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We study Landau gauge gluon propagators in two-color QCD at a finite quark chemical potential (μq)
and temperature (T). We include medium polarization effects at the one loop by quarks into massive gluon
propagators and compare the analytic results with the available lattice data. We particularly focus on the
high density phase of color-singlet diquark condensates whose critical temperature is ∼100 MeV with a
weak dependence on μq. At zero temperature, the color singlet condensates protect the IR limit of electric
and magnetic gluon propagators from the medium screening effects. At a finite temperature, this behavior
remains true for the magnetic sector, but the electric screening mass should be generated by thermal, and
hence gapless, particles which are unbound from the diquark condensates. Treating thermal excitations as
quasiquarks, we found that the electric screening develops too fast as compared to the lattice results.
Beyond the critical temperature for diquark condensates, the analytic results are consistent with the lattice
results.
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I. INTRODUCTION

Recently, there have been growing interests on the
dynamics at baryon density ranging from ∼5n0 to
∼40n0 in the context of neutron star physics [1–5]. In this
domain, baryons are supposed to overlap, and hence,
quarks and gluons should be natural degrees of freedom
[6,7], while the matter is likely to be strongly correlated as
one can infer from the breakdown of the perturbative
calculations around ∼40n0 [8,9]. As the degrees of freedom
are rather clear-cut, it is reasonable to expect the existence
of some resummation with which strong αs effects can be
absorbed into the parameters of quasiparticles, e.g., effec-
tive mass, effective residues, so on, and after which residual
interactions should become under control.
Along this line of thought, recently, we began to study

quasiparticle descriptions of quarks and gluons in very
dense matter [10,11]. Our descriptions are based on the
Landau gauge QCD, which has been most extensively
studied in functional methods [12–16] and lattice gauge
theories at a zero baryon density [17,18]. In this gauge, the
gluon propagators in the IR are tempered, and with a

sufficiently large gluon mass, the infrared divergences
associated with the perturbative running coupling constant
can be avoided. Especially in the decoupling solution,
which has been favored in lattice calculations, a gluon
acquires the mass, mg ∼ 500 MeV. These findings can be
efficiently captured in the massive extension of the Yang-
Mills theory in the Landau gauge [19–24]. We expect that
the presence of this mass makes our Feynman graph
calculations better organized, sharpening our questions
on the genuinely nonperturbative effects.
This point of view must be tested for finite density

calculations. The two-color QCD is suitable for this
purpose [25,26], as this system allows us to perform lattice
Monte Carlo simulations at a finite chemical potential
[27–48]. The phase structure was analyzed by several
analytic or continuum methods [49–57]. While at a low
density, a dilute matter in two-color QCD is very different
from the three-color QCD as the baryons in the former are
bosons, at high densities, baryons overlap and the quark
Fermi sea will be anyway established. It is this regime
where we try to test our conjecture on the quasiparticle
descriptions for the application to three-color QCD.
In the previous papers, we have studied gluon propa-

gators with [11] and without [58] gluon masses by
including the medium quark loops in the gluon polar-
izations. The calculations were performed at zero temper-
ature in the presence of the color-singlet diquark
condensates. At one loop, neither electric nor magnetic
screening masses are generated; the electric sector is
protected by the quark gaps, while the magnetic sector
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does not acquire the Meissner mass as the phase fluctua-
tions of condensates do not couple to gauge fields.1

Including the gluon mass tempers the impact of medium
polarization effects both in electric and magnetic propa-
gators, while the presence of diquark gaps substantially
weakens the electric corrections. These two effects seem
necessary to reproduce the lattice and not to spoil the
systematics of computations. As for corrections beyond the
one loop, the case without diquark gaps has been studied in
a Dyson-Schwinger framework, and this work shows that
electric propagators are oversuppressed compared to the
lattice data [55]. This suggests that the diquark gaps, among
other nonperturbative effects, are indispensable to account
for the lattice data.
Compared to the results based on pure perturbative

gluons and quarks, the aforementioned quasiparticle pic-
ture substantially improves the consistency between the
analytic results and the lattice’s at zero temperature [11]. In
this paper, we extend the analyses to the thermal medium.
One of new questions arising at a finite temperature is

whether thermal excitations appear as quarks, or those
excited quarks form color-singlet objects as in vacuum. For
the schematic picture, see Fig. 1. Answering this question
has the direct relevance to the quark-hadron continuity at a
finite temperature [61] and to the quarkyonic matter
conjecture which states that the bulk quark Fermi sea
and baryonic structure are near the Fermi surface [62–74].
Also, since the lattice data available so far have not reached
temperatures less than T ∼ 40 MeV, it is important to
prepare analytic results whose setup is close to the lattice’s.
The smallest temperature reached on the lattice is

≃44 MeV. This temperature is not very low compared to
the critical temperature of the diquark superfluidity,
TSF ≃ 90–120 MeV, found on the lattice. Therefore, we
expect that the temperature corrections are not negligible.
Below, in most cases, we will use the Bardeen-Cooper-
Schrieffer (BCS) formulas, which are valid at weak coupling
[75], as our baseline. In this approximation, the diquark gap
at zero temperature is related to the critical temperature as2

ΔT¼0 ≃ TSF=0.57 ≃ 158 − 211 MeV; ð1Þ

and the temperature dependence is

ΔT ≃ ΔT¼0ð1 − T=TSFÞ1=2: ð2Þ

These should be reasonable estimates for a chemical
potential μq ≳ 1 GeV where we expect the validity of weak
coupling pictures. We simply assume its extrapolation to a
lower μq to give a useful guide.
Provided ΔT¼0 ¼ 200 MeV, the gap at T ≃ 44 MeV is

ΔT ≃ 157 MeV. If thermal excitations are quarks, the
Bolzmann factor is ∼e−ΔT=T ∼ e−157=44 ∼ 0.03. But this
suppression factor is not small enough to dominate over
the phase space factor for low energy quarks, ∼p2

F

ffiffiffiffiffiffiffiffiffi
ΔTT

p
,

where pF is the quark Fermi momentum. Thermal quarks
behave as gapless particles as they are already excited and
hence, contribute to the electric screening, in the same way
as quarks in a normal phase. This introduces non-negligible
effects in the electric sector. Meanwhile, in the magnetic
sector, no magnetic mass is generated.
Another interesting possibility is that thermal excitations

appear as hadrons, rather than individual thermal quarks.
Then, at low temperature, thermal corrections from them
are more strongly suppressed than in the thermal quark
case. This should continue until thermal quarks and gluons
are liberated through the overlap of thermally excited
hadrons. This liberation of colors is driven by entropic
effects that compensate the Boltzmann factor, like in the
case of a Hagedorn gas [78–81]. In this picture of
deconfinement, the critical temperature decreases as
density increases, as more phase space is available for
low energy excitations, and hence, the entropy increases
(provided that ΔT is not sensitive to density or μq). With
this picture in mind, we examine the temperature depend-
ence of the lattice data at high density.
This paper is organized as follows: In Sec. II, we present

the one-loop expressions for the polarization tensors from
gluonic loops and quark loops. In Sec. III, after summa-
rizing the setup used for the lattice simulations, we compare
our one-loop results with the lattice’s. Section IV is devoted
to summary and discussions.

FIG. 1. Thermal excitations at low and high temperature. At
low temperature, a thermal gas is made by hadrons or quarks.
At high enough temperature, the gas becomes dense and get
percolated. The percolation may happen within the superfluid
phase if the phase space for low energy excitations is sufficiently
large, e.g., at high density.

1Similar situations have been discussed in two-flavor color
superconductivity [59,60].

2The critical temperature of the BCS is modified by the
corrections such as the Popov and Gor’kov-Melik-barkhudarov
corrections [76] even in the weak coupling limit, reducing the
critical temperature by a factor ≃2.2. But these corrections are
essentially modifications of effective interactions and reduce Δ in
the same way. So the applicability of the BCS ratio Tc ≃ 0.57Δ
can be actually broader than that for the BCS estimate of each
absolute value. See, e.g., Ref. [77] for a nice summary.
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II. ANALYTIC RESULTS

One-loop renormalized gluon polarization tensor in
massive Yang-Mills (YM) theories has been computed in
Ref. [20]. The results read

ΠR
YMðkÞ ¼

g2sK2

192π2

�
111s−1 − 2s−2 þ ð2 − s2Þ lnðsÞ

þ 2ðs−1 þ 1Þ3ðs2 − 10sþ 1Þ lnð1þ sÞ
þ ð4s−1 þ 1Þ3=2ðs2 − 20sþ 12Þ

× ln

� ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p
−

ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
�
− ðs ↔ μ2R=m

2
gÞ
�
; ð3Þ

where s ¼ K2=m2
g, with K2 ¼ k24 þ k2 being the squared

four momenta in the Euclidean space, mg the gluon mass,
and gs the coupling constant. The renormalization scale μR
is chosen to be ≃1 GeV, where the overall size of our gluon
propagators is set to reproduce the lattice propagator at μR.
When we consider finite temperature gluon propagators,
we neglect thermal gluon loops, which are suppressed at a
temperature (T ≲ 200 MeV) substantially smaller than the
energy of massive gluons (mg ∼ 500 MeV).
In a medium, the polarization effects caused by quarks

are computed in the Nambu-Gor’kov formalism assuming
the presence of a momentum independent gap ΔT . It is
convenient to decompose the quark polarization tensor into
the vacuum and medium pieces. Together with the vacuum
counterterms, the renormalized polarization function is

Πq;R
E;M ¼ Πq

E;Mjbare − k2δZg
¼ Πq;R

vac þ δΠq
E;M; ð4Þ

where the renormalized vacuum polarization and the
medium corrections are

Πq;R
vac ¼ Πq

vacjbare − k2δZg
;

δΠq
E;M ¼ Πq

E;Mjbare − Πq
vacjbare: ð5Þ

The vacuum part is treated as in usual perturbation
theories. The second term is the bare medium and vacuum

contributions, both of which are UV divergent, and the
subtraction leads to the UV finite expression. In the usual
method to pick up poles of p4 integrals, however, the
implicit regularization of spatial momenta3 breaks the
gauge invariance [58]. The artifacts automatically cancel
if we use the same quark propagators for the medium and
vacuum, but with such conditions, we would fail to capture
the relevant physics associated with changes in quasipar-
ticles. Fortunately, the Ward identity allows us to identify
the gauge variant artifacts, so one can use gauge variant
counterterms to cancel them.4 Including such procedure,
the expression becomes [11]

δΠq
E;M ¼ δΔSΠ

q
E;M þ δΔμqΠ

q
E;M: ð6Þ

The first term takes care of changes in quark propagators
and is computed in the dimensional regularization,

δΔSΠðkÞjdim reg ¼−K2
g2s
2π2

×
Z

1

0

dxxð1− xÞ ln ðM̃qÞ2þ xð1− xÞK2

ðMvac
q Þ2þ xð1− xÞK2

;

ð7Þ

with M̃q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

T þM2
q

q
. Here, Mvac

q is the constituent

quark mass in vacuum whose value is set to
Mvac

q ¼ 0.3 GeV, while Mq is the mass at high density,
which should be close to the current quark mass. We set
Mq ¼ 0.1 GeV, considering the large pion mass,
mπ ∼ 0.7 GeV. The form of M̃q is uniquely fixed to cancel
the artifacts in the second term in Eq. (6). The expression is
given by (

R
q ≡

R
d3q=ð2πÞ3),

δΔμqΠ
q
E;MðkÞj3d reg ¼ Πq

E;MðkÞjbare
− Πq

E;MðkÞjMq→M̃q;μq→0;Δ→0

bare ; ð8Þ

where

Πq
E;MðkÞjbare ¼ g2s

X
s;s0¼p;a

Z
q
Kss0

E;Mðqþ;q−Þ½Css0E;Mðqþ;q−ÞGss0 ðqþ; q−Þ þ C̃ss
0

E;Mðqþ;q−ÞG̃ss0 ðqþ; q−Þ�: ð9Þ

Here, q� ¼ q� k=2. Below, we write Eq� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ q2
�

q
and the excitation energies for quasiparticles and

quasiantiparticles as ϵ�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq� − μqÞ2 þ Δ2

T

q
and ϵ�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq� þ μqÞ2 þ Δ2

T

q
, respectively.

4The procedure here uniquely specifies the gauge variant counterterms for a given external momentum k. But, in principle, there are
still possibilities that the dependence on the gauge variant regularization would enter gauge invariant quantities as finite terms. There are,
at least to us, no obvious way to identify such contributions. We leave this problem for the future.

3We take jpj → ∞ only after picking up the residue.
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The explicit forms of these factors are as follows: the
kinematic factors are

Kpp
E ¼ Kaa

E ¼ 1þ q⃗2 − k2=4þM2
q

EqþEq−

;

Kpa
E ¼ Kap

E ¼ 1 −
q⃗2 − k2=4þM2

q

EqþEq−

;

Kpp
M ¼ Kaa

M ¼ −1þ ðjq⃗j cos θÞ2 − k2=4þM2
q

EqþEq−

;

Kpa
M ¼ Kap

M ¼ −1 −
ðjq⃗j cos θÞ2 − k2=4þM2

q

EqþEq−

; ð10Þ

where k̂ ¼ k=jkj and cos θ is the angle between q and k;
the coherence factors are

CppE;M ¼ 1

2

�
1 −

ðEqþ − μqÞðEq− − μqÞ � jΔT j2
ϵþp ϵ−p

�
;

CaaE;M ¼ 1

2

�
1 −

ðEqþ þ μqÞðEq− þ μqÞ � jΔT j2
ϵþa ϵ−a

�
;

CpaE;M ¼ 1

2

�
1þ ðEqþ − μqÞðEq− þ μqÞ ∓ jΔT j2

ϵþp ϵ−a

�
; ð11Þ

and

C̃ppE;M ¼ 1

2

�
1þ ðEqþ − μqÞðEq− − μqÞ � jΔT j2

ϵþp ϵ−p

�
;

C̃aaE;M ¼ 1

2

�
1þ ðEqþ þ μqÞðEq− þ μqÞ � jΔT j2

ϵþa ϵ−a

�
;

C̃paE;M ¼ 1

2

�
1 −

ðEqþ − μqÞðEq− þ μqÞ ∓ jΔT j2
ϵþp ϵ−a

�
; ð12Þ

where CpaE;Mðqþ; q−Þ ¼ CapE;Mðq−; qþÞ and C̃paE;Mðqþ; q−Þ ¼
C̃apE;Mðq−; qþÞ; finally, the propagator part is

Gss0 ðqþ; q−Þ ¼
1

2
ð1 − nðϵþs Þ − nðϵ−s0 ÞÞ

×

�
1

ik4 þ ϵþs þ ϵ−s0
þ 1

−ik4 þ ϵþs þ ϵ−s0

�
;

ð13Þ

and

G̃ss0 ðqþ; q−Þ ¼ −
1

2
ðnðϵþs Þ − nðϵ−s0 ÞÞ

×
�

1

ik4 þ ϵþs − ϵ−s0
þ 1

−ik4 þ ϵþs − ϵ−s0

�
:

ð14Þ

The function nðxÞ is the Fermi-Dirac distribution nðxÞ ¼
1=ðeβðx−μÞ þ 1Þ. Below, we focus on the static behaviors of
the gluon propagators at k4 ¼ 0, where the results are most
sensitive to the nonperturbative effects. Table I summarizes
the coherence and kinematical factors for electric and
magnetic gluons, and the factors from the propagators.
The zero temperature limit was discussed in the previous

papers [11,58]; the electric part is dominated by the
particle-hole contributions for any phases, as one can see
from the kinematic factor. Then, in the case of color-singlet
diquark condensed phases, the coherence factor vanishes
due to the quark gap, while the gaps also introduce the
infrared cutoff5 ∼ΔT in the propagator factor Gpp. These
facts together lead to vanishing electric polarization for
k → 0. On the other hand, the magnetic contributions come
from everywhere, from (pp), (pa), and (aa), which are
correlated through the gauge invariance; for quark propa-
gators in normal or color-singlet diquark condensed phases,
all the contributions are assembled to cancel, leaving the
vanishing magnetic contributions.
At a finite temperature, the magnetic sector for the static

limit is unchanged, while the electric sector is no longer
protected by the quark gap. There are thermally excited
quarks that can be easily perturbed by external fields; these
thermal quarks are gapless. Moreover, they are not arranged
into color singlet objects. Accordingly, the static limit
(k0 ¼ 0, jkj → 0) yields

G̃pp → −
∂nðϵpÞ
∂ϵp ¼ 1

T
eϵp=T

ðeϵp=T þ 1Þ2 ∼
e−ϵp=T

T
;

C̃ppE → 1: ð15Þ

Here, the coherence factor is 1, like in a normal phase. This
contribution adds the Debye mass to the electric sector.
This correction is very sensitive to the size of gap that
controls the abundance of thermal quarks. At a low
temperature, its size is ∼e−ΔT=T=T, exponentially sup-
pressed. As the temperature approaches the critical temper-
ature of diquark condensations, ΔT approaches zero; here,
the factor G̃pp is no longer exponentially suppressed and
becomes ∼1=T, and combining it with the phase space
factor ∼Tp2

F and coupling constants leads to the Debye
mass of m2

D ∼ g2sT−1ðTp2
FÞ ∼ g2sp2

F.

III. COMPARISON WITH THE LATTICE DATA

As in our previous study [11], we will use the data in
Ref. [28] based on the gauge configurations of unimproved
Wilson gauge action with two flavors of unimproved
Wilson quarks. The pion mass is mπ ¼ 717ð25Þ MeV,
so the onset chemical potential of the baryon density is

5If ΔT ¼ 0, the CppGpp becomes finite in the static limit,
producing the Debye mass.
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μc ¼ mπ=2 ≃ 358 MeV.6 As the explicit chiral symmetry
breaking is so large, we regard pions as two constituent
quarks in the same way as ρ mesons or other mesons. The
critical temperature of deconfinement, TD, is defined by the
Polyakov loop and TD ¼ 217ð23Þ MeV.
Our previous paper has compared the one-loop results

with the lattice data for β ¼ 1.9 and Nt × N3
s ¼ 24 × 163

with the inverse lattice spacing a−1 ≃ 1.06 GeV, the spatial
size Ls ≃ 2.98 fm, and the temporal size Lt ≃ 4.46 fm.
While the data for this Lt was presented as the zero
temperature result [28], this corresponds to T ≃ 44 MeV
if we interpret 1=Lt as the temperature. At zero density, the
result at Lt > Ls is often interpreted as the zero temperature
result as the finite volume makes the lowest momentum
∼1=Ls and hence, lifts up the energy. But at finite density,
there is the Fermi sea, and large momentum states do
not necessarily mean high energy states.7 Following
Ref. [27], we literally take 1=Lt as the temperature. These
temperature corrections were not taken into account in our
previous analyses, and we shall include these corrections.
In this paper, we compare our finite temperature expres-

sion with the lattice data. The data set for β ¼ 2.1 and
Ns ¼ 16 with the inverse lattice spacing a−1 ¼ 1.41 GeV
covers the wide range of temperatures, and this data set will
be used in this work. The spatial size is Ls ≃ 2.21 fm, and
the temporal size covers the temperature range from T ≃
44 MeV (Nt ¼ 32) to ≃353 MeV (Nt ¼ 4). See
Appendix B of Ref. [28] where details of the simulation
setup are summarized.
In order to describe the finite temperature, it is crucial to

know the size and temperature dependence of the gap. As a
baseline, we simply assume the BCS expressions in
Eqs. (1) and (2). The critical temperature for the diquark
condensation, TSF is ≃90–120 MeV for μq ¼ 705 MeV,
and at high density, it is not very sensitive to changes in μq.
Thus, throughout our analyses, we take

ΔT¼0 ¼ 200 MeV; ð16Þ
for the zero temperature gap, and the corresponding critical
temperature is

TSF ¼ 114 MeV: ð17Þ
Below, we will substitute these expressions unless other-
wise stated.
For comparisons of our results with the lattice data, we

need to multiply an overall factor as the latter results were
not renormalized. We use the expression,

Dlattice
E;M ðkÞ ¼ ZlatticeD

analytic
E;M ðkÞ; ð18Þ

and chose Zlattice ¼ 3.0 throughout. We use the lattice
results in Ref. [28], the bottom panels in Fig. 11, top
panels in Fig. 16, and top panels in Fig. 19. The domains
we study in Sec.III A-C are summarized in Fig. 2, together
with a schematic phase diagram.

A. The μq dependence at T ≃ 44 MeV

We first consider the low temperature case. For this case,
the dependence of gluon propagators on mg, ΔT¼0, αs, and
momenta were studied in detail in Ref. [11], so in this
paper, we limit ourselves to fewer cases.
To get ideas about the overall impact of parameters and the

tendency of electric and magnetic propagators, in Fig. 3, we
first show themg andΔT¼0 dependence of gluon propagators
(see also Ref. [11]). The αs is fixed to 1.0. We note that there
is disparity in the magnitudes of electric and magnetic
propagators already in vacuum due to the fact that the lattice
setup is anisotropic in temporal and spatial directions.
Keeping this in mind, we vary mg by �10%, which changes
the magnitudes of propagators by ∼10% in the IR limit. The
ΔT¼0 dependence is very large in the electric sector, but in the
magnetic sector, such a dependence is not visible. In a
medium, the analytic results show that the magnetic propa-
gators have the paramagnetic enhancement at finite momenta
compared to the vacuum case. It is difficult to see this
enhancement in the lattice results perhaps because the second
smallest momentum is too large, jkj ≃ 0.55 GeV.
Below, we examine the μq dependence of static gluon

propagators at three momentum data points. Shown in
Fig. 4 is the μq dependence of the electric (upper) and
magnetic (lower) gluon propagators DE;MðkÞ at momenta
jkj ¼ 0.0, 0.55, 1.08 GeV. The lattice data are shown with
error bars, and the corresponding analytic results are shown
with three lines; from bold to thin lines, we show the results
for αs ¼ 0.0, 0.5, 1.0. For the electric and magnetic masses
(tree level), we chose mE ¼ 0.6 GeV and mM ¼ 0.5 GeV,
respectively, to get good overall fit.
The overall behaviors are that, in both sectors, the

gluon propagators are largely insensitive to μq, except
μq ≳ 0.8 GeV, where the propagator at jkj ¼ 0 starts to get

FIG. 2. A schematic phase diagram. The lines A, B, C indicate
the domains analyzed in Secs. IIIA–IIIC. See also Fig. 10 in
Ref. [30] and Fig. 2 in Ref. [46] based on the Polyakov loop.

6The impact of explicit symmetry breaking was examined in
detail by chiral effective models; see Ref. [54].

7We acknowledge Professors A. Maas and J. Skullerud for
instructions on this point.
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suppressed gradually. It is not easy which αs ¼ 0.0 or 0.5
should be regarded as the better choice, but it seems that the
choice αs ¼ 1.0 leads to too large changes, especially at
momenta jkj ¼ 0.55 GeV, in the electric sector due to the
thermal Debye screening and in the magnetic sector due to
the paramagnetic enhancement.
Here, we mention briefly the trend seen in the magnetic

sector for μq ≳ 0.8 GeV where the magnetic propagators
seem to decrease for increasing μq. This trend cannot be
explained in our one-loop calculations. We note that in this
domain of μq and T, the Polyakov loop starts to grow [30].
So we guess that the trend for μq ≳ 0.8 GeV in Fig. 4
originates from the beyond one-loop effects; presumably,
we need to address the modification of gluon mass at the
nonperturbative level.

B. The μq dependence at T ≃ 118 MeV

Next we turn into higher temperature, T ≃ 118 MeV, and
examine the μq dependence of the gluon propagators

(Fig. 5). We reduce the gluon mass slightly, ∼10%, instead
of manifestly computing the gluon loop at a finite temper-
ature. At this temperature, the diquark condensates melt or
are vanishingly small. Also, the lattice results show that the
Polyakov loop is large, meaning the abundance of thermal
quarks. Therefore, we may expect that the lattice data can be
explained by computations based on deconfined thermal
quarks.
The comparison between analytic results and the lattice

results supports this picture. The electric propagators are
drastically reduced by the Debye screening as μq increases,
and the trend in the lattice data are reproduced for all spatial
momenta. As for the magnetic sector, we have not fully
understood the growth of the propagator at jkj ¼ 0 for
increasing μq, but the growing behavior at jkj ¼ 0.55 and
1.08 GeV is reasonably consistent with the paramagnetic
enhancement in analytic computations.

FIG. 3. The static propagators at μq ¼ 0.71 GeV and
T ≃ 44 MeV, for αs ¼ 1.0. The upper (lower) panel is for electric
(magnetic) propagators. For the electric propagators, we compare
the ΔT¼0 ¼ 200 MeV and 10 MeV, while in the magnetic sector
the dependence on ΔT is not visible for the range 10–200 MeV.

FIG. 4. The μq dependence of the gluon propagators at spatial
momenta jkj ¼ 0.0, 0.55, 1.08 GeV and at a temperature
T ≃ 44 MeV. The upper (lower) panel is for electric (magnetic)
propagators. The plots with error bars correspond to the lattice
data. From bold to thin lines, they correspond to the analytic
results at αs ¼ 0.0, 0.5, 1.0, and the ΔT¼0 ¼ 0.2 GeV and
ΔT¼44 ≃ 157 MeV.
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As for the αs dependence, although we have not tried a
fine-tuning, the results for the range of αs ¼ 0.5–1.0 seem
to give reasonable descriptions for the μq dependence.

C. The T dependence at μq = 0.71 GeV

Finally, we fix μq ¼ 0.71 GeV and examine the tempera-
ture dependence of gluon propagators. The lowest tempera-
ture is T ≃ 44 MeV, and the next is ≃108 MeV, which is
beyond or close to TSF. As we have not included the
temperature corrections to gluon loops, we stop the
comparison around ≃150–200 MeV, where thermal gluons
of densities of ∼T3 should not be ignored.
For the electric sector, the most notable is the behavior of

the softest mode,DEðjkj ¼ 0Þ. In analytic results assuming
thermal quark excitations, the damping starts to take place
around T ≃ 30 MeV and is completed around T ¼ TSF

reaching ∼ðgspFÞ−2, as expected from usual Debye screen-
ing arguments. Meanwhile, the lattice data seem to show
slower damping. To adjust the analytic results to the lattice
data, we would need gaps about ΔT¼0 ∼ 300–400 MeV,

which are perhaps too large. A more reasonable way to
reconcile the analytic results with the lattice data is to
modify the temperature dependence of ΔT ; if the ΔT is
stiffer against thermal corrections, i.e., if the abundance
thermal quarks are suppressed, then DEðjkj ¼ 0Þ is more
stable at low temperature and more quickly melt near TSF
than in the present result.
These considerations bring us to the conjecture that

thermal excitations are color-singlet hadrons. If true,
thermal loops coupled to external gluon lines are those
of hadrons, rather than of quarks. Accordingly, the avail-
ability of thermal particles are controlled by the Boltzmann
factor and is ∼e−2ΔT=T , rather than ∼e−ΔT=T , because
hadrons contain at least two excited quarks out of con-
densates. At the beginning, hadrons form a dilute gas, and
with increasing T, those hadrons overlap, allowing thermal
quark descriptions. We expect this starts to take place at
T < TSF gradually. As for the magnetic sector, the softest
mode, DMðjkj ¼ 0Þ, shows slight enhancement around
T ≃ TSF, but the overall behavior is rather insensitive to T.

IV. SUMMARY AND DISCUSSION

We have examined the Landau gauge gluon propagators
at a finite density and temperature. With analytic one-
loop expressions added to massive vacuum gluon propa-
gators, we compare the analytic results with the lattice
data in the domains (i) T ≃ 44 MeV for μq ¼ 0–1.2 GeV,
(ii) T ≃ 118 MeV for μq ¼ 0–1.2 GeV, and (iii) T ≃
0–200 MeV for μq ¼ 0.71 GeV, for which the lattice data
are available for several spatial momenta. The gap and
critical temperature of the diquark condensation is assumed
to be ΔT¼0 ¼ 200 MeV and TSF ≃ 114 MeV, respectively.
The behaviors beyond TSF are overall consistent with the

standard descriptions based on the thermal quark loops.
The electric sector acquires the Debye mass ∼gspF from
gapless modes. In the magnetic sector, the paramagnetic
behaviors at finite momenta are in agreement between the
analytic one-loop results and the lattice’s. But the analytic
results do not describe the slight enhancement in the static
mode of the lattice results.
At a low temperature T ≃ 44 MeV, the lattice data show

that the electric and magnetic propagators show only rather
weak dependence on the medium effects. To reproduce the
behavior in the electric sector, it is essential to include the
diquark gap; otherwise, the Debye screening strongly
changes the analytic results. In the previous study, we
found that ΔT¼0 ≃ 200 MeV gives the results consistent
with the lattice’s, while the choiceΔT¼0 ≃ 100 MeV is a bit
too small to reproduce the data at finite momenta. In
contrast, the magnetic sector in the analytic results remains
insensitive to details of ΔT .
There are two significant features in the lattice results

that cannot be understood in simple terms. The first is the
magnetic propagators in the IR limit; at a low temperature,
the magnetic propagators seem slightly weakened as

FIG. 5. The same as Fig. 4 except that the temperature is
T ≃ 118 MeV, and mE and mM change slightly. The temperature
is higher than TSF, so ΔT¼118 ¼ 0.
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density increases, while at a high temperature, they slightly
get enhanced. One solution would be the finite volume
artifacts whose impacts should be strongest for soft modes.
If not, we need treatments beyond one-loop and/or non-
perturbative framework.
The second is the low temperature dependence of the

electric propagator at a high density, μq ≃ 0.71 GeV. In our
calculations, thermal quarks are gapless and contribute to
the Debye screening already at T ≃ 44 MeV, and the
screening is very strong at T ≃ 108 MeV (the second
lowest temperature in Fig. 6). The electric screening at T ≃
108 MeV seems substantially stronger than the lattice data.
Again, the discrepancy can be finite volume artifacts, but in
that case, the lattice result must be reduced considerably, by
∼30%–40%. If this discrepancy remains true for simula-
tions at a bigger volume, it will raise questions on the nature
of thermal excitations in a high density matter, i.e., whether
thermal excitations below TSF are thermal quarks or
thermal hadrons in superfluid quark matter.

The consequence of thermal excitations are reflected in
quantities such as entropies and Polyakov loops. At a low
temperature, the entropy of a hadron gas is much smaller
than of a thermal quark gas,

sH=sQ ∼ e−ΔT=T; ð19Þ

as hadronic excitations must contain more than one quark
and its energy cost is at least ∼ΔT . This low temperature
regime continues, as in a Hagedorn gas, until the
Boltzmann suppression is compensated by entropic effects,
i.e., drastic growth in the number of hadronic excitations
and subsequent overlap of hadrons. This Hagedorn type
description can give a reasonable description of color-
deconfinement at large density, in the same spirit as the
transition from a hadron resonance gas to a quark-gluon-
plasma at μq ¼ 0. Below such a temperature, the matter can
be regarded as a quarkyonic matter.
As the entropy is the main ingredient here, the color

deconfinement defined here may occur at T ≲ TSF (see also
Fig. 10 in Ref. [30] and Fig. 2 in Ref. [46] based on the
Polyakov loop). Combining this tendency with the insen-
sitivity of TSF, we conjecture that the diquark gap is created
not through the soft momentum exchange, which should be
sensitive to the medium, but semisoft or semihard momen-
tum transfers that are more robust to the medium effects.
We guess this observation for the two-color QCD may be
transferred to the three-color case.
Finally, we briefly comment on disagreement between

gluon propagators based on lattices with coarser
grids but bigger volumes [28] (which we used in this
paper) and those based on finer grids but smaller
volumes [37]. The latter simulations were done for
Nt × N3

s ¼ ð32; 24; 16; 8Þ × 323, which are presented as
(0, 188, 280, 560) MeV, and they found the vanishing of
the string tension at μq ≃ 750 MeV at the lowest tempera-
ture. But if we apply the same estimate on tempera-
ture based on T ¼ 1=Lt, then their results at the
lowest temperature are interpreted as the results at
T ≃ 140 MeV. As we discussed in this paper, gluon
propagators at T ≳ TSF basically follow the explanations
based on a thermal quark gas. At such a high tempera-
ture, the sensitivity of various quantities to μq is

FIG. 6. The T dependence of the gluon propagators at spatial
momenta jkj ¼ 0.0, 0.55, 1.08 GeV and at μq ≃ 0.71 GeV. The
upper (lower) panel is for electric (magnetic) propagators. The
plots with error bars correspond to the lattice data. From bold to
thin lines, they correspond to the analytic results at αs ¼ 0.0, 0.5,
1.0, and the ΔT¼0 ¼ 0.2 GeV.

TABLE I. The coherence and kinematical factors for electric
and magnetic gluons, and the factors from the propagators at
jqj ¼ pF, where pF is the quark Fermi momentum such that
EðpFÞ ¼ μq.

CE KE CM KM Gðjqj ¼ pFÞ
pp ∼q · k 2 ð ΔT

ϵpðqÞÞ
2 ð q

Eq
sin θÞ2 ∼ 1

q·kþΔ2
T

aa ∼q · k 2 ð ΔT
ϵaðqÞÞ

2 ð q
Eq
sin θÞ2 ∼ 1

pF

pa finite ∼k2 Finite −2 ∼ 1
pF
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reasonable, and we regard that the results of Refs. [28]
and [37] are rather consistent.
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