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We perform complex analyses of the gluon propagator at nonzero quark chemical potential in the long-
wavelength limit, using an effective model with a gluon mass term of the Landau-gauge Yang-Mills theory,
which is a Landau-gauge limit of the Curci-Ferrari model with quantum corrections being included within
the one-loop level. We mainly investigate complex poles of the gluon propagator, which could be relevant
to confinement. Around typical values of the model parameters, we show that the gluon propagator has one
or two pairs of complex conjugate poles depending on the value of the chemical potential. In addition to a
pair similar to that in the case of zero chemical potential, a new pair appears near the real axis when the
chemical potential is roughly between the effective quark mass and the effective gluon mass of the model.
We discuss possible interpretations of these poles. Additionally, we prove the uniqueness of analytic
continuation of the Matsubara propagator to a class of functions that vanish at infinity and are holomorphic
except for a finite number of complex poles and singularities on the real axis.

DOI: 10.1103/PhysRevD.103.094006

I. INTRODUCTION

For a long time, it has been expected that quark degrees
of freedom would dominate in a highly dense matter of
quantum chromodynamics (QCD) rather than hadrons,
although details of the phase structure are still unclear
mainly due to the sign-problem [1]. Studying the analytic
structure of the gluon propagator is of importance to this
end since this structure provides information on the in-
medium behavior, e.g., whether or not a quasiparticle
description is appropriate. We thus explore the analytic
structure of the gluon propagator in this article.
The main difficulty in a continuum approach for the

quark matter is the breakdown of the perturbation theory in
the infrared QCD. Indeed, perturbative calculations of
dense QCD matter suggest that the quark matter is already
strongly correlated at the quark chemical potential μq ≲
1 GeV [2]. Therefore, a method valid in infrared is required
to study relatively low density region of the quark matter.
About ten years ago, an effective model of the Landau-

gauge Yang-Mills theory has been proposed [3,4] to

understand recent numerical lattice results that support
the decoupling (massivelike) solution of the Dyson-
Schwinger equation (DSE) [5,6]. This model consists of
the Faddeev-Popov Lagrangian and the simple gluon mass
term, i.e., the Landau gauge limit of the Curci-Ferrari
model [7], which we call the massive Yang-Mills model.
This mass deformation could be a consequence of gen-
erating the dimension-two gluon condensate [8–12] or
avoiding the Gribov ambiguity [13,14]. The massive
Yang-Mills model has the modified Becchi-Rouet-Stora-
Tyutin (BRST) symmetry and is multiplicatively renorma-
lizable to be proved through the modified Slavnov-Taylor
identities (at all orders of the perturbation theory) [7].
Moreover, there exists the “infrared safe” renormalization
scheme respecting the nonrenormalization theorems
[15,16], in which the running gauge coupling constant g
is finite at all scales on some renormalization group (RG)
flows [4,14,17].
This model provides the gluon and ghost propagators

that agree strikingly with the numerical lattice results just in
the one-loop level [3,4]. The three-point functions [18] and
two-point correlation functions at finite temperature [19]
were compared to the numerical lattice results with good
accordance. Furthermore, the two-loop corrections improve
the agreement for the gluon and ghost propagators [20].
Therefore, the effective mass captures some nonperturba-
tive aspects of the Yang-Mills theory.
For unquenched cases with the number of quark flavors

NF ¼ 2; 2þ 1þ 1, the massive Yang-Mills model with
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dynamical quarks gives the gluon and ghost propagators
consistent with the numerical lattice results as well [21].
For the quark sector, higher loop corrections are important
in this model [21–23]. Also, QCD phases with heavy
quarks have been studied in a similar model in the Landau-
DeWitt gauge [24]. Despite the shortcoming of the massive
Yang-Mills model for describing the quark sector, this
model will be useful for the analyses of the gluon
propagator.
One might worry about the absence of the nilpotent

BRST symmetry. The massive Yang-Mills model certainly
suffers from the physical nonunitarity [7,25] as a consistent
theory. However, as this model gives the well-approximat-
ing propagator given by a mass-deformation that has some
background refereed above, we can still consider the
massive Yang-Mills model as a model for describing the
gluon and ghost propagators. Therefore, it is interesting to
investigate the analytic structure of the gluon propagator of
this model.
In [26], the gluon propagator of the massive Yang-Mills

model at finite chemical potential (and zero temperature)
obtained in the vanishing momentum renormalization
scheme, which is not infrared safe, has been compared
with numerical lattice data [27] for the gauge group SUð2Þ,
and the propagators at finite temperature and density have
been compared in [28]. While the singlet diquark gap can
improve the consistency with the lattice results, the agree-
ment with the lattice results is not quite satisfactory for
parameters ðg;MÞ that are independent of chemical poten-
tial. If one enables the gluon mass parameter M to depend
on the chemical potential, one can obtain a fair agreement
between the massive Yang-Mills model and the numerical
lattice results. Therefore, although this model may lack
some important aspects, it is still worthwhile studying the
analytic structure of the gluon propagator at a finite
chemical potential by utilizing the massive Yang-Mills
model with various model parameters.
In the vacuum case, i.e., vanishing chemical potential

μq ¼ 0, we have investigated the analytic structures of the
gluon, quark, and ghost propagators and revealed that the
gluon and quark propagators have one pair of complex
conjugate poles while the ghost propagator has no complex
poles [29–31]. Other several models and reconstruction
methods also predict such complex poles of the gluon
propagator, e.g., [13,32–40]. The DSE with the ray
technique had provided the gluon propagator holomorphic
except for timelike momenta [41], but the recent study [42]
has updated this conclusion and strongly suggested a
singularity on the complex momentum plane.
Complex poles invalidate the Källén-Lehmann spectral

representation [43] and might correspond to unphysical
degrees of freedom in an indefinite metric state space [44].
Therefore, the complex poles represent deviations from
observable particles and are expected to be related to the
confinement mechanism. For example, the connection

between complex poles of the fermion propagator and
confining potential in three-dimensional quantum electro-
dynamics has been discussed in [45]. Incidentally, another
generalization of the spectral representation taking unphys-
ical degrees of freedom into account is proposed in [46].
In this article, we investigate the analytic structure of the

in-medium gluon propagator at finite quark chemical
potential μq by employing the massive Yang-Mills model
with quantum corrections being included within the one-
loop level. Since we are interested in the long-distance
behavior and analytic structure of the gluon propagator on
the complex frequency plane, we perform complex analy-
ses on the gluon propagator in the long-wavelength limit
k⃗ → 0. In addition, we consider the uniqueness of the
analytic continuation in the presence of complex poles,
since we use the Matsubara propagator in the low-temper-
ature limit T → þ0 and the analytic continuation is in
principle not unique before taking the limit.
This article is organized as follows. In the next section,

the definition of complex poles of an in-medium propagator
and the method for counting complex poles are presented.
A proof of the uniqueness in a class of functions having a
finite number of complex poles is provided in Appendix A.
The massive Yang-Mills model and its one-loop expres-
sions are presented in Sec. III. We detail the vacuum part of
the one-loop expressions in Appendix B. In Sec. IV and
Appendix C, we determine the number of complex poles
and their locations in the space of the model parameters and
the spectral function at a specific set of model parameters. It
turns out that the gluon propagator has one pair of almost
real poles in addition to the other pair of complex conjugate
poles similar to the vacuum ones at intermediate quark
chemical potential. In Sec. V, we discuss possible inter-
pretations of these almost real poles, an improvement of the
results, estimates for slightly large μq, and infrared prob-
lems at finite temperature. In Sec. VI, a summary of these
findings and future prospects are given.

II. COMPLEX POLES OF IN-MEDIUM
PROPAGATORS

In this section, we define complex poles of propagators
in medium. Then, we introduce a method to count the
number of complex poles, which is utilized in the sub-
sequent sections.

A. Definition

In medium, we compute a Matsubara propagator
Dðiωn; k⃗Þ within the imaginary-time formalism, where ωn

is the Matsubara frequency and k⃗ is the spatial momentum.
We consider the analytic continuation Dðz; k⃗Þ on the
complex z plane for a fixed k⃗ from the Matsubara frequen-
cies on the imaginary axis z ¼ iωn. This provides informa-
tion on the spectrum and is useful for studying linear
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response, in which the retarded propagator, namely the
propagator analytically continued to the real axis from the
upper-half plane, plays an important role [47].
For a field describing a physical observable particle,

the usual spectral representation holds. The spectral con-
dition forces analytically-continued Matsubara propagator
Dðz; k⃗Þ to have singularities only on real axis z ∈ R.
However, the spectral condition may be violated for

confined degrees of freedom, since not all states have to be
physical. Thus, we can consider the possibility of complex
spectra, which need not be excluded in an indefinite metric
state space [44]. If a state with complex energy exists, this
should correspond to a confined state. Further formal
aspects will be discussed elsewhere [48].
Here, we assume the following generalized spectral

representation allowing complex poles for the gluon
propagator Dðz; k⃗Þ, which is a propagator obtained by
the analytic continuation from the Matsubara propagator
Dðiωn; k⃗Þ defined at points on the pure imaginary axis of
the complex z plane:

Dðz; k⃗Þ ¼
Z

∞

0

dσ2
ρðσ; k⃗Þ
σ2 − z2

þ
Xn
l¼1

Zlðk⃗Þ
wlðk⃗Þ − z2

; ð1Þ

ρðσ; k⃗Þ ¼ 1

π
ImDðσ þ iϵ; k⃗Þ; ð2Þ

where ρðσ; k⃗Þ is the spectral function, wlðk⃗Þ is a position of
a complex pole, and Zlðk⃗Þ is its residue for arbitrary but
fixed k⃗. Figure 1 illustrates singularities on the complex z
plane of Dðz; k⃗Þ.
Notice that, in the vacuum case, there is a one-to-one

correspondence between the propagator Dðz; k⃗Þ analyti-
cally continued to the upper-half plane in z and the analytic
continuation in the complex k2 plane D̃ðk2Þ, which has
been considered in the previous articles [29,31], in the
sense that Dðz; k⃗Þ ¼ D̃ðz2 − k⃗2Þ.
Since the set of Matsubara frequencies fωng has no

accumulation points, uniqueness of the analytic continu-
ation is an important problem to be proved. Indeed, there is
a well-known theorem saying that the uniqueness holds in a
class of functions satisfying (i) DðzÞ → 0 as jzj → ∞ and
(ii) DðzÞ is holomorphic except for the real axis, i.e., these
two conditions are sufficient to determine the unique
continuation [49]. Although this theorem cannot be applied
to our case due to the existence of complex poles, we can
generalize this theorem in a straightforward way. In
Appendix A, we present a proof of the uniqueness under
the weaker conditions allowing complex poles:

(i) DðzÞ → 0 as jzj → ∞,
(ii) DðzÞ is holomorphic except for singularities on the

real axis and a finite number of complex poles.

Therefore, the uniqueness of the analytic continuation from
the Matsubara propagator is valid in a similar sense even in
the presence of complex poles.
Note that complex poles defined here do not correspond

to poles of quasiparticles. This is because the complex
poles defined here yield poles in both of the upper-half and
lower-half planes in z. While a quasiparticle pole is in the
second Riemann sheet in z2, the complex pole is in the first
Riemann sheet.

B. Counting complex poles

Let us introduce a method to count the number of
complex poles based on the argument principle [29,31]
to be used in the following sections. We can relate a
propagator at real frequencies to complex poles and zeros.
In the vacuum case, we have applied the method to a

propagator on the complex k2 plane. For an in-medium
propagator, we can take k2 as the squared complex
frequency z2. The statement is as follows.
Suppose that a complex-valued propagator Dðz2Þ ≔

Dðz; k⃗Þ with a fixed spatial momentum k⃗ and its data
fDðz2 ¼ xn þ iϵÞg for real frequencies z (namely, z2 > 0)
satisfy the following conditions.

(i) In the limit jz2j → ∞, Dðz2Þ has the same phase as
the free propagator, i.e., argð−Dðz2ÞÞ → arg 1

z2 as
jz2j → ∞.

(ii) In the limit jz2j → 0, Dðz2 ¼ 0Þ > 0.
(iii) The sequence fz2 ¼ xn þ iϵgNn¼0 is sufficiently

dense so that Dðz2 ¼ xþ iϵÞ changes its phase at

FIG. 1. Schematic picture of singularities on the complex
zð¼ k0Þ plane. We analytically continue a Matsubara propagator
Dðz ¼ iωn; k⃗Þ defined at the Matsubara frequencies z ¼ iωn

(shown as the dots) to Dðz; k⃗Þ on the complex z plane. The two
sets of complex conjugate poles in the z plane represent a pair of
complex conjugate poles with respect to z2 in (1).
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most half-winding (�π) between xn þ iϵ and
xnþ1 þ iϵ, i.e., for n ¼ 0; 1;…; N,

����
Z

xnþ1

xn

dx
d
dx

argDðxþ iϵÞ
���� < π; ð3Þ

where we denote sufficiently small x0 ¼ δ2 > 0 and
sufficiently large xNþ1 ¼ Λ2, on which we will take
the limits δ2 → þ0 and Λ2 → þ∞.

Then the winding number, which is the difference between
the number of complex zeros (NZ) and poles (NP) with
respect to z2, reads

NWðCÞ ¼ NZ − NP

¼ −1þ 2
XN
n¼0

1

2π
Arg
�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
: ð4Þ

Thus the number of complex poles NP is given by

NP ¼ NZ − NWðCÞ

¼ NZ þ 1 − 2
XN
n¼0

1

2π
Arg

�
Dðxnþ1 þ iϵÞ
Dðxn þ iϵÞ

�
: ð5Þ

For details of the derivation, see [31]. When the three
conditions (i), (ii), and (iii) hold, we can numerically
compute the number of complex poles ðNPÞ from the
number of zeros (NZ) and data at the real frequen-
cies fDðxn þ iϵÞg.
Throughout this article, NP denotes the number of

complex poles on the z2 plane, i.e., the number of poles
on the (upper-)half plane on the z plane, and “complex
conjugate poles” denote those on the z2 plane. The
propagator has 2NP complex poles on the whole z complex
plane.

III. MODEL

In this section, we introduce the massive Yang-Mills
model, which is regarded as an effective model of the
Landau-gauge Yang-Mills theory, or the Landau-gauge
limit of Curci-Ferrari model, and review the one-loop
expressions.

A. Massive Yang-Mills model

The Euclidean Lagrangian of the model at N colors with
NF flavors is given by [3,4,21]

LmYM ¼ LYM þLGF þLFP þLm þLq; ð6Þ

LYM ¼ 1

4
FA

μνFA
μν;

LGF ¼ iNA∂μAA
μ ;

LFP ¼ C̄A∂μDμ½A�ABCB

¼ C̄A∂μð∂μCA þ gbfABCAB
μCCÞ;

Lm ¼ 1

2
M2

bA
A
μAA

μ ;

Lq ¼
XNF

i¼1

ψ̄ iðγμDμ½A� þ ðmbÞq;iÞψ i

¼
XNF

i¼1

ψ̄ iðγμð∂μ − igbAA
μ tAÞ þ ðmbÞq;iÞψ i; ð7Þ

where we have introduced the bare gluon, ghost, anti-ghost,
Nakanishi-Lautrup, and quark fields denoted by AA

μ, CA,
C̄A, NA, ðA ¼ 1; 2;…; N2 − 1Þ, and ψ iði ¼ 1; 2;…; NFÞ
respectively, the bare gauge coupling constant gb, the bare
gluon mass Mb, and the bare quark mass ðmbÞq;i, while
fABCðA;B;C ¼ 1; 2;…; N2 − 1Þ stand for the structure
constants with the generators tA of the fundamental
representation of the group G ¼ SUðNÞ.
The renormalization factors ðZA; ZC; ZC̄ ¼ ZC; Zψ i

Þ, Zg,
ZM2 , Zmq;i

for the gluon, ghost, anti-ghost, and quark fields

ðAμ;C; C̄;ψ iÞ, the gauge coupling constant g, and the
gluon and quark mass parameters M2, mq;i are introduced
respectively as follows:

Aμ ¼
ffiffiffiffiffiffi
ZA

p
Aμ

R; C¼
ffiffiffiffiffiffi
ZC

p
CR;

C̄¼
ffiffiffiffiffiffi
ZC

p
C̄R; ψ i¼

ffiffiffiffiffiffiffi
Zψ i

p
ψR;i;

gb ¼Zgg; M2
b¼ZM2M2; ðmbÞq;i¼Zmq;i

mq;i. ð8Þ

In this article, we consider the two flavor case NF ¼ 2
and employ this model with degenerate quark masses,
mq ≔ mq;i, and therefore Zψ ≔ Zψ i

and Zmq
≔ Zmq;i

.
Notice that the quark mass parameter mq of this model
is chosen to fit the propagators obtained from other
methods, e.g., numerical lattice results. In particular, the
quark mass parameter mq is nonzero even for massless
quarks due to the spontaneous breakdown of the chiral
symmetry.
The general tensorial structure of the gluon propagator

DμνðkEÞ reads, from the spatial rotational symmetry and
the transversality of the Landau gauge,

DμνðkEÞ ¼ DTðk2EÞPT
μν þDLðk2EÞPL

μν; ð9Þ

where kE ¼ ðk1; k2; k3; k4Þ ¼ ðk⃗; k4Þ is the Euclidean
momentum, PT

μν and PL
μν are the transverse and longitudinal

projectors respectively, i.e.,
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PT
ij ¼ δij −

kikj

k⃗2
;

PT
4i ¼ PT

i4 ¼ PT
44 ¼ 0 ði; j ¼ 1; 2; 3Þ; ð10Þ

and,

PL
μν ¼ Pμν − PT

μν; Pμν ¼ δμν −
kE;μkE;ν

k2E
: ð11Þ

We define the vacuum part of the gluon and ghost two-

point vertex functions Γð2Þ
A;vac;Γ

ð2Þ
gh;vac as the zero temperature

T ¼ 0 and the zero chemical potential μ ¼ 0 limit,

DμνðkEÞjT¼μ¼0
¼ ½Γð2Þ

A;vacðk2EÞ�−1Pμν;

ΔghðkEÞjT¼μ¼0
¼ −½Γð2Þ

gh;vacðk2EÞ�−1; ð12Þ

where Δgh is the ghost propagator.
As a renormalization scheme, we adopt the “infrared safe

scheme” [4,21] respecting the nonrenormalization theorem
ZAZCZM2 ¼ 1 [15]. For the gluon and ghost sector, we
impose 8>><

>>:
ZAZCZM2 ¼ 1

Γð2Þ
A;vacðk2E ¼ μ2Þ ¼ μ2 þM2

Γð2Þ
gh;vacðk2E ¼ μ2Þ ¼ μ2

ð13Þ

combined with the Taylor scheme [16] ZgZ
1=2
A ZC ¼ 1 for

the coupling.1 In this renormalization scheme, it turns out
that there exist RG flows on which the running coupling
constant is always finite in a whole momentum region,
which implies that the perturbation theory is valid to some
extent.

B. One-loop expressions

Here we review the results of one-loop calculations of
the in-medium gluon propagator.
Beforehand, we decompose the vacuum polarization

ΠμνðkEÞ into the vacuum part Πvac
μν ðkEÞ and the matter part

Πmat
μν ðkEÞ,

ΠμνðkEÞ ¼ Πvac
μν ðkEÞ þ Πmat

μν ðkEÞ: ð14Þ
Πvac

μν ðkEÞ had been calculated in [3,4,21]. For completeness,
the vacuum part is presented in Appendix B.
The relation between ΠμνðkEÞ and DμνðkEÞ is given by

the further decomposition of Πmat
μν ðkEÞ as follows: in

general, the spatial rotational symmetry yields

Πmat
μν ðkEÞ ¼ Πmat

T ðk2EÞPT
μν þ Πmat

L ðk2EÞPL
μν þ δΠμν; ð15Þ

where the last term δΠμν is spanned by the tensorial

structures kE;μkE;ν and ðPμρtρÞkE;ν þ ðPνρtρÞkE;μ with tμ ¼
ð0⃗; 1Þ and does not contribute to the propagator due to the
transversality of the Landau gauge, while the vacuum part
can be written as Πvac

μν ðkEÞ ¼ Πvacðk2EÞPμν. The gluon
propagator is thus of the form (9) with the components
of the vacuum polarization:

DμνðkEÞ ¼ DTðk2EÞPT
μν þDLðk2EÞPL

μν;

DTðk2EÞ ¼
1

k2E þ Πvacðk2EÞ þ Πmat
T ðk2EÞ

;

DLðk2EÞ ¼
1

k2E þ Πvacðk2EÞ þ Πmat
L ðk2EÞ

: ð16Þ

The matter part Πmat
μν ðkEÞ at zero temperature T ¼ 0 and

nonzero quark chemical potential μq > 0 is the quark-loop
contribution; for μq > mq, [47]

Πmat
μν ðkEÞ ¼

1

2

�
Πmat

ρρ −
k2E
k⃗2

Πmat
44

�
PT
μν þ

k2E
k⃗2

Πmat
44 PL

μν; ð17Þ

Πmat
ρρ ¼ 2

g2CðrÞ
π2

Re
Z

pF

0

dpp2

Ep

�
1 −

2m2
q − k2E
4pjk⃗j

ln

�
Rþ
R−

��
;

Πmat
44 ¼ g2CðrÞ

π2
Re
Z

pF

0

dpp2

Ep

×

�
1 −

k2E þ 4E2
p þ 4iEpk4

4pjk⃗j
ln

�
Rþ
R−

��
; ð18Þ

where CðrÞ ¼ NF=2, pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2q −m2

q

q
, Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
,

R� ¼ −k2E þ 2ik4Ep � 2pjk⃗j; ð19Þ

and Re denotes the real part when k4 is real, namely,
Refðik4Þ ≔ 1

2
ðfðik4Þ þ fð−ik4ÞÞ for any function fðik4Þ.

Now, since we are interested in complex mass and long-
distance behavior, let us take the long-wavelength limit
k⃗ → 0 symmetrically. This limit reduces technical difficul-
ties on the analytic continuation significantly.
In the long-wavelength limit k⃗ → 0, we have

Pij ¼ δij; P4i ¼ Pi4 ¼ P44 ¼ 0; ði; j ¼ 1; 2; 3Þ

PT
μν →

2

3
Pμν; PL

μν →
1

3
Pμν;

Πmat
μν ðkEÞ ¼

1

3
Πmat

ρρ Pμν; ð20Þ

and,

1For the quark sector, we put Γð2Þ
s;vacðk2E ¼ μ2Þ ¼ mq and

Γð2Þ
v;vacðk2E ¼ μ2Þ ¼ 1, where the quark propagator SðkEÞ is para-

metrized as S−1ðkEÞ ¼ i=kEΓ
ð2Þ
v ðkEÞ þ Γð2Þ

s ðkEÞ. Note that this
choice affects RG-improved results displayed in Fig. 8.
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Πmat
μμ ðk⃗→ 0; k4Þ

¼ g2CðrÞ
4π2k4

θðμq −mqÞ

2
644k4pF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm2

q

q

þ 2k34 ln

 
mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
F þm2

q

q
þpF

!
þð2m2

q − k24Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k24 þ 4m2

q

q

× ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk24þ 4m2

qÞðp2
F þm2

qÞ
q

− k4pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk24þ 4m2

qÞðp2
F þm2

qÞ
q

þ k4pF

1
CA
3
75; ð21Þ

where θðμq −mqÞ is the step function. Then, the gluon

propagator Dμνðk⃗ → 0; k4Þ can be written as

Dμνðk4Þ ¼ DTð−k24ÞPμν;

DTð−k24Þ ¼
1

M2ðsþ 1þ Π̂vacðsÞ þ Π̂matðsÞÞ ; ð22Þ

where

s ¼ k24
M2

; ð23Þ

Π̂vacðsÞ is the vacuum part given in Appendix B (B8), and,

Π̂matðsÞ ¼ g2CðrÞ
12π2

θðζ − ξÞ
�
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðζ − ξÞ

p

þ 2s ln

� ffiffiffi
ξ

pffiffiffi
ζ

p þ ffiffiffiffiffiffiffiffiffiffi
ζ − ξ

p
�
þ 1ffiffiffi

s
p ð2ξ − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 4ξ

p

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðsþ 4ξÞp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðζ − ξÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðsþ 4ξÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðζ − ξÞp ��
: ð24Þ

with

ξ ¼ m2
q

M2
; ζ ¼ μ2q

M2
: ð25Þ

Notice that

Π̂matðs → 0Þ ¼ g2CðrÞ
3π2

θðζ − ξÞ
�ðζ − ξÞ3=2ffiffiffi

ζ
p

�
> 0; ð26Þ

and

Π̂matðs → ∞Þ ¼ OðsÞ: ð27Þ

IV. RESULTS

In this section, we study the analytic structure of the
gluon propagator with the one-loop quantum corrections
presented in the previous section.

From here on, we set G ¼ SUð3Þ and the renormaliza-
tion scale μ0 ¼ 1 GeV. With the RG improvements, the
best-fit parameters reported in [21] are

g ¼ 4.5; M ¼ 0.42 GeV; ð28aÞ

and the up and down quark mass parameters

mq ¼ 0.13 GeV; ð28bÞ

in the case of NF ¼ 2.

A. Number of complex poles

First, we compute the number of complex poles for the
one-loop gluon propagator (22) at the parameters (28a), and
NF ¼ 2 by using the winding numberNWðCÞ defined in (5)
of Sec. II B. We analytically continue the gluon propagator
DTð−k24Þ from the Euclidean axis z2 ¼ −k24 to the whole z2
plane. In terms of (1),

Dðz; k⃗ → 0Þ ¼ DTðz2Þ: ð29Þ

Let us check the prerequisites for the claim of Sec. II B. The
gluon propagator takes the form (1), since it has no branch
cut except for the real axis as can be confirmed from (22).
Thus, it can have only complex poles in the complex plane
excluding the real axis. Also, this gluon propagator satisfies
the conditions (i) and (ii) in Sec. II B and has no zeros
NZ ¼ 0:

(i) As jz2j → ∞,

DTðz2Þ ≃ ½g2γ0ð−z2Þ ln jz2j þOðz2Þ�−1; ð30Þ

from (B14) and (27) as desired.2

(ii) As jz2j → 0,

DTðz2Þ > 0; ð31Þ

from (B11) and (26) as desired.
(iii) The gluon propagator has no zerosNZ ¼ 0, since the

inverse of the propagator (22) does not diverge.
Therefore, the number of complex poles can be calculated
according to (5) and NP ¼ −NWðCÞ. For the condition
(iii) in Sec. II B, we numerically check convergence of the
refinement of the discretization.
Figure 2 is a contour plot of NWðCÞ on the plane

ðμ2q; m2
qÞ normalized by the gluon mass M2, i.e., ðζ; ξÞ

plane with (25). At the vacuum case μq ¼ 0, the gluon
propagator has one pair of complex conjugate poles,
namely two complex poles (NP ¼ 2), irrespective of the

2Although the naive one-loop asymptotic form has the wrong
exponent of the logarithm ðln jz2jÞ, we can expect this does not
change NWðCÞ as it has similar phase to the correct one (for
NF < 10). See Appendix B.
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valuemq. The novelNP ¼ 4 region appears for light quarks
(ξ≲ 0.5, or mq ≲ 0.30 GeV). As the quark chemical
potential μq increases for such light quarks, the number
of complex poles becomes four (NP ¼ 4) at slightly above
the quark massmq and backs to two (NP ¼ 2) at ζ ≈ 0.6, or
μq ≈ 0.33 GeV. In the intermediate quark chemical poten-
tial, the gluon propagator has four complex poles in
complex z2 plane. For large mq or μq, the gluon propagator
has two complex poles as in the vacuum case.

B. Analytic structure at a specific set of parameters

Next, we take a further look at the analytic structure of
the gluon propagator at a specific set of parameters. As the
NP ¼ 4 region with intermediate μq will be interesting, let
us choose (28a), (28b), μq ¼ 0.25 GeV, i.e.,

ðg;M;mq; μqÞ ¼ ð4.5; 0.42 GeV; 0.13 GeV; 0.25 GeVÞ;
ð32Þ

and NF ¼ 2.
In what follows, we use k0 to denote the complex

variable z:

k0 ≔ z: ð33Þ

To take a look at the analytic structure of the gluon
propagator, let us see its modulus on the complex k20 plane.
The modulus of the gluon propagator DTðk20Þ is plotted in
Fig. 3. We can observe that the gluon propagator at the
given parameters (32) has indeed two pairs of complex
conjugate poles. One pair that is clearly visible in the top
panel of Fig. 3 is located at k20=M

2 ≈ 1.4� 2.6i, or
k0 ≈�0.62� 0.36i GeV. The other pair of complex con-
jugate poles is at k20=M

2 ≈ 1.4� ð1.8 × 10−4Þi, or k0 ≈
�0.50� ð3.1 × 10−5Þi GeV.
The latter pair has very small imaginary part, while the

former one is similar to that in the vacuum case. This
smallness of the imaginary part is a universal feature not
only around the transition, but also on the whole NP ¼ 4
region, as we will see in the next subsection.
The gluon propagator (22) with real k20 and its spectral

function,

ρðωÞ ≔ ρðω; k⃗ → 0Þ ≔ 1

π
ImDTðω2 þ iϵÞ; ð34Þ

are displayed in Fig. 4. The propagator shows a rapid
oscillation at k20=M

2 ¼ −k24=M2 ≈ 1.4, or k0 ≈ 0.5 GeV ≈
2μq. The negative peak of the spectral function has a larger

FIG. 2. Contour plot of NWðCÞ for the gluon propagator on the

ðζ ¼ μ2q
M2 ; ξ ¼ m2

q

M2Þ plane at the set of parameters (28a), which gives
the number of complex poles through the relationNP ¼ −NWðCÞ.
In the NP ¼ 2, 4 regions, the gluon propagator has one pair
and two pairs of complex conjugate poles, respectively. We
used N ¼ 8 × 105, xn ¼ ðnþ 1Þ × 10−5M2ðn ¼ 0;…; NÞ, and
xNþ1 ¼ 50M2 for the discretization (5) and ϵ ¼ 10−9M2 for the
infinitesimal imaginary part. For larger ζ or ξ, the gluon propagator
has one pair of complex conjugate poles.

FIG. 3. Modulus of the gluon propagator jDTðk20Þj with the set
of parameters (32) on the complex k20 plane. The top panel is
written in the range of −5 < Rek20=M

2 < 5, −5 < Imk20=M
2 < 5.

A pair of complex conjugate poles is clearly illustrated. The other
pair of complex conjugate poles exists at Rek20=M

2 ≈ 1.4 near the
real axis of k20, which is however difficult to be identified in the
top panel, and hence is enlarged to be visible in the range
1.416 < Rek20=M

2 < 1.417, −5 × 10−4 < Imk20=M
2 < 5 × 10−4

in the bottom panel.
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value than the positive one: max ρ ∼ 2.7 GeV−2 and
min ρ ∼ −29 GeV−2. The rapid change is consistent with
existence of almost real complex poles. Apart from the
sharp peak, the gluon propagator is similar to the vacuum
one. The quark chemical potential affects the gluon
propagator significantly only around k0 ≈ 2μq.

C. Locations of complex poles

Let us investigate locations of complex poles of the

gluon propagator for various parameters ðζ ¼ μ2q
M2 ; ξ ¼ m2

q

M2Þ
with fixed ðg;MÞ of (28a). We present the ratio ωI=ωR of
the real and imaginary parts of a complex pole,

k0 ¼ ωR þ iωI ∈ C; ð35Þ

on the ðζ; ξÞ plane and a trajectory of poles for varying μq
and at fixed mq.
First, we compute the ratio ωI=ωR to obtain an overview

on positions of complex poles on the parameter space

ðζ; ξÞ. We can restrict ourselves to ωR > 0, ωI > 0 without
loss of generality from the Schwarz reflection principle
and the symmetry k0 → −k0. As the gluon propagator
has at most two pairs of complex conjugate poles with
respect to k20, it is sufficient to find maxωI=ωR and
minωI=ωR.
Contour plots of the ratios (maxωI=ωR and minωI=ωR)

are shown in Fig. 5. This result is consistent with Fig. 2 as
maxωI=ωR ≠ minωI=ωR only on the NP ¼ 4 region,
where the gluon propagator DTðk20Þ has two pairs of
complex conjugate poles with respect to k20. These figures

FIG. 4. Top panel: real (orange) and Imaginary (blue) parts of
the gluon propagator (22) with real k20 at the set of parameters (32)
and NF ¼ 2. The peak at k20=M

2 ≈ 1.4 reflects the fact that the
gluon propagator at this set of parameters has a pair of almost real
complex poles. Bottom panel: the spectral function at the same
set of parameters. A pair of positive and negative peaks is located
at ω ≈ 0.5 GeV. At ω ≈ 0.5, the positive peak lasts up to max ρ ∼
2.7 GeV−2 and the negative one to min ρ ∼ −29 GeV−2. The
purple dashed curve plots the vacuum one μq ¼ 0. In the ω → 0

and ω → ∞ limit, both of them exhibit similar behavior.

FIG. 5. Contour plots of minωI=ωR (top) and maxωI=ωR
(bottom) for a complex pole k0 ¼ ωR þ iωI , ðωR > 0;ωI > 0Þ of
the gluon propagator on the ðζ ¼ μ2q

M2 ; ξ ¼ m2
q

M2Þ plane. The region
of minωI=ωR < 10−3 is represented by a blank, where the gluon
propagator has two pairs of complex conjugate poles. The
horizontal dashed line is at ξ ¼ 0.096, or mq ¼ 0.13 GeV.
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indicate that the gluon propagator has a pair of almost real
complex poles in the NP ¼ 4 region shown, while the pair
with maxωI=ωR is always of the same order of magnitude.
Moreover, in general, the ratio ωI=ωR tends to increase

as the quark chemical potential μq increases, except for the
almost real poles. In other words, the gluon propagator
becomes “less particlelike” for large μq.
In the previous subsection, we observed that both the

sharp spectral peak and almost real poles appear at Re k0 ≈
2μqð≈0.5 GeVÞ at μq ¼ 0.25 GeV. This feature is not
limited to the specific parameter but universal. Let us
examine locations of complex poles at the parameter (28a)
and (28b) with varying μq.
Figure 6 plots a trajectory of complex poles on the

complex k0 plane and μq-dependence of the real parts of the
complex poles. As μq increases, a new pole appears from
the branch cut (at μq ≈ 0.16 GeV), then moves along the
real axis, and is finally absorbed into the branch cut
(at μq ≈ 0.33 GeV). On the other hand, the other pole

increases its imaginary part gradually. This feature is
consistent with the number of complex poles of Sec. IVA.
The bottom panel of Fig. 6 clearly indicates that the real

part of the new almost real pole can be approximated by
2μq: ωR ≈ 2μq. We have also checked that the almost real
poles are at Re k0 ≈ 2μq for different values of mq.

D. ðg;MÞ dependence
Before concluding this section, let us consider ðg;MÞ

dependence of the above results, especially, the number of
complex poles. For details of these analyses, see
Appendix C. We have found that the NP contour plot is
not sensitive to a detailed choice of the parameters ðg;MÞ.

E. Summary of results

In summary, we have observed the following points in
this section.

(i) There is a NP ¼ 4 region, where the gluon propa-
gator has two pairs of complex conjugate poles with
respect to k20. See Fig. 2.

(ii) In the NP ¼ 4 region, the gluon propagator has an
almost real pair of complex conjugate poles at
Re k0 ≈ 2μq. See Fig. 6

(iii) With almost real poles, the real part and imaginary
part (to be identified with the spectral function) have
narrow peaks at k0 ≈ 2μq. See Fig. 4

(iv) The ratio ωI=ωR of a complex pole k0 ¼ ωR þ iωI ,
ðωR > 0;ωI > 0Þ tends to increase as μq increases,
except for the almost real poles. See Fig. 5.

V. DISCUSSION

In this section, we first discuss implications of the results
shown in the previous sections, especially the appearance
of the almost real pole in the NP ¼ 4 region. Second, we
compute NWðCÞ of the RG-improved gluon propagator to
examine the robustness. Third, we attempt to estimate the
analytic structure of the gluon propagator for relatively
large μq. Finally, we comment on the infrared problems
which appear in the thermal context.

A. Almost real complex poles and spectral function

For the gluon propagator, we found a new pair of
complex conjugate poles at Re k0 ≈ 2μq with quite small
imaginary parts (Im k0 ≈ 0). Together with the narrow
peaks shown in Fig. 4, the quark chemical potential affects
the gluon propagator significantly around k0 ≈ 2μq.
The importance of the scale 2μq can be understood by the

fact that 2μq is the lowest energy for the quark pair creation
to occur, which contributes to the spectrum of the gluon,
due to the Fermi degeneracy. Moreover, in the massive
model, the gluon “decouples” at low energies. Thus, quark
loop dominates the low-energy region of the gluon spectral
function. On the other hand, in the high energy region, the

FIG. 6. Top panel: trajectory of a complex pole k0 ¼ ωR þ iωI ,
ðωR > 0;ωI > 0Þ of the gluon propagator in the plane ðωR;ωIÞ at
the parameter (28a) and (28b) with varying μq from 0 to 1 GeV.
As μq increases, the poles move along the arrows. Note that the
almost real pole (ωI ≈ 0) exists only for the NP ¼ 4 region while
the other pole for any value of μq. Bottom panel: μq dependence
of the real part of location of a complex pole. The data of the new
complex poles are approximated by the straight line ωR ¼ 2μq
(purple dashed line) well. This figure shows the almost real pole
appears at μq ≈ 0.16 GeV and disappears at μq ≈ 0.33 GeV in
agreement with Fig. 2.
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gluon and ghost loops win against the quark loop for the
gluon spectral function to yield ρ < 0 in the large frequency
limit for NF < 10 [50]. Therefore, 2μq will be quite an
important scale for relatively small μq (but larger than mq),
while less important in the high-energy region. This might
explain the appearance and disappearance of the almost real
complex poles as varying μq.
Since complex poles never appear in the physical

spectrum, they should correspond to confined degrees of
freedom. The transition between the NP ¼ 2 and NP ¼ 4
regions indicates that timelike spectra transform to confined
complex degrees of freedom, or vice versa. Therefore, the
transition between the NP ¼ 2 and NP ¼ 4 regions might
have a physical significance on the dynamics of the strong
interaction.
Note that, however, the appearance of the almost real

pole may be an artifact of the approximation:

DTð−k24Þ ≈
1

k24 þM2 þ Π1−loopðk24Þ
; ð36Þ

where the vacuum polarization Π is replaced by the one-
loop expression Π1−loop. For example, in this approxima-
tion, even the propagator of the Higgs field in Uð1Þ Higgs
model with the small gauge-fixing parameter has complex
poles with tiny imaginary parts [51]. The new pole reported
in the previous section may be similar to this one. In this
case, the almost real pole should be interpreted as a long-
lived collective mode with frequency 2μq.
If the almost real pole is an artifact, an estimate

of the spectral function will be given by ρðωÞ ¼
1
π ImDTðk20 ¼ ω2 þ iϵ0Þ, where ϵ0 is small but larger than
the imaginary part of the almost real pole ωI . This estimate
is displayed in Fig. 7 at (32) and NF ¼ 2. We take ϵ0=M2 ¼
10−3 because the complex poles are at k20=M

2 ≈
1.4� ð1.8 × 10−4Þi. This plot implies that the new

“complex pole” may correspond to actually a long-lived
quasiparticle. Such an appearance of a quasiparticle could
be possibly related to the nuclear superfluidity.
Finally, we note that our results suggest that the NP ¼ 4

region is located in the region less than μq ≈ 0.33 GeV,
which is approximately the matter threshold. This obser-
vation would imply that the new complex pole or the
possible quasi-particle pole would be in the confined
dynamics. Moreover, it is curious that the right side of
the boundary between the NP ¼ 2 and NP ¼ 4 regions
locates near the liquid-gas threshold μq ≈ 0.33 GeV for all
mq ≲ 0.33 GeV (and for 3≲ g≲ 8, see Appendix C).
In summary, we again emphasize the following points,
(i) The chemical potential influences the gluon propa-

gator significantly around k0 ≈ 2μq. This can be
explained by the facts, (1) it is the least energy for
the quark pair production without momentum trans-
fer k⃗ ¼ 0 and (2) the quark loop is important in the
energy scale less than the effective gluon mass in
this model.

(ii) If the new pair of complex conjugate poles indeed
emerges as μq increases, there may be a transition on
the boundary between the NP ¼ 2 and NP ¼ 4
regions.

(iii) On the other hand, the almost real pole may be an
artifact of the approximation (36). Then, the gluon
propagator would have a quasiparticle spectral peak
instead of the complex poles which correspond to
confined states.

B. RG improvement of computing NWðCÞ
As discussed in Sec. VA, the appearance of the new

complex poles might be an artifact of the approximation.
Since the new complex poles have very small imaginary
parts, it seems that the NP ¼ 4 region would be highly
affected by a choice of approximation. Therefore, it is
essential to examine the robustness of the NP ¼ 4 region.
Here, as an attempt, we compute NWðCÞ from one-loop RG
improved data for real frequencies fDTðz2 ¼ xn þ iϵÞg.
Since we have adopted the renormalization scheme (13)

described by the vacuum part, we can implement the
RG improvement using the vacuum results [21]. The
infrared safety of the scheme (13) enables us to implement
the one-loop RG improvement avoiding the Landau pole.
Note that the chemical potential μq does not run in this
scheme.
The RG equation for the gluon propagator is given by

DμνðkE; αðμ2Þ; μq; μ2Þ
¼ Z−1

A ðμ2; μ20ÞDμνðkE; αðμ20Þ; μq; μ20Þ; ð37Þ

where α denotes the set of gauge coupling and gluon and
quark masses α ¼ ðg;M;mqÞ and ZAðμ2; μ20Þ is the renorm-
alization factor of the gluon field. Using this equation,

FIG. 7. An estimate of the spectral function if the almost real
complex poles are artifacts of the approximation (36). This plots
ρðωÞ ¼ 1

π ImDTðk20 ¼ ω2 þ iϵ0Þ with ϵ0=M2 ¼ 10−3, which is
larger than the imaginary part of the almost real pole. This
shows that the spectral function has a long-lived quasiparticle
peak, if the complex pole is an error.
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we here approximate the gluon propagator for real frequen-
cies as

DTðk20; αðμ20Þ; μq; μ20Þ
≈ ZAðjk20j; μ20ÞD1−loop

T ðk20; αðjk20jÞ; μq; jk20jÞ: ð38Þ

Here, we suppose NZ ¼ 0, since D1−loop
T ðk20Þ has no

complex zeros. Then, we can compute the number of
complex poles through the relation NP ¼ −NWðCÞ.
A contour plot ofNWðCÞ on the plane ðμ2q; m2

qðμ0ÞÞ at the
set of parameters (28a) computed by this approximation
scheme is displayed in Fig. 8. Note that the NP ¼ 4 region
in Fig. 8 is qualitatively similar to that of Fig. 2. For
example, at the set of parameters (28a) and (28b), the
NP ¼ 4 region lies in 0.24 GeV≲ μq ≲ 0.38 GeV. This
qualitative similarity between Fig. 2 and Fig. 8 suggests the
robustness of the NP ¼ 4 region and that the gluon
propagator could have additional complex poles rather
than a quasiparticle pole in this region.
We ought to note that the one-loop RG improvement

would still be not enough to capture important effects of
quarks as pointed out in [21]. Although another way of this
examination is to include the two-loop quantum correc-
tions, the two-loop calculation is beyond the scope of the
present study.

C. Slightly larger μq
To obtain a fair agreement with lattice results in two-

color QCD, the effective gluon mass parameterM is chosen
of order μq for μq ∼ 0.6–1 GeV [26]. As an attempt to
obtain an estimate of the analytic structure of the gluon
propagator for the slightly large μq, we investigate the strict
one-loop gluon propagator at μq ¼ M.
Beforehand, let us see how the in-medium modification

of the effective gluon mass affects the analytic structure.
The real and imaginary parts of the gluon propagator at
μq ¼ 0.8 GeV for M ¼ 0.42 GeV and M ¼ 0.8 GeV are
plotted in Fig. 9. The change ofM does not largely modify
the location of the spectral peak, k20 ≈ ð2μqÞ2, while the
direction of the peak is inverted.
The real and imaginary parts of the gluon propagator at

M ¼ μq ¼ 0.6, 0.8, 1.0 GeV are plotted in Fig. 10. The
spectral function has a negative peak at k20 ≈ ð2μqÞ2. The

FIG. 8. Contour plot of NWðCÞ for the RG-improved gluon

propagator on the ðζ ¼ μ2q
M2ðμ0Þ ; ξ ¼

m2
qðμ0Þ

M2ðμ0ÞÞ plane at the set of

parameters (28a), which gives the number of complex poles
through the relation NP ¼ −NWðCÞ. In the NP ¼ 2, 4 regions,
the gluon propagator has one pair and two pairs of complex
conjugate poles, respectively. We used N þ 1 ¼ 4 × 105,
x0 ¼ 4× 10−5 GeV2, xn−x0 ¼ n×10−5 GeV2 ðn¼ 1;…;Nþ1Þ
for the discretization (5) and ϵ ¼ 10−9M2 for the infinitesimal
imaginary part.

FIG. 9. The real and imaginary parts of the gluon propagator at
μq ¼ 0.8 GeV for M ¼ 0.42 GeV and M ¼ 0.8 GeV. The solid
curves are those of M ¼ 0.42 GeV, which was regarded as the
effective gluon mass in the vacuum. Those of M ¼ 0.8 GeV are
represented by dashed-dotted ones. The other parameters are
ðg;mqÞ ¼ ð4.5; 0.13 GeVÞ and NF ¼ 2.

FIG. 10. The real and imaginary parts of the gluon propagator
at M ¼ μq ¼ 0.6, 0.8, 1.0 GeV are plotted as dashed-dotted,
dashed, and solid curves, respectively. The other parameters are
ðg;mqÞ ¼ ð4.5; 0.13 GeVÞ and NF ¼ 2.
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magnitude of this peak decreases as μq increases. The gluon
propagator has one pair of complex conjugate poles as the
vacuum one. The effect of the chemical potential around
k0 ≈ 2μq is less significant for large μq in this model.
For complex poles, we have numerically confirmed

NP ¼ 2 in this set up for μq ∼ 0.6–1 GeV as inferred from
Fig. 2. Their positions k0 ¼ ωR þ iωI , ðωR > 0;ωI > 0Þ
are plotted in Fig. 11. The apparent linearity of ωR and ωI
with respect to μqð¼ MÞ suggests that M and μq are the
dominating scales in the propagator. A comparison with
Fig. 6 indicates that the in-medium modification of the
gluon mass makes ωR and ωI larger.

D. Comments on the infrared problems
at finite temperature

Finally, let us add remarks on the use of the naive
perturbation theory in the massive Yang-Mills model in the
thermal context.
We have investigated the gluon propagator by using the

perturbation theory of the massive Yang-Mills theory.
However, it is well known that the naive perturbation
theory of the Yang-Mills theory breaks down at finite-
temperature. Therefore, some ressumation procedure is

usually required to reach the infrared region in the thermal
context, including cases at the finite chemical potential.
Such a breakdown of the perturbation theory stems from
the masslessness of the gluon. Indeed, due to the infrared
singularities in the usual case, the generated magnetic
gluon mass proportional to g2 appears in denominators
of terms of the perturbative series, which ruins the
expansion in g2. This breakdown is well known as the
Linde problem [52].
On the other hand, the massive Yang-Mills model does

not present such a manifest breakdown of perturbation
theory since the gluon mass regulates these infrared
problems. Therefore, although resummation procedures
may improve the results, the naive one-loop propagator
of this model could already capture essential aspects of the
Landau-gauge gluon propagator in QCD.

VI. SUMMARY AND FUTURE PROSPECTS

Let us summarize our findings. We have performed
complex analyses of the gluon propagator at nonzero quark
chemical potential μq in the long-wavelength limit k⃗ → 0,
by using the massive Yang-Mills model. We have verified
that the two conditions, (i) DðzÞ → 0 as jzj → ∞ and
(ii) DðzÞ is holomorphic except for the real axis and a
finite number of complex poles, are sufficient to single
out the correct analytic continuation of a Matsubara
propagator. Therefore, the uniqueness of the analytic
continuation is guaranteed in a similar sense as [49] even
if we allow the existence of complex poles. For the proof,
see Appendix A.
We have found that there is a NP ¼ 4 region, where the

gluon propagator has two pairs of complex conjugate poles
with respect to the complex variable z2 ¼ k20. In this region,
a new pair appears near the real axis in addition to the other
pair similar to that in the vacuum case. At the typical
parameters (Fig. 2), the NP ¼ 4 region appears for light
quarks (mq ≲ 0.30 GeV). As the quark chemical potential
μq increases, the number of complex poles becomes four
(NP ¼ 4) at slightly above the quark mass mq and backs to
two (NP ¼ 2) at μq ≈ 0.8M ≈ 0.33 GeV. This structure is
not sensitive to details of choice of the parameters ðg;MÞ as
shown in Appendix C. Moreover, in this NP ¼ 4 region,
the new pair of complex conjugate poles has quite
small imaginary part, and its location is approximately
Rek20 ≈ ð2μqÞ2. On the other hand, in the NP ¼ 2 region,
the gluon propagator behaves less “particlelike” with larger
ratio ωI=ωR of the complex pole at k0 ¼ ωR þ iωI, as μq
increases.
The chemical potential influences the gluon propagator

significantly around k0 ≈ 2μq, where the new poles appear
and the spectral peak is observed. We can attribute this to
the facts (i) it is the least energy for the quark pair
production to occur at k⃗ ¼ 0 and (ii) the quark loop
dominates in the energy scale less than the gluon mass M.

FIG. 11. Top panel: trajectory of a complex pole k0 ¼
ωR þ iωI , ðωR > 0;ωI > 0Þ of the gluon propagator in the plane
ðωR;ωIÞ at ðg;mqÞ ¼ ð4.5; 0.13 GeVÞ with varying μq ¼ M
from 0.6 to 1 GeV. As μq increases, the pole moves along the
arrow. Bottom panel: μq dependence of the real part ωR of
location of a complex pole.
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Finally, we can interpret the new almost real poles in two
ways. First, the results may imply that the gluon propagator
indeed has a new pair of complex poles. This suggests a
transition in confined degrees of freedom involving the
gluon. Second, the almost real pole may be an artifact of
“the one-loop approximation” (36). Then, the gluon propa-
gator would have a long-lived quasi-particle spectral peak
instead of the confined complex pole, which suggests a
quasi-particle picture of the in-medium gluon. Note that,
however, the NP ¼ 4 region still remains in the RG-
improved results (Fig. 8).
To sum up, although the gluon propagator presents only

mild changes on the Euclidean side [27], it might have a
rich and interesting structure in the complex frequency
plane.
As future prospects, there is plenty of room for improve-

ment in the present work in many aspects. First, this work
does not take into account the quark condensation, which is
expected to be essential in the highly dense quark matter.
The effect on the analytic structure of the quark gapwould be
interesting. Second, as remarked in the introduction,
the one-loop level is not enough in the quark sector of
the massive Yang-Mills model. A possible improvement is
the double expansion that improves the quark mass function
significantly [23]. Third, while a fair agreement with lattice
results can be obtained bymaking the gluonmassM depend
on μq [26], the medium modification of the effective gluon
mass should be determined in a more systematic way.
Fourth, since the massive Yang-Mills model has the infrared
safe renormalization scheme, it would be important to
compare the RG improved Euclidean gluon propagator with
the lattice one. This could improve the current unsatisfactory
agreement. Lastly, when using lattice results, we have to
keep in mind that the lattice gluon propagator has non-
negligible systematic errors, e.g., finite lattice-spacing effect
at low momenta [53] and how Gribov copies affect results
because there is no reason of the coincidence between the
minimal Landau gauge and the Euclideanversion of Landau
gauge of the well-known covariant operator formalism due
to the Gribov ambiguity.
For other directions, it would be interesting to introduce

temperature and to consider the physical sector and its
transport properties in the massive Yang-Mills model and
compare them with other approaches, e.g., [54]. Although it
is very difficult, it is important to discuss implications of
complex poles in the physical sector. The corresponding
state should be confined and not itself have any physical
impact, but its composite state might have physical sig-
nificance [55]. Formal aspects of complex poles will be
discussed in a future work.
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APPENDIX A: UNIQUENESS OF ANALYTIC
CONTINUATION OF THE MATSUBARA
PROPAGATOR WITH COMPLEX POLES

In the absence of complex singularities, a theorem for the
uniqueness of analytic continuation of the Matsubara
propagator is well-known and proved in [49]. In this
Appendix, we shall extend the theorem to propagators
with complex poles.
In practice, we have not faced the problem of the

uniqueness of the analytic continuation as we have
employed the gluon propagator at zero temperature
T ¼ 0. However, the propagator at finite chemical potential
is the low temperature limit T → 0 of the Matsubara
propagator at finite temperature; it is conceptually essential
to establish the uniqueness of the analytic continuation of
the Matsubara propagator.
Theorem. Let DðzÞ be a complex function whose

values at Matsubara frequencies z ¼ iωn ≔ i 2πnβ are given.
Then, its analytic continuationDðzÞ to the whole complex z
plane is unique provided that an analytic continuation
satisfies the following conditions,

(i) DðzÞ → 0 if jzj → ∞
(ii) DðzÞ is holomorphic except for the real axis and a

finite number of complex poles.
Proof.—Let D1ðzÞ and D2ðzÞ be two analytic continu-

ations satisfying the above two conditions that coincide at
all the Matsubara frequencies: D1ðiωnÞ ¼ D2ðiωnÞ. Then,
φðzÞ ≔ D1ðzÞ −D2ðzÞ satisfies

(i) φðiωnÞ ¼ 0 for all Matsubara frequencies ωn,
(ii) φðzÞ is holomorphic except for the real axis and a

finite number of complex poles,
(iii) φðzÞ → 0 as jzj → ∞.

We shall show that φðzÞ is identically zero, i.e., an
assumption that φðzÞ had only isolated zeros leads to a
contradiction. The proof is a straightforward generalization
of a proof of the Carleman theorem given in Titchmarsh’s
book [56].
Consider the integral

IðRÞ ≔
I
C0

dz
2πi

�
1

R2
−

1

z2

�
lnφðzþ iϵÞ; ðA1Þ

where the contour C0 ¼ ðρ; RÞ ∪ CR ∪ ð−R;−ρÞ ∪ Cρ is
depicted in Fig. 12 and CR ¼ fz; Imz > 0; jzj ¼ Rg and
Cρ ¼ fz; Imz > 0; jzj ¼ ρg are the semicircles with
counterclockwise and clockwise directions respectively.
In this integral, we are going to keep ρ finite and take a

limit R → ∞. From here on, we omit þiϵ for notational
simplicity.
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We take a sufficiently small ρ (or appropriate choice of
branch cuts of lnφðzÞ) so that Cρ does not intersect with
any branch cut of the logarithm.
We evaluate this integral ImIðRÞ in two ways to obtain

the contradiction.
First, we decompose the integral IðRÞ into four pieces

following C0 ¼ ðρ; RÞ ∪ CR ∪ ð−R;−ρÞ ∪ Cρ,

IðRÞ ¼ Iρ→R þ ICR
þ I−R→−ρ þ ICρ

: ðA2Þ

Then, we have

Iρ→Rþ I−R→−ρ ¼
Z

R

ρ

dx
2πi

�
1

R2
−
1

x2

�
ln½φðxÞφð−xÞ�; ðA3Þ

and,

ICR
¼
Z
CR

dz
2πi

�
1

R2
−

1

z2

�
lnφðzÞ

¼ i
πR

Z
π

0

dθ sin θ lnφðReiθÞ: ðA4Þ

Thus, we obtain

ImIðRÞ ¼ ImICρ
þ
Z

R

ρ

dx
2π

�
1

x2
−

1

R2

�
ln jφðxÞφð−xÞj

þ 1

πR

Z
π

0

dθ sin θ ln jφðReiθÞj: ðA5Þ

Note that ImICρ
is Oð1Þ as R → ∞. The other two integrals

could diverge as R → ∞; however, then, ImIðRÞ would be
negative infinity, since φðzÞ → 0 as jzj → ∞ and the other
parts of the integrands are positive, ð 1x2 − 1

R2Þ > 0; sin θ > 0.

Therefore, ImIðRÞ is bounded from above: ImIðRÞ ≤ M for
some M ∈ R.
On the other hand, the integral IðRÞ is closely related to

zeros and poles inside C0.

IðRÞ ¼
I
C0

dz
2πi

lnφðzÞ d
dz

�
z
R2

þ 1

z

�

¼
I
C0

dz
2πi

d
dz

�
lnφðzÞ

�
z
R2

þ 1

z

��

−
I
C0

dz
2πi

φ0ðzÞ
φðzÞ

�
z
R2

þ 1

z

�
: ðA6Þ

The first integral sums up “discontinuities” from the
branch cuts of the logarithm. Since we have assumed that
the branch cuts of the logarithm do not intersect with Cρ,
the first term contributes only from ðρ;RÞ∪CR ∪ ð−R;−ρÞ,
on which ð z

R2 þ 1
zÞ is real. Therefore,

Im
I
C0

dz
2πi

d
dz

�
lnφðzÞ

�
z
R2

þ 1

z

��
¼ 0: ðA7Þ

Finally, the second term can be evaluated as a weighted
sum of zeros and poles. The generalized argument principle
yields

−
I
C0

dz
2πi

φ0ðzÞ
φðzÞ

�
z
R2

þ 1

z

�

¼ −
X

zj∶zeros
zj∈D0

�
zj
R2

þ 1

zj

�
þ

X
wk∶poles
wk∈D0

�
wk

R2
þ 1

wk

�
; ðA8Þ

where D0 is the region surrounded by C0. To sum up,

ImIðRÞ ¼
X

zj∶zeros
zj∈D0

�
1

rj
−

rj
R2

�
sin θj þOð1Þ; ðA9Þ

where we have defined rjeiθj ≔ zj, used the finiteness of
the number of poles, andOð1Þ stands for a finite term for all
R. As φðiωnÞ ¼ 0 for all Matsubara frequencies and
ð 1rj −

rj
R2Þ > 0 for zj ∈ D0,

X
zj∶zeros
zj∈D0

�
1

rj
−

rj
R2

�
sin θj ≥

X
n

iωn∈D0

�
1

ωn
−
ωn

R2

�
: ðA10Þ

Moreover, as R → ∞,

X
n

iωn∈D0

ωn

R2
¼

X
0<ωn<R

ωn

R2
¼ Oð1Þ: ðA11Þ

These results indicate

FIG. 12. The contour of the integral IðRÞ consisting of
lines ð−R;−ρÞ and ðρ; RÞ and semicircles Cρ and CR: C0 ¼
ðρ; RÞ ∪ CR ∪ ð−R;−ρÞ ∪ Cρ.
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ImIðRÞ >
X

0<ωn<R

1

ωn
þOð1Þ → þ∞; ðA12Þ

which contradicts the first evaluation: ImIðRÞ is bounded
above. The assumption that φðzÞ had only isolated zeros is
false. Therefore, φðzÞ ¼ D1ðzÞ −D2ðzÞ is identically zero
at least for the upper-half plane. In the same way, φ ¼ 0 in
the lowest-half plane follows by taking −z as z. This
completes the proof. □

Incidentally, let us comment on the possibility of branch
cuts. The uniqueness holds even if we allow the propagator
to have a finite number of (nonclosed) branch cuts that have
finite length and represent finite discontinuities of DðzÞ.
Then, φðzÞ ¼ D1ðzÞ −D2ðzÞ could have branch cuts in
addition to poles. We can still prove φ ¼ 0 by (i) deforming
C0 to avoid the branch cuts and (ii) taking the branch cuts of
lnφðzÞ so that they intersect with neither Cρ nor the path
wrapping around the new branch cuts of φ.
Indeed, the first evaluation becomes

IðRÞ ¼ Iρ→R þ ICR
þ I−R→−ρ þ ICρ

þ
X
γ∶cuts

Iγ;

Iγ ¼
Z
γ0

dz
2πi

�
1

R2
−

1

z2

�
lnφðzÞ; ðA13Þ

where γ0 is a path that surrounds a cut γ in jzj < R. This new
contribution is finite for any R due to the finiteness of the
branch cuts.
On the other hand, the second evaluation by the partial

integration is the same as before, which leads to a contra-
diction again. Therefore, the conclusion is not changed in
the presence of discontinuities on curves of finite length.

APPENDIX B: ONE-LOOP EXPRESSIONS
FOR THE VACUUM PART

Here, we present the one-loop expression for Πvac
μν ðkEÞ ¼

Πvacðk2EÞPμν ¼ M2Π̂vacð k2EM2ÞPμν.
Beforehand, we rewrite the two-point vertex functions

Γð2Þ
A;vac and Γð2Þ

gh;vac by dimensionless gluon and ghost

vacuum polarizations Π̂ and Π̂gh as

Γð2Þ
A;vacðk2EÞ ¼ M2½sþ 1þ Π̂ðsÞ þ sδZ þ δM2 �

≕M2½sþ 1þ Π̂vacðsÞ�; ðB1Þ

Γð2Þ
gh;vacðk2EÞ ≔ −½Δghðk2EÞ�−1

¼ M2½sþ Π̂ghðsÞ þ sδC�
≕M2½sþ Π̂ren

gh ðsÞ�; ðB2Þ

where kE is the Euclidean momentum, s ¼ k2E
M2, and

δZ ≔ ZA − 1, δM2 ≔ ZAZM2 − 1, and δC ≔ ZC − 1 are the
counterterms.

The bare vacuum polarizations computed by the dimen-
sional regularization read [4,21], for gluons,

Π̂ðsÞ ¼ Π̂YMðsÞ þ Π̂qðsÞ; ðB3Þ

Π̂YMðsÞ ¼
g2C2ðGÞ
192π2

s
��

9

s
− 26

��
ε−1 þ ln

�
4π

M2eγ

��

−
121

3
þ 63

s
þ hðsÞ

	
;

Π̂qðsÞ ¼ −
g2CðrÞ
6π2

s

�
−
1

2
½ε−1 þ ln

�
4π

m2
qeγ

��

−
5

6
þ hq

�
ξ

s

�	
; ðB4Þ

for ghosts,

Π̂ghðsÞ ¼
g2C2ðGÞ
64π2

s

�
−3
�
ε−1 þ ln

�
4π

M2eγ

��

− 5þ fðsÞ
�
; ðB5Þ

where ε ≔ 2 −D=2, γ is the Euler-Mascheroni constant,
C2ðGÞ and CðrÞ ¼ NF=2 are the Casimir invariants of the
adjoint and fundamental (with multiplicity NF) represen-

tations of the gauge group G, ξ ¼ m2
q

M2 and,

hðsÞ≔−
1

s2
þ
�
1−

s2

2

�
ln s

þ
�
1þ 1

s

�
3

ðs2 − 10sþ 1Þ lnðsþ 1Þ

þ 1

2

�
1þ 4

s

�
3=2

ðs2 − 20sþ 12Þ ln
� ffiffiffiffiffiffiffiffiffiffi

4þ s
p

−
ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
�
;

hqðt̃Þ≔ 2t̃þ ð1− 2t̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4t̃þ 1

p
coth−1


 ffiffiffiffiffiffiffiffiffiffiffiffi
4t̃þ 1

p �
;

fðsÞ≔−
1

s
− s ln sþ ð1þ sÞ3

s2
lnðsþ 1Þ; ðB6Þ

with t̃ ≔ ξ
s ¼

m2
q

k2E
.

The renormalization conditions (13) for the gluon and
ghost sector can be cast into in the one-loop level,

8>><
>>:
ZAZCZM2 ¼ 1

Γð2Þ
A;vacðk2E¼ μ2Þ¼ μ2þM2

Γð2Þ
gh;vacðk2E¼ μ2Þ¼ μ2

⇔

8>><
>>:
δCþδM2 ¼ 0

Π̂vacðs¼ νÞ¼ 0

Π̂ren
gh ðs¼ νÞ¼ 0;

ðB7Þ

with ν ≔ μ2

M2.
By imposing this renormalization condition, we have the

renormalized two-point vertex functions,
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Π̂vacðsÞ ¼ Π̂ren
YMðsÞ þ Π̂ren

q ðsÞ; ðB8Þ

Π̂ren
YMðsÞ¼

g2C2ðGÞ
192π2

s

�
48

s
þhðsÞþ3fðνÞ

s
− ðs→ νÞ

�
; ðB9Þ

Π̂ren
q ðsÞ ¼ −

g2CðrÞ
6π2

s

�
hq

�
ξ

s

�
− hq

�
ξ

ν

��
: ðB10Þ

Note that the gluon propagator at T ¼ μ ¼ 0 exhibits
the decoupling feature and satisfies the condition (ii) of
Sec. II B:

Π̂vacðs ¼ 0Þ > 0; ðB11Þ

⇒ Γð2Þ
A;vacðk2E ¼ 0Þ ¼ M2½1þ Π̂vacð0Þ� > 0: ðB12Þ

Indeed, we have

Π̂ren
YMðs ¼ 0Þ ¼ g2C2ðGÞ

192π2

�
3fðνÞ − 15

2

�
> 0;

Π̂ren
q ðs ¼ 0Þ ¼ 0; ðB13Þ

where we have used hqðt̃ → ∞Þ ¼ Oð1Þ, hðsÞ ¼
− 111

2s þOðln sÞ, fð0Þ ¼ 5=2, and the fact that fðsÞ
increases monotonically in s.
Note also that the strict one-loop expression has the

following asymptotic form in the limit jk2j → ∞:

Γð2Þ
A;vac ≃ g2γ0ð−k2Þ ln jk2j þOðk2Þ; ðB14Þ

while the asymptotic freedom and RG analysis yields

Γð2Þ
A;vac ≃ Z−1

UVð−k2Þðln jk2jÞγ0=β0 ; ðB15Þ

FIG. 13. Contour plots of NWðCÞ ¼ −NP of the gluon propa-

gator on ðζ ¼ μ2q
M2 ; ξ ¼ m2

q

M2Þ plane at g ¼ 3 (top) and g ¼ 8

(bottom) for M ¼ 0.42 GeV.

FIG. 14. Contour plots of NWðCÞ ¼ −NP of the gluon propa-

gator on ðζ ¼ μ2q
M2 ; ξ ¼ m2

q

M2Þ plane at M ¼ 0.3 GeV (top) and M ¼
0.8 GeV (bottom) for g ¼ 4.5.
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where we have analytically continued the gluon propagator
from the Euclidean momentum k2 ¼ −k2E to complex k2,
ZUV > 0 is a positive constant, and γ0 and β0 are respec-
tively the first coefficients of the gluon anomalous dimen-
sion and the beta function:

γ0 ¼ −
1

16π2

�
13

6
C2ðGÞ −

4

3
CðrÞ

�
;

β0 ¼ −
1

16π2

�
11

3
C2ðGÞ −

4

3
CðrÞ

�
: ðB16Þ

Both the strict one-loop gluon propagator and RG
improved one satisfy the condition (i) of Sec. II B. In spite
of the wrong logarithmic exponent, the one-loop gluon
propagator has qualitatively the same phase as the RG
improved one (for NF < 10). Thus, the wrong logarithmic
exponent will not change the value of NWðCÞ ¼ NZ − NP,
and hence the strict one-loop expression may be enough for
our purpose.

APPENDIX C: NUMBER OF COMPLEX POLES
WITH VARIOUS ðg;MÞ

In the main text, we have investigated the analytic
structure of the gluon propagator with the fixed parameters
g ¼ 4.5 and M ¼ 0.42 GeV, as they give best-fit param-
eters to the lattice results [21]. In this Appendix, we check
that the qualitative features of the analytic structure are not
sensitive to the model parameters ðg;MÞ.
We have confirmed that the contour plots of NP on the

ðζ ¼ μ2q
M2 ; ξ ¼ m2

q

M2Þ plane are qualitatively same. Indeed,
Fig. 13 gives contour plots of NP at M ¼ 0.42 GeV and
g ¼ 3 (top) and g ¼ 8 (bottom). Figure 14 gives contour
plots of NP at g ¼ 4.5 and M ¼ 0.3 GeV (top) and M ¼
0.8 GeV (bottom). The setup of the numerical calculations
is the same as Fig. 2. Similar to Fig. 2, the left boundary
(small-ζ side of the boundary) is near μq ∼mq and the right
boundary (large-ζ side of the boundary) at μ2q ≈ 0.6M2,
at least within the parameter region 3≲ g≲ 8 and
0.3 GeV≲M ≲ 0.8 GeV.
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