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The interplay between the small-x limit of QCD amplitudes and QCD factorization at moderate x has
been studied extensively in recent years. It was finally shown that semiclassical formulations of small-x
physics can have the form of an infinite twist framework involving transverse momentum dependent
distributions in the eikonal limit. In this work, we demonstrate that small-x distributions can be formulated
in terms of transverse gauge links. This allows, in particular, for direct and efficient decompositions of
observables into subamplitudes involving gauge-invariant suboperators which span parton distributions.
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I. INTRODUCTION

The two main regimes for a process with a hard scaleQ2

and center-of-mass energy s are the so-called Bjorken limit
Q2 ∼ s → ∞ that relates to moderate values of x ∼Q2=s,
where QCD factorization applies, and the so-called Regge
limit, for which Q2 ≪ s or x ≪ 1. The main obstacle when
studying the connections between QCD factorization and
QCD at small x is the discrepancy in the involved non-
perturbative elements: QCD factorization involves parton
distributions, whereas the most general formulations of
small-x physics involve the action of Wilson-line operators
on hadronic states [1–6]. In Ref. [7], the authors showed
how to extract the small-x limit of a transverse momentum
dependent (TMD) distribution from a Wilson-line operator.
Their argument relies on two statements: the fact that the
longitudinal momentum fractions of partons in the distri-
butions are small in the eikonal limit and the fact that
transverse gluon fields are subeikonal in the most com-
monly used gauges (see Sec. II).
As an example, let us consider the Weizsäcker-

Williams (WW)-type gluon TMD operator for a gluon
with longitudinal momentum fraction x and transverse

momentum k [8] inside a hadron with a large momentum
P mostly in the − light cone direction, which is defined
as [9]

Oijðx; kÞ≡
Z

drþd2r
ð2πÞ3 eixP

−rþ−iðk·rÞFi−ðrÞU ½þ�
½r;0�F

j−ð0ÞU ½þ�
½0;r�;

ð1Þ

where [10] Fi− ≡ ∂
iA− − ∂

−Ai − ig½Ai; A−� [cf. Eq. (8)] is
the field strength tensor, U ½��

½r;0� are staple-shaped gauge links

U ½��
½x;y� ¼ ½xþ;∞þ�x½x; y��∞þ½�∞þ; yþ�y; ð2Þ

and ½xþ;∞þ�x denotes a straight Wilson line in the
fundamental representation of SU(3) along the þ direction
at fixed transverse coordinate x and similarly for
½�∞þ; yþ�y. In particular, we have

½xþ; yþ�x ¼ Uxðxþ; yþÞ≡ P exp

�
ig
Z

xþ

yþ
dzþA−ðzþ; xÞ

�
;

ð3Þ

where A−ðxþ; xÞ ¼ n · A is the − component of the target
gauge field evaluated on the light cone branch x− ¼ 0, with
n ¼ ð1; 0; 0; 1Þ. Here and throughout, it is understood that
A≡ Aata, where ta are the QCD color matrices in the
fundamental representation.
The transverse gauge link, on the other hand, is evaluated

at constant light cone time xþ:
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½x; y�xþ ≡ P exp

�
−ig

Z
x

y
dzðλÞ · Aðxþ; zðλÞÞ

�
; ð4Þ

where zðλÞ≡ ðz1; z2Þ defines a trajectory in the transverse
plane, that starts at y and ends at x, and parametrized by the
real number 0 < λ < 1.
Under the two hypotheses described above, one

can neglect the phase ixP−rþ in the Fourier transform in
Eq. (1), as well as the transverse part ½x; y�∞þ of the staple-
shaped gauge link. This observation allowed the authors
of Ref. [9] to find a match between the WW-type
TMD operator and infinite Wilson-line operators Ux ≡
Uxð∞;−∞Þ. Indeed,

Oijðx ≈ 0; kÞ ∝
Z

d2re−iðk·rÞUrð∂iU†ÞrU0ð∂jU†Þ0: ð5Þ

Such an operator appears naturally when one takes the first
term in Taylor expansions of observables at small x. The
remarkable equivalence in Eq. (5) generated a lot of interest
for the physics of TMD distributions in the small-x
community, which gathered tremendous insight on these
distributions from small-x models [11–18]. Attempts have
also been made in order to unify small-x and moderate-x
evolution equations for TMDs [19,20]. However, no
equivalence was formed beyond the leading power in
k=Q until very recently [21,22].
In Refs. [21,22], it was shown that a class of observables

at small x could be entirely rewritten as the eikonal limit of
an infinite twist TMD framework. This new formulation of
small-x physics was based on a power expansion, then the
rearrangement of the expanded form by classifying terms
depending on the genuine twist of the nonperturbative
operator involved, and then the resummation of power
corrections to the accompanying Wilson coefficients.
Although the final expressions were fairly simple, it would
be cumbersome to generalize to other classes of observ-
ables. It also relied on the assumption that neglecting the
transverse gauge links from the distribution in a gauge
where transverse gluons are subeikonal would not spoil
QCD gauge invariance of the distribution.
In this article, we propose a more direct derivation of

the equivalence found in Refs. [21,22] and uncover its
underlying geometric structure which preserves the explicit
gauge invariance of the operators. For this purpose, we
demonstrate that pairs of Wilson-line operators have a
powerful formulation in terms of transverse gauge links
built from rotated gluon fields. In the new approach to
TMDs at small x in terms of transverse gauge link
operators, it will be straightforward to generalize to other
observables.
The article is organized as follows: In Sec. II, we give a

brief introduction of the semiclassical small-x basics and
discuss gauge invariance for this framework. In Sec. III, we
show how pairs of Wilson lines can be interpreted as

transverse gauge links thanks to parallel transports on the
transverse plane and gauge invariance and how this result
has the form of a non-Abelian Stokes equation. As an
application of the results from Sec. III, we show how to
extract TMD suboperators from the dipole in Sec. IV, and in
Sec. V we extend this method to more generic two-Wilson-
line operators. Finally, we extend the method to a three-line
operator in Sec. VI.

II. BACKGROUND FIELD AT HIGH ENERGY

Consider a hadronic target moving in the negative z
direction, close to the light cone, i.e., x− ∼ 0. It can be
described by a classical current [3,23]

J−ðxÞ ≈ J−ðxþ; xÞ and Jþ ≈ Ji ≈ 0; ð6Þ

that generates a gauge field which depends only on light
cone time xþ and the transverse coordinate x. In such a
framework, it turns out that both covariant ∂ · A ¼ 0 and
light cone Aþ ¼ 0 gauge share a common solution. Indeed,
it immediately follows from Aþ ¼ Ai ¼ 0 and the inde-
pendence on x− that ∂ · A ¼ ∂

þA− ¼ 0. The equation of
motion for the field reads

½Dμ; Fμ−� ¼ −∂iFi− ¼ −∂2A− ¼ J−; ð7Þ

where

Fμν ≡ ∂
μAν − ∂

νAμ − ig½Aμ; Aν� and Dμ ≡ ∂
μ − igAμ

ð8Þ

denote the field strength tensor and the covariant deri-
vative, respectively. With the above choice of gauges,
the current is covariantly conserved, since DþJ− ¼
∂
þJ− ¼ 0. Furthermore, note that, although A− obeys a
Poisson equation, it is an exact solution of the Yang-Mills
equations.
In the following, we will make use of the existence of a

residual gauge freedom in Aþ ¼ 0 light cone gauge: One
can choose any gauge transformations with the form

A−ðxþ; xÞ → ΩxðxþÞA−ðxþ; xÞΩ−1
x ðxþÞ

−
1

ig
ΩxðxþÞ∂−Ω−1

x ðxþÞ;

Aiðxþ; xÞ → −
1

ig
ΩxðxþÞ∂iΩ−1

x ðxþÞ; ð9Þ

where ΩxðxþÞ is an element of the gauge group SU(3) that
preserves the condition Aþ ¼ 0. Because Aþ is suppressed
on the x− ¼ 0 branch, the above decomposition is expected
to span a larger subset of SU(3) beyond light cone gauge.
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Under such a gauge transformation, the Wilson line

Uxðξ2; ξ1Þ ¼ P exp

�
ig
Z

ξ2

ξ1

dxþA−ðxþ; xÞ
�

ð10Þ

transforms as

Uxðξ2; ξ1Þ → Ωxðξ2ÞUxðξ2; ξ1ÞΩ−1
x ðξ1Þ: ð11Þ

Note that there is an infinite number of gauge trans-
formations, spanning the entire gauge group SU(3), that
satisfy (9). This freedom in fixing the boundary conditions
translates into the different regularization schemes for the
spurious 1=kþ singularity encountered in light cone gauge;
see, for example, Ref. [24].

III. TRANSVERSE QCD STRINGS AND THE
DIPOLE OPERATOR

In the standard semiclassical formulations of small-x
physics, scattering amplitudes are most commonly com-
puted in Aþ ¼ 0 light cone gauge by fixing the residual
gauge freedom such that the classical transverse field
vanishes. Hence, only the − component of the background
field is taken into account through lightlike Wilson-line
operators along the xþ direction.
The connection to TMD physics requires the formulation

of the problem in terms of field strength tensors, typically
introduced by performing a gradient expansion in trans-
verse coordinate space that yields ∂iA− ∼ Fi−. In effect, this
corresponds to the parallel transport of Wilson-line oper-
ators on the transverse plane as will be shown shortly.

A. Parallel transport on the transverse plane

Let us first show how gauge rotations can be rewritten as
transverse gauge links. For any pair of transverse positions
(x1, x2) and defining r ¼ x1 − x2, we can readily write [25]

Ωx1ðtÞ ¼ Ωx2ðtÞ þ
Z

1

0

ds
d
ds

Ωx2þsrðtÞ

¼ Ωx2ðtÞ − ri
Z

1

0

dsð∂iΩÞx2þsrðtÞ: ð12Þ

Now, note that

∂
iΩxðtÞ ¼ igAiðt; xÞΩxðtÞ; ð13Þ

where Ai (with i ¼ 1, 2) is the pure gauge field obtained
from the rotation Ω [see Eq. (9)]. Combining the two
remarks above and then multiplying Eq. (12) by Ω−1

x2 ðtÞ on
the right yields

Ωx1ðtÞΩ−1
x2 ðtÞ¼ 1− igri

Z
1

0

dsAiðt;x2þ srÞΩx2þsrðtÞΩ−1
x2 ðtÞ:

ð14Þ

The final step is now to notice that Eq. (14) is the equation
which defines a Wilson line along the straight line trajectory
parametrized by the real number s with values between
0 and 1 and such that zð0Þ ¼ x2 and zð1Þ ¼ x1, that is,

zðsÞ ¼ x2 þ sr:

This Wilson line, that we denote as ½x1; x2�t, solves the
following equation:

½x1; x2�t ¼ 1 − ig
Z

x1

x2

dz · Aðt; zÞ½z; x2�t: ð15Þ

Although the transverse gauge link was constructed for a
straight line trajectory, it can be easily shown that it is
independent of the trajectory connecting the end points so
long as the transverse field is a pure gauge.
By comparing Eqs. (14) and (15), we can make the

following identification:

Ωx1ðtÞΩ−1
x2 ðtÞ ¼ ½x1; x2�t: ð16Þ

An equivalent relation can readily be obtained:

½x1; x2�t ¼ 1 − ig
Z

x1

x2

½x1; z�tAðt; zÞ · dz: ð17Þ

B. Dipole operator and the non-Abelian
Stokes theorem

With the setup from Sec. II, where transverse gluon
fields are neglected, let us consider a generic dipole
operator in the fundamental representation:

ðOξðx1; x2ÞÞij ≡ ðUx1ð∞; ξÞUx2ðξ;∞ÞÞij; ð18Þ

where i, j are color indices. In most cases, at small x it is
assumed that the classical field A− has a compact support
which is very peaked around xþ ¼ 0 in Eq. (10). As a
result, so long as ξ < 0, one can replace ξ by −∞ in our
expressions, and one can deal with infinite Wilson linesUx.
In Eq. (18), this choice would amount to the replacement
[26] Ux1ð∞; ξÞUx2ðξ;∞Þ → Ux1U

†
x2 . Here, we will keep a

generic ξ. Under the gauge rotation of parameter Ω, the
dipole operator becomes

Oξðx1; x2Þ → Ω−1
x1 ð∞ÞUx1ð∞; ξÞΩx1ðξÞΩ−1

x2 ðξÞ
×Ux2ðξ;∞ÞΩx2ð∞Þ; ð19Þ

where the lines are now built from gauge-rotated gluon
fields from Eq. (9). Using Eq. (16) finally allows us to write
the dipole operator with transverse gauge links:

Oξðx1; x2Þ ¼ Ω−1
x1 ð∞ÞUx1ð∞; ξÞ½x1; x2�ξUx2ðξ;∞ÞΩx2ð∞Þ:

ð20Þ
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A diagrammatic depiction of Oξðx1; x2Þ is given in Fig. 1,
left panel. In Eq. (20), the transverse gauge link is built
from the pure gauge transverse gluons Aiðxþ; xÞ ¼
− 1

igΩxðxþÞ∂iΩ−1
x ðxþÞ.

It is possible to absorb the longitudinal Wilson lines into
the transverse link with the following change of variables:

Aiðξ; zÞ → Âiðξ; zÞ≡Uzðξ;∞ÞAiðξ; zÞUzðξ;∞Þ

þ 1

ig
ð∂iUzÞð∞; ξÞUzðξ;∞Þ: ð21Þ

Note that the hatted field is nonlocal in xþ and trans-
forms similarly to the field strength tensor under a gauge
rotation, i.e.,

Âðξ; zÞ → Ωzð∞ÞÂðξ; zÞΩ−1
z ð∞Þ: ð22Þ

We can actually trade the dependence on the gauge field
with that of the field strength tensor with simple algebra:

Âiðξ; zÞ ¼
Z

∞

ξ
dt

d
dt
Âiðt; zÞ þ Aið∞; zÞ

¼
Z

∞

ξ
dtUzð∞; tÞFi−ðt; zÞUzðt;∞Þ þ Aið∞; zÞ;

ð23Þ
where we have used Eq. (21) and the fact that ð∂=∂tÞ×
Uzð∞;tÞ¼−igUzð∞;tÞA−ðt;zÞ and ð∂=∂tÞUðt;∞Þ¼
igA−ðt;zÞUzðt;∞Þ. Furthermore, by making use of the
Fierz identity

UtaU† ¼ tbWba; ð24Þ

one can also express Eq. (25) in terms of a single Wilson
line Wba in the adjoint representation:

Âiðξ;zÞ¼
Z

∞

ξ
dttbWba

z ð∞;tÞFa;i−ðt;zÞþAið∞;zÞ: ð25Þ

Without loss of generality, since transverse gluon fields are
pure gauges, it is possible to chose the gauge rotation such
that Aið∞; zÞ ¼ 0, simply by choosing Ωxð∞Þ ¼ 1 on the
whole transverse plane. We will make this choice from now
on. For the sake of clarity, we will distinguish the gauge
links which depend on the rotated field from Eqs. (21) and
(25) from the regular gauge links by hatting their coor-
dinates. We have now established that

Oξðx1; x2Þ ¼ ½x̂1; x̂2�ξ; ð26Þ
which allows one to understand the dipole operator as a
transverse string built from the gluons in Eq. (25).
We can rewrite this result in the form of the non-Abelian

Stokes theorem ([27]; see also [28]): The integral of Aμ over
the square contour C on the left-hand side in Fig. 1 is equal
to the integral of the so-called twisted strength tensor
UFμνU† inside the surface S defined by this contour:

S ¼ fðt; zÞ; t ∈ ½ξ;∞�; z ∈ ½x1; x2�g:
Indeed, the more explicit Eq. (26), with nonvanishing

transverse fields at infinite light cone time, is given by

ðPeig
R

∞
ξ

dtA−ðt;x1ÞP
−ig

R
x1
x2

dz·Aðξ;zÞ
Pe

ig
R

∞
ξ

dtA−ðt;x2ÞPe
−ig

R
x2
x1

dz·Að∞;zÞÞij

¼
�
P exp

�
−ig

Z
x1

x2

dzi
Z

∞

ξ
dt½x1; z�∞½∞; t�zFi−ðt; zÞ½t;∞�z½z; x1�∞

��
ij
; ð27Þ

FIG. 1. Non-Abelian Stokes theorem.
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which is a form of the Stokes equation

P exp

�I
C
dxμAμðxÞ

�
¼ P exp

�Z
S
dσμνUFμνU†

�
; ð28Þ

where dσμν is the surface measure on S and U denotes a
Wilson line connecting the point x ∈ S enclosed by the
surface measure to an arbitrary base point O on C, which in
Eq. (27) is taken to be O≡ ð∞; x1Þ.

C. A local formulation for the dipole operator

With similar considerations as before, let us establish yet
another form for the dipole operator. This form allows for a
power expansion where all terms are explicitly gauge
invariant step by step. Starting from the gauge-rotated
dipole in Eq. (19), for a rotation where gauge links are
trivial at infinity, one has

Oξðb; b − rÞ → ½Ubð∞; ξÞΩbðξÞ�e−r·∂b ½Ω−1
b ðξÞUbðξ;∞Þ�;

ð29Þ

where we introduced the translation operator e−r·∂b.
Without writing times for readability, let us note that

∂bΩ−1U ¼ Ω−1U½∂b þ U†Ωð∂bΩ−1ÞU þ U†ð∂bUÞ�
¼ Ω−1U½∂b − igÂðbÞ�; ð30Þ

which leads to

ð∂bÞnΩ−1U† ¼ ð∂b − igÂðbÞÞn; ð31Þ

where we can recognize the covariant derivative with the
hatted gluon field from Eq. (25). With a simple exponen-
tiation, we can now give two local forms for the dipole, in
terms of the translation operator:

ðOðb; b − rÞÞij ¼ ðe−r·ð∂b−igÂðbÞÞÞij; ð32Þ

ðOðbþ r; bÞÞij ¼ ðer·ð∂⃖b−igÂðbÞÞÞij: ð33Þ

These forms allow for efficient and gauge-invariant power
expansions, as discussed more explicitly in the Appendix.

IV. APPLICATION TO THE SMALL-x AND TMD
EQUIVALENCE FOR DIS DIJET PRODUCTION

The amplitude for the production of a dijet in deep
inelastic scattering (DIS), as obtained from the effective
Feynman diagrams depicted in Fig. 2, involves the dipole
operator. Starting from Eq. (26), one can apply successively
relations (15) and then (17) in order to rewrite the dipole
operator into one-body and two-body contributions:

Oξðx1; x2Þ ¼ 1 − ig
Z

x1

x2

dziÂiðξ; zÞ

þ ðigÞ2
Z

x1

x2

dzi
Z

z

x2

dz0jÂiðξ; zÞ½ẑ; ẑ0�ξÂjðξ; z0Þ:

ð34Þ

Then, recalling the explicit expression for the rotated fields
in terms of twisted strength tensors,

Oξðx1; x2Þ ¼ 1þ ig
Z

∞

ξ
dt
Z

x1

x2

dziUzð∞; tÞ

× F−iðt; zÞU†
z ð∞; tÞ

þ ðigÞ2
Z

∞

ξ
dt
Z

∞

ξ
dt0

Z
x1

x2

dzi
Z

z

x2

dz0j

×Uzð∞; tÞF−iðt; zÞU†
z ð∞; tÞ½ẑ; ẑ0�t

×Uz0 ð∞; t0ÞF−jðt0; z0ÞU†
z0 ð∞; t0Þ: ð35Þ

Using the expression for the hatted links

½ẑ; ẑ0�ξ ¼ Uzð∞; ξÞ½z; z0�ξU†
z0 ð∞; ξÞ; ð36Þ

as well as

U†
z ð∞; tÞUzð∞; ξÞ ¼ ½t; ξ�z ð37Þ

and its counterpart for ½ξ; t0�z0, the dipole operator ends up
entirely rewritten as the sum of one-body and two-body
operators, in an explicitly gauge-invariant way:

Oξðx1; x2Þ ¼ 1þ ig
Z

∞

ξ
dt
Z

x1

x2

dzi½∞; t�zF−iðt; zÞ½t;∞�z

þ ðigÞ2
Z

∞

ξ
dt
Z

∞

ξ
dt0

Z
x1

x2

dzi
Z

z

x2

dz0j

× ½∞; t�zF−iðt; zÞ½t; ξ�z½z; z0�ξ½ξ; t0�z0
× F−jðt0; z0Þ½t0;∞�z0 : ð38Þ

FIG. 2. The amplitude for DIS dijet production involves the
nonsinglet dipole from Eq. (18). Gray blobs represent the
interactions with the classical external field, which effectively
dresses the quark and the antiquark with Wilson lines to build the
dipole operator.
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Equation (38) is very close to the result of Ref. [22] for the specific case of the dipole operator. With the simple trick for any
function F

FðzÞ ¼
Z

d2k1
ð2πÞ2

Z
d2b1e−ik1·ðb1−zÞFðb1Þ; ð39Þ

introducing r≡ x1 − x2 and with straightforward algebra, we can finally recover that result:

Oξðx1; x2Þ ¼ 1 − ig
Z

∞

ξ
dt
Z

d2k
ð2πÞ2 r

i

�
eiðk·x1Þ − eiðk·x2Þ

iðk · rÞ
�

×
Z

d2ve−iðk·vÞ½∞; t�vFi−ðt; vÞ½t;∞�v

þ ðigÞ2
Z

∞

ξ
dt
Z

∞

ξ
dt0

Z
d2k1
ð2πÞ2

Z
d2k2
ð2πÞ2

Z
d2b1

Z
d2b2e−iðk1·b1Þ−iðk2·b2Þ

×
rirj

iðk2 · rÞ
�
eiðk1þk2Þ·x1 − eiðk1þk2Þ·x2

iðk1 þ k2Þ · r
− eiðk2·x2Þ

eiðk1·x1Þ − eiðk1·x2Þ

iðk1 · rÞ
�

× ½∞; t�b1F−iðt; b1Þ½t; ξ�b1 ½b1; b2�ξ½ξ; t0�b2F−jðt0; b2Þ½t0;∞�b2 : ð40Þ

The one-body and two-body amplitudes that appear in
the above decomposition of the dipole operator are depicted
in Fig. 3.
This result can be used in order to rewrite any small-x

observable involving the dipole operator in terms of TMD
distributions, as in Ref. [22]. Indeed, the expressions from
Ref. [22] are straightforwardly recovered by convoluting
the dipole operator Oξðx1; x2Þ with a hard part Hðx1; x2Þ
with its small-x Galilean boost-invariant form Hðx1; x2Þ ¼
e−iðΔ·bÞΦðrÞ, with b the impact parameter, Δ the transverse
momentum transfer, and Φ a wave function. Furthermore,
the derivation presented above leads to an expression for
TMD distributions which involves explicitly the previously
neglected transverse gauge links which are usually assumed
to be subdominant in light cone gauge in the small-x
regime. Here, we found an explicitly gauge-invariant
expression for the operators. Still, note that the transverse
gauge links involved here are built from pure gauge fields,
and for full generality of this explicit gauge invariance

one should consider the consequences of relaxing the
assumption that transverse fields can be gauged away at
small x. This is left for future studies.
It is interesting to note that the derivation of Eq. (40) is

straightforward once the dipole operator is fully rewritten
as the transverse string operator ½x̂1; x̂2�ξ, while working in
the usual framework makes it quite technical. This repre-
sentation also allows for a simple understanding of the
structures encountered in Ref. [22]:

eiðk·rÞ − 1

iðk · rÞ ; ð41Þ

as the Fourier transforms of identity along the contours
which support the transverse strings. Namely,

Z
x2

x1

dzeiz·k ¼ r
Z

1

0

dseisr·k: ð42Þ

FIG. 3. Diagrammatic representation of the one-body (left) and two-body (right) amplitudes.
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Let us consider the leading genuine twist contribution to the
dipole operator only:

Oξðx1; x2Þ ¼ −ig
Z

∞

ξ
dt
Z

d2k
ð2πÞ2 r

i

�
eiðk·x1Þ − eiðk·x2Þ

iðk · rÞ
�

×
Z

d2ve−iðk·vÞ½∞; t�vFi−ðt; vÞ½t;∞�v ð43Þ

and convolute it with the generic form of a γð�Þ → qq̄
hard part:

Hðx1; x2Þ ¼ ð2πÞδð1 − z − z̄Þe−iðpq·x1Þ−iðpq̄·x2ÞφðrÞ; ð44Þ

where we used only the constraints from longitudinal
momentum conservation through the classical field and
the Galilean boost invariance of the photon wave function.
We can easily obtain the T matrix for this process:

T ¼ −gqþ
Z

d2re−iðz̄pq−zpq̄Þ·rri
�
eiz̄ðpqþpq̄Þ·r − e−izðpqþpq̄Þ·r

iðpq þ pq̄Þ · r
�

× φðrÞ½∞; 0�0Fi−ð0Þ½0;∞�0; ð45Þ

which then leads to the following cross section:

dσ
dzd2pqd2pq̄

¼
Z

d4v
ð2πÞ3 δðv

−Þe−iðpqþpq̄Þ·vhPjFi−
�
v
2

�
U ½þ�

v
2
;−v

2
Fj−

�
−
v
2

�
U ½þ�
−v
2
;v
2
jPi

×
αsqþ

8zz̄πs

Z
d2rd2r0e−iðz̄pq−zpq̄Þ·ðr−r0Þrir0jφðrÞφ�ðr0Þ

×

�
eiz̄ðpqþpq̄Þ·r − e−izðpqþpq̄Þ·r

ðpq þ pq̄Þ · r
��

e−iz̄ðpqþpq̄Þ·ðr0Þ − eizðpqþpq̄Þ·r0

ðpq þ pq̄Þ · r0
�
: ð46Þ

We clearly recognize the Weizsäcker-Williams TMD (1)
from its gauge link structure, depicted in Fig. 4.
This cross section gives the form of the cross section for

observables like dijet production in DIS if it was computed
with the so-called small-x improved TMD techniques [29],
thus generalizing the equivalence found in Ref. [21] and
extended in Ref. [22]. Note that the present results also
contain genuine higher twist contributions, i.e., the g2 terms
in (40), which will not be displayed for the sake of
readability. The reader is referred to Ref. [22] for more

explicit genuine higher twist contributions, noting that the
simple and explicitly gauge-invariant method we estab-
lished in the present work allows for nonzero transverse
gauge links in those contributions.

V. EXTENSION TO GENERIC COLOR
STRUCTURES

Let us quickly extend the previous method for a more
generic process: Let us consider a particle in color

FIG. 4. Gauge link structure of the WW distribution.

FIG. 5. Diagrams for the splitting of a particle in color representation R0 into particles in respective representations R1 and R2, leading
to the operator from Eq. (47).
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representation R0 splitting into two particles in color
representations R1 and R2 in the external classical field.
The involved Wilson-line operator is then (see, e.g., [21])

O012
ξ ðx1; x2Þ ¼ UR1

x1 ð∞; ξÞTR0UR2
x2 ðξ;∞Þ

−UR1

b ð∞; ξÞTR0UR2

b ðξ;∞Þ: ð47Þ

Here, b is the average position, weighted by longitudinal
fractions z and z̄: b ¼ zx1 þ z̄x2. This Wilson line structure

is obtained by computing the diagrams in Fig. 5. We
implicitly used the following identity, for open color
indices in representations R1 and in R2:

TR0UR0

b ¼ UR1

b TR0UR2

b : ð48Þ

As in the previous section, the transverse gauge links at
infinity allow us to rewrite the operator with rotated
Wilson lines:

O012
ξ ðx1; x2Þ → ΩR1†

x1 ð∞ÞUR1
x1 ð∞; ξÞΩR1

x1 ðξÞTR0ΩR2†
x2 ðξÞUR2

x2 ðξ;∞ÞΩR2
x2 ð∞Þ

−ΩR1†
x1 ð∞ÞUR1

b ð∞; ξÞΩR1

b ðξÞTR0ΩR2†
b ðξÞUR2

b ðξ;∞ÞΩR2
x2 ð∞Þ: ð49Þ

As before, we will choose to cancel the gauge links at infinity. Here and from now on until the end of this section, we will
omit the time dependence in the intermediate equations for the reader’s convenience. The trick is now to write, for any b,

ΩR1
x1 T

R0ΩR2†
x2 ¼ ΩR1

x1 Ω
R1†
b ΩR1

b TR0ΩR2†
b ΩR2

b ΩR2†
x2 ; ð50Þ

then to interpret the ΩΩ† pairs as transverse gauge links formed from the gauge-enhanced gluon fields [see Eqs. (16)]:

ΩR1
x1 T

R0ΩR2†
x2 ¼ ½x1; b�R1ΩR1

b TR0ΩR2†
b ½b; x2�R2 ; ð51Þ

and finally to absorb the Wilson lines into rotated transverse links:

UR1
x1 Ω

R1
x1 T

R0ΩR2†
x2 UR2

x2 ¼ ½x̂1; b̂�R1UR1

b ΩR1

b TR0ΩR2†
b UR2

b ½b̂; x̂2�R2 : ð52Þ

We can use Eqs. (15) and (17) once for each hatted link:

O012
ξ ðx1; x2Þ ¼ −ig

Z
x1

b
dziÂiR1ðzÞ½ẑ; b̂�UR1

b ΩR1

b TR0ΩR2†
b UR2

b ½b̂; x̂2�R2

− ig
Z

b

x2

dziUR1

b ΩR1

b TR0ΩR2†
b UR2

b ½b̂; ẑ�ÂiR2ðzÞ; ð53Þ

or, equivalently,

O012
ξ ðx1; x2Þ ¼ −ig

Z
x1

b
dziÂiR1ðzÞUR1

z ΩR1
z TR0ΩR2†

z UR2
z ½ẑ; x̂2�R2

− ig
Z

b

x2

dz0j½b̂; ẑ0�R1UR1

z0 Ω
R1

z0 T
R0ΩR2†

z0 UR2

z0 Â
jR2ðz0Þ: ð54Þ

With similar tricks,

O012
ξ ðx1; x2Þ ¼ −ig

Z
x1

b
dziAiR1ðzÞUR1

z ΩR1
z TR0ΩR2†

z UR2
z

− ig
Z

b

x2

dziUR1
z ΩR1

z TR0ΩR2†
z UR2

z AiR2ðzÞ

þ ðigÞ2
Z

x1

b
dzi

Z
z

x2

dz0jAiR1ðzÞUR1
z ΩR1

z TR0ΩR2†
z ½ẑ; ẑ0�R2UR2

z0 A
jR2ðz0Þ

þ ðigÞ2
Z

b

x2

dz0j
Z

b

z0
dziAiR1ðzÞUR1

z ½ẑ; ẑ0�R1ΩR1

z0 T
R0ΩR2†

z0 UR2

z0 A
jR2ðz0Þ: ð55Þ
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WithΩ∞ ¼ 1, it is possible to replaceΩR1
z ðξÞ by ½z;∞�R1

ξ andΩR2†
z0 ðξÞ by ½∞; z0�R2

ξ . Then using the definition of the (rotated)
transverse fields and writing the time dependence explicitly again:

O012
ξ ðx1; x2Þ ¼ −ig

Z
∞

ξ
dt
Z

x1

b
dziUR1

z ð∞; tÞTR1
a Fi−

a ðt; zÞ½t; ξ�R1
z ½z;∞�R1

ξ TR0 ½∞; z�R2

ξ UR2
z ðξ;∞Þ

− ig
Z

∞

ξ
dt
Z

b

x2

dziUR1
z ð∞; ξÞ½z;∞�R1

ξ TR0 ½∞; z�R2

ξ ½ξ; t�R2
z TR2

a Fi−
a ðt; zÞUR2

z ðt;∞Þ

þ ðigÞ2
Z

∞

ξ
dt
Z

∞

ξ
dt0

�Z
x1

b
dzi

Z
z

x2

dz0j þ
Z

b

x2

dz0j
Z

b

z0
dzi

�

×UR1
z ð∞; tÞTR1

a Fi−
a ðt; zÞ½t; ξ�R1

z ½z;∞�R1

ξ TR0 ½∞; z0�R2

ξ ½ξ; t0�R2

z0 T
R2

b Fj−
b ðt0; z0ÞUR2

z0 ðt0;∞Þ: ð56Þ

With the use of the trick given in Eq. (39), one recovers the results from Ref. [22], with explicit transverse gauge links:

O012
ξ ðx1; x2Þ ¼ −igz̄ri

Z
∞

ξ
dt
Z

d2k
ð2πÞ2

Z
d2ve−ik·ðv−x1Þ

eiz̄ðk·rÞ − 1

iz̄ðk · rÞ
× ½∞; t�R1

v TR1
a Fi−

a ðt; vÞ½t; ξ�R1
v ½v;∞�R1

ξ TR0 ½∞; v�R2

ξ ½ξ;∞�R2
v

− igzri
Z

∞

ξ
dt
Z

d2k
ð2πÞ2

Z
d2ve−ik·ðv−x2Þ

eizðk·rÞ − 1

izðk · rÞ
× ½∞; ξ�R1

v ½v;∞�R1

ξ TR0 ½∞; v�R2

ξ ½ξ; t�R2
v TR2

a Fi−
a ðt; vÞ½t;∞�R2

v

þ ðigÞ2
Z

∞

ξ
dt
Z

∞

ξ
dt0

Z
d2k1
ð2πÞ2

Z
d2k2
ð2πÞ2

Z
d2b1

Z
d2b2e−ik1·ðb1−bÞe−ik2·ðb2−bÞ

×
rirj

ðk1 þ k2Þ · r
�
e−iðk2·rÞ − 1

ðk2 · rÞ
eiz̄ðk1þk2Þ·r þ eiðk1·rÞ − 1

ðk1 · rÞ
e−izðk1þk2Þ·r

�

× ½∞; t�R1

b1
TR1
a Fi−

a ðt; b1Þ½t; ξ�R1

b1
½b1;∞�R1

ξ TR0 ½∞; b2�R2

ξ ½ξ; t0�R2

b2
TR2

b Fj−
b ðt0; b2Þ½t0;∞�R2

b2
: ð57Þ

VI. EXTENSION TO THREE-LINE OPERATORS

The formulation of Wilson-line operators in terms of
transverse gauge links makes it very easy to extend the
proof of equivalence to TMD distributions for observables
with more than two Wilson lines involved. For example, let
us consider the γð�Þ → qq̄g amplitude. It involves operators
with two Wilson lines, which can be treated as in previous
sections, but it also contains a three-line operator [30]

M3 ¼ Ux1t
bWba

x3 U
†
x2 ; ð58Þ

which in the fundamental representation reads as a four-line
one:

M3 ¼ Ux1U
†
x3t

aUx3U
†
x2 : ð59Þ

Taking into account all three factors Ωð∞Þ and using the
tricks from Sec. III, this operator becomes

M3 ¼ ½x̂1; x̂3�ξta½x̂3; x̂2�ξ: ð60Þ
Applying Eq. (34) for ξ ¼ −∞ simultaneously on the left
and on the right of the color matrix and using the explicit

expressions for the rotated fields (25) allows one to rewrite
directly U3 with one-, two-, three-, and four-body con-
tributions, reading, respectively [31],

Mð1Þ
3 ¼ −ig

Z
dt
Z

x1

x3

dzi½∞; t�zFi−ðt; zÞ½t;∞�ztb

− ig
Z

dt
Z

x3

x2

dzitb½∞; t�zFi−ðt; zÞ½t;∞�z; ð61Þ

Uð2Þ
3 ¼ðigÞ2

Z
dt
Z

dt0
Z

x1

x3

dzi
Z

z

x3

dz0j

× ½∞; t�zFi−ðt;zÞ½t;ξ�z½z;z0�ξ½ξ; t0�z0Fj−ðt0;z0Þ½t0;∞�z0tb

þðigÞ2
Z

dt
Z

dt0
Z

x1

x3

dzi
Z

x3

x2

dz0j

× ½∞; t�zFi−ðt;zÞ½t;∞�ztb½∞; t0�z0Fj−ðt0;z0Þ½t0;∞�z0

þ ðigÞ2
Z

dt
Z

dt0
Z

x3

x2

dzi
Z

z

x2

dz0j

× tb½∞; t�zFi−ðt;zÞ½t;ξ�z½z;z0�ξ½ξ; t0�z0Fj−ðt0;z0Þ½t0;∞�z0 ;
ð62Þ
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Uð3Þ
3 ¼ −ðigÞ3

Z
dt1

Z
dt2

Z
dt3

Z
x1

x3

dzi
Z

z

x3

dz0j
Z

x3

x2

duk

× ½∞; t1�zFi−ðt1; zÞ½t1; ξ�z½z; z0�ξ½ξ; t2�z0Fj−ðt2; z0Þ
× ½t2;∞�z0tb½∞; t3�uFk−ðt3; uÞ½t3;∞�u
− ðigÞ3

Z
dt1

Z
dt2

Z
dt3

Z
x1

x3

dzi
Z

x3

x2

duj
Z

u

x2

du0k

× ½∞; t1�zFi−ðt1; zÞ½t1;∞�ztb½∞; t2�uFj−ðt2; uÞ
× ½t2; ξ�u½u; u0�ξ½ξ; t3�u0Fk−ðt3; u0Þ½t3;∞�u0 ; ð63Þ

and

Uð4Þ
3 ¼ ðigÞ4

Z
dt1

Z
dt2

Z
dt3

Z
dt4

Z
x1

x3

dzi
Z

z

x3

dz0j

×
Z

x3

x2

duk
Z

u

x2

du0l½∞; t1�zFi−ðt1; zÞ½t1; ξ�z½z; z0�ξ
× ½ξ; t2�z0Fj−ðt2; z0Þ½t2;∞�z0tb½∞; t3�uFk−ðt3; uÞ
× ½t3; ξ�u½u; u0�ξ½ξ; t4�u0Fl−ðt4; u0Þ½t4;∞�u0 : ð64Þ

Although the final expressions are quite cumbersome,
the method to derive them is straightforward once the
dipoles have been replaced by transverse strings. All it took
was Eq. (34).

VII. DISCUSSIONS

We have provided a reinterpretation of operators built
fromWilson lines as operators built from transverse strings.
This observation allows for compact and systematic exten-
sions of the exact small-x and TMD equivalence shown in
Ref. [22]. It also allows for a systematic power expansion
which preserves QCD gauge invariance at each step. We
have given the example of an extension beyond previously
established results.
Besides the fact that small-x models can lead to

interesting insight on TMD distributions at asymptotic
energies, the infinite-twist TMD form of small-x ampli-
tudes also changes our understanding of saturation effects
in the dilute-dense regime [22] by distinguishing between
kinematic and genuine saturation effects. In light of this
new development, it would be interesting to revisit the

nonlinear terms in small-x evolution in terms of TMD
distributions. The first step toward the understanding of
these nonlinearities is precisely what we accomplished in
our example from Sec. VI, by extracting the TMD
operators from the three-line operator which appears when
one evolves a dipole.
Another advantage of the TMD form of small-x ampli-

tudes is the opportunity it opens for the use of TMD
evolution equations to resum logarithms of the hard scale as
well as Sudakov logarithms. Thanks to the extension
described in Sec. VI, it is now possible to adapt the full
next-to-leading logarithmic cross section for inclusive DIS
[32,33] in order to include these resummations.
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APPENDIX: GAUGE-INVARIANT POWER
EXPANSION: LOCAL FORMULATION

In this Appendix, we shall use the formulation of the
dipole operator established above in order to construct a
power expansion of the dipole operator Eq. (26) that is
explicitly gauge invariant order by order in powers of
r ¼ x2 − x1. Equations (32) and (33) can be used in order to
perform a local expansion, thus an expansion in powers of
small transverse momenta, with explicit gauge invariance
of all operators at each step of the process. For this purpose,
one can use the following identity which is a direct
consequence of Eq. (21) [34]:

∂
i
b − Âiðt0; bÞ ¼ Ubð∞; t0ÞDiðt0; bÞU†

bðt0;∞Þ: ðA1Þ

Let us detail the steps for the second term of the local
expansion of Eq. (32). First, use the definition of the hatted
field on the right:

Oð2Þðb; b − rÞ ¼ ri1ri0ð∂b − igÂð−∞; bÞÞi1ð∂b − igÂð−∞; bÞÞi0

¼ −ig
Z þ∞

−∞
dt0ri1ri0ð∂b − igÂð−∞; bÞÞi1 ½Ubð∞; t0ÞFi0−ðt0; bÞU†

bðt0;∞Þ�: ðA2Þ

The trick is now to write the hatted field on the left, which is evaluated at−∞ light cone time, as a function of the hatted field
at light cone time t0. Thus, we need to use the following relation [cf. Eq. (25)]:

Âið−∞; bÞ≡ Âiðt0; bÞ þ
Z

t0

−∞
dtUðþ∞; tÞFi−ðt; bÞU†ðt;þ∞Þ; ðA3Þ
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which, when combined with Eq. (A1), leads to

ð∂b − igÂð−∞; bÞÞi1 ¼ ∂
i1
b − igÂi1ðt0; bÞ − ig

Z
t0

−∞
dt1Ubð∞; t1ÞFi1−ðt1; bÞU†

bðt1;∞Þ

¼ Ubð∞; t0ÞDi1ðt0; bÞU†
bðt0;∞Þ − ig

Z
t0

−∞
dt1Ubð∞; t1ÞFi1−ðt1; bÞU†

bðt1;∞Þ: ðA4Þ

We can then conclude with

O2 ¼ −igri1ri0
Z þ∞

−∞
dt0½∞; t0�bDi1ðt0; bÞðFi0−ðt0; bÞ½t0;∞�bÞ

− g2ri1ri0
Z þ∞

−∞
dt0

Z
t0

−∞
dt1½∞; t1�bFi1−ðt1; bÞ½t1; t0�bFi0−ðt0; bÞ½t0;∞�b: ðA5Þ

By recursion with similar steps, one can prove the general form of the jrjn term:

On ¼ ð−1Þnrim…ri1ri0
X
k0…km

Z
∞

−∞
dt0

Z
t0

−∞
dt1…

Z
tm−1

−∞
dtm

× Uðþ∞; tmÞðr ·DÞkmFim−ðtmÞU†ðtm; tm−1Þ…U†ðt1; t0Þðr ·DÞk0Fi0−ðt0ÞU†ðt0;þ∞Þ; ðA6Þ
where the sum over k0…km is constrained by X

j¼0

kj ¼ n −m: ðA7Þ

In simple words, the nth term in the gauge-invariant local expansion of the dipole operator is the sum of all possible
insertions of F tensors and covariant derivatives with the appropriate gauge links, such that the number of F’s and the
number of D’s sum up to n. As an illustration, the first few orders read

Oi
1 ¼ −ri

Z þ∞

−∞
dt½þ∞; t�Fi−ðtÞ½t;þ∞� ðA8Þ

for the first order,

Oij
2 ¼ rirj

Z þ∞

−∞
dt1

Z
t1

−∞
dt2½þ∞; t2�Fi−½t2; t1�Fj−½t1;þ∞�

þ
Z þ∞

−∞
dt½þ∞; t�DjFi−ðtÞ½t;þ∞�; ðA9Þ

for the second, and for the third we have

Oijk
3 ¼ −rirjrk

Z þ∞

−∞
dt1

Z
t1

−∞
dt2

Z
t2

−∞
dt3½∞; t3�Fi−½t3; t2�Fj−½t3; t2�Fk−½t1;þ∞�

þ
Z þ∞

−∞
dt1

Z
t1

−∞
dt2½þ∞; t2�ðDkFi−½t2; t1�Fj− þ Fi−½t2; t1�DkFj−Þ½t1;þ∞�

þ
Z

∞

−∞
dt½þ∞; t�DjDkFi−ðtÞ½t;þ∞�: ðA10Þ

The formulation of the dipole operator as a transverse
QCD string can thus be used in order to perform the
power expansion of a small-x observable while keep-
ing explicitly gauge-invariant operators. This is a parti-
cularly difficult task when using more standard forms
of the small-x observables, where the gluon field strength
tensor appears only via the derivative of Wilson lines

thanks to the relation ∂
iA− ¼ Fi−. For example, see

Ref. [13], where gauge invariance, while not broken, is
not explicitly respected due to the presence of double
derivatives of Wilson lines which lead to simple deri-
vatives of fields. Here, we established a systematic
framework to perform such expansions with explicit
invariance.
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