe | = | 305 MeV |, (85)
T 0 0

where p, is given in Eq. (84). At a larger helical density,
Uy > ppy ., the system resides in the chirally restored phase.
The point “G” introduced in Eq. (85) is also highlighted
in Fig. 3.

It is instructive to discuss the behavior of the densities
of the vector charge2 (80) and the helical charge (81),
shown in Fig. 2.

At small helical potentials py < u.., the first-order chiral
phase transition is characterized by a large increase of the

*Due to the relation of the baryon and vector (quark) chemical
potentials, ug = 3puy = 3p,, the baryon density ny is propor-
tional to the vector (quark) charge density, ng = ny/3 = n,/3.

094015-10



PHASE DIAGRAM OF HELICALLY IMBALANCED QCD MATTER

PHYS. REV. D 103, 094015 (2021)

0.3} (a) T=0 -7 s
.- ’_/" -~
0251 A i, GeV e ,,;’//// /
-~ - - - -
0.2 - ’ "/ /////-<‘:"
3 OO cre T e
© O R SR
Q; 0.15+ 7 :f’ / " ! ,
& 0.35 , / / |
0.1} - . g : 1
I 02 , AL . .
. 02 / K
0.05 I ,I / 0.2 0.15 0 .1 005 ’ o
[ [ '
ol ‘ P— Lt ‘ ]
0 0.2 0.4 0.6 0.8 1
pup = 3uy, GeV
03 () T=0 RS
.- ’_/' -
0.25 i, GeVo .= ‘,,"/// Lt
_ - s -
B == ¥ - // - ‘/—/
0.2-0.35 _ @ e
% - -7 - - °
o - ,/ <0 |
e 015+ o399 . s
'_': 1 / / /
o 025 7 !
// 02  / ,
7 o5 /
0.05¢ // S/ 701 /
’ 0.05
N I ' 0
0 0.2 0.4 0.6 0.8 1
pp = 3uy, GeV

FIG. 2. The density of (top) the vector charge ny and (bottom)
the helical charge ny = 3np as a function of the baryonic
chemical potential pp = 3uy at various values of the helical
chemical potential uy at zero temperature.

baryon density and a small (vanishing at yz;; = 0) change in
the helical density.

At moderate values of the helical chemical potential,
Uy ~ H./2, the chiral crossover transition appears. It is
characterized by a smooth change in both vector and helical
densities.

The picture reverses at high values of the helical
chemical potential, py ~ u., where the chiral transition
disappears and the helical density prevails over the bar-
yonic (vector) density.

The phase diagram in the plane of the chemical poten-
tials (uy, uy) is shown in Fig. (3). There are two separate
segments of the first-order phase transitions.

The baryonic segment of the first-order transition begins
at the point “F” at the zero-helical-density axis (84) and
ends at the end point “C” with the parameters:

Uy 248 MeV 0.814,
Ci| pug | = | 123 MeV | = | 0.40u,. |. (86)
T 0 0

T=0
0.3 |
0.25 |
0.2 |
z
(@)
= 0.15 J
3 os)
g
0.1 § "
Chirally broken phase =
0.05
0
0 0.0 0.1 0.15 02 025 0.3
pv, GeV
FIG. 3. The phase diagram in the (uy-py) plane at zero

temperature (uy = pi,). The thick lines mark the first-order phase
transitions between the chirally broken phase (at low py and pp)
and predominately baryonic (blue) and predominately helical
(red) regions. The positions of the points “F”” and “G” are given
in Egs. (84) and (85), respectively. The filled circles “C” and “D”
are the end points with the second-order phase transitions
[Egs. (86) and (87)]. The dashed line “C—D” shows the position
of a smooth crossover which connects the endpoints.

This segment separates the chirally broken phase (the green
region) from the chirally restored region “B” where the
vector (baryonic) density dominates over the helical charge
density.

The helical segment begins at the point “G” at the zero-
baryon-density axis (85) and ends at the end point “D’:

sy 123 MeV 0.404,
D:| py | = | 248 MeV | = | 081u. |. (87)
T 0 0

The G-D segment separates the chirally broken phase (the
green region) from the chirally restored region “H” where
the helical charge density dominates over the baryonic
density. In order to fix the value of ¢ at which the crossover
transition takes place, we seek to maximize the gradient
|[Vo| in Eq. (75). Since we are working in the vanishing
temperature limit, it is clear that the 0f /0T term dominates
due to its 7~! prefactor, which we will ignore in the
following discussion. Computing now the integral in
Eq. (77), we find

of h 3g*c? E; + p}
— =2l +—— O, In——L (88
do ? +0 2 SZ; s go (88)

094015-11



M. N. CHERNODUB and VICTOR E. AMBRUS

PHYS. REV. D 103, 094015 (2021)

where 0. =0(E; —go), Ef =|uy tpuyl and py =
\/(Ef)? = g*c*. From the condition f(o) = 0, the loga-

rithms can be replaced via

3 4 3
IS 0T = h—do(o? - ?)
2n° —~ E% + p}

3¢%c s
=57 D OPiE,  (89)
s=+1

leading to the simpler expression

of 3h 3¢ .
L= 422 =22 9. plES. 90
oo c T+ 2 S;I sPrEy ( )

A common solution of the system of two equations
f(6) =0 and df/do = 0 can give the values of, e.g., uy
and o at fixed py. However, such solutions are not possible
for all values of uy. A careful analysis reveals that the
solution is also compatible with the principle of minimizing
the free energy when puy = 123.451 MeV = 0.40u,., uy =
248.290 MeV = 0.81u,., and ¢ = 34.653 MeV = 0.37f,,
confirming the results in Egs. (86) and (87).

Away form the critical point, we find the crossover point
by maximizing |Ve|. Using Eq. (79), we obtain

6(3h + 2Aov?)
3h+2400> =325 L0, pE}

— 0.

lim(T|Vol) =
(91)

The above expression diverges in the vicinity of the
critical points C and D. As we move away from these
points, this initially infinite peak subsides and o travels
along a continuous path from the first-order transition
region into the crossover transition region. At (uy, py) =
(125.8 MeV,246.5 MeV), a second peak maximizes
Eq. 91) and ¢ jumps from the value o =33.7 to
48.7 MeV. Along most of the crossover line, this second
peak represents the global maximum of Eq. (91),
while ¢ ~48.7 MeV, uy + puy ~ 370 MeV, and T|Vo| ~
2.15 MeV remain constant.

The pair of points “F”” and “G” as well as the pair of end
points “C” and “D” are related to each other by the vector-
helical duality (55).

At the end points “C” and “D” a second-order phase
transition takes place. These end points are connected to each
other by a smooth crossover (the dashed thin line “C-D”).

The phase diagram in Fig. (2) is insensitive to the signs
of the chemical potentials, being invariant under the
independent flips py = —py and py - —uy.

C. Finite-temperature phase diagram

The presence of the helical density leads to a substantial
modification of the finite-temperature phase diagram of
QCD. In Fig. 4, we show the position of the chiral phase
transition in the uy-T plane at a dense grid of values of the
helical chemical potential y7;. The temperature is plotted in
units of the pseudocritical temperature 7', of the chiral
crossover in LSM,, at zero density:

T.o~146.5 MeV (inLSM, at pup = py = 0).  (92)
This point is shown by the triangle “P” in Fig. 4.

Notice that the exact position of the crossover
transition—which is not associated with a thermodynamic
singularity—depends on the quantity which is used to
reveal the crossover. We determine the position of the
crossover as a submanifold of the parameter space at
which the slope of the condensate |Vo|, given in
Eq. (75), reaches its maximum. Due to imprecise notion
of the position of the crossover, it is customary to call the
temperature of the crossover as the “pseudocritical” rather
than critical temperature.

The value of the critical temperature (92) in LSM,, is
slightly (less than 10%) lower than the value of the critical

temperature 72° = 156.5(1.5) MeV of the chiral phase

_ sclf-duality

wn
1
1

pw, GeV

Hig

g

INEEERN]
"IIIIIIIII

LA 11000004,
11100000y

Tc/Tc,O

0 Y\005
G

HH = Hc

FIG. 4. The phase diagram in the (uy-T) plane at various
helical chemical potentials yy (the values of yy in units of GeV
are marked at each line). The thick lines mark the first-order
phase transitions between the chirally broken phase (the region
closer to the origin) and the chirally restored phase (the outer
region). The dashed lines show the position of the smooth
crossovers. The end points of the first-order phase transitions,
denoted by the filled circles, are the second-order phase
transitions. The segments of the lines of the first-order phase
transitions form two “islands,” with mostly baryonic (blue) and
mostly helical (red) chirally restored phases. The self-duality
line uy = py is shown in the pink color. The meaning of all
marked points is discussed in the text.
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transition determined via the inflection point of the light-
quark chiral condensate in the first-principle simulations of
lattice QCD with real quark masses [36].

At a vanishing helical chemical potential, uy = 0, we
recover the standard chiral transition which is plotted at
the outer blue line in Fig. 4. At small values of the
chemical potential yuy, the chiral transition is a smooth
thermodynamic crossover (the dashed line), which reaches
the zero-density axis at the point “P” with T = T_ and
uy = py = 0.

As the puy =pup/3 chemical potential increases, the
crossover turns into the first-order phase transition
(the solid line) passing via the second order end point
“E” (the filled circle). This end point is located at

Hy 204 MeV 0.67u,
E:| uy | = 0 ~ 0 . (93)
T 99.6 MeV 0.687 .

At higher baryon densities, the first-order transition line
segment hits the 7 = 0 axis at the point “F,” given in
Eq. (84). At even higher py, the model resides in the
chirally restored phase.

Figure 4 demonstrates that the presence of a nonzero
helical density changes the chiral phase transition substan-
tially. Let us consider what happens with the chiral phase
transition as the helical density increases.

First, as the helical chemical potential yy rises, the line
of the chiral transition gradually shrinks towards the origin
(y. T) = (0,0). In other words, both the critical temper-
ature T'. at a fixed chemical potential yz and the critical
chemical potential up at fixed temperature 7 are mono-
tonically decreasing functions of the helical chemical
potential pg.

Second, the presence of a moderate helical density
makes the chiral phase transition weaker: the line of the
first-order phase transition shrinks, in favor of the smooth
crossover. As uy is increased from O up to uy = 125 MeV,
the high-temperature end point £ descends towards smaller
temperatures and larger values of puy .

When pup reaches the value 121.7 MeV, the region of
first-order phase transition is broken in two disconnected
segments separated by a crossover domain. This region
emerges at point L’ having parameters

Hy 249 MeV 0.82u,.
L':| ug | = | 122 MeV | ~ 040u. |. (94)
T 6.7 MeV 0.046T . o

The first-order transition region occurring in the small
temperature region gradually disappears as py reaches the
value 123 MeV corresponding to coordinates of the critical
point C in Eq. (86).

When py > 123 MeV, the chiral phase transition exhib-
its a second end point, now at the low-temperature end of
the first-order line. The rest of the transition line is occupied
by the smooth crossover all the way down to the 7 =0
axis. The structure of the chiral transition line with multiple
end points is clearly seen in Fig. 4 for values of uj between
pup(L') =122 MeV and py(L) = 133 MeV, where the
point “L” is described below.

Increasing py above 123 MeV (point C) causes both the
higher- and the lower-temperature end points to approach
each other. This effect is seen at the line with the fixed value
of the helical potential uy = 130 MeV. At a higher, critical
value of py, the first-order segment shrinks to zero and the
chiral transition turns into a smooth crossover. The first-
order phase transition disappears at the point “L” with the
parameters

1y 225 MeV 0.744,
L:| uy | = | 133MeV | =~ | 044u. |, (95)
T 40.5 MeV 0.287,,

which is shown in Fig. 4 as a bright green dot.

After the system goes beyond the point “L,” the chiral
phase transition keeps the crossover type for a while
until the helical chemical potential reaches the value
uy ~225 MeV. The first-order phase transition reappears
at the point “K” of the phase diagram:

sy 133 MeV 0.44p,
K| py | 2| 225Mev | = | 074, . (96)
T 40.5 MeV 0.28T,

It is easy to see that the points L and K are related to each
other via the vector-helical duality (55).

In the below range of values of the helical chiral
potential,

0.44u, ~ 133 MeV < puy S 225 MeV ~0.74u,.,  (97)

the whole line of the chiral transition is of the crossover
type. The crossover region of the phase diagram is cut in
two parts by the self-duality line, yy, = uy, shown in the
pink color in Fig. 4.

As py increases beyond the point K (uy ~ 208 MeV), the
first-order phase transition reappears. Contrary to the low-
helicity case, now the first-order chiral segment is located at
higher temperatures, while the crossover transition is now
realized at the colder part of the phase diagram.

The line of the first-order phase transition reaches the
zero-baryon density py = 0 at the point
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Hy 0 0
Ail uy | = | 204 MeV | ~| 0.67u. |, (98)
T 99.6 MeV 0.68T,

which is exactly dual to the end point “E,” Eq. (93), of the
usual standard finite density transition. As uy increases
past the value uy(D) =248 MeV corresponding to the
critical point D (87), a first-order phase transition line
emerges from the 7 = 0 axis upwards, joining the high-
temperature first-order phase transition line at point K’,

Hy 122 MeV 0.40u,
K:| ug | =~ 249MeV | | 082u. |, (99)
T 6.7 MeV 0.046T ,
which is the dual of point L’ in Eq. (94).
At point K’, when puy reaches the value

uy ~249 MeV ~ 0.82u,, the crossover shrinks to zero
and the whole chiral phase transition becomes of the
first order.

The phase transition temperature and the vector chemical
potential decrease monotonically as uy increases. The
chiral transition disappears altogether when the helical
chemical potential reaches the value yy = p. with p. given
in Eq. (85). This position is marked by point G, Eq. (85),
shown in Figs. 3 and 4.

Qualitatively, the phase diagram in the py-T plane,
Fig. 4, has five distinct regions, including the strait of
the crossover transition at intermediate values of the helical
potential (97) which separates the high-uy island of the
baryonic-rich first-order transitions and the low-uy island
of the helical-rich first-order transitions (cf. Fig. 3). The
crossover strait is cut in two pieces by the self-duality
line, uy = py.

The evolution of the structure of the chiral transition in
the py,-T plane as the helical chemical potential is increased
is shown in Fig. 5. The top row highlights the position on
the py /p. axis of the points E, L', C, L, A, D, K', and E

introduced in Fig. 4. The bottom row shows qualitatively
the phase diagram in the uy-T plane via 15 representative
configurations at or around these points.

D. Curvature of the chiral transition

One of the most important characteristics of the chiral
transition is the curvature x of the transition temperature at
small values of the baryon chemical potential up = 3uy:

To(up.pr)  To(un) up \?
_ _ ... (100
T Too N Too + (100)

where T.(uy)=T.(ug =0,uy) is the (pseudo)critical
temperature of the chiral transition at zero baryonic density,
and T.o=T.(up =0,uy =0) is the position of the
crossover when both chemical potentials vanish (92).
Due to the vector-helical duality (55), the dependence of
the (pseudo)critical temperature T.(uy) =T.(0,uy) on
helical chemical potential uy at uy = 0 is the same as
the dependence T.(uy)=T.(3uy,0) on puy at uy =0,
given by the outer transition line in Fig. 4.

The series in Eq. (100) is valid provided the baryon
potential is much smaller than the chiral transition temper-
ature at zero density (92), up < To. The linear term is
absent due to the C symmetry of the theory at the baryonic
neutrality point, yz = 0. The dots in the series (100)
represent higher-order terms in pp/T. . The curvature
k(py) appearing in Eq. (100) can be extracted from the
values T'.(up,uy) of the (pseudo)critical temperature of
the chiral phase transition computed at low values of the
baryon chemical potential, yp. The validity of the quadratic
ansatz in Eq. (100) is demonstrated in Fig. 6(a), where the
numerical data is plotted using symbols. The lines represent
the best fit curves with x(uy) as a free parameter and the
values of py span the range from 0 to 0.3 GeV = 0.984,..

It turns out that the first two terms in Eq. (100) may
indeed describe very well the curvature of the chiral
transition lines, shown in Fig. 4, at any helical chemical

T T T T Q) T T T A A T
0 2 4 6 ——a0——a2—I
i 3 5 @ o % a3
NPk L
" 1 @ B @ ® ® 7 ® © 10 4 123 i

FIG. 5.

The evolution of the structure of the chiral transition in QCD as uj (given in units of . ~ 305 MeV) is increased. The points

E,L,C,L,A, D, K, and E correspond to the ones given in Fig. 4.
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FIG. 6. (a) The ratio [T.(up,py)—Tc(0,uy)]/Teo vs the
baryonic chemical potential yp. This ratio quantifies the depar-
ture of the (pseudo)critical temperature T.(up,uy) at finite
baryon chemical potential from its value 7.(0,uy) at up =0,
normalized with respect to the pseudocritical temperature T, at
vanishing yp and py. (b) Curvature k of the chiral transition (100)
as the function of the helical chemical potential y at zero baryon
density up = uy = 0. As the helical density rises, the crossover
(the blue dots) changes into the first-order phase transition (the
orange squares). The position of the second-order end point
(point “A” in Fig. 4) is shown by the vertical magenta line. The
green curve represents the best fit (101).

potential puy. The effect of the helical density on the
curvature k of the chiral transition is shown in Fig. 6(b).

The curvature of the phase transition is a slowly rising
function of the helical chemical potential uy. After the
helical density passes the critical second-order end point
“A.” Eq. (98), the crossover turns into a first-order phase
transition with the rising curvature. The evolution of the
curvature slope suggests the presence of a singularity at
the point “G,” Eq. (85), where the curvature becomes
infinite.

Both the crossover and the first-order regions may be
successfully described by a single fitting function in the
whole region of puy:

() = Ko {1 + a(ﬁ)z (1 _:TH> _y} . (101

where

ko = k(uy = 0) ~0.016, (102)

is the curvature at vanishing helical chemical potential.
The fitting parameters are the coefficients a and y,
which control both the small uy polynomial behavior
and the exponent of the divergence as py — py . = p. =
305 MeV.

The best fit, shown in Fig. 6(b) by the green line, gives
the following values for the parameters o and y:

a~070,  y~0.58. (103)

The value of the curvature (102) at zero helical density,
predicted by LSM,, with N, = 2 flavors, is well compatible

with the QCD result k%P = 0.0132(18) of the pseudoc-
ritical line of the chiral transition obtained with the help of
first-principle lattice simulations of QCD with Ny =2 + 1
fermions [37]. This unexpected approximate agreement
may, most probably, be explained by the fact that we use,
following Ref. [32], the N, = 2 flavor sigma model with
the Ny = 2 + 1 phenomenological parameters. Indeed, the
curvature of the phase transition x obtained in lattice QCD
simulations with Ny = 2 dynamical quarks [38-41] give
two to three times smaller values compared to the curvature
obtained in the Ny =2 + 1 lattice QCD.

A few words on the validity of our results are in order. As
the LSM,, is an effective low-energy (infrared) model of
QCD, at large values of massive parameters (for example,
at high chemical potentials) the model may give somewhat
inaccurate results. Therefore, as a standard word of caution,
our quantitative predictions should be considered with
certain care.

In addition, following the traditional approach, we
characterized the vacuum of the theory with a single
parameter: the pseudoscalar condensate o. This single
condensate can indeed describe the vacuum at low baryon
densities both in the chirally broken phase and around the
chiral transition. Due to the vector-helical duality, the single
pseudoscalar condensate may be used in the similar range
of values of the helical chemical potential yy (at low helical
densities). However, the presence of large helical and
baryonic chemical potentials—for example, around the
crossover transition—may lead to the formation of new
types of condensates, which may not be reduced to the
single parameter o.
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V. DISCUSSION AND CONCLUSION

A. Thermodynamic relevance of helicity

In our paper we discussed the influence of the presence
of a finite helical density on the phase diagram of QCD at
finite temperature and finite baryon density.

For quarks, a difference between the helicity and
chirality appears at the level of their transformations under
the charge conjugation operation (C).> The right- (left-)
handed helicity corresponds to a positive (negative) value
of the projection of the quark’s spin on its momentum. The
chirality of the quark is given by its helicity times the sign
of the particle’s charge: the chirality of a particle is equal to
its helicity (for example, a right-chiral particle has a right-
handed helicity) while the chirality of an antiparticle is
opposite to its helicity (for instance, a right-chiral anti-
particle has a left-handed helicity).

Physically, the notions of helicity and chirality are very
close to each other as they differ only by an application
of the vector charge operator, Q. However, the helicity
can be defined for free massive quarks while the
chirality cannot. Indeed, the helicity operator A, given in
Eq. (3), commutes with the Hamiltonian of a massive free
fermion (7) while the axial operator, given by the y> matrix,
does not.

Mathematically, the axial charge density is determined
via the local operator y°, while the helical density involves a
more complicated expression (3). Moreover, the definition
of the axial charge is a Lorentz invariant while the helical
density depends on the choice of the local reference frame.
The latter property, however, is not important for systems at
a finite density and temperature (as the one considered in
this paper), where the Lorentz symmetry is explicitly
broken by the presence of matter.

We argue that the helical density is a thermodynamically
relevant quantity in theories with the mass gap generation
such as QCD. For example, both the helical charge and the
helical chemical potential uj are well-defined quantities in
a thermodynamic ensemble of free massive fermions. On
the contrary, the axial symmetry is inconsistent with the
massive quarks: the axial chemical potential u, modifies
the energy spectrum of the massive fermions and leads to a
ua-dependent divergence of zero-point fluctuations [28].
The latter property casts a shadow on the very definition of
the vacuum of the theory at nonzero u,: the zero-point
fluctuations are associated with the vacuum and should,
therefore, be independent of the presence of matter given
by a nonvanishing chemical potential.

It is worth discussing the relevance of the effects of a
finite helical density to quark-gluon plasma created in
relativistic heavy-ion collisions. The helicity fluctuations
are likely to emerge in the initial stages of heavy-ion

The term “axiality,” which would be a more appropriate term
than “chirality,” is not adopted in the current QCD literature.

collisions in an off-equilibrium regime. While the quarks
may be created with a net helicity, the magnitude of the
helical charge remains yet to be estimated. Nevertheless, the
global helicity number is expected to be approximately
conserved in the high-temperature phase before the hadro-
nization stage is reached. Indeed, it is well known that the
helicity of massless quarks is conserved in perturbative QCD
elastic scatterings due to the vector coupling to gluons (see,
for example, the discussions in Refs. [22,23,27]). For an
ultrarelativistic quark with a mass small compared to its
energy, the perturbative helicity-flip cross section is propor-
tional to the quark mass squared. Inelastic scatterings, such
as pair annihilation and creation, can lead to helicity number
nonconservation. The characteristic relaxation time for such
processes can be expected to increase with temperature;
however, we leave a more in-depth analysis of such effects as
a future avenue of research.

Nonperturbative interactions and U(1) symmetry break-
ing may increase the helicity flip rate [22] (see also
Ref. [21] where the chirality-flip rate in the QGP was
addressed in an effective approach as well as [42]).
Therefore it is reasonable to expect that the helicity is a
good conserved quantity at the timescale of the lifetime of
the quark-gluon plasma.

In the present paper, we restrict ourselves to the simplest
case of two light quarks u and d. It is worth noticing that the
helicity flip should occur in interactions with a massive
quarks and can become relevant for the thermalization of
the spin of a massive s quark with a (rotating, for example)
environment. The thermalization can occur—via a mecha-
nism involving breaking of an axial U(1) symmetry—
shortly before the QGP reaches the hadronization stage
[22]. For the realistic parameters of the QGP, the quark’s
helicity and its spin equilibrate at the same rate [23].
Therefore, the spin of an s quark could pick up the direction
of the local vorticity of the rotating quark-gluon plasma
during its evolution after a heavy-ion collision, thus leaving
an experimentally observed imprint on polarization of A
hyperons. In Ref. [25] it was shown that the helicity
fluctuations could indeed play a dominant important role
in the spin polarization of the hyperons: the ratio of the
mean polarizations of A and A hyperons was shown to be
described by the helical and axial currents without any
fitting parameters.

Summarizing, it is generally expected that the quarks are
kinetically thermalized within a short time of the order of
0.5 fm/c after the collision. For the next 5-10 fm/c until
hadronization, the fireball evolution is described by an
approximately thermalized QGP [5]. The thermalized light
quarks carry the conserved net helicity which should, as we
show in our article, affect the QCD phase diagram and thus
may influence the evolution of the QGP.

We would like also to comment that we have restricted
our attention to the two-quark system in order to stress
the direct effects of the helicity imbalance on the
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thermodynamic properties of the quark-gluon plasma.
While the s quark could also be considered in our model,
its addition would require the consideration of the appro-

priate helical chemical potential yg). Since the mass of the
s quarks breaks explicitly the SU(3) chiral group down to
the SU(2) group of the light-quark sector, the helical
imbalances in the s-quark and u, d-quark sectors should

not generally be the same (,ug) * ,ug,"d) = py). Therefore,
the introduction of the s quark would necessarily lead to
enlargement of the parameter space and the complication of
the phase diagram. On the other hand, the simplest two-
flavor model clarifies the effects of the helical imbalance
concisely, which motivates our choice.

B. Effects of net helicity on QGP thermodynamics

After establishing the consistency of the helical density
with the mass gap generation, we studied the influence of
the helical chemical potential on the chiral properties of
QCD. To this end, we used the linear sigma model coupled
to quarks. We demonstrated that the presence of the helical
density affects the phase diagram of dense quark matter in a
rather complicated way both at zero (Fig. 3) and finite
(Fig. 4) temperatures. We used for the analysis the vector
chemical potential uy, which is equivalent to the quark
chemical potential y, and three times smaller than the
baryon chemical potential, ug: py = pug/3 = p,,.

The evolution of the structure of the chiral transition in
dense QCD as a function of the helical chemical potential is
summarized in Fig. 5. Here we summarize the main effects
of the helical chemical potential on the chiral transition:

(1) A moderate helical density makes the chiral phase
transition softer while shifting the critical end point
towards lower temperatures and lower baryon
chemical potentials.

(2) In a certain narrow range of the helical chemical
potential uy, the chiral phase transition acquires
additional second-order end points.

(3) At intermediate helical density, the segment of the
first-order transition disappears and the chiral tran-
sition becomes a soft crossover at any temperature or
baryonic density.

(4) At even higher helical chemical potentials, the first-
order transition reappears: the finite-7" phase tran-
sition at zero baryon density (up = 0) becomes of
first order, which turns into crossover at a non-
Ze10 Uy.

(5) Finally, the chiral transition turns into a first-order
transition at any temperature and baryonic density,
before disappearing altogether when the helical
chemical potential reaches the critical value, gy = u,.

We have also demonstrated the existence of a thermo-
dynamic duality between the helical and vector (baryonic)
chemical potentials (55): the fermionic free energy is
invariant under a permutation of the vector and helical
chemical potentials (56). This duality should (softly) be
broken by the electromagnetic interactions that were not
considered in this article.

In relativistic heavy-ion collisions, the quark-gluon
plasma is created in a low-density regime characterized
by small values of the baryon chemical potential. The region
of a low baryon chemical potential is well accessible in the
first-principle simulations of lattice QCD. At small baryonic
densities, the chiral transition is a smooth crossover with the
pseudocritical temperature diminishing quadratically as a
function of the baryonic chemical potential (100).

In the limit of vanishing global helicity, yy = 0, our
result for the curvature of the pseudocritical temperature
(103) agrees reasonably well with the results of the lattice
simulations [37]. The presence of a nonvanishing density of
helical quark charges enhances the curvature of the
(pseudo)critical line of the chiral transition at low baryon
density, Fig. 6(b). The curvature diverges as the helical
chemical potential reaches the critical point, yy = p.~
305 MeV.
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