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We present a comprehensive study of the quark sector of 2þ 1 flavor QCD, based on a self-consistent
treatment of the coupled system of Schwinger-Dyson equations for the quark propagator and the full quark-
gluon vertex in the one-loop dressed approximation. The individual form factors of the quark-gluon vertex
are expressed in a special tensor basis obtained from a set of gauge-invariant operators. The sole external
ingredient used as input to our equations is the Landau gauge gluon propagator with 2þ 1 dynamical quark
flavors, obtained from studies with Schwinger-Dyson equations, the functional renormalization group
approach, and large volume lattice simulations. The appropriate renormalization procedure required in
order to self-consistently accommodate external inputs stemming from other functional approaches or the
lattice is discussed in detail, and the value of the gauge coupling is accurately determined at two vastly
separated renormalization group scales. Our analysis establishes a clear hierarchy among the vertex form
factors. We identify only three dominant ones, in agreement with previous results. The components of the
quark propagator obtained from our approach are in excellent agreement with the results from Schwinger-
Dyson equations, the functional renormalization group, and lattice QCD simulation, a simple benchmark
observable being the chiral condensate in the chiral limit, which is computed as ð245 MeVÞ3. The present
approach has a wide range of applications, including the self-consistent computation of bound-state
properties and finite temperature and density physics, which are briefly discussed.
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I. INTRODUCTION

In functional approaches to QCD, the task of computing
quark-, gluon-, and hadron-correlation functions is formu-
lated in terms of closed coupled diagrammatic relations
between them, which must then be solved numerically. In
all these approaches, such as Schwinger-Dyson equations
(SDEs), functional renormalization group (fRG), n-particle
irreducible methods (nPI), and bound state methods [Bethe-
Salpeter (BS), Faddeev- and higher-order equations], the
diagrammatic relations are built out of the propagators of
the fundamental and composite QCD fields. For reviews on
functional methods in QCD, see, e.g., [1–7] (SDEs), [8–13]
(fRG), and [14–16] (bound states).
Functional approaches allow for an attractively simple

and versatile access to the dynamical mechanisms that drive
numerous fundamental QCD phenomena. Moreover, their
flexibility in using as external inputs correlation functions

stemming from distinct nonperturbative setups (e.g., lattice
[17–32]) is a particularly welcome feature, which increases
their quantitative reliability and their range of applicability.
However, such inputs are not always available, prominent
and important examples being QCD at finite temperature
and density, as well as the hadron spectrum. Hence, in the
past two decades, functional methods have evolved into a
self-contained quantitative approach to QCD, allowing for
quantitative predictions within a “first principle” frame-
work, without the need of external inputs.
This ongoing progress requires quantitative computa-

tions involving the full tensor structure of correlation
functions, and in particular that of the three- and four-
point functions, that dominantly drive the dynamics of
QCD. Specifically, the quark-gluon vertex is the pivotal
ingredient of the matter dynamics of QCD, being intimately
connected with fundamental phenomena such as chiral
symmetry breaking and quark mass generation, bound state
formation, e.g., [33–42], and the QCD phase structure at
finite temperature and chemical potential, e.g., [43–62].
To date, the quark-gluon vertices employed in most SDE

studies are not based on a full solution of the corresponding
dynamical equations, but are rather put together from
quark and ghost dressing functions with the aid of the
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Slavnov-Taylor identities (STIs) (see, e.g., [28,63–70]) or
rely on perturbative expansion schemes (see, e.g., [71–73]).
These are operationally simple and suggestive treatments,
with an impressive array of very successful applications,
ranging from the properties of hadrons to the phase
structure of QCD. However, within the STI constructions,
the strength associated with the classical tensor structure
requires a phenomenological infrared enhancement, whose
size is adjusted by means of the constituent quark masses.
The latter, including their momentum dependence, are
equivalent to the physical amount of chiral symmetry
breaking, and hence, in such an approach, the quantitative
strength of chiral symmetry breaking is a phenomenologi-
cal input rather than a prediction. To be sure, the need for
such an enhancement may be attributed to the insufficient
knowledge of some of the ingredients comprising these
STIs (e.g., quark-ghost kernel [68]). Nonetheless, in view
of the results in the present work, as well as of previous
considerations within functional approaches [34,60,61,
74–82], it seems to originate mainly from the omission
of important tensor structures that are simply not accessible
through the standard STI construction.
This situation calls for a self-consistent treatment of the

full quark-gluon vertex within the SDE formalism in the
Landau gauge. The determination of the eight relevant form
factors from their dynamical equations requires the solution
of the coupled system of gluon, ghost, and quark propa-
gators, the quark-gluon vertex, as well as additional
vertices. The most complete results in this direction have
been obtained within functional methods for two-flavor
QCD; see [76,77] (quenched), and [79,81] (unquenched).
Recently, the fRG results of [81] have been used as input
for a 2þ 1-flavor analysis within the SDE approach, both
in the vacuum and at finite temperature and density [60,61].
Despite all these advances, we still lack a well-defined
calculational SDE scheme, where one could unambigu-
ously identify and reliably compute the dominant compo-
nents of this vertex, either self-consistently or with the aid
of a given input.
In the present work we put forward a systematic

approximation scheme for the set of functional equations
governing the quark sector of QCD, by studying in detail
the coupled system of SDEs for the quark propagator
(quark gap equation) and the quark-gluon vertex. Our SDE
analysis reveals that the quark dynamics is dominated by
three specific tensor structures of the quark-gluon vertex, in
agreement with earlier considerations [60,61,76,77,79,81].
It is important to stress that, apart from the dressing
associated with the classical tensor, the other two dominant
dressings are not accessible by means of an STI-based
construction. In fact, the numerical impact of these latter
dressings at the level of the gap equations is crucial,
furnishing directly the required amount of chiral symmetry
breaking without the need to resort to artificial enhancing
factors. In our opinion, this demonstrates conclusively that

no artificial enhancement is required once the contributions
from the appropriate tensorial structures have been properly
taken into account. Importantly, we also find that certain
tensor structures, which in previous STI treatments seemed
dominant precisely due to the use of such enhancing
factors, turn out to be clearly subleading. Consequently,
the present detailed analysis enables us to restrict our
considerations to the three most relevant tensors, thus
arriving at a reduced set of fully coupled SDEs, which
are solved iteratively together with the quark gap equation.
A central ingredient of the system of equations consid-

ered in this work is the gluon propagator, entering in both
the gap equation and the SDE for the quark-gluon vertex.
The gluon propagator obeys its own SDE [1–5,7], which
depends on the quark propagator and further correlation
functions, a fact that leads to a proliferation of coupled
equations. Even though the complete treatment of such an
extended system has already been implemented for Nf ¼ 2
flavor QCD [77,81], in the present work we prefer to
maintain the focus on the novel features of our approach
rather than be sidetracked by a technically exhaustive
analysis. To that end, we treat the gluon propagator as an
external ingredient: within our most elaborate and trust-
worthy approximation, we consider a renormalization point
at large, perturbative, momenta with μ ¼ 40 GeV, and use
the SDE data for the gluon propagator from [60,61] as
external input. These SDE data are based on the fRG two-
flavor computation of [55], as are the gluon data of [58],
which are also used as input, for the purpose of estimating our
systematic error. Finally, we also consider gluon data from
Nf ¼ 2þ 1 lattice simulations [31,83,84] and a renormal-
ization point of μ ¼ 4.3 GeV for comparison. While the
lattice data offer the smallest systematic error, their momen-
tum range is onlyp≲ 5 GeV.Aswewill see, all the different
inputs lead to quantitatively compatible results.
Note also that the gluon propagator is rather insensitive

to the details of the quark dynamics, within the range of
pion and current quark masses considered here; for a
detailed evaluation in the two-flavor case and pion masses
in the range mπ ≈ 0–300 MeV [81]. To be sure, this
property does not persist when additional families of active
quarks are added to the theory, since, in this case, one
implements effectively a transition from infinite to finite
quark masses. In fact, as has been clearly established in the
analysis of [85], the sequential inclusion of quark families
affects the quantitative behavior of the gluon propagator,
markedly suppressing its infrared support.
In addition, the results obtained are particularly

stable under vast changes in the value of the renormaliza-
tion point μ. Finally, a chief advantage of this scheme
is its relative operational simplicity and low computational
cost, combined with quantitative reliability and systematic
error control.
The article is organized as follows. In Sec. II we review

some general features of the SDE and fRG approaches, and
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introduce the notation that will be used in this work.
In Sec. III we set up the gap equation and discuss its
renormalization. Then, in Sec. IV we focus on the quark-
gluon vertex, present the tensorial basis that will be
employed, and derive the system of integral equations
satisfied by its form factors. In Sec. V we present a detailed
discussion of how to implement self-consistently the
renormalization of the SDEs when an external input is
employed. In Sec. VI we discuss the procedure that fixes
the values of the current quark masses and introduce the
light chiral condensate as our benchmark observable. In
Sec. VII we present and discuss the central results of our
analysis, with special emphasis on the quark mass and the
eight form factors of the quark-gluon vertex, evaluated at
the symmetric point. Then, in Sec. VIII we confirm the
stability of our results under variations of the ultraviolet
(UV) cutoff, the renormalization point, and the inputs
used for the gluon propagator. In Sec. IX we capitalize
on the hierarchy displayed among the vertex form factors
and propose a simplified treatment that reduces the
numerical cost without compromising the accuracy of
the results. In Sec. X we summarize our approach and
present our conclusions. Finally, we relegate in two
appendixes the discussion of various technical points.

II. GENERAL CONSIDERATIONS

In this section we briefly comment on certain important
aspects of functional approaches that are relevant for the
ensuing analysis, and we introduce the notation that will be
employed in this work.

A. The action

The starting point is the classical action of QCD in
covariant gauges, given by

S½ϕ� ¼
Z

d4x

�
1

4
ðFa

μνÞ2 þ q̄ð=DþmqÞq

þ 1

2ξ
ð∂μAa

μÞ2 − c̄a∂μDab
μ cb

�
; ð2:1Þ

where the ghost has a positive dispersion, typically used in
fRG applications to QCD; for a recent review see [13]. The
covariant derivative, Dμ, and the field strength tensor, Fμν,
are given by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gsfabcAb

μAc
ν; and

Dμ ¼ ∂μ − igsAa
μta; ½ta; tb� ¼ ifabctc: ð2:2Þ

The first two terms in (2.1) are the Yang-Mills and Dirac
actions, respectively; in the latter we have suppressed the
summation over group indices in the fundamental repre-
sentation, as well as Dirac and flavor indices. The remain-
ing terms in (2.1) encode the gauge fixing and ghost sector.

In (2.2), the covariant derivative in the fundamental
representation reads ∂μ − igsAa

μTa, where Ta are the
corresponding generators, while that of the adjoint
representation is given by ∂μδ

ab − gsfabcAc
μ. The compu-

tations in the present work are carried out in the Landau
gauge, ξ ¼ 0.

B. SDE setup and renormalization

In contradistinction to the flow equations of the fRG
approach, the SDEs depend also on derivatives of the
classical QCD action in (2.1). More specifically, we need
the bare action, whose parameters absorb the UV infinities
of the diagrams. The mapping from bare fields, ϕð0Þ, to
renormalized finite fields, ϕ, is given by

Að0Þ
μ ¼ Z1=2

3 Aμ; cð0Þ ¼ Z̃1=2
3 c; c̄ð0Þ ¼ Z̃1=2

3 c̄;

qð0Þ ¼ Z1=2
2 q; q̄ð0Þ ¼ Z1=2

2 q̄; ð2:3aÞ

while for the strong coupling, masses, and gauge fixing
parameters we have, correspondingly,

gð0Þs ¼ Zgg; mð0Þ
q ¼ Zmq

mq; ξð0Þ ¼ Zξξ: ð2:3bÞ

Then, the bare QCD action, Sbare, reads in terms of the
renormalized fields and coupling parameters,

Sbare½ϕð0Þ; gð0Þs ; mð0Þ
q � ¼ S½Z1=2

3 Aμ; Z̃
1=2
3 c; Z̃1=2

3 c̄; Z1=2
2 q;

Z1=2
2 q̄; Zggs; Zmq

mq�: ð2:3cÞ

From (2.3c) we may define the renormalization constants of
the three-gluon vertex, Z1, the four-gluon vertex, Z4, the
ghost-gluon vertex, Z̃1, and the quark-gluon vertex, Z

f
1 , and

we elate them as

Z1 ¼ ZgZ
3=2
3 ; Z4 ¼ Z2

gZ2
3; Z̃1 ¼ ZgZ

1=2
3 Z̃1=2

3 ;

Zf
1 ¼ ZgZ

1=2
3 Z2: ð2:3dÞ

C. fRG setup

The central object of functional approaches to QCD is
the one-particle irreducible (1PI) effective action, Γ½ϕ�,
where ϕ is a superfield, whose components are the
fundamental renormalized fields of QCD, including the
auxiliary ghost field introduced through the gauge fixing,

ϕ ¼ ðAμ; c; c̄; q; q̄Þ: ð2:4Þ

While this is typically rather implicit in most SDE
applications, it is commonly the starting point in fRG
studies. Derivatives of the effective action Γ½ϕ� with respect
to the fields are the 1PI n-point correlation functions,
denoted by
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ΓðnÞ
ϕ1���ϕn

ðp1;…; pnÞ ¼
δnΓ

δϕ1ðp1Þ � � �ϕnðpnÞ
; ð2:5aÞ

where all momenta are considered as incoming. Vertices

ΓðnÞ are expanded in a complete tensor basis fT ðiÞ
ϕi1

���ϕin
g, the

standard fRG notation in QCD being

ΓðnÞ
ϕi1

���ϕin
ðp1;…;pnÞ

¼
X
i

λϕi1
���ϕin

ðp1;…;pnÞT ðiÞ
ϕi1

���ϕin
ðp1; � � � :;pnÞ; ð2:5bÞ

with λϕi1
���ϕin

denoting the scalar form factors (dressings).
Note that the renormalization factors defined in (2.3)

have a natural relation to the full dressings of the primi-
tively divergent n-point functions in the fRG approach,

Zϕi;kðpÞ, Mq;kðpÞ, defined in (2.7), and λð1Þϕi1
���ϕin ;k

, defined

in (2.5b); for a detailed account see [8,13].

D. Running couplings

We next consider the different “avatars” of the
strong running coupling αsðp̄Þ ¼ g2sðp̄Þ=4π, which can
be deduced from the form factors λð1Þ associated with
the classical tensor structures of the four fundamental QCD
vertices. In particular, in the present analysis we will
employ the running couplings obtained from the ghost-
gluon and quark-gluon vertices, given by

αcc̄Aðp̄Þ¼
1

4π

½λð1Þcc̄Aðp̄Þ�2
ZAðp̄ÞZ2

cðp̄Þ
; αqq̄Aðp̄Þ¼

1

4π

½λð1Þqq̄Aðp̄Þ�2
ZAðp̄ÞZ2

qðp̄Þ
;

ð2:6Þ

where p̄ is a symmetric-point configuration and ZA, Zc, and
Zq are the dressings of the two-point functions (suppressing
color),

Γð2Þ
AAμνðpÞ ¼ ZAðpÞp2PμνðpÞ þ

1

ξ
pμpν;

Γð2Þ
cc̄ ðpÞ ¼ ZcðpÞp2;

Γð2Þ
qq̄ ðpÞ ¼ ZqðpÞ½i=pþMqðpÞ�; ð2:7Þ

where we have introduced the transverse projection
operator

PμνðpÞ ¼ δμν −
pμpν

p2
; ð2:8Þ

usually denoted by Π⊥
μνðpÞ in the fRG literature. Note that

the above two-point functions are the inverses of the gluon,
ghost, and quark propagators, respectively.
By virtue of the fundamental STIs of the theory, all QCD

couplings coincide for large values of p̄,

αiðp̄Þ¼ αsðp̄Þ;
i¼ðcc̄A;qq̄A;A3;A4Þ for perturbative p̄¼ p̄pert:

ð2:9Þ

As the momentum p̄ gets smaller, the various αiðp̄Þ
start deviating from each other, due to differences induced
by nontrivial contributions from the scattering kernels
appearing in the STIs. As has been pointed out in [81],
the amount of chiral symmetry breaking obtained from the
gap equation appears to be particularly sensitive to the UV
coincidence of the couplings described by (2.9). The
preservation of (2.9) is an indispensable feature of any
quantitatively reliable framework; in particular, special
truncation schemes such as the pinch technique background
field method [5] are tailor-made for this task.

III. THE QUARK GAP EQUATION

The quark gap equation [1–7] relates the inverse quark

propagator, Γð2Þ
qq̄ ðpÞ, to its classical counterpart, Sð2Þqq̄ ðpÞ, to

the quark and gluon propagators, and the classical and full
quark-gluon vertices; see Fig. 1. Schematically it reads

Γð2Þ
qq̄ ðpÞ

¼ Sð2Þqq̄ þ Zf
1gs

Z
q
GAAðq − pÞð−iγÞGqq̄ðqÞΓð3Þ

qq̄Aðq;−pÞ;

ð3:1Þ
where we suppress all Lorentz and color indices, and gs
stands for the gauge coupling. The four-dimensional
momentum integration has been abbreviated by

FIG. 1. Diagrammatic representation of the quark gap equation. Gray (blue) circles denote full propagators (vertices), and black dots
denote classical vertices.
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Z
q
≔

Z
reg

d4q
ð2πÞ4 ; ð3:2Þ

where the subscript “reg” indicates a suitable regularization
of the momentum integral; common choices include the
dimensional regularization or an appropriately imple-
mented momentum cutoff. The respective cutoff parameter
(e.g., ϵ or Λ2) appears also in all renormalization constants,
and in particular the quark-gluon vertex renormalization,
Zf
1 , as well as the wave function renormalization, Z2, and

the mass renormalization, Zmq
, of the quark. The last two

factors enter into (3.1) through Sð2Þqq̄ ðpÞ, the second deriva-
tive of the bare QCD action, (2.3c), with respect to the
renormalized quark and antiquark fields [see (2.3a)],

Sð2Þqq̄ ðpÞ ¼ iZ2=pþ Zmq
mq; ð3:3Þ

where mq denotes the bare current quark mass.
The full gluon propagator, Gab

AAμνðpÞ, in the Landau
gauge, and the quark propagator, Gab

qq̄ðpÞ, are given by

Gab
AAμνðpÞ¼ δabPμνðpÞGAðpÞ; Gab

qq̄ðpÞ¼ δabGqðpÞ:
ð3:4Þ

In (3.4), GAðpÞ is the scalar part of the gluon propagator,
andGqðpÞ carries only the Dirac structure but not the trivial
color structure. Both GAðpÞ and GqðpÞ can be described in
terms of the scalar dressings introduced in (2.7), to wit,

GAðpÞ¼
1

ZAðpÞp2
; GqðpÞ¼

1

ZqðpÞ½i=pþMqðpÞ�
; ð3:5Þ

where MqðpÞ is the momentum-dependent mass function.
Note that in the fRG approach, for large cutoff scales, the
functions ZAðpÞ and ZqðpÞ tend toward the corresponding
(finite) wave function renormalizations, whileMqðpÞ tends
to the bare quark mass.

Finally, ½Γð3Þ
q̄qA�aνðq;−pÞ denotes the quark-gluon vertex,

in accordance with the general definition of (2.5), with all
momenta considered as incoming.
The presence of the transverse projection operator Pμν in

(3.1) makes natural the use of the transversely projected
version of the quark-gluon vertex. Specifically, for the
purposes of the present work we introduce the transversely
projected vertex Γμðq;−pÞ, defined through

Pμνðp − qÞ½Γð3Þ
q̄qA�aνðq;−pÞ ¼ 1fTa

cΓμðq;−pÞ; ð3:6Þ

where 1f denotes the identity matrix in flavor space. Note

that while ½Γð3Þ
q̄qA�aνðq;−pÞ requires 12 tensors for its full

decomposition, Γμðq;−pÞ is comprised by a subset of only
eight; for more details, see, e.g., [77,81].

With the above definitions, the color contractions in (3.1)
can easily be carried out, and we arrive at the standard form
of the gap equation,

ZqðpÞ½i=pþMqðpÞ� ¼ Z2i=pþ Zmq
mq þ ΣðpÞ; ð3:7Þ

with the renormalized self-energy

ΣðpÞ ¼ Zf
1gsCf

Z
q

1

ZAðq − pÞðq − pÞ2 γμ

×
1

ZqðqÞ½i=qþMqðqÞ�
Γμðq;−pÞ; ð3:8Þ

where Cf denotes the Casimir eigenvalue of the funda-
mental representation, with Cf ¼ 4=3 for SUð3Þ.
Note that Eq. (3.7) is finite due to the regularization

of the loop integral, as indicated in (3.2). As mentioned
there, the cutoff dependences of the loop integral and
of Z2, Zmq

, and Zf
1 cancel against each other, giving finally

rise to cutoff-independent functions ZqðpÞ and MqðpÞ.
As we discuss in the next section, an analogous renorm-
alization procedure renders the vertex Γμðq;−pÞ cutoff
independent.
The gap equation in (3.7) can be projected on its Dirac

vector and scalar parts by multiplying it with either 1 or =p
and performing the corresponding traces. This leads us to
the standard set of coupled SDEs for ZqðpÞ and MqðpÞ,

ZqðpÞp2 ¼ Z2p2 − Zf
1 tr½i=pΣðpÞ�;

MqðpÞ ¼ Z−1
q ðpÞðZmq

mq þ Zf
1 tr½ΣðpÞ�Þ: ð3:9Þ

We next specify the renormalization conditions at a given
renormalization scale μ. As is common to functional
approaches, we employ a nonperturbative version of the
momentum subtraction (MOM) scheme, where the renor-
malized quantum corrections of all primitively divergent
vertices with momenta p1;…; pn vanish at a symmetric
point p̄2 ¼ μ2, when

p2
i ¼ p̄2; ∀ i ¼ 1;…; n: ð3:10Þ

In particular, the dressings of the two-point functions
reduce to unity,

ZAðμÞ¼ 1; ZcðμÞ¼ 1; ZqðμÞ¼ 1; MqðμÞ¼mq;

ð3:11aÞ

where ZcðpÞ is the dressing associated with the ghost pro-
pagator. Similarly, in the case of the vertices, the symmetric

point dressings λð1Þϕ1���ϕn
ðp̄Þ ≔ λð1Þϕ1���ϕn

ðp1;…; pnÞÞjp2
i¼p̄2 of

the classical tensor structures satisfy
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λð1Þ
A3 ðμÞ ¼ gs; λð1Þ

A4 ðμÞ ¼ g2s ;

λð1Þcc̄AðμÞ ¼ gs; λð1Þqq̄AðμÞ ¼ gs: ð3:11bÞ

Evidently, all renormalization constants also depend on the
subtraction point μ.
Within the renormalization scheme defined above, we

have that Γqq̄ðp2 ¼ μ2Þ ¼ i=pþmq, and in the standard
MOM scheme the respective renormalization factors would
be given by

Z2¼1þ tr½i=pZf
1ΣðpÞ�
p2

����
p2¼μ2

; Zmq
¼1−

tr½Zf
1ΣðpÞ�
mq

����
p2¼μ2

:

ð3:12Þ

In the present work we resort to a MOM-type scheme, by
using (3.11b) and a minor modification of (3.12), imple-
mented by a rescaling of the field and triggered by the fRG
input data. This is discussed further in Sec. Vand in Sec. A
and in particular in Sec. A 2.
The solution of the quark gap equation requires the

knowledge of the gluon propagator and the quark-gluon
vertex, which, in turn, depend on the quark propagator and
further correlation functions, thus leading to an extended
system of coupled integral equations, which must be solved
simultaneously. Such a complete, fully back-coupled
analysis, subject to certain simplifying approximations,
is indeed feasible and has been presented within functional
approaches for Nf ¼ 2 flavor QCD in [77,81]. However,
the main purpose of the present work is the detailed
analysis of the system of quark propagator and quark-
gluon vertex, as well as the discussion of quantitative
approximation schemes. For this reason we opt for a

simpler treatment, which permits us to maintain our focus
on the novel aspects of our approach. In particular, the
gluon propagator entering into both the gap equation and
the vertex SDE will be treated as an external ingredient.
Thus, rather than solving its own dynamical equation, we
will employ the results obtained in the unquenched lattice
simulations of [31,83,84] and the functional analysis
of [55,58].

IV. SDE OF THE QUARK-GLUON VERTEX

In this section we set up and discuss the SDE for the Γμ

defined in (3.6), which enters in the quark gap equation. In
the present work we consider the “one-loop dressed”
approximation of this SDE, which is diagrammatically
depicted in Fig. 2. The terms omitted from this SDE
correspond to terms that do not lead to perturbative one-
loop contributions. All such graphs may be systematically
accounted for by carrying out the so-called “skeleton
expansion” of the relevant kernels. In particular, the two
graphs depicted in Fig. 2 correspond to the lowest order
terms in the skeleton expansion of the kernels q̄qAA and
q̄qq̄q. This functional equation will be projected on its
different tensorial components, thus furnishing a set of
dynamical equations governing the respective form factors.
The SDE for the vertex Γμ is expressed as

Γμðq;−pÞ ¼ Zf
1gsPμνðp − qÞð−iγνÞ

þAμðq;−pÞ þ Bμðq;−pÞ; ð4:1Þ

with the contributions of the graphs Aμðq;−pÞ and
Bμðq;−pÞ in Fig. 2 given by

Aμðq;−pÞ ¼
Z1Nc

2
Pμνðp − qÞ

Z
k
Γð0Þ
ναβGAðk − qÞGAðk − pÞΓαðk;−pÞGqðkÞΓβðq;−kÞ;

Bμðq;−pÞ ¼ −
Zf
1

2Nc
Pμνðp − qÞ

Z
k
GAðkÞΓαðkþ p;−pÞGqðkþ pÞð−iγνÞGqðkþ qÞΓαðq;−k − qÞ: ð4:2Þ

FIG. 2. Diagrammatic representation of the quark-gluon SDE. Gray (blue) circles denote full propagators (vertices), and black dots
denote classical vertices. The ellipses denote higher-order contributions: diagrams without perturbative one-loop counterparts.
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In the above formulas, Nc ¼ 3 for SUð3Þ, the vertex
renormalization constants Z1 and Zf

1 were defined after

(2.3c), and Γð0Þ
ναβ denotes the classical three-gluon vertex,

Γð0Þ
ναβ ¼ gs½ð2k − p − qÞνgαβ þ ð2q − p − kÞαgνβ

þ ð2p − q − kÞβgαν�; ð4:3Þ

where we have factored out the color factor fabc.
The vertex Γμ may be decomposed in a basis formed by

the transverse projections PμνT
μ
i of eight independent

tensorial structures, denoted by T μ
i , which can be derived

from gauge-invariant quark-gluon operators [77,81],
according to

q̄=Dq → T μ
1; q̄=D2q → T μ

2; T
μ
3;T

μ
4;

q̄=D3q → T μ
5; T

μ
6; T

μ
7; q̄=D4q → T μ

8: ð4:4Þ

The full tensor basis with 12 elements is then given in terms
of transverse and longitudinal projections of the tensors
(4.4). Specifically, introducing PL

μν ≔ δμν − Pμν, a concrete
choice is given by [77,81]

ðfPμνT
μ
i g; PL

μνT
μ
1;2;6;8Þ; ð4:5Þ

where the projection operators Pμν and PL
μν carry the gluon

momentum.
In particular, for the transversally projected quark gluon

vertex we have

Γμðq;−pÞ ¼
X8
i¼1

λiðq;−pÞPμνðq − pÞT ν
i ðq;−pÞ; ð4:6Þ

where the shorthand notation λi ≔ λðiÞqq̄A was introduced.
With the aid of (4.6), and through appropriate tensor

contractions, the starting SDE of (4.1) may be converted
into a system of coupled integral equations for λiðp; qÞ.
Specifically, one obtains

λiðq;−pÞ¼Zf
1gsδi1þaiðq;−pÞþbiðq;−pÞ; i¼ 1;…;8

ð4:7Þ

with

aiðq;−pÞ ¼
Z1Nc

2

Z
d4k
ð2πÞ4 λjðk;−pÞλkðq;−kÞGAðk − qÞ

×GAðk − pÞKijkðp; q; kÞ;

biðq;−pÞ ¼ −
Zf
1

2Nc

Z
d4k
ð2πÞ4 λjðkþ p;−pÞ

× λkðq;−k − qÞGAðkÞK̃ijkðp; q; kÞ; ð4:8Þ

where the kernels Kijkðp; q; kÞ and K̃ijkðp; q; kÞ contain
combinations of Zq, Mq, and the various momenta; further
information on their precise structure is provided in
Appendix B.
The renormalization condition corresponding to (3.11)

dictates that, at the symmetric point p̄2 ¼ μ2, we must
impose

Zf
1gs ¼ gs − ½a1ðq;−pÞ þ b1ðq;−pÞ�p2¼q2¼μ2 : ð4:9Þ

This leads us to the final, explicitly renormalized coupled
integral equations for λiðp; qÞ,

λiðp;qÞ¼ aiðp;qÞþbiðp;qÞ
þðgs− ½aiðq;−pÞþbiðq;−pÞ�p2¼q2¼μ2Þδi1;

ð4:10Þ

which satisfies manifestly (3.11b).
As we will see in detail in Sec. VII, the numerical

treatment of the system of coupled integral equations given
by Eqs. (3.9), (4.10), and (4.8) reveals a clear hierarchy
among the dressings λi. In particular, depending on their
numerical impact, the λi may be naturally separated into
dominant, subleading, and negligible.
Specifically, the three dominant components of the quark

gluon vertex are λ1;4;7, associated with the tensor structures

T μ
1ðp; qÞ ¼ −iγμ; T μ

4ðp; qÞ ¼ ð=pþ =qÞγμ;

T μ
7ðp; qÞ ¼

i
2
½=p; =q�γμ: ð4:11aÞ

As we will see in Sec. VII, keeping only these three form
factors in the coupled SDE analysis [i.e., the terms
corresponding to i ¼ 1, 4, 7 in (4.8)] already furnishes
quantitatively accurate results for our benchmark observ-
able, the RG-invariant chiral condensate. It is important to
emphasize that out of these three dominant structures, only
λ1 is accessible to an STI-based derivation of the quark
gluon vertex, in the spirit of the original Ball Chiu (BC)
construction.
The three subleading components, λ2;5;6, are associated

with the basis elements

T μ
2ðp; qÞ ¼ ðq − pÞμ; T μ

5ðp; qÞ ¼ ið=pþ =qÞðp − qÞμ;
T μ

6ðp; qÞ ¼ ið=p − =qÞðp − qÞμ: ð4:11bÞ

These three dressings may be obtained from the STI-based
constructions, implemented only in the vacuum. Therefore,
in view of the numerous applications to QCD at finite
temperature and density, SDE-based computations of these
subleading tensor structures, such as the one put forth here,
are clearly preferable.
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Finally, the form factors associated with the tensors

T μ
3ðp;qÞ¼ ð=p−=qÞγμ; T μ

8ðp;qÞ¼−
1

2
½=p;=q�ðp−qÞμ

ð4:11cÞ

are negligible, having no appreciable numerical impact on
our benchmark observable or any other relevant quantity
(see also [60,61]).
This concludes the description of our SDE setup.

V. EXTERNAL INPUT AND SELF-CONSISTENT
RENORMALIZATION

In this section we discuss self-consistent renormalization
schemes for the SDE with a given external input. This issue
is addressed both in general and for the given input data for
the gluon propagator used here. In addition, we detail the
origin and characteristics of these data.
In Sec. VA we elaborate on the implementation of

multiplicative renormalization in a MOM-type scheme in
the present nonperturbative approach; there, and in Sec. A,
we also emphasize the differences to the standard MOM
scheme. In Sec. V B we provide an overview on the gluon
propagator data used as input, in Sec. V C we discuss the
general self-consistent determination of the value of the
renormalized coupling αsðμÞ at the renormalization scale μ,
and in Sec. V D we determine αsðμÞ for the gluon input data
specified in Sec. V C.

A. Multiplicative renormalization

The self-consistent implementation of multiplicative
renormalization at the level of the nonperturbative
SDEs constitutes a yet unresolved problem, which has
been treated only approximately within numerical appli-
cations; see, e.g., [7,36,66,70,86–88]. In the present con-
text, the complications stemming from this issue manifest
themselves at the level of the gap equation by the presence
of the factor Zf

1 in the definition of the quark self-energy
ΣðpÞ, and at the level of the SDE for Γμ through the factors
Z1 and Zf

1 entering in the expressions for Aμ and Bμ,
respectively.
Evidently, the renormalization constants Z1; Zf display a

nontrivial (“marginal”) dependence on the UV cutoff,
which is required for rendering the diagrams finite.
However, the order-by-order cancellation known from
perturbation theory does not translate straightforwardly
to the nonperturbative setup of the SDEs. In this work we
adopt a modification of the standard MOM scheme and its
approximation used in the SDE. In fact, the present MOM-
type scheme is the standard one used in fRG applications to
QCD [58,81], and it has also been used in recent SDE
applications [60,61]. Our gluon input data are taken from
these sources, and hence, the respective MOM-type scheme
is the natural one for their implementation. The full setup

will be explained elsewhere, but its spirit is entailed in the
following consideration: assume that the cutoff dependence
encoded in Z1; Zf has been successfully canceled, and set
the cutoff-independent finite parts to zero, leading to
Z1; Zf → 1 at the level of the diagrams. Conceptually, this
can be achieved by a subtraction of the diagrams at the
renormalization point, accompanied by respective rescal-
ings of the fields.
For a large renormalization scale, μ → ∞, this procedure

can be put forth by invoking asymptotic freedom,
gsðμ → ∞Þ → 0, and the fact that the finite parts stemming
from Z1; Zf → 1 in the diagrams are proportional to g2s .
This argument is further supported within the setup with
fRG inputs [58,81] and SDE inputs [60,61], which satisfy
these RG conditions self-consistently. For more details,
including the relations of ΛQCD in the standard MOM
scheme and present MOM-type scheme, we refer the reader
to Appendix A. As already mentioned above, the use of the
fRG input data for the gluon propagator is the main reason
for resorting to this modification of the standard MOM
scheme, as then the RG condition on the input data and
the SDE coincide. Nonetheless, these considerations do not
constitute a proof of the full self-consistency of this
procedure, which is the subject of ongoing work.
In summary, for the numerical treatment of the system of

integral equations presented here, we simply implement the
substitution

ΣðpÞ → ΣðpÞjZf
1
¼1
;

½aiðp; qÞ; biðp; qÞ� → ½aiðp; qÞ; biðp; qÞ�Zf
1
¼1¼Z1

: ð5:1Þ

It is evident from the discussion above that the simplifi-
cations implemented by (5.1) are bound to induce a residual
cutoff and μ dependence to the results obtained, which are
discussed in Sec. VIII.

B. Gluon propagator

The gluon propagator can be computed from its own
SDE; for the most recent results in Yang-Mills theory, see
[88–91], while for 2þ 1-flavor solutions of the fRG-
assisted SDE, see [60,61]. Consequently, we could extend
the current system to a fully self-coupled one, the only
input being the strong coupling and the current quark
masses. However, in this work we concentrate rather on the
novel key ingredient, namely the computation of the full
transversally projected quark-gluon vertex and its proper-
ties. Therefore, we simply take quantitative input data from
the lattice [31,83,84], the SDE [60,61,92,93], or the
fRG [58].
For the present computation, the input data have to

cover the momentum region p2 ∈ ½0;Λ2�, where Λ is
the UV cutoff of the loop integrals in the SDEs. In the
present work, we consider UV cutoffs in the range
Λ ¼ 50–5000 GeV, as we also test the cutoff independence
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of the results (see Sec. VIII A). While the functional input
data cover the full momentum regime, lattice input data are
restricted within p≲ 4 GeV. Consequently, they have to be
extrapolated toward the UV; the best extrapolation is
provided by the functional input data, which agree quanti-
tatively with the lattice data for p≳ 1 GeV.
Next, we provide a physically motivated fit of the

resulting “functional-lattice” propagator, valid within the
regime p ∈ ½0; 40� GeV, which incorporates explicitly
the one-loop resummed running of GAðpÞ. In particular,

GAðpÞ¼
ða2þp2Þ=ðb2þp2Þ

M2ðp2Þþp2½1þc lnðd2p2þe2M2ðp2ÞÞ�γ ;

with M2ðpÞ¼ f4

g2þp2
; ð5:2Þ

where γ ¼ ð13 − 4=3NfÞ=ð22 − 4=3NfÞ denotes the
one-loop anomalous dimension of the gluon propa-
gator in the Landau gauge. The optimized values of
the fitting parameters are given by fa; b; c; d; eg ¼
f1 GeV; 0.735 GeV; 0.12; 0.0257 GeV−1; 0.081 GeV−1g,
together with ff; gg ¼ f0.65 GeV; 0.87 GeVg. As can
be seen in Fig. 3, this fit matches very accurately the
input points in the physically relevant region of momenta.
Note also that, as can be seen in Fig. 3, the input data for

GAðpÞ differ in the infrared, i.e., for p2 ≲ 1 GeV (scaling
[58,60,61] vs decoupling or massive [31,83,84]; for related
discussions, see, e.g., [92,94,95]). Nonetheless, the quark
propagator obtained using either of them, as well as the
computed physical observables, agrees within our system-
atic error bars. The reason for this is related to the fact that,
inside the quantum loops considered here, the gluon
propagator GAðpÞ is eventually multiplied by p2; as a
result, the infrared differences are largely washed out, and
the relevant quantity, Z−1

A ðpÞ ¼ p2GAðpÞ, is practically
identical for both.

C. Self-consistent determination of αsðμÞ
A necessary ingredient for our analysis is the value of the

dressing λ1 at the symmetric point, which, for sufficiently
large values of μ is equal to the (unique) perturbative gs, or
the αs defined in (2.6) [see also (3.11b)]. If no external
inputs were employed, one would determine λ1 at μ by
simply imposing that αsðμÞ should coincide with the
physical QCD coupling, αs;phys, at a given momentum
scale; for example, this can be done at the mass MZ of the
Z boson, i.e., αsðμÞ ¼ αs;physðMZÞ. However, since in our
study we use as external input the Nf ¼ 2þ 1 gluon
propagator from lattice and functional methods, the
renormalization procedures adopted in those earlier com-
putations need be incorporated into the present SDE
treatment, such that a self-consistent value for αsðμÞ may
be obtained. This leads us to the MOM-type renormaliza-
tion scheme used here, as well as within the fRG and SDE
computations in [60,61,77,81,96].
The self-consistent calibration of αsðμÞ, in any scheme,

may be implemented according to two different procedures,
(i) and (ii), detailed below. In (i), one compares correlation
functions computed within the present SDE setup, whose
form depends on the value of αs used, with data for them
originating from the same framework that provides the
required external input. In (ii), one invokes self-consistency
conditions between the results of the current SDE approach
and those derived from the STIs.
We emphasize that both procedures are optimized when

implemented in the perturbative and semiperturbative
regime with

p≳ ppert; with ppert ≈ 4 GeV; ð5:3Þ

where the truncation errors are small and under control;
instead, their extension to the nonperturbative infrared
regime is bound to worsen the calibration. In fact, while
in the regime of (5.3) STI as well as vertex couplings agree
at least up to two loops, they deviate markedly from each

FIG. 3. The 2þ 1-flavor gluon propagator,GAðp2Þ, and dressing function 1=ZAðpÞ ¼ p2GAðpÞ. Lattice simulations [31,83,84], fRG-
DSE approach [60,61], and fRG approach [58]. The computations in [58,60,61] are based on the 2-flavor input fRG data from [81].
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other as p → 0; see [81]. Moreover, the regularity
assumption that is implicit in the direct use of the STIs
for the determination of transverse couplings [as in (5.4)]
may fail in the infrared; for more details, see [81,96–98].
The concrete implementation of (i) and (ii) is presented

in detail below.
(i) The setup in the present work only requires the data

for the 2þ 1-flavor gluon propagator as external
input from either distinct SDE approaches, the fRG
or lattice simulations. Within all these frameworks,
one has access to datasets not only for this specific
input but also for additional correlation functions, as
well as derived couplings, e.g., via (2.6). While the
latter are not needed as explicit inputs for the SDE,
they can be used as a means of calibrating the
calculation, because they can be recomputed from
their own dynamical equation within the present
SDE setup. In doing so, it is clear that their
momentum dependence changes as the value of
αsðμÞ is varied. Thus, the external datasets may
be reproduced for a unique self-consistent choice of
αsðμÞ, which calibrates our approach (for p≳ ppert).
If a propagator is chosen for the purpose of

calibration, the ghost propagator is clearly the best
choice, as it is governed by a rather simple SDE,
whose only other ingredient is the ghost-gluon
vertex, which is protected by Taylor’s nonrenorm-
alization theorem. For example, if one were to use as
external input the gluon propagator from the lattice,
the calibration proceeds by computing the ghost
dressing function Zcðp2Þ within our SDE setup,
adjusting the αsðμÞ such that the lattice data for
Zcðp2Þ will be best reproduced.
If one of the running couplings, αiðp̄Þ, is

employed for the calibration, we compute its
shape both within the approach that furnishes the
external input and within the SDE setup. Then,
self-consistency requires that the SDE αsðμÞ is
chosen such that the difference between the two
αiðp̄Þ’s is minimized, for p̄≳ ppert.
We close with the remark that, in the present

setup, all procedures mentioned above lead to
αsðμÞ that agree within the small numerical and
systematic errors. We consider this an important
self-consistency check of the SDE approach put
forth here.

(ii) If the additional results needed for the implementa-
tion of (i) are unavailable, one can use the STI
satisfied by the quark-gluon vertex in order to fix
αsðμÞ. Specifically, for p̄≳ ppert one uses the relation

λ1ðp̄Þ ¼ gsðμÞL1ðp̄Þ; ð5:4Þ

where L1 is the solution of the STI for the longitu-
dinally projected classical tensor structure (see

[36,81]). As in (i), minimizing the difference between
the two sides of (5.4) singles out a unique αsðμÞ.

This concludes our general discussion of the self-
consistent determination of αsðμÞ.

D. Value of αsðμÞ
In this work we use two classes of data for fixing αsðμÞ

and employ both procedures, (i) and (ii), described above;
both procedures (i) and (ii) are used when GAðpÞ is
obtained from functional methods, while (ii) is applied
when GAðpÞ is taken from the lattice. For both classes of
data, and for very different renormalization scales [μ ¼ 4.3,
40 GeV], we will produce results for the quark propagator
and the pion decay constant that agree within our estimated
systematic error; this coincidence, in turn, constitutes a
nontrivial check of the systematic errors. We next describe
the determination of αsðμÞ for both cases.
Functional datasets: Here we employ procedure (i). The

functional input for GAðpÞ is provided by fRG [58] and
SDE [60,61] data, renormalized at μ ¼ 40 GeV. Note that
the respective SDE and fRG relations for correlation
functions are expanded about their Nf ¼ 2 counterparts,
computed within the fRG [81]. The respective datasets also
include αqq̄Aðp̄Þ, thus providing directly αsðμÞ at
μ ¼ 40 GeV; this allows us to minimize the difference
between input and output αqq̄Aðp̄Þ, for p̄≳ ppert.
Functional and lattice datasets: For both functional

and lattice input data, we employ procedure (ii). We
use the lattice data for GAðpÞ from [31,83,84], and, in
line with our arguments, we chose the maximal lattice
momentum available for our renormalization scale, namely
μ ¼ 4.3 GeV. The STI function L1 in (5.4) is computed
based on the quenched computation in [68] (Fig. 17, fourth
panel), properly accounting for unquenching effects. Then,
we minimize the difference between the left- and right-hand
sides in (5.4). The same procedure is applied to the
functional dataset at both μ ¼ 4.3 GeV and μ ¼ 40 GeV.
Both procedures are now applied at two rather disparate

renormalization scales μ, namely μ1 ¼ 4.3 GeV and
μ2 ¼ 40 GeV, for which we obtain the values

αsð4.3 GeVÞ ¼ 0.433; αsð40 GeVÞ ¼ 0.166; ð5:5Þ

which are fully compatible with earlier SDE and fRG
considerations. The coincidence of the couplings for both
procedures (i) and (ii) is a further nontrivial consistency
check of the present RG scheme and corroborates the
correct implementation of the present MOM-type scheme
in the present SDE approach (for more details see Sec. A).
The value of the coupling at the scale MZ obtained in this
setup is αsðMZÞ ¼ 0.14. The deviation from the standard
value αs;physðMZÞ ≈ 0.12 is due to the presence of only
three active flavors in our analysis and the modifications in
the present scheme in comparison to the standard MOM
scheme.

GAO, PAPAVASSILIOU, and PAWLOWSKI PHYS. REV. D 103, 094013 (2021)

094013-10



VI. CURRENT QUARK MASSES AND
BENCHMARK PREDICTIONS

In this section we determine the fundamental parameters
of QCD, the current-quark masses mq ¼ ðml;msÞ, where
we have assumed isospin symmetry with identical up and
down quark current masses: mu=d ¼ ml. In addition, we
provide results for a benchmark observable, namely the
light chiral condensate, Δl ¼ −hl̄ðxÞlðxÞi, which allows us
to evaluate the veracity of the present approximations. In
particular, we find that our Δl is in excellent quantitative
agreement with the most recent lattice estimates reported
in [99].
The current quark masses mqðμÞ at a given μ are fixed

from the physical pion mass, mπ , and the ratio of strange
and light current quark masses, msðμÞ=mlðμÞ. This pro-
cedure has been used both in [58,60,61,77,81] (see also the
reviews [4,13,15,100]) and in lattice simulations (see, e.g.,
the compilation in [99]).
Note that, due to the identical (one-loop) RG running of

all mqðμÞ, the mass ratio msðμÞ=mlðμÞ tends to a constant
for asymptotically large μ,

lim
μ→∞

msðμÞ
mlðμÞ

¼ ms

ml
; mqðμÞ →

mq

½lnðμ=ΛQCDÞ�γm
;

with γm ¼ 12

33 − 2Nf
: ð6:1Þ

In the present work we use μ ¼ 40 GeV and compare the
results to those obtained with a considerably lower
μ ¼ 4.3 GeV, whose choice was dictated by the restricted
momentum range of the lattice input.
For μ ¼ 40 GeV, themqðμÞwill be determined using the

values

ðmqðμÞ;μ¼ 40GeVÞ∶mπ ¼ 138MeV; and
ms

ml
¼ 27:

ð6:2Þ

A. Pagels-Stokar formula and
Gell-Mann–Oakes–Renner relation

Ideally, the pion mass, mπ , and decay constant, fπ ,
should be determined from the on-shell properties of the BS
wave function of the pion. Instead, in the present work we
employ standard Euclidean approximations for them, given
by the Pagels-Stokar (PS) formula for fπ and the Gell-
Mann–Oakes–Renner (GMOR) relation for mπ [(6.3) and
(6.9), respectively]. The GMOR relation is correct up to
order Oðm2

l Þ within an expansion about the chiral limit,
while the PS formula is known to underestimate fπ by
≲10% (see, e.g., [101,102] and the reviews [4,15,103]). We
emphasize that this low value does not undermine the
precision of our analysis, given that fπ is a derived quantity
that does not feed back into the SDEs.

The PS formula reads

fðPSÞπ ¼ 4Nc

Nπ

Z
p

Z̄2

ZqðpÞ
M̄qðpÞ

½p2þM2
qðpÞ�2

�
MlðpÞ−

p2

2
M0

qðpÞ
�
;

ð6:3Þ

withM0
qðpÞ ¼ ∂p2MqðpÞ, and the subtracted mass function

M̄qðpÞ,

M̄qðpÞ≔MqðpÞ−mq
∂MqðpÞ
∂mq

; with lim
p→∞

p2M̄qðpÞ¼ 0:

ð6:4Þ

Note that Eq. (6.4) applies to both ml or ms. The constant
Z̄2 is linked to the quark dressing function ZqðpÞ.
Specifically, the derivation of (6.4) from the pion Bethe-
Salpeter equation (BSE) prompts the identification
Z̄2 ¼ ZqðpπÞ, where p2

π ¼ −m2
π; in the chiral limit,

p2
π ¼ 0, and we will use Z̄2 ¼ Zlð0Þ. Note the difference

to the standard PS formula based on MOM, where
Z̄2 ¼ Z2.
The normalization Nπ of the pion wave function is

given by

Nπ ¼
1

2

h
fπ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2π þ 8NcIl

q i
; ð6:5Þ

with

Iq≔
Z
p

M̄2
qðpÞ½p2ZqðpÞZ00

qðpÞþ2ZqðpÞZ0
qðpÞ−p2Z00

qðpÞ�
Z2
qðpÞ½p2þM2

qðpÞ�
;

ð6:6Þ

where the abbreviations Z0ðpÞ ¼ ∂p2ZðpÞ and Z00ðpÞ ¼
∂p2Z0ðpÞ have been used. Note that, due to the asymptotic
behavior of M̄qðpÞ stated in (6.4), the integral is finite. The
above expressions for Nπ are approximate; a more com-
plete treatment requires all components of the pion wave
function and will be considered elsewhere.
It is well-known that, in the chiral limit, we must have

Iq;χ ¼ 0 and Nπ ¼ fπ [104]. However, our approximations
deviate slightly from this result, furnishing a Iq;χ which
fails to vanish by an amount that induces a 3% discrepancy
between Nπ and fπ. We effectively account for this small
error by setting

Iq → Iq − Iq;χ ; ð6:7Þ

thus compensating, in a simple way, for the contributions of
the omitted form factors. The numerical impact of this
adjustment will be discussed in Sec. VI C; see (6.18).
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In the chiral limit we arrive at

fðPSÞπ;χ ¼ 84.9 MeV; ð6:8Þ

in comparison to the FLAG estimate of flatπ;χ ¼ 86.7 MeV
and flatπ ¼ 92.1ð0.6Þ MeV for physical quark masses.
Turning to the GMOR relation, we have

m2
π ¼

2ml

f2π
Δl þOðm2

l Þ; with Δl ¼ −hūui ¼ −hd̄di;

ð6:9Þ

where ml is a μ-independent current quark mass and Δl
denotes the finite and μ-independent light quark conden-
sate; for a concise discussion of its RG properties,
see [105].
Since in our calculations enter the μ-dependent current

quark masses,mlðμÞ, rather thanml, for the purposes of the
present work, we find it advantageous to capitalize on the
property

mlΔl ¼ mlðμÞΔlðμÞ; ð6:10Þ

and recast (6.9) in the form

m2
π ¼

2mlðμÞ
f2π

ΔlðμÞ: ð6:11Þ

Evidently, in order to extract from (6.11) the value ofmlðμÞ,
one requires knowledge of fπ and ΔlðμÞ. Given the
aforementioned shortcomings of the PS formula, we will
simply use the physical value of fπ as input in (6.9). The
details of ΔlðμÞ will be discussed separately below.

B. Light chiral condensate

The benchmark observable for our computation is the
μ-independent Δl, whose chiral limit value, Δl;χ , can be
extracted from the UV behavior of the corresponding
constituent quark mass Ml;χðpÞ [105],

lim
p→∞

Ml;χðpÞ ¼
2π2γm
3

Δl;χ

p2½lnðp=ΛQCDÞ�1−γm
; ð6:12Þ

with γm defined in (6.1).
Of course, as mentioned above, the quantity that we will

employ in (6.11) is rather ΔlðμÞ. The latter is usually
computed in lattice simulations at a given scale μlat, which
is typically far lower than the one used in the present SDE
approach; for more details and an overview of the respec-
tive lattice results see [99]. For sufficiently large μ, Δl and
ΔlðμÞ are related by

ΔlðμÞ ¼ Δl½lnðμ=ΛQCDÞ�γm: ð6:13Þ

With mlðμÞ defined in (6.1) and (6.13), the combination
mlðμÞΔlðμÞ is RG invariant, as stated in (6.10).
Combining the above relations with our SDE results for

the quark propagator we arrive at our first nontrivial
prediction. We use our results for MlðpÞ and 1=ZlðpÞ in
the chiral limit, shown in Fig. 4, which are necessary for our
analysis; a complete discussion is provided in Sec. VII.
Specifically, the value of Δl;χ is given by

Δl;χ ¼ ð245 MeVÞ3; ð6:14Þ

where ms is kept fixed and ml → 0.
To fully appreciate the above prediction, we emphasize

that, as can be shown analytically by identifying the
diagrams included in each perturbative order, the current
approach encodes the full two-loop running ofMlðpÞ and is
numerically consistent with the full three-loop running; for
a more detailed discussion, see Sec. VII.
We next combine (6.14) with (6.13) to obtain our

prediction for Δl;χðμÞ, and we compare it with the FLAG
result of [99], obtained from different lattice groups. In these
simulations, the renormalization scale is μlat ¼ 2 GeV, and
the estimate for the QCD scale is Λlat

QCD ¼ 343ð12Þ MeV in

the MS scheme; instead, in the present SDE computation
we have ΛQCD ¼ 293 MeV. From (6.13) and (6.14), this
leads us to

FIG. 4. Quark dressing, 1=Zqðp2Þ, and mass function, Mqðp2Þ, in the chiral limit and for physical quark masses.
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Δl;χðμlatÞ ¼ ð270 MeVÞ3;
½Δl;χðμlatÞ�FLAG ¼ ð272ð5Þ MeVÞ3: ð6:15Þ

Taking into account the subtleties in the conversion and
application of RG scales, the agreement between these two
values is rather impressive, providing nontrivial support for
the quantitative reliability of the present approximation. We
emphasize that the prediction (6.14), and hence (6.15), has
been obtained without any phenomenological input on the
strength of chiral symmetry breaking.
Finally, Δl;χ can be used for the determination of the

physical (mq ≠ 0) chiral condensate Δl through

Δl¼Δl;χþðΔl−Δl;χÞ

¼Δl;χþ
Z
p

�
Z2

ZqðpÞ
M̄lðpÞ

p2þM2
l ðpÞ

−
Z2

Zq;χðpÞ
Ml;χðpÞ

p2þM2
l;χðpÞ

�
;

ð6:16Þ

where the integral is simply the difference of the loop
expressions for the chiral condensates and is finite. In
(6.16) we have already set the multiplicative renormaliza-
tion factors to unity, according to the procedure described
in Sec. VA. The calculated value for Δl is reported in the
following subsection.

C. Determination of the current quark masses

With the groundwork laid in Secs. VI A and VI B, we
now determine the current quark masses. Using (6.2), (6.3),
(6.11), (6.16), and a pion decay constant fπ ¼ 92.1 MeV,
we arrive at the current quark masses mq at μ ¼ 40 GeV,

mqðμÞ ¼ 2.7 MeV; ms ¼ 73 MeV;

with mπ ¼ 138 MeV; ð6:17aÞ

and the predictions

Δl ¼ ð300 MeVÞ3; Mqð0Þ ¼ 351 MeV;

fðPSÞπ ¼ 87.6 MeV: ð6:17bÞ

From (6.17b) we deduce that fðPSÞπ has an error of 5%,
which is well within our conservative estimate for the
systematic error in the range of 10%. Note that this error
estimate also extends to the GMOR relation, and hence our
quark masses share this 10% uncertainty. We emphasize
that this error is not inherent to our SDE computation, but
affects deduced observables. Indeed, our benchmark result
(6.15) for the chiral condensate in the chiral limit agrees
with the lattice results within the statistical error of the latter
(less than 1% deviation).
For completeness we also report the result for fðPSÞπ

without the correction toNπ implemented by (6.7); we have

½fðPSÞπ �Iq;χ≠0 ¼ 86.9 MeV; ð6:18Þ

in very good agreement with the fðPSÞπ in (6.17b).
All results presented thus far have been obtained using

the fRG data for the gluon propagator, renormalized at
μ ¼ 40 GeV, as input in the SDEs. In order to illustrate that
our predictions are essentially independent of the input
propagator, we also report the results obtained when a fit to
the gluon lattice data is employed, which has the fRG
perturbative behavior built in it. Note also that the fRG
and lattice data differ in the deep infrared (see Fig. 3),
as commented in Sec. V B. With this particular input we
arrive at

mqðμÞ ¼ 2.7 MeV; ms ¼ 73 MeV; with

mπ ¼ 138 MeV; ð6:19aÞ

and the predictions

Δl ¼ ð301 MeVÞ3; Mqð0Þ ¼ 350 MeV;

fðPSÞπ ¼ 88.1 MeV: ð6:19bÞ

In addition, the results for chiral condensate in the chiral
limit,Δl;χ ¼ ð246 MeVÞ3 andΔl;χðμlatÞ ¼ ð271 MeVÞ3 are
in quantitative agreement with (6.14) and (6.15), obtained
for μ ¼ 40 GeV. This coincidence and the comparison
of (6.19) with (6.17) show explicitly that, within our
estimated systematic error, the behavior of the gluon
propagator in the deep infrared does not affect the observ-
ables considered here.
This concludes the discussion of the determination of the

current quark masses. In summary, we have shown that the
present SDE approach allows for a quantitatively reliable
computation of the constituent quark mass functionMqðpÞ,
and hence the chiral condensate in (6.15), without any
phenomenological input.

VII. NUMERICAL RESULTS

In this section we present and discuss the central results
of our numerical analysis, focusing mainly on the general
features displayed by Zq, Mq, and the λi. The stability of
these results under variations of the UV cutoff, the gluon
inputs, and the RG scale will be addressed in Sec. VIII,
while the implementation of reliable simplifications will be
analyzed in Sec. IX.
Within the setup described in Secs. IV–VI, the SDE

system of the quark propagator and quark-gluon vertex is
solved iteratively. To that end, it is convenient to use as the
starting point of the iteration input data for quark and gluon
propagators and the respective BC vertex, or, when the
fRG-DSE gluon is utilized [60,61], the respective quark-
gluon vertex data. Moreover, the dressings of the three
dominant tensor structures, λ1;4;7, are fed back into their
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own coupled SDEs and those of the other vertex dressings;
instead, the remaining λ2;3;5;6;8 are only used in the quark
gap equation. We have checked that this procedure affects
the key quantities only very marginally: when the sub-
dominant dressings are fed back into the quark-gluon SDE,
the numerical changes induced lie comfortably within the
estimated error bars of our method.
The algorithm we employ for the numerical integrations

is the standard Gauss-Legendre quadrature. To that end,
we pass to spherical coordinates, with the loop measure
given by

d4q ¼ 1

2
q2 sin2 θ sinϕdq2dθdϕdψ ; ð7:1Þ

where q2 ∈ ½0;∞Þ, θ ∈ ½0; π�, ϕ ∈ ½0; π�, and ψ ∈ ½0; 2π�.
The azimuthal angle ψ may be integrated trivially.
We next introduce the parametrization q2 ¼ ΛκðΛ=κÞy,

where κ and Λ denote the infrared and UV cutoffs,
respectively. The new integration variable y is related to
q2 by y ¼ lnðq2=ΛκÞ= lnðΛ=κÞ; evidently, y ∈ ½−1; 1�. In
addition, the angular integrals are written in terms of the
new integration variables z ¼ cos θ and z0 ¼ cosϕ, again
with z; z0 ∈ ½−1; 1�. These changes of variables facilitate
the use of the Gauss-Legendre quadrature, according to
which an integral of a function fðxÞ, with x ∈ ½−1; 1�, is
written as

Z
1

−1
dxfðxÞ ≈

Xn
i¼1

wifðxiÞ; ð7:2Þ

where the nodes xi and weights wi are uniquely determined
by requiring that (7.2) becomes exact for all polynomials of
degree less than 2n. Specifically, one may show that the xi

are the roots of the nth Legendre polynomial, PnðxÞ, and
the weights are given by the formula

wi ¼
2

ð1 − x2i Þ½P0
nðxiÞ�2

: ð7:3Þ

For the actual calculation, we set n ¼ 40 for the integration
over y and n ¼ 20 for the integrations over z and z0.
Finally, once the integrations have been carried out, one

is left with a sizable system of coupled nonlinear algebraic
equations, which is solved by means of Broyden’s method,
with the numerical precision set at 10−5.
As discussed in Sec. VIII, the RG scale μ should be taken

as large (i.e., as “perturbative”) as possible; therefore, we
choose μ ¼ 40 GeV. However, the lattice data for the gluon
propagator are limited by p≲ 5 GeV and have to be
extended by a perturbative fit; instead, the functional data
for the gluon propagator cover the full momentum range of
interest. Therefore, we employ the functional data from
[58,60,61] as our input for the present computation, while
the lattice data from [31,83,84] are used as benchmark
results for the low momentum regime; see Fig. 3.
The above setup represents our best approximation and

allows us to compute the quark-gluon vertex as well as the
quark propagator without any phenomenological input; in
particular, the only parameters to be fixed are the funda-
mental parameters of QCD, namely the current quark
masses at the RG scale μ; see Sec. VI.
Our main results are summarized in Fig. 5. In particular,

in Fig. 5(a) we show all dressings of the quark-gluon
vertex, while in Fig. 5(b) we display the quark mass
functions, MqðpÞ, and the quark wave function renormal-
izations 1=ZqðpÞ (inset) for q ¼ l, s. Note that, in order to
best expose the physical relevance of the different tensor

(a) (b)

FIG. 5. Numerical results for the coupled system of SDEs for quark-gluon vertex (light quark, left panel), and the light and strange
quark propagators (right panel). (a) Quark-gluon couplings λ̄iðpÞ, (7.4). Black: classical tensor structure, (2.6).Grey: chirally symmetric
nonclassical tensor structures. Red: chiral-symmetry breaking tensor structures. (b) Quark mass functions MqðpÞ and propagator
dressings 1=ZqðpÞ (inset) for q ¼ l; s, see (2.7). Lattice results from [106]: light quark mass function MlðpÞ and dressing 1=ZlðpÞ.

GAO, PAPAVASSILIOU, and PAWLOWSKI PHYS. REV. D 103, 094013 (2021)

094013-14



structures and the corresponding dressings, we introduce
dimensionless couplings, λ̄iðp̄Þ, with i ¼ 1;…; 8 (see, e.g.,
[77]); specifically, we concentrate on the symmetric point p̄
and define

λ̄iðp̄Þ ¼
p̄niλiðp̄Þ

Zqðp̄ÞZ1=2
A ðp̄Þ

; with n1 ¼ 0;

n2;3;4 ¼ 2; n5;6;7 ¼ 2; n8 ¼ 3: ð7:4Þ

In (7.4), the multiplication of λi by p̄ni renders the λ̄i
dimensionless, and the division by the wave function
renormalisations leaves us with the respective eight running
couplings.
For all quarks q ¼ l, s, the products 1=ð4πÞλ̄iðp̄Þλ̄jðp̄Þ

can be interpreted as the interaction strength of a one-
gluon exchange between corresponding quark currents.
For example, αqq̄Aðp̄Þ ¼ 1=ð4πÞ½λ̄1ðp̄Þ�2 [see (2.6)] simply
measures the interaction strength or running coupling
of a one-gluon exchange between the two quark
currents q̄ðtÞγμqðp − tÞ. Similarly, the combinations
1=ð4πÞλ̄iðp̄Þλ̄jðp̄Þ can be understood as the interaction
strength of a one-gluon exchange between the respective
tensor currents q̄T̄ iq and q̄T̄ jq, with the dimensionless
tensor structures T̄ i ¼ T i=ðp̄2Þni , with i; j ¼ 1;…; 8. As in
the case of the gluon dressing, one sees the prominent
enhancement around p̄ ≈ 0.5–1 GeV, which is crucial for
obtaining from the gap equation the correct amount of
chiral symmetry breaking. Moreover, we note the clear
suppression of all λ̄i for p̄ → 0.

In Fig. 6, we compare our results to those obtained
through a combined setup [60,61] (fRG-DSE), where
the relevant SDEs are expanded about the two-flavor
QCD correlation functions of [81]. As we may infer from
Fig. 6, the present SDE results are quantitatively con-
sistent with those of [60,61]. This is an additional, highly
relevant reliability check for the respective results of
different but similar functional approaches. In our opin-
ion, the confirmation of this quantitative agreement and
further successful comparisons of this type provide
important information about the respective systematic
error. Together with apparent convergence of the results
in functional approaches within a systematic approxima-
tion scheme, this finally will lead to a first principle
functional approach to QCD.
The interpretation of the comparison of the dressing

1=ZlðpÞ from functional methods and the lattice is less
clear. To begin with, the lattice result from [106] shows a
rather steep slope at momenta p≳1GeV. For p≲ 0.5 GeV,
it shows a rapidly rising statistical error. Clearly, it would be
highly desirable to repeat the computation of the quark
dressings with more recent sets of configurations, i.e.,
with [31,83,84].
In turn, all functional studies, e.g., [70,79,81], consis-

tently show a smooth rise of the dressing 1=Zlðp ¼ μÞ ¼ 1
that is compatible with perturbation theory. For p≲ 1 GeV,
these studies show a nonmonotonic behavior, which cannot
be identified within the statistical accuracy of the lattice
data. This calls for more refined studies, as 1=ZqðpÞ carries
significant systematic errors in this regime p≲ 1 GeV. It is
interesting to note that the existence and strength of this

(a) (b)

FIG. 6. Full results for dominant quark-gluon couplings λ̄1;4;7 (this work, black) from the present work in comparison to full results
from [61] (fRG-DSE, red), lattice results (Lattice, green), and the approximation STI scaling: λ1;2;6 from STI, and λ4;5;6;7 from scaling
relations (see discussion at the end of Sec. IX and [60,81]). The λi are dressings of tensor structures in Eq. (4.11a) and measured in λ1,
λ4½ðGeVÞ−1� and λ7½ðGeVÞ−2�. (a) Dominant quark gluon couplings λ1;4;7: full solution SDE (this work, black), full solution [60] (fRG-
DSE, red), couplings with STI, λ̄1, and scaling relations, λ̄4;7 (STI-scaling, blue). (b) Light quark mass function MlðpÞ and dressing
function 1=ZlðpÞ (inset): full solution (this work, full black), full solution [60] (fRG-DSE, dashed red), lattice results [106]
(Lattice, green).
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nonmonotonicity depends on the size of the current quark
mass; see Fig. 5(b) for a comparison of 1=Zl and 1=Zs and
[81] for a study of the ml dependence in two-flavor QCD.
We hope to resolve this situation in a combined functional-
lattice study in the near future.
We emphasize that the present approximation includes

analytically the full two-loop running of the quark gap
equation. Hence, MqðpÞ and 1=ZqðpÞ are two-loop con-
sistent, since the quark gap equation contains all tensors of
the quark-gluon vertex. The SDE solution of the latter
includes all one-loop diagrams, and hence, the numerical
solution for the λiðp; qÞ encompasses the full one-loop
structure analytically. Furthermore, the input gluon data
contain at least the full one-loop momentum dependence.
Accordingly, all ingredients in the quark-gap equation
carry at least their full one-loop momentum dependence,
and hence, the solution is analytically two-loop consistent.
Of course, as already mentioned in Sec. IV, the vertex

SDE employed (see Fig. 2) corresponds to the so-called
“one-loop dressed” truncation, where vertices with no
classical counterpart, such as the four-quark vertex [61],
have been omitted from the skeleton expansion.
Nonetheless, the contributions of such terms are very
suppressed for perturbative momenta, as we have con-
firmed in the case of αll̄AðpÞ ¼ 1=ð4πÞλ̄21ðpÞ. In Fig. 7 we
depict our numerical result together with the analytic one-

and two-loop strong couplings αð1 loopÞs ðpÞ and αð2 loopÞs ðpÞ,
renormalized at μ ¼ 40 GeV and μ ¼ 4.3 GeV. Then, the
respective values for ΛQCD are chosen such that also the
β-functions

βll̄AðpÞ ¼ p∂pαll̄AðpÞ; ð7:5Þ
match at the renormalization scale μ. The numerical results
in the present work have been obtained with μ ¼ 40 GeV,
which lies deep in the perturbative regime. While this
choice reduces the systematic error originating from non-
perturbative approximations to the SDEs, its successful

implementation requires a particularly accurate treatment,
in order to reliably connect the wide range of momenta
between μ and the deep infrared.
As can be seen in Fig. 7 (inset left panel), our numerical

results for βll̄A agree quantitatively with the respective two-
loop results βð2 loopÞαs for momenta p≳ 5 GeV, while the full

coupling αll̄A and the two-loop coupling αð2 loopÞs agree even
up to p ≈ 3 GeV.
Still, a careful analysis reveals that deviations in the pair

ðαs; βαsÞ start to become visible for p≲ 10 GeV (for a
more detailed discussion see Appendix A 2); there, it is also
shown that the two-loop prediction for ΛQCD is stable for
p≳ 10 GeV and as required by RG consistency. For our
RG scale of μ ¼ 40 GeV we find ΛQCD ¼ 1.42 GeV,
within an estimated error of approximately �0.02 GeV.
We conclude that the current setup is sufficiently accurate
to allow for a self-consistent renormalization at a large
perturbative μ. However, the β-function βll̄A, which
measures the momentum slope, starts to deviate from

the two-loop result βð2 loopÞαs in the momentum regime p ∈
ð5 − 10Þ GeV [see Fig. 7 (inset left panel)]. Consequently,
in this regime, the required μ independence of ΛQCD in a
consistent RG scheme is lost gradually within a two-loop
matching, leading to a slightly different ΛQCD ¼ 1.49 GeV
for μ ¼ 4.3 GeV. For more details, see Appendix A 2, and
in particular Fig. 14, where the transition regime between
the perturbative and nonperturbative regimes is marked by
a red band.
Below p ≈ 3 GeV, the strong coupling αll̄A rapidly

departs from the perturbative two-loop coupling, signaling
the onset of nonperturbative physics. The lack of RG
consistency with a two-loop matching for small RG scales
is even more apparent within a one-loop matching. There,
an adjustment of the one-loop coupling and its β-function at
μ ¼ 40 GeV leads to ΛQCD ¼ 0.59 GeV, while at μ ¼
4.3 GeV we are led to ΛQCD ¼ 0.86 GeV. The lack of RG
consistency at one loop is even more manifest in the fact

FIG. 7. Strong coupling αll̄AðpÞ [see (2.6)] in comparison to the one- and two-loop counterparts, adjusted at the RG scale μ ¼ 40 GeV
(left panel) and μ ¼ 4.3 GeV (right panel).
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that a respective truncation clearly cannot bridge the
wide momentum range between p ¼ 40 GeV and the
nonperturbative infrared regime with p≲ 5 GeV [see
Fig. 7 (left panel)].
Accordingly, our lower renormalization scale, μ ¼

4.3 GeV is at the boundary between the perturbative
and nonperturbative regimes. The two-loop coupling and
the full αll̄A agree well for momenta p≳ 3 GeV, but,
contrary to the case with μ ¼ 40 GeV, the β-function
reveals deviations already in the perturbative regime [see
Fig. 7 (inset right panel)].
This comparison carries an important message for phe-

nomenological applications: potential inaccuracies of the
present method that thwart the reliable bridging of disparate
momentum scales can be compensated by choosing a
relatively small renormalization scale. Nonetheless, such
a choice is limited by a minimal RG scale, μ ≥ μmin, with
μmin ≈ 3 GeV; smaller RG scales push renormalization
clearly into the nonperturbative regime, where the argu-
ments invoked in Sec. VA for setting Zi ¼ 1 do not apply.
Finally, we note that a fully two-loop consistent analysis

would require the omitted diagrams in the quark-gluon SDE,
as well as a two-loop consistent gluon input. Both tasks lie
within the technical grasp of functional approaches; for a
discussion concerning the gluon propagator, see [55,107].
In summary the agreement with the lattice as well as

other functional methods is rather impressive, especially
since no phenomenological infrared parameter is involved:
the results presented here are obtained within a first-
principle setup to QCD, the only input being the funda-
mental parameters of QCD.

VIII. STABILITY OF THE NUMERICAL RESULTS

As we will see in detail in this section, the results
obtained from our SDE analysis are particularly stable

under variations of the UV cutoff that regulates the loop
integrals, the choice of functional or lattice gluon inputs,
and a vast change in the value of the RG scale.

A. Varying the UV cutoff

We have verified explicitly that our results are practically
insensitive to variations momentum cutoff Λ within the
range Λ ¼ 50 GeV to Λ ¼ 5000 GeV. Note that, while λ1
displays a marginal (logarithmic) cutoff dependence, all
remaining λi are not subject to renormalization. Moreover,
in the Landau gauge, the logarithmic running of ZlðpÞ
vanishes at one loop, and only MlðpÞ shows a one-loop
logarithmic running. Accordingly, in Fig. 8 we show the
absence of cutoff dependence in MlðpÞ, 1=ZlðpÞ, and
λ̄1ðpÞ. Our results are especially stable, and, in particular,
no logΛ dependence may be discerned.
We emphasize that the detection of such a logarithmic

dependence in the present system is very difficult, due to its
(Landau gauge) suppression in Zl, and the decay of MlðpÞ
for large momenta. This leaves us with λ̄1ðpÞ, whose
perturbative momentum dependence is fixed by the self-
consistent determination described in Sec. V D. Note that
these properties, even though they complicate the detection
of residual cutof dependences, are a welcome feature rather
than a liability: the present setup reduces the sensitivity of
the SDE system with respect to the subtleties of a non-
perturbative numerical renormalization.

B. Stability with respect to the gluon input data

We proceed with the insensitivity with respect to the
gluon input data, described in Sec. V B and depicted in
Fig. 3. In Fig. 9 we compare the results obtained using as
inputs: (a) the data from the fRG-DSE computation [60,61]
(fRG-DSE input); (b) the gluon propagator obtained with
the fRG computation of [58] (fRG input); and (c) the fit to

(a) (b)

FIG. 8. Numerical results for the coupled system of SDEs for different UV cutoffs Λ ¼ 50, 100, 1000, 5000 GeV, based on the gluon
input data [60,61] (fRG-DSE in Fig. 3). (a) Light quark mass function MlðpÞ and dressing 1=ZlðpÞ (inset) for different UV cutoffs.
(b) Quark-gluon coupling λ̄1ðpÞ of the classical tensor structure for different UV cutoffs.
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the lattice data of [31,83,84], including an RG-consistent
UV extrapolation (lattice fit ). The respective results for
MlðpÞ and 1=ZlðpÞ are shown in Fig. 9(a), while those for
λ̄1;4;7 are in Fig. 9(b).
All results show an impressive quantitative agreement

within the statistical and systematic errors. In particular, the
difference in the infrared behavior between the lattice and
the functional data used here (see Fig. 3) does not leave any
significant trace on MlðpÞ and 1=ZlðpÞ, as can be seen in
Fig. 9(a). Accordingly, they do not influence our bench-
mark prediction for the chiral condensate, given in (6.15).
Moreover, the same independence is seen at the level of the
λ̄1;4;7ðpÞ, displayed in Fig. 9(b). This lack of sensitivity to
the infrared details of the input gluon propagators stems
from the fact that the latter enter into four-dimensional
momentum integrals, whose radial dependence, p3, sup-
presses the deep infrared very effectively.

C. Varying the RG scale μ

Finally we test the response of our results to changes in
the RG scale μ. In particular, we compare the results
obtained when all relevant quantities have been renormal-
ized at the two vastly different scales μ ¼ 40 GeV and
μ ¼ 4.3 GeV; in both cases we employ the fRG-DSE input.
Evidently, MlðpÞ and λ̄iðpÞ are formally RG-invariant

quantities, and, ideally, they should be μ independent; in
practice, the amount of residual μ dependence displayed
is an indication of the veracity of the approximations
employed. The results shown in Fig. 10 demonstrate clearly
that the μ dependence of these quantities lies well within
the estimated error bars; in particular, the largest visible
discrepancy, located at the peak of λ̄1ðpÞ, is only 3.4%.
On the other hand, the quantity ZlðpÞ is not RG invariant,

depending explicitly on μ, as can be seen in the inset of
Fig. 10(a). However, multiplicative renormalization, when

properly implemented, dictates that the curves renormalized
at two different values of μ, say μ1 and μ2, must be related by

Z−1
l ðμ2;μ1ÞZ−1

l ðp;μ2Þ¼Z−1
l ðp;μ1Þ with μ2 < μ1: ð8:1Þ

The operation described in (8.1) rescales the “red-dashed”
curve to the “blue-dotted” one in the aforementioned inset.
Note that the rescaling factor is marked on the “black-solid”
curvewith a blue dot; its numerical value is 0.93. Plainly, the
coincidence achieved between original and rescaled curves
is excellent, indicating that multiplicative renormalizability
has been adequately implemented at the level of our
dynamical equations.

IX. RELIABLE LOW-COST APPROXIMATIONS

The numerical cost of the present work is rather modest:
a full simulation with given gluon input data requires about
20 core minutes on an Intel i7 chip. However, if the system
is extended by the gluon SDE in order to obtain a fully self-
consistent description, the numerical costs rises signifi-
cantly. Moreover, for applications to hadron resonances
(see, e.g., [15]), the SDE system has to be augmented by
BSE, Faddeev equations, and four-body equations, depend-
ing on the resonances of interest. Finally, in the study of the
QCD phase structure at finite temperature and density, a
rest frame is singled out, leading to a further proliferation of
tensorial structures. For all the above reasons, any approach
that reduces the computational cost without compromising
the veracity of the results, is potentially useful for the above
applications.
In what follows we discuss simplified approximations of

the treatment of the quark-gluon vertex that still lead to
quantitatively reliable results. To that end, we analyze
the numerical impact that the vertex dressings λ̄iðpÞ have
on the results of the quark dressings MlðpÞ and 1=ZlðpÞ.

(a) (b)

FIG. 9. Numerical results for the coupled system of SDEs with μ ¼ 40 GeV for different gluon input data, Fig. 3 in Sec. V B: [60,61]
(fRG-DSE), [58] (fRG), [31,83,84] (lattice fit). (a) Light quark mass function MlðpÞ and dressing 1=ZlðpÞ (inset) for different gluon
input. (b) Dominant quark-gluon couplings λ̄1;4;7ðpÞ for different gluon input.
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To better appreciate this discussion, we have replotted the
results for the λ̄iðpÞ, already shown in Fig. 5(a): in Fig. 11
we concentrate on the λ̄iðpÞ in the low energy regime, i.e.,
for p≲ 5 GeV. The λ̄iðpÞ are separated in two groups,
those with chiral symmetry preserving tensor structures,
Fig. 11(a), and those with chiral symmetry breaking ones,
Fig. 11(b).
The main outcome of these considerations may be

summarized by stating that (i) the inclusions of λ1;4;7ðpÞ
are necessary and sufficient for approximating accurately
the results of the full analysis, and (ii) λ1ðpÞmay be reliably
obtained from STI-based constructions, while λ4;7ðpÞ from
the scaling relations put forth in [60,61,81].

Point (i) has been established by considering the
relevant SDE approximations for the quark-gluon vertex
that include λ1 (which, obviously, cannot be omitted) and
various subsets of fλi1 ;…; λing. It is evident from Fig. 12
that the omission of either λ4 or λ7 (while keeping the rest)
leads to sizable deviations from our best results for MqðpÞ
and 1=ZqðpÞ. Similarly, retaining only the special combi-
nation λ1;4;7ðpÞ reproduces very accurately our best results
for MqðpÞ and 1=ZqðpÞ, as shown in Fig. 12.
Note also, that the hierarchy of form factors established

in (i) is compatible with that of the corresponding couplings
λ̄iðpÞ, whose relative size is shown in detail in Fig. 11.
As we can see there, λ̄1;4;7ðpÞ are indeed the largest

(a) (b)

FIG. 11. Quark-gluon couplings λ̄iðpÞ, defined at the symmetric point; see (7.4). The ordering in the legends is reflecting their
strength. (a) Quark-gluon couplings from chirally symmetric tensor structures T 1;5;6;7. (b) Quark-gluon couplings from the chiral-
symmetry–breaking tensor structures T 2;3;4;8.

(a) (b)

FIG. 10. The μ independence ofMlðpÞ and λ̄1;4;7ðpÞ, and multiplicative renormalizability of ZlðpÞ. The RG scales differ by an order of
magnitude: μ ¼ 40 GeV and μ ¼ 4.3 GeV. (a) MlðpÞ and ZlðpÞ using the fRG-DSE input, for μ ¼ 40 GeV (black-solid) and μ ¼
4.3 GeV (red-dashed and blue-dashed (rescaled)). The blue dot indicates the rescaling factor. (b) Results for the dominant quark-gluon
couplings λ̄1;4;7, obtained with the fRG-DSE input, and renormalised at μ ¼ 40 GeV and μ ¼ 4.3 GeV.
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contributions; at the corresponding peaks, λ̄1 > λ̄7 > jλ̄4j.
In fact, the subleading form factors are even less relevant
than suggested by the suppression of the couplings.
Importantly, the above study implies that the sole use of

STI-derived vertices (which, by construction, do not include
λ4;7) in either the quark-gluon SDE or the gap equation leads
to loss of quantitative precision. In particular, we have
checked that the inclusion of the BC tensor structures alone
in the gap equation reduces dramatically the amount of
chiral symmetry breaking, yielding Mlð0Þ < 50 MeV.
For the evaluation of point (ii), we have computed

MqðpÞ and 1=ZqðpÞ with a dressing λ1ðpÞ obtained from
the STI construction, while for λ4;7ðpÞ we resort to scaling
relations suggested by the underlying gauge-invariant
tensor structures [60,61,81]. The results obtained are in

excellent agreement with those of the full computation, as
can be seen in Fig. 13.
The above analysis supports the appealing possibility of

implementing relatively simple but quantitatively reliable
approximations for hadron resonance computations or the
phase structure of QCD (see also [79]); such a setup is
currently under investigation.

X. SUMMARY

In this work we have considered the full set of SDEs
describing the quark sector of 2þ 1-flavor QCD. In
particular, we have coupled the gap equation of the quark
propagator with the one-loop dressed SDE of the quark-
gluon vertex, and solved the resulting system of integral

(a) (b)

FIG. 13. Quantitative reliability of approximations: (a) Quark-gluon couplings λ1;2;6 from STI, and λ4;5;6;7 from scaling relations; see
text and [60,81]. (b) λ1;4;7.

(a) (b)

FIG. 12. Lack of quantitative reliability without quark-gluon couplings λ̄4;7 on the right-hand sides of the quark-gluon SDEs and the
quark gap equation. (a) Quark dressingsMlðpÞ and 1=ZlðpÞwithout λ̄4 (dashed, red), and without λ̄7 (dotted, blue) in the vertex SDEs in
comparison to the full solution (full, black). (b) Quark dressings MlðpÞ and 1=ZlðpÞ without λ̄4 (dashed, red), and without λ̄7 (dotted,
blue) in the quark gap equation in comparison to the full solution (full, black).

GAO, PAPAVASSILIOU, and PAWLOWSKI PHYS. REV. D 103, 094013 (2021)

094013-20



equations iteratively. The sole external ingredient used in
this analysis is the gluon propagator, which has been taken
from the lattice simulations of [31,83,84] and results
obtained from previous functional treatments [58,60,61].
Note, in particular, that the gauge coupling has been
determined self-consistently, capturing correctly the ana-
lytic two-loop running.
The results of our analysis agree quantitatively with

those of Nf ¼ 2þ 1 lattice simulations [106], and the
combined (fRG and SDE) functional approach of [60,61].
In fact, our agreement with these latter approaches con-
stitutes an important consistency check within functional
methods: SDEs and fRG represent similar but distinct
nonperturbative frameworks, and the coincidence of
the respective results is highly nontrivial. Moreover,
the value for the chiral condensate, our benchmark
observable, has been compared to recent lattice predictions
compiled in the FLAG review [99], showing excellent
agreement (see Sec. VI B).
Finally, we have established that the form factors

λ1;4;7ðpÞ provide the dominant numerical contribution
to the chiral infrared dynamics, as already suggested
by previous studies [60,61,81]. This allows us to devise
simplified but quantitatively reliable approximations,
which may reduce the numerical costs in the study of
systems governed by a large number of intertwined
dynamical equations.
In summary, the results of the current comprehensive

SDE approach provide physics results without the need of
phenomenological infrared parameters that are commonly
used explicitly or implicitly. Moreover, we have shown
how to self-consistently incorporate in our analysis general
external inputs.
In our opinion, the present comprehensive SDE

approach, and in particular the combined use of functional
relations for correlation functions, is essential for a
successful quantitative investigation of many open phys-
ics problems in QCD, ranging from the hadron bound-
state properties to the chiral phase structure and critical
end point.
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APPENDIX A: RENORMALIZATION SCHEME

In this appendix we present additional details related to
the renormalization scheme adapted in the present work.

1. Mapping RG schemes

In the fRG approach, for k → ∞, all quantum fluctua-
tions are suppressed, and the effective action Γk of the
fRG approach tends toward the bare action of QCD.
This also entails that the momentum dependence of the
dressings of correlation functions is subleading and
drops with powers of p2=k2: the dressings tend toward
the renormalization factors of the bare action, within a
momentum-cutoff renormalization. Accordingly, the k
dependence of effective action in the fRG approach trans-
lates to a dependence on theUV cutoff,Λ in the present SDE
approach.Moreover, the dependence on the renormalization
scale μ is the same. In particular, logarithmically divergent
RG factors run with logΛ2=k2ref , where kref denotes some
reference scale, typically large. This logarithmic Λ depend-
ence precisely cancels that produced by the integrated flows,
where the cutoff integration runs from k ¼ Λ → k ¼ 0. This
integrated flow agrees with the regularized SDE diagrams
(again with UV cutoff Λ). Naturally, there is a very specific
choice of kref , namely kref ¼ Λ. Then, the logarithmic term
vanishes, and we can put all Zϕi;k¼Λ¼1, Mq;Λ¼mq, and
λA3;Λ¼λcc̄A;Λ¼λqq̄A;Λ¼gs, λA4;Λ ¼ g2s . This amounts to
mapping the (implicit) RG scheme within the fRG to a
standard RG scheme in the SDEs. In practice, this has to be
accompanied with setting the RG scale to μ2 ¼ Λ2, and
finally removing the cutoff scale k.
In turn, for k → 0, the fRG dressings are simply the finite

dressings of the full, renormalized theory, and no depend-
ence on the cutoff scale is left. This property is called RG
consistency; see [8,108,109].

2. One- and two-loop αsðpÞ
In Sec. VII, the full quark-gluon coupling has been

compared with its one- and two-loop counterparts (see
in particular Fig. 7). It is here, where the difference between
the current fRG-based MOM-type scheme, described
in Secs. VA and A 1, and the standard MOM scheme
becomes most apparent.
For the comparison with the one-loop αs, we use the

standard parametrization of the latter, e.g., [110],

αð1 loopÞs ðpÞ ¼ 1

β0 lnðp2=Λ2
QCDÞ

;

Λ2
QCD ¼ μ2 exp

�
−

1

β0αsðμÞ
�
; ðA1Þ

with β0 ¼ 1
4π ð11 − 2

3
NfÞ. As is clear from (A1), ΛQCD

provides the position of the singularity of αð1 loopÞs ðpÞ in
momentum space, psing ≔ ΛQCD. This definition is also
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used below for the two-loop coupling, αð2 loopÞs ðpÞ. We also
emphasize that while being natural, it is not the only
possible definition of ΛQCD beyond one loop; see,
e.g., [111].
Even though ΛQCD is, in principle, μ independent, this

property is not exhibited at the level of the one-loop
formulas. Specifically, using the two combinations of
fμ; αsðμÞg given in (5.5), we obtain ΛQCD ¼ 0.59 GeV
for μ ¼ 40 GeV, and ΛQCD ¼ 0.86 GeV for μ ¼ 4.3 GeV.
The large difference between the respective ΛQCD is yet
another manifestation of the limitations of the one-loop
approximation. These limitations prevent us from using
large RG scales even in the context of the standard MOM
scheme. Moreover, the analysis also entails thatΛQCD in the
current MOM-type scheme is significantly different from
the respective value in the standard MOM scheme. This has
already been discussed in detail in [112], where a com-
parison of the present scheme with the MS scheme was
carried out within Yang-Mills theory. This analysis extends
straightforwardly to a comparison with MOM. The differ-
ence with the standard MOM scheme is also clearly seen in
the comparison of the Yang-Mills data of [96] (fRG,
present scheme) with those of [88] (SDE, MOM scheme),
both featuring correlation functions in quantitative agree-
ment with the respective lattice results.
For the two loop comparison we use the standard

parametrization given, e.g., in [110],

αð2 loopÞs ðpÞ¼−
β0
β1

1

1þW−1ðzÞ
; z¼−

β20
eβ1

�Λ2
QCD

p2

�β2
0
=β1

;

ðA2Þ

with β1¼ 1
ð4πÞ2 ð102− 38

3
NfÞ and β0 ¼ 1

4π ð11 − 2
3
NfÞ, where

W−1ðzÞ denotes the “physical” branch of the real valued
Lambert function.
We also note in passing that the approximate

formula [113]

αð2 loopÞs ðpÞ ¼ αðμÞ
1þ β0αðμÞ½1þ αðμÞ β1β0� lnðp2=μ2Þ ðA3Þ

fits the full coupling αll̄AðpÞ even better than (A2) for
momenta p≳ 10 GeV (in terms of χ2). This may be
interpreted as an indication of the effectiveness of the
resummation scheme underlying our approximation in the
perturbative regime.
As is clear from Fig. 14, psing ¼ ΛQCD of αð2 loopÞs ðpÞ is

stable under changes of μ for μ ≳ 10 GeV and is still
compatible in a transition regime with p ∈ ð5 − 10Þ GeV.
This is in clear contradistinction to its one-loop
counterpart, where such an RG consistency does not
hold. In particular, we find that ΛQCD ¼ 1.42 GeV for
μ ¼ 40 GeV, and ΛQCD ¼ 1.49 GeV for our low RG scale

of μ ¼ 4.3 GeV. The latter RG scale is at the limit or
slightly below the lower bound of the two-loop consistent
regime. Note that this low RG scale has been chosen
because it represents the largest momentum accessible by
the lattice data.
To sum up, the large ΛQCD values compared to those of

the standard MOM are expected from respective compar-
isons in Yang-Mills theory, as discussed in this appendix.
Moreover, the μ dependence for μ≲ 10 GeV within a two-
loop matching is expected, given that the β-function and
hence the coupling deviate from their two-loop counter-
parts in the transition regime (5–10 GeV) indicated by the
vertical red band; see Fig. 7 and the inset of Fig. 14.

APPENDIX B: KERNELS OF THE
QUARK-GLUON VERTEX SDE

The kernels Kijkðp; q; kÞ and K̃ijkðp; q; kÞ appearing in
(4.8) have the general form

Kijkðp; q; kÞ ¼
X2
α¼1

Cα
ijkðp; q; kÞσαðkÞ;

K̃ijkðp; q; kÞ ¼
X4
α¼1

C̃α
ijkðp; q; kÞσ̃αðp; q; kÞ; ðB1Þ

with

σ1ðkÞ¼
1

ZqðkÞ½k2þM2
qðkÞ�

; σ2ðkÞ¼
MqðkÞ

ZqðkÞ½k2þM2
qðkÞ�

;

ðB2Þ

FIG. 14. ΛQCDðμÞ ¼ psing, defined by the singularity of

αð2 loopÞs ðpÞ, for μ ∈ ð1; 40Þ GeV. The RG scale μ ¼ 4.3 GeV
is indicated with a dashed vertical line. The inset shows the full
β-function, βll̄AðαsÞ, in comparison to its two-loop counterpart.
The red vertical band indicates the transition momentum regime,
in which the full β-function starts to deviate from the perturbative
two-loop β-function.

GAO, PAPAVASSILIOU, and PAWLOWSKI PHYS. REV. D 103, 094013 (2021)

094013-22



and

σ̃1ðp; q; kÞ ¼
1

Rðp; q; kÞ ; σ̃2ðp; q; kÞ ¼
Mqðqþ kÞ
Rðp; q; kÞ ;

σ̃3ðp; q; kÞ ¼
Mqðpþ kÞ
Rðp; q; kÞ ;

σ̃4ðp; q; kÞ ¼
Mqðqþ kÞMqðpþ kÞ

Rðp; q; kÞ ; ðB3Þ

where

Rðp;q;kÞ≔ZqðpþkÞZqðqþkÞ½ðpþkÞ2
þM2

qðpþkÞ�½ðqþkÞ2þM2
qðqþkÞ�; ðB4Þ

and the closed expressions for the kinematic functions
Cα
ijkðp; q; kÞ and C̃α

ijkðp; q; kÞ are reported in the github
(https://github.com/coupledSDE/FormDerive).
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