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The impact of momentum anisotropy on the heavy quark transport coefficients due to collisional and
radiative processes in the QCD medium has been studied within the ambit of kinetic theory. Anisotropic
aspects (momentum) are incorporated into the heavy quark dynamics through the nonequilibrium
momentum distribution function of quarks, antiquarks, and gluons. These nonequilibrium distribution
functions that encode the physics of momentum anisotropy and turbulent chromo-fields are obtained by
solving the ensemble-averaged diffusive Vlasov-Boltzmann equation. The momentum dependence of
heavy quark transport coefficients in the medium is seen to be sensitive to the strength of the anisotropy for
both collisional and radiative processes. In addition, the collisional and radiative energy loss of the heavy
quark in the anisotropic hot QCD medium is analyzed. The effects of anisotropy on the drag and diffusion
coefficients are observed to have a visible impact on the nuclear suppression factor both at the RHIC
and LHC.
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I. INTRODUCTION

The vibrant experimental programs on heavy-ion colli-
sions pursued at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) have strongly
suggested the existence of a hot and dense phase of nuclear
matter, known as the quark-gluon plasma (QGP) [1–5]. The
space-time evolution of the QGP medium is successfully
studied within the framework of relativistic viscous hydro-
dynamics [6–8]. Experimental observations along with the
hydrodynamical description suggest that the QGP behaves
more like a near-perfect fluid with a tiny value for the shear
viscosity to entropy ratio η=s (except for the regions very
close to the transition temperature Tc where the bulk
viscosity to entropy ratio ζ=s may have a larger value)
andmost vortical fluid too [9,10]. The impact of nonzero ζ=s
on the QGP evolution has also been explored recently [11].
Among reliable signatures from experimental observa-

tions, heavy quarks, especially charm and bottom quarks,
are identified as the effective probes to study the properties

of the QGP [12–16]. Heavy quarks are mostly created in the
initial stages of the collisions and undergo Brownian
motion in the QGP medium owing to their large mass in
comparison with the temperature of the medium, i.e.,
MHQ ≫ T (where MHQ and T denote the heavy quark
mass and temperature of the thermalized medium, respec-
tively). Heavy quarks witness the expansion of the created
hot fireball and can carry information about the hotter
phases of the matter and the initial conditions of the heavy-
ion collisions. While traveling through the medium, heavy
quarks lose their energy due to the interactions with the
constituent medium particles, and its dynamics can be
described within the Fokker-Planck approach [17,18]. The
interactions of the heavy quarks with the medium particles
are embedded through the drag and diffusion coefficients of
the heavy quark. Hence, the study of heavy quark transport
coefficients in the QGP medium is a field of high
contemporary interest; see Refs. [19–23] for the recent
studies. The two dominant processes that contribute to the
energy loss of heavy quarks in the medium are namely, the
collisional (elastic interaction) and the inelastic interactions
like gluon bremsstrahlung [24–30]. The heavy quark
transport, its energy loss, and the associated physical
observables such as the nuclear suppression factor RAA,
flow coefficients, etc. have been investigated in several
works in the literature [29–45]. Recently, the drag and
diffusion coefficients of a heavy quark undergoing radiative
loss by soft gluon emission along with the collisional
interactions have been studied in Ref. [46]. However, many
estimations considered the QGP as a thermalized static
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medium. It is an interesting direction to investigate the
impact of momentum anisotropy of the medium on the
radiative and collisional processes of heavy quarks as it
may reflect the final stage observables.
The effect of nonequilibrium dynamics of the QGP has

already been explored in photon production, dilepton
emission, heavy quarkonia, and other associated physical
observables at the RHIC and LHC [47–52]. Recently, some
works have been done to analyze the effects of shear and
bulk viscous coefficients on heavy quark transport in the
expanding medium [21,53–56].
The momentum anisotropy present in the QGP medium

may induce instability in the Yang-Mills fields (termed the
Chromo-Weibel instability). Studies have shown that the
physics of the Chromo-Weibel instability may have a
significant role in understanding the properties of the
QGP and its evolution in heavy-ion collision experiments
[57–60]. Such instabilities in the Yang-Mills field equations
in the rapidly expandingQGPmay lead to plasma turbulence
as described in Ref. [61]. In Refs. [61–63], the authors
realized that the instability while coupled with the rapid
expansion of themedium leads to the anomalous transport in
the medium along similar lines as that argued long ago by
Dupree [64] in the case of QED plasma. The anomalous
transport processes due to the turbulent fields can be
explored by analyzing various signals emitted during the
fireball expansion andmayprovide a possible explanation of
the nearly perfect liquidity of the QCD medium created in
the heavy-ion collisions [61,62]. The physics of anisotropy
and related aspects of anomalous transport could be captured
in the non(near)-equilibrium distribution functions of
quarks, antiquarks and gluons [52]. In Ref. [65], the impact
of the Chromo-Weibel instability on the heavy quark
transport coefficients for the collisional process in the hot
QCD medium has been investigated. Recently nonequili-
brium calculations have shown significant dependence on
momentum broadening, energy loss, and the associated
observables in the heavy-ion collisions; see Refs. [66–71]
for details. The current focus is to explore the heavy quark
dynamics in the anisotropic (momentum) hot QCDmedium
while considering both the collisional and radiative proc-
esses of heavy quarks in the medium by incorporating the
effects of anisotropy along the lines of Ref. [65]. This is
perhaps the first attempt where the physics of momentum
anisotropy leading to anomalous transport processes has
been incorporated in the heavy-quark dynamics. The aniso-
tropic aspects of the QGP medium have been observed to
play a prominent role in the heavy quark transport coef-
ficients, its energy loss and the associated nuclear suppres-
sion factor RAA.
The manuscript is organized as follows. Section II is

devoted to the description of near-equilibrium distribution
functions of quarks and gluons in the anisotropic medium.
The mathematical formulation of the heavy quark transport
in the medium while considering the collisional and

radiative processes is discussed in Sec. III. The results
and the follow-up discussions are presented in Sec. IV.
Finally, in Sec. V, we summarize the present analysis with
an outlook.

A. Notations and conventions

The subscript k in the analysis represents the particle
species, i.e., k ¼ ðg; q̃Þ, where q̃ and g denote quarks and
gluons, respectively. The quantity gμν is the metric tensor
and uμ represents the normalized fluid four-velocity such
that uμuμ ¼ 1. The traceless symmetric velocity gradient
can be defined as Δuμν ¼ 1

2
ð∇μuν þ∇νuμÞ − 1

3
gμν∇γuγ .

We have u ¼ z
τ and Δuij ¼ 1

3
diagð−1;−1; 2Þ, where τ

denotes the proper time of expansion, for the boost-
invariant 1þ 1-dimensional Bjorken flow.

II. MOMENTUM DISTRIBUTIONS OF QUARKS
AND GLUONS IN ANISOTROPIC MEDIUM

An adequate modeling of the momentum distribution
functions of quarks and gluons is necessary to encode the
thermal medium effects in the analysis of heavy quark
transport in the QGP. The realistic equation of state (EoS)
effects are incorporated in the effective fugacity quasipar-
ticle model (EQPM) description of the QCD medium via
effective fugacities of quarks and gluons, zq̃ and zg
respectively [72,73]. In equilibrium, the EQPMmomentum
distribution function has the form,

f0k ¼
zk exp ð−βEqÞ

1 − akzk exp ð−βEqÞ
; ð1Þ

with ag ¼ 1 for gluons and aq ¼ −1 for quarks, and Eq ¼
jqj≡ q for quarks (massless limit) and gluons. The
fugacity parameter modifies the single-particle dispersion
relation as,

ωk ¼ Eq þ δωk; δωk ¼ T2∂T lnðzkÞ: ð2Þ

The term δωk is the modified part of the energy dispersion
and is related to the quasiparticle collective excitation in the
medium. The temperature dependence of the quark and
gluon fugacity parameters can be described from the
realistic (2þ 1)-flavor lattice QCD EoS [74]. To obtain
the nonequilibrium distribution functions of quarks and
gluons in a rapidly expanding medium with an anisotropy,
one needs to solve the Vlasov-Boltzmann equation in the
presence of turbulent color fields. To that end, we consider
the near-equilibrium distribution function as,

fkðq; rÞ ¼ f0k þ δfk; δfk ¼ ð1þ akf0kÞf1kðqÞ; ð3Þ

where f1k is the linear perturbation to the distribution
function of the kth species. We employ the following
ansatz for the linear perturbation for the quasiparticles:
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f1kðqÞ ¼ −
Δ̄kðqÞ
ωkT2τ

�
q2z −

q2

3

�
; ð4Þ

where the quantity Δ̄ðqÞ denotes the strength of momentum
anisotropy in the QGP medium. In general, the evolution of
the particle momentum distribution function in the medium
can be described by setting up the Vlasov-Boltzmann
equation as follows [75]:

vμ
∂
∂xμ fðr;q; tÞ þ gFa:∇qfaðr;q; tÞ ¼ 0; ð5Þ

where Fa ¼ Ea þ ðv ×BaÞ is the color Lorentz force. The
quasiparticle distribution and the color-octet distribution
function faðr;q; tÞ can be defined as the moments of the
distribution function f̃aðr;q;Q; tÞ in an extended phase
space that includes the color sector as follows:

fðr;q; tÞ ¼
Z

dQf̃aðr;q;Q; tÞ; ð6Þ

faðr;q; tÞ ¼
Z

dQQaf̃aðr;q;Q; tÞ; ð7Þ

where Q is the color charge. In the anisotropic QGP
medium, the color field is turbulent, and its action on
the quasiparticles can be described by taking an ensemble
average. This analysis was initially done in Refs. [61,63]
for the ultrarelativistic gas of quarks/antiquarks and gluons,
and later extended to the interacting QGP within the EQPM
[65]. Following the same formalism, the ensemble-
averaged diffusive Vlasov-Boltzmann equation takes the
following form:

vμ
∂
∂xμ f̄ − FAf̄ ¼ 0; ð8Þ

where f̄ represents the ensemble-averaged distribution of
the particles and in the current analysis, we have f̄ ≡ fk.
The force term can be defined in terms of color-averaged
chromo-electromagnetic fields as,

FAf̄ ¼ −
g2C2

3ðN2
c − 1Þω2

k

hE2 þ B2ikτm
× L2f0kð1þ akf0kÞqiqjΔuij; ð9Þ

where τm quantifies the time scale of instability in the QGP
medium and C2 is the Casimir invariant SUðNcÞ theory.
Here, the operator L2 takes the following form:

L2 ¼ jq × ∂qj2 − jq × ∂qj2z : ð10Þ

The contribution to the system dynamics from the leading-
order collisional processes can be quantified in terms of the
collision kernel in the transport equation. Note that the

focus of the current study is on the anomalous contributions
to the quasiparticle momentum distribution functions. To
that end, we will not consider the collisional effects within
the bulk medium in the analysis. This assumption is also
based on the fact that anomalous transport is the dominant
mechanism and leads to significant suppression of the
transport coefficients in the expanding medium [51]. We
intend to work on the interplay of collisional and anoma-
lous processes in the QGP medium in the near future.
Employing the form of the equilibrium quasiparticle dis-
tribution function as defined in Eq. (1) and following the
same formalism as in Ref. [61], one can obtain the form of
Δ̄ðqÞ by solving the Boltzmann equation as,

Δ̄ðqÞ ¼ 2ðN2
c − 1Þ ωkT

3g2C2hE2 þ B2ikτm
: ð11Þ

The unknown factors in the denominator of Eq. (11) can be
related to the jet quenching parameter q̂ in both the quark
and gluonic sectors [62]. The shear viscosity and jet
quenching parameter are the two crucial coefficients that
may get a significant impact from the turbulent fields. In
Ref. [76], the authors realized that the parameter q̂ is
proportional to the mean momentum square per unit length
on the particle imparted by turbulent color fields. The
unknown factor hE2 þ B2ikτm can be related to the jet
quenching parameter as [62,77],

q̂ ¼ 2g2Cg=f

3ðN2
c − 1Þ hE

2 þ B2iτm; ð12Þ

where Cg ¼ NC for gluons and Cf ¼ N2
C−1
2NC

for the quark
sector. Substituting Eq. (11) and Eq. (12) into Eq. (4), we
obtain the near-equilibrium distribution function as,

fkðq; rÞ ¼ f0k − ð1þ akf0kÞ
4ωk

9q̂kTτ

�
q2z −

q2

3

�
: ð13Þ

Let us now proceed to the investigation of the heavy quark
drag and diffusion coefficients due to the collisional and
radiative processes in the anisotropic QGP medium.

III. FORMALISM: HEAVY QUARK DRAG AND
MOMENTUM DIFFUSION

In the present analysis, we adopt the formalism devel-
oped by Svetitsky [17] such that the evolution of heavy
quarks in the medium can be considered as Brownian
motion. The dynamics of heavy quarks can be described in
terms of the distribution function within the framework of
transport theory as,

pμ∂μfHQ ¼
�∂fHQ

∂t
�

int
; ð14Þ
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where fHQ is the heavy quark momentum distribution.
The elastic and inelastic processes of the heavy quark in the
medium modify the distribution function, and the rate of
change of fHQ due to the interactions can be quantified in

terms of the collision term ð∂fHQ

∂t Þint as follows:
�∂fHQ

∂t
�

int
¼

Z
d3k½ωðpþ k;kÞfHQðpþ kÞ

− ωðp;kÞfHQðpÞ�; ð15Þ

where wðp;kÞ denotes the rate of collision for heavy
quarks with the constituent particles in the medium such
that its momentum changes from p to p-k. Owing to the
large mass of the heavy quark, the Boltzmann equation can
be simplified by considering the Landau approximation,
i.e., the momentum transfer of the heavy quark is soft
(jpj ≫ jkj). Now, expending wðpþ k;kÞfðp;kÞ up to
second order in k, we have

ωðpþ k;kÞfHQðp;kÞ ≈ ωðp;kÞfHQðpÞ þ k:
∂
∂p ðωfHQÞ

þ 1

2
kikj

∂2

∂pi∂pj
ðωfHQÞ: ð16Þ

Incorporating Eq. (16) into Eq. (15), the relativistic non-
linear transport equation reduces to the Fokker-Planck
equation as follows:

∂fHQ

∂t ¼ ∂
∂pi

�
AiðpÞfHQ þ ∂

∂pj
ðBijðpÞfHQÞ

�
; ð17Þ

where Ai and Bij respectively quantify the drag force and
momentum diffusion of the heavy quarks in the medium
due to the interactions.

A. Collisional process

For the elastic two-body collisional process HQðPÞ þ
lðQÞ → HQðP0Þ þ lðQ0Þ, where l represents constituent
particles in the medium (quarks, antiquarks, and gluons)
and P, Q are the four-momentum of the heavy quark and
constituent particle before the collision, the heavy quark
drag and momentum diffusion can be described as,

Ai ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

1

γHQ

×
X

jM2→2j2ð2πÞ4δ4ðPþQ − P0 −Q0ÞfkðqÞ
× ð1þ akfkðq0ÞÞ½ðp − p0Þi�

¼ ⟪ðp − p0Þi⟫; ð18Þ

and

Bij ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

1

γHQ

×
X

jM2→2j2ð2πÞ4δ4ðPþQ − P0 −Q0ÞfkðqÞ

× ð1þ akfkðq0ÞÞ 1
2
½ðp − p0Þiðp − p0Þj�

¼ 1

2
⟪ðp − p0Þiðp − p0Þj⟫; ð19Þ

respectively. Note that the delta function ensures the
energy-momentum conservation and fk is the near-
equilibrium phase space distribution for the light quarks
and gluons as described in Eq. (3). Here, γHQ denotes the
statistical degeneracy factor of the heavy quark and jM2→2j
represents the matrix element for the two-body elastic
collisions of heavy quarks with light quarks, antiquarks,
and gluons [17]. It is important to emphasize that the heavy
quark drag quantifies the thermal average of the momentum
transfer, whereas the momentum diffusion measures the
square of the momentum transfer due to the interaction. As
Ai depends on the momentum, we have the following
decomposition of the heavy quark drag:

Ai ¼ piAðp2Þ; A ¼ ⟪1⟫ −
⟪p:p0⟫
p2

; ð20Þ

where p2 ¼ jpj2 and A is the drag coefficient of the heavy
quark. Similarly, the momentum diffusion Bij can be
decomposed in terms of longitudinal and transverse com-
ponents as follows:

Bi;j ¼
�
δij −

pipj

p2

�
B0ðp2Þ þ pipj

p2
B1ðp2Þ; ð21Þ

with the transverse and longitudinal diffusion coefficients
respectively taking the forms

B0 ¼
1

4

�
⟪p02⟫ −

⟪ðp0:pÞ2⟫
p2

�
; ð22Þ

B1 ¼
1

2

�
⟪ðp0:pÞ2⟫

p2
− 2⟪ðp0:pÞ⟫þ p2⟪1⟫

�
: ð23Þ

In the current analysis, the effect of anisotropy enters
through the momentum distribution function of the effec-
tive degrees of freedom. Incorporating the definition of the
distribution function as described in Eq. (3), the thermal
average of a function Fðp0Þ can be decomposed as follows:

⟪Fðp0Þ⟫ ¼ ⟪Fðp0Þ⟫0 þ ⟪Fðp0Þ⟫a; ð24Þ

where the isotropic and anisotropic parts respectively take
the forms
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⟪Fðp0Þ⟫0 ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

×
1

γHQ

X
jM2→2j2ð2πÞ4δ4ðPþQ − P0 −Q0Þ

× f0kðqÞð1þ akf0kðq0ÞÞFðp0Þ; ð25Þ

and,

⟪Fðp0Þ⟫a ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

×
1

γHQ

X
jM2→2j2ð2πÞ4δ4ðPþQ − P0 −Q0Þ

× ½δfkðqÞð1þ akf0kðq0ÞÞ þ akf0kðqÞδfkðq0Þ�
× Fðp0Þ: ð26Þ

Substituting Eq. (24) into Eqs. (20)–(23), we obtain the
heavy quark transport coefficients due to the elastic
collisions in the anisotropic medium as,

Xc ¼ Xc0 þ Xca; ð27Þ

where Xc0 is the transport coefficient in the equilibrated
medium within the EQPM description. The term Xca
denotes the nonequilibrium corrections to the heavy quark
transport coefficients due to the anisotropy in the QGP
medium. In general, the heavy quark transport coefficient
due to elastic scattering can be schematically described as,

Xc ¼
Z

phase space × interaction × transport part: ð28Þ

It is important to note that the thermal medium interactions
are embedded in the analysis through the effective fugac-
ities. The EQPM description modifies the interaction
strength through the effective coupling in the medium
while defining the scattering matrix [78]. The integrals
described in Eq. (25) and Eq. (26) can be further simplified
and solved in the center-of-momentum frame of the
colliding particles and have been well investigated; see
Refs. [17,18] for detailed discussions.

B. Radiative processes

Now, we consider the contribution of the radiative
process of the heavy quarks in the medium to the
transport coefficients. We consider the radiative process

HQðPÞ þ lðQÞ → HQðP0Þ þ lðQ0Þ þ gðK5Þ, where K5 ¼
ðE5; k⊥; kzÞ is the four-momentum of the emitted gluons.
To evaluate the transport coefficients due to the radiative
process, the two-body phase space and the matrix element
of the elastic collisional process in Eq. (28) need to be
replaced with the three-body counterparts, and hence we
have [46],

Xr¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

1

γHQ

×
Z

d3k5

ð2πÞ32E5

X
jMj22→3ð2πÞ4δ4ðPþQ−P0−Q0−K5Þ

×fkðqÞð1þakfkðq0Þð1þ f̂ðE5ÞÞθ1ðτ−τFÞθ2ðEp−E5Þ;
ð29Þ

where f̂ðE5Þ ¼ 1
exp ðβE5Þ−1 is the distribution of the emitted

gluon. Here, the theta functions impose restrictions on the
gluon radiation. The function θðEp − E5Þ imposes the
constraint that the energy of the emitted gluon should be
less than the energy of the heavy quarks. Similarly, the theta
function θ1ðτ − τFÞ denotes that the formation time of the
gluon (τF) should be less than the scattering time (τ) that
accounts for the Landau-Pomeranchuk-Migdal effect
[79,80]. Note that the current focus is on the soft gluon
emission i.e., K5 → 0. The invariant amplitude for radiative
processes (2 → 3 process) jMj22→3 can be described in
terms of jMj22→2 for the collisional process, the dead cone
factor, and the transverse momentum of the emitted gluon
(k⊥) as follows [81]:

jMj22→3 ¼ jMj22→2 × 12g2
1

k2⊥

�
1þM2

HQ

s
e2η

�−2
; ð30Þ

where s ¼ ðPþQÞ2 is the Mandelstam variable and
η is the rapidity of emitted massless gluons. The term

ð1þ M2
HQ

s e2ηÞ−2 is the suppression factor due to the dead
cone effect [82]. Substituting Eq. (3) into Eq. (29), we
obtain the radiative counterpart of the heavy quark transport
coefficients as follows:

Xr ¼ Xr0 þ Xra; ð31Þ

where the equilibrium and anisotropic parts respectively
take the forms

Xr0 ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

Z
d3k5

ð2πÞ32E5

1

γHQ

X
jMj22→3ð2πÞ4δ4ðPþQ − P0 −Q0 − K5Þ

× f0kðqÞð1þ akf0kðq0Þð1þ f̂ðE5ÞÞθ1ðτ − τFÞθ2ðEp − E5Þ; ð32Þ
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Xra ¼
1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3q0

ð2πÞ32Eq0

Z
d3p0

ð2πÞ32Ep0

Z
d3k5

ð2πÞ32E5

1

γHQ

X
jMj22→3ð2πÞ4δ4ðPþQ − P0 −Q0 − K5Þ

× ½δfkðqÞð1þ akf0kðq0ÞÞ þ akf0kðqÞδfkðq0Þ�ð1þ f̂ðE5ÞÞθ1ðτ − τFÞθ2ðEp − E5Þ: ð33Þ

Substituting Eq. (30) into Eq. (29), we can represent the
radiative counterpart of the heavy quark transport coef-
ficients in terms of the collisional part as follows:

Xr ¼ Xc

Z
d3k5

ð2πÞ32E5

12g2
1

k2⊥

�
1þM2

HQ

s
e2η

�−2

× ð1þ f̂ðE5ÞÞθ1ðτ − τFÞθ2ðEp − E5Þ: ð34Þ

Equation (34) can be further simplified by converting the
massless gluon four-momentum in terms of the rapidity
variable, and we have

E5 ¼ k⊥ cosh η; kz ¼ k⊥ sinh η; ð35Þ

with d3k5 ¼ d2k⊥dkz ¼ 2πk2⊥dk⊥ cosh ηdη. The interac-
tion time is related to the interaction rate Λ and the function
θ1ðτ − τFÞ imposes the constraint [83]

τ ¼ Λ−1 > τF ¼ cosh η
k⊥

; ð36Þ

which indicates k⊥ > Λ cosh η ¼ ðk⊥Þmin, where ðk⊥Þmin
denotes the minimum value of k⊥. Further, from the
function θ2ðEp − E5Þ, we have,

Ep > E5 ¼ k⊥ cosh η; ðk⊥Þmax ¼
Ep

cosh η
: ð37Þ

For the case of soft gluon emission of the heavy quarks in
the medium, we have E5 ¼ k⊥ cosh η ≪ T such that the
distribution function of the emitted massless gluons can be
approximated as,

1þ f̂ðE5Þ ¼ 1þ T
k⊥ cosh η

≈
T

k⊥ cosh η
: ð38Þ

The equilibrium and anisotropic parts of the heavy quark
transport coefficients can be obtained by solving Eq. (32)
and Eq. (33) within the above approximations. The
effective drag and diffusion coefficients of the heavy quarks
due to the collisional and radiative processes in the
anisotropic medium can be obtained by adding the colli-
sional and radiative parts assuming that the elastic collision
and soft gluon emission take place independently in the
QGP. Hence, from Eq. (27) and Eq. (31), the effective
transport coefficient within the EQPM takes the following
form:

X ¼ X0 þ Xa; ð39Þ

where X0 is the net equilibrium part and Xa is the total
anisotropic contribution to the radiative and collisional
parts. Hence, we have

X0 ¼ Xc0 þ Xr0; Xa ¼ Xca þ Xra: ð40Þ

We shall now proceed to investigate the effect of thermal
medium interactions and anisotropy of the medium on the
heavy quark transport coefficients and energy loss while
including the collisional and radiative processes.

IV. RESULTS AND DISCUSSIONS

A. Heavy quark radiative and collisional processes
in the anisotropic medium

We initiate the discussions with the momentum depend-
ence of the heavy quark drag and diffusion coefficients in
the equilibrated medium while incorporating the thermal
medium interactions. The EQPM description of the heavy
quark transport coefficients is described in Eq. (39). The
drag and diffusion coefficients of heavy quarks in the
noninteracting QGP [the medium described by an ultra-
relativistic gas of quarks/antiquarks and gluons (ideal EoS)]
has been initially studied by including collisional inter-
actions [17] and later with the radiative process in the
medium [46]. In the current analysis, the EoS effects are
incorporated through the momentum distribution function
of the effective degrees of freedom via effective fugacities
and through the effective coupling. The momentum behav-
ior of the drag and diffusion coefficients is depicted in
Fig. 1 for the LHC energy and in Fig. 2 for the RHIC
energy. The effect of thermal medium interactions on the
heavy quark transport coefficients has already been studied
in Ref. [54]. In the asymptotic limit, the EQPM results
reduce back to the results of noninteracting QGP. The
impact of the gluon radiation by heavy quarks on the drag
and diffusion coefficients is prominent throughout the
chosen range of momentum for the RHIC and LHC
energies. This indicates that the inclusion of the radiative
counterpart is essential for the analysis of measured
observables from collision experiments at the RHIC and
LHC. It is observed that the collisional part exceeds the
radiative part within the EQPM for low heavy quark
momentum, especially in the higher temperature regimes.
However, in higher momentum regimes, the radiative
contribution to the transport coefficients is dominant over
the collisional counterparts.
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We have incorporated the effects of anisotropy on the
heavy quark transport through the momentum distribution
functions of the constituent particles in the medium. The
heavy quark collisional and radiative processes are sensi-
tive to the anisotropy in the medium, and the effect can be
quantified in terms of the drag and diffusion coefficients.
The momentum dependence of the drag and diffusion
coefficients is depicted in an anisotropic medium in
Fig. 1 for the LHC energy at T ¼ 480 MeV and in
Fig. 2 for the RHIC energy at T ¼ 360 MeV. The effect
of instability and hence the anisotropy in the medium is
related to the phenomenologically known jet quenching
parameter in the collision experiments. For the quantitative
estimation, we choose q̂k ¼ 3.7T3 [84], the thermalization
time τ ¼ 0.6 fm for the LHC energy, and q̂k ¼ 4.6T3 [84],
τ ¼ 0.9 fm for the RHIC energy in the current analysis.
The impact of anisotropy on the collisional process has
been investigated in Ref. [65]. It is observed that the
radiative process of the heavy quark significantly modifies
the transport coefficients in the anisotropic medium. The
impact of anisotropy on the drag coefficient due to the
elastic and inelastic processes for the LHC energy is shown

in Fig. 1 (left panel). We observed that the instability
creates a lesser hindrance for the heavy quark motion in the
QGP while emitting soft gluon radiation at low momentum.
However, the collisional and radiative contributions of the
drag coefficient increase with the anisotropy for the heavy
quark momentum above p ¼ 5 GeV at the LHC energies.
Notably, the effect of anisotropy is more prominent in the
radiative process in comparison with the collisional process
of heavy quarks in the medium. Further, we verified that the
same observation of the effect of anisotropy on the heavy
quark coefficient holds true for the RHIC energies too.
The heavy quark diffusion coefficients B0 and B1 are

plotted as a function of momentum in Fig. 1 (middle and
right panels) for the LHC energy and in Fig. 2 (middle and
right panels) for the RHIC energy. The radiative process is
seen to have a dominant contribution to the heavy quark
momentum diffusion in comparison with the collisional
process in the medium, especially for the high-momentum
regimes. In contrast to the drag coefficient, the anisotropy
has a weaker dependence on B0 and B1 for the low-
momentum regime. As expected, the momentum
anisotropy of the medium has different ramifications on
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FIG. 2. Momentum dependence of the heavy quark drag coefficient (left panel), diffusion coefficient B0 (middle panel), and B1 (right
panel) for the RHIC energy at T ¼ 360 MeV in an anisotropic QGP medium.
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FIG. 1. Momentum dependence of the heavy quark drag coefficient (left panel), diffusion coefficient B0 (middle panel), and B1 (right
panel) for the LHC energy at T ¼ 480 MeV in an anisotropic QGP medium.
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the heavy quark transport in various directions. This is
reflected in the momentum dependence of B0 and B1 in the
anisotropic medium. It is observed that the anisotropy in the
medium suppresses the diffusion coefficient B0, whereas
B1 shows the opposite behavior in the anisotropic medium.

B. Heavy quark collisional and radiative energy loss

A heavy quark travels through the medium and may lose
its energy by elastic collisions with the constituent particles
in the medium and by radiating gluons in the medium. The
net energy loss of the heavy quark in the medium can be
quantified in terms of the drag force that offers resistance to
the heavy quark’s motion. The differential heavy quark
energy loss can be defined as follows [18]:

−
dE
dL

¼ Aðp2; TÞp: ð41Þ

The energy loss of a heavy quark due to the hard and soft
collision processes in the medium has been investigated in
Ref. [25]. Further, the additional mechanism of soft gluon
radiation enhances the energy loss. In Fig. 3, the heavy
quark energy loss in the medium due to elastic and inelastic
processes is plotted as a function of its momentum for the
LHC and RHIC energies. The realistic EoS effects suppress
the collisional and radiative energy loss of the heavy quark
in the interacting medium. Notably, the EoS effects on the
heavy quark energy loss will be negligible in the asymp-
totic limit of the temperature as the medium behaves as an
ultrarelativistic noninteracting system at very high temper-
atures. The heavy quark’s energy loss in the QGP medium
critically depends on its momentum and the temperature of
the medium. In Ref. [21], the authors have reported that the
nonequilibrium corrections such as shear and bulk viscous
corrections have a weaker dependence on the heavy quark
energy loss in the QGP medium. In the current analysis, we
studied the effect of the momentum anisotropy that induces

instability in the QGP medium leading to anomalous
transport process. It is observed that the momentum
anisotropy of the medium has a visible impact on the
heavy quark energy loss. This observation holds true for
both the LHC and RHIC energies. The collisional and
radiative energy loss of a heavy quark for the RHIC energy
is reduced by approximately 30% in comparison with that
for the LHC energy. It is also important to emphasize that
the radiative contribution to the energy loss dominates the
collisional part above p ¼ 5 GeV in the isotropic and
anisotropic QGP medium. However, in the low-momentum
regions, the collisional energy loss is higher than that from
the soft gluon radiation of heavy quark in the medium for
both the LHC and RHIC energies.

C. Nuclear modification factor RAA

To study the impact of anisotropy by heavy quarks in the
medium on the experimental observable, we have estimated
the nuclear suppression factor RAA, employing the charm
quark distribution functions at initial time t ¼ τi and final

time t ¼ τf as RAA ¼ fτf ðpÞ
fτi ðpÞ

. This requires adequate knowl-

edge of heavy quark dynamics in the QGP medium. The
standard approach to obtain the heavy quark momentum
evolution in the medium is to solve the Fokker-Plank
equation stochastically using the Langevin equations. The
Langevin equations of motion for heavy quarks take the
following forms [22,85]:

dxi ¼
pi

E
dt; ð42Þ

dpi ¼ −Apidtþ Cijρj
ffiffiffiffiffi
dt

p
; ð43Þ

where dxi and dpi are respectively the position and
momentum shift in each time interval dt. Here, A is the
drag force and Cij denotes the covariance matrix that
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FIG. 3. Momentum dependence of collisional and radiative energy loss of the heavy quark in the medium for the LHC energy at
T ¼ 480 MeV (left panel) and the RHIC energy at T ¼ 360 MeV (right panel).
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describes the stochastic force in terms of independent
Gaussian-normal-distributed random variables ρj with
hρiρji ¼ δij and hρii ¼ 0. The matrix Cij is related to
the heavy quark momentum diffusion coefficients as
follows:

Cij ¼
ffiffiffiffiffiffiffiffi
2B0

p �
δij −

pipj

p2

�
þ

ffiffiffiffiffiffiffiffi
2B1

p pipj

p2
B1: ð44Þ

In the limit B0 ¼ B1 ¼ D, we have Cij ¼
ffiffiffiffiffiffiffi
2D

p
δij. It is

important to note that this assumption is strictly valid for
the static limit (p → 0), and is also usually employed at
finite momentum for heavy quark motion in the QGP
medium [12,31,34,40,85,86]. In the momentum space,
at τi, the charm quarks are distributed according to the
fixed-order+next-to-leading-log calculations, taken from
Refs. [87,88]. Our aim is to highlight the impact of the
anisotropy presented in this manuscript on RAA. We have
computed the RAA in a static medium at a fixed temperature
for both the LHC and RHIC energies at the level of charm
quarks. To study the heavy quark momentum evolution
within Langevin dynamics, we implemented both the drag
and diffusion coefficients presented in Fig. 1 and Fig. 2. In
this present calculation we consider τf ¼ 6 fm=c which
can be roughly taken as the typical lifetime of QGP
produced at RHIC and LHC energies. In a future effort,
we will study the heavy quarks observable in an expanding
medium, including hadronization mechanics and the pos-
sible impact of the fluctuation-dissipation theorem.
The momentum dependence of RAA is estimated in the

anisotropic medium while including the collisional and
radiative processes of heavy quarks in the QGP within the
Langevin dynamics. The effects of anisotropy and soft
gluon emission of heavy quarks in the medium enter
through the drag and diffusion coefficients, adding both
collisional and radiative drag and diffusion coefficients
[83,89,90]. An alternative approach to include the radiative

energy loss in the Langevin framework can be found in
Refs. [29,86].
In Fig. 4, RAA is plotted as a function of pT at the LHC

(left panel) and RHIC energies (right panel). The gluon
emission by heavy quarks in the QGPmedium substantially
modifies the nuclear suppression factor. We observe a
strong suppression (small RAA) with the inclusion of the
radiative process along with the elastic collisional process
of heavy quarks in the QGP medium. Notably, in the high-
pT regimes, the RAA due to the radiative process is smaller
than that due to the elastic interaction. We observe a similar
trend for RAA for both the LHC and RHIC energies. The
impact of anisotropy of the medium on RAA is further
displayed in Fig. 4. The effects of momentum anisotropy on
the heavy quark transport coefficients seem to have a
visible impact on RAA for the LHC as well as RHIC
energies. In the higher pT regimes, the anisotropic effects
decrease RAA leading to a stronger suppression. This
observation is a consequence of the fact that the instability
(momentum anisotropy) offers a larger hindrance for the
charm quark motion in the QGP at high momentum.

V. SUMMARY AND OUTLOOK

In conclusion, we have investigated the dynamics of
heavy quarks undergoing radiative energy loss along with
the elastic collisions with the constituent particles in an
anisotropic hot QCD medium. The elastic and inelastic
(soft gluon radiation) interactions of the heavy quark with
the medium have been studied in terms of the drag and
diffusion coefficients within the framework of the Fokker-
Planck approach. The thermal QCD medium interactions
were incorporated into the analysis through the temper-
ature-dependent quark, antiquark, and gluonic effective
fugacities within the EQPM description. We have observed
that the gluon radiation emission has a significant con-
tribution to the heavy quark drag and diffusion coefficients
in the QGP medium.

FIG. 4. The nuclear suppression factor (RAA) as a function of pT for a charm quark for the LHC energy at T ¼ 480 MeV (left panel)
and the RHIC energy at T ¼ 360 MeV (right panel).
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We have conducted a systematic analysis on the momen-
tum dependence of the heavy quark in an anisotropic
(momentum) hot QCDmedium. The momentum anisotropy
that may lead to the Chromo-Weibel instability leads to an
effective Boltzmann-Vlasov equation. The nonequilibrium
momentum distribution of the effective degrees of freedom
was obtained by solving the ensemble-averaged diffusive
Vlasov-Boltzmann equation. The effects of momentum
anisotropy on the heavy quark transport coefficients were
seen to be quite significant for both the collisional and
radiative processes in the medium. Moreover, these aniso-
tropic corrections induced by the instabilities in the QCD
medium are essential to maintaining theoretical consistency
in the description of heavy quark transport in the near-
equilibrium medium. Further, we have studied the impact of
momentumanisotropyon the collisional and radiative energy
losses of the heavy quark in the hot QCD medium. The
effects of anisotropy and gluon emission by heavy quarks in
the medium were found to have noticeable effects on the
momentum dependence of the nuclear suppression factor
RAA both at the RHIC and LHC energies.

The effects of the realistic EoS and momentum
anisotropy on the heavy quark transport coefficients
may have a significant impact on flow coefficients of
heavy mesons at the LHC and RHIC. We intend to
investigate these phenomenological aspects in the near
future. The drag and diffusion coefficients, while includ-
ing the radiative and collisional processes of the heavy
quark in the expanding medium within the framework of
dissipative hydrodynamics, will be taken up for inves-
tigation in the future. We intend to work on the gluon
emission by the charm quark in a magnetized medium
soon in follow-up work.
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