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The energy-energy correlator (EEC) is an event shape observable which probes the angular correlations
of energy depositions in detectors at high energy collider facilities. It has been investigated extensively in
the context of precision QCD. In this work, we introduce a novel definition of EEC adapted to the Breit
frame in deep-inelastic scattering (DIS). In the back-to-back limit, the observable we propose is sensitive to
the universal transverse momentum dependent (TMD) parton distribution functions and fragmentation
functions, and it can be studied within the traditional TMD factorization formalism. We further show that
the new observable is insensitive to experimental pseudorapidity cuts, often imposed in the laboratory
frame due to detector acceptance limitations. In this work the singular distributions for the new observable
are obtained in soft collinear effective theory up to Oðα3sÞ and are verified by the full QCD calculations up
to Oðα2sÞ. The resummation in the singular limit is performed up to next-to-next-to-next-to-leading
logarithmic accuracy. After incorporating nonperturbative effects, we present a comparison of our
predictions to PYTHIA 8 simulations.
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I. INTRODUCTION

Event shape observables (such as thrust, C-parameter, etc.)
aremeasures of the energy flow,multiple particle correlations,
and the radiative patterns in high energy collisions. They have
been extensively investigated at various colliders and, over the
past several decades, have played a central role in our
understanding of the perturbative and nonperturbative
dynamics of quantum chromodynamics (QCD).
The energy-energy correlator (EEC) is such an observ-

able, which was originally introduced in the context of
eþe− collisions as an alternative to the thrust family of
event shapes. EEC is defined as follows [1],

EEC ¼
X
a;b

Z
dσee→aþbþX

σ
wabδðcos χab − cos χÞ; ð1Þ

where the sum runs over all the hadron pairs ða; bÞ and the
cross section is weighted by wab ≡ 2EaEb=s, which is the

product of the energies of a and b normalized by the center-
of-mass energy of the system. EEC measures the energy
correlations as a function of the opening angle χab between
particles a and b. Significant theoretical effort has been
devoted to this observable, including fixed-order calcula-
tions [2–10], and QCD factorization and resummation
in the back-to-back (χ → π) and collinear (χ → 0) limits
[11–15]. In the back-to-back limit EEC is related to the
transverse momentum distributions (TMD) and very
recently [16], was calculated at N3LL0 accuracy after
obtaining the Oðα3sÞ singular distributions.
At hadronic colliders, an adaptation of EEC known as

transverse-energy-energy correlation (TEEC) considers
only the momenta in the transverse plane in order to
construct the corresponding observable [17]. TEEC was
calculated including next-to-leading order (NLO) QCD
corrections in Ref. [18], and NNLL resummation in the
dijet limit was accomplished in Ref. [19].
For observables like EEC and TEEC soft radiation

contributes only through recoil to the energetic collinear
particles, since direct contributions from soft emissions are
suppressed by the energy weighting factor. Thus, we should
anticipate to have smaller nonperturbative corrections
compared to other event shape variables. Moreover, owing
to the high perturbative accuracy achieved both in
resummed and fixed order calculations [11,16,19,20],
complemented by high precision measurements [21–27],
EEC and TEEC observables offer the opportunity for
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precision studies in QCD. In particular, EEC and TEEC have
been used for precise extractions of the strong coupling
constant. For a recent review see Sec. 9 of Ref. [28].
Despite its important applications to precision QCD and

the connection of the EEC observable to TMDs, little has
been done in the context of deep inelastic scattering (DIS).
With the future electron-ion-collider (EIC) [29] on the
horizon, progress in this direction is urgently needed. The
first study of TEEC in DIS was performed in [20], where
the observable was defined as the correlation between final
state hadrons and the scattered lepton in the transverse
plane of the Laboratory frame. Furthermore, in Ref. [30]
the original definition of TEEC and its asymmetry were
also considered in a fixed-order study in the Breit frame.
In this work we introduce a new definition of EEC in the

Breit frame, which is the natural frame for the study of
transverse momentum dependent (TMD) physics [31]. In
this frame, the target hadron moves along ẑ and the virtual
photon moves in the opposite direction. The Born-level
process is described by the lepton-parton scattering
eþ qi → eþ qf, where the outgoing quark qf back-
scatters in the direction opposite to the proton.
Hadronization of the struck quark will form a collimated
spray of radiation close to the −ẑ direction. In contrast,
initial state radiation and beam remnants are moving in the
opposite direction close to the proton’s direction of motion.
It is this feature of the Breit frame, which leads to the clean
separation of target and current fragmentation that we
utilize to construct the novel EEC observable in DIS.
We denote the new event shape variable EECDIS to

avoid confusion with the conventional observable. Our
definition reads,

EECDIS ¼
X
a

Z
dσep→eþaþX

σ
zaδðcos θap − cos θÞ; ð2Þ

where

za ≡ P · pa

P · ðPipiÞ
; ð3Þ

and pμ
a and Pμ are the momenta of the hadron a and the

incoming proton respectively. The angle θap is the polar
angle of hadron a, which is measured with respect to the
incoming proton.1 Note that the asymmetric weight func-
tion, za, is Lorentz invariant and is suppressed for soft
radiation and radiation close to the beam direction.
Furthermore, this definition of EECDIS naturally separates
the contribution to the cos θ spectrum from: (i) wide angle

soft radiation, (ii) initial state radiation and beam remnants,
and (iii) radiation from the hadronization of the struck
quark. This unique feature makes the new observable in the
back-to-back limit (θ → π) insensitive to experimental cuts
on the particle pseudorapidity (in the laboratory frame)
usually imposed due to detector acceptance limitations in
the backward and forward regions, making the comparison
of theory and experiment in this region even more accurate.
This definition of EEC is spherically invariant, however,
we discuss in Appendix a possible definition that is fully
Lorentz invariant and can be measured directly in any
frame.
For π − θ ∼ 1 the distribution is very well described by

the fixed order QCD calculations, while in the back-to-back
limit resummation of enhanced logarithms is required for
reliable predictions. To this end, in the back-to-back limit,
the cross section can be factorized, within the soft-collinear
effective theory (SCET) framework [32–36], as a convo-
lution of TMD beam, soft, and TMD fragmentation
functions, which share the same operator definitions as
in the conventional single hadron semi-inclusive DIS
factorization. This ensures the universality of TMD parton
distribution functions (TMD PDFs) appearing in EECDIS
when we compare to other observables, such as semi-
inclusive DIS and jet-TMDs [37–40] in the Breit frame.
Moreover, through an operator product expansion (OPE)
the TMD beam or TMD fragmentation function can be
matched to the collinear PDF and collinear fragmentation
function, respectively. As discussed in Ref. [11], after
summing over all the final state hadrons, the collinear
fragmentation functions can be removed using momentum
sum rules and, therefore, the only hadronic matrix elements
that enter the factorization in the back-to-back limit are the
TMD PDFs. As a result, EECDIS provides a novel approach
to TMD physics, avoiding the dependence on fragmenta-
tion functions. An important aspect of the EEC observable
is that the hadronization corrections are incorporated only
at the transverse momentum level through the EEC jet
function. This is in contrast to the conventional SIDIS
measurements, where one needs to include also the strong
hadronization effects introduced at the energy fraction
variable, zh, of the identified hadrons. We expect that this
feature of EEC will help moderate the correlation of
TMDPDFs with hadronization effects in phenomenological
extractions.
In this work we construct the resummed cross section up

to N3LL accuracy and merge onto the NLO (Oðα2sÞ) fixed
order QCD result. To achieve the resummed result, we use
the four-loop cusp and the three-loop hard, soft, and jet
anomalous dimensions. The fixed order singular results for
the various elements of the factorization formula we take
from the literature. The TMD PDFs have been calculated
up to three loops [41–49], and the soft function at the same
accuracy can be found in Refs. [11,50]. The jet function is
the second Mellin moment of the TMD fragmentation

1Note that what we propose is different from the discussion in
[30], where a fixed order QCD calculation for TEEC (as defined
for hadronic colliders) was performed in the Breit frame DIS
for the dijet configuration. This observable exhibits very different
characteristics and is suppressed by αs compared to what we
propose here.
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functions which are also available up to N3LO [44–46,48,
51,52]. The fixed order QCD result is obtained numerically
using NLOJet++ [53]. We also perform a consistency check
of our approach by comparing the LO and NLO singular
distributions, obtained by the factorization formula, to the
full QCD prediction in the back-to-back limit.
The paper is organized as follows. In Sec. II we introduce

the relevant modes of EECDIS in SCET and the factorized
formula in the back-to-back limits. In addition, we discuss
the hadronization corrections. In Sec. III we present our
predictions up to N3LLþ NLO and compare our results
with PYTHIA simulations. Section IV shows how for the
EEC observables we can select a subset of hadrons in final
state, to be used for flavor tagging in TMD PDFs and TMD
FFs. We conclude in Sec. V. We propose a Lorentz invariant
definition of EEC in DIS in the Appendix.

II. MODES AND FACTORIZATION

A. Notation and DIS kinematics in Breit frame

In this paper, we work explicitly in the Breit frame,
where a clean geometrical separation of target and current
fragmentation exists. To avoid contributions from the
resolved photon events we will consider only scattering
with large photon virtuality, i.e., Q ¼

ffiffiffiffiffiffiffiffi
−q2

p
≫ 1 GeV,

where qμ is the four-momentum of the virtual photon. In the
Breit frame we have,

qμ ¼ Q
2
ðn̄μ − nμÞ ¼ Qð0; 0; 0;−1Þ; ð4Þ

where nμ ≡ ð1; 0; 0;þ1Þ and n̄μ ≡ ð1; 0; 0;−1Þ. The proton
momentum (up to mass corrections) is

Pμ ≃
Q
2xB

nμ ¼ Q
2xB

ð1; 0; 0;þ1Þ; ð5Þ

with Bjorken xB ≡Q2=ð2q · PÞ. At Born level, the struck
quark back-scatters against the proton and has momentum
(x ≃ xB):

pμ
q ¼ xPμ þ qμ ≃

Q
2
n̄μ: ð6Þ

The fragmentation of the struck quark leads to the for-
mation of a jet-like structure pointing opposite to the beam
direction.
In the Breit frame the weight factor, za, that appears in

the definition of the observable in Eq. (3) can be written as
follows,

za ≡ P · pa

P · ðPi piÞ
����
P2→0

¼ P · pa

P · q
⟶
Breit

frame

pþ
a

Q
: ð7Þ

Here and in the rest of this paper we use the standard
notation, pþ ≡ n · p and p− ≡ n̄ · p. Note that from
momentum conservation we have

X
i

zi ¼ 1; ð8Þ

where the sum extents over all final state particles in the
event, excluding the scattered lepton and its QED radiation
products. The struck quark fragments, found close the
direction of the virtual photon, share the largest fraction of
the lightcone momenta pþ and, thus, satisfy zi ∼ 1. Then,
the constraint in Eq. (8) requires that soft radiation and
particles close to the direction of the target hadron are
described by parametrically smaller values of the momen-
tum fraction, i.e., zi ≪ 1. Therefore, in the back-to-back
limit the contribution to EECDIS is dominated by the
collinear fragments of the struck quark. We refer to the
corresponding modes as “n̄-collinear.” However, from
conservation of momentum we have that “n-collinear” as
well as global soft radiation will contribute through recoil,
as we demonstrate in the following subsection. Using the
light-cone basis where pμ ¼ ðpþ; p−; p⊥Þ, the scaling of
the relevant modes is

n-collinear∶ pμ
n ∼Qðλ2; 1; λÞ;

n̄-collinear∶ pμ
n̄ ∼Qð1; λ2; λÞ;

soft∶ pμ
s ∼Qðλ; λ; λÞ: ð9Þ

From the above scaling of momenta we have that the
weight factor, zi, for the three relevant modes is

zn̄ ≲ 1; zn ∼ λ2; zs ∼ λ; ð10Þ

while beam remnants with momenta almost parallel to
the direction of the proton have a vanishing scaling
parameter, zb:r: ∼ 0.

B. Factorization

As already mentioned above, the n-collinear and soft
modes will enter the factorization theorem through recoil
effects. To demonstrate that, consider the contribution to
the observable of a hadron, a, from the n̄ sector. As shown
in Fig. 1, the hadron-a is labeled by its scaling factor za
and its transverse momentum with respect to the fragment-
ing parton ka⊥. This particle will contribute to the meas-
urement at θ ¼ θap, which we can express in terms of
q⊥ ≡ pa⊥=za—the rescaled transverse momenta with
respect to the proton/beam direction of motion,

π − θap
2

¼ θ̄a
2
≃
jq⊥j
Q

≃
1

Q

���� ka⊥za þ pn⊥ − ps⊥
����: ð11Þ

It is, therefore, clear now that the EEC is a reweighted TMD
distribution summed over all hadrons flavors. Following
Ref. [11], we introduce a dimensionless variable in order to
simplify the notation,
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τ ¼ 1þ cos θ
2

: ð12Þ

Expanding in the back-to-back limit, θ → π, and for a
single hadron of flavor a we have

dσa
dxdQ2dzdτ

¼
Z

dq⊥
dσa

dxdQ2dzdq⊥
δ

�
τ −

jq⊥j2
Q2

�

× ½1þOðτÞ�;

where we used the shorthand notation dσa ≡ dσðep →
eþ aþ XÞ and we have dropped the subscript a from the
variable z.
The TMD cross section can be written as usual, in terms

TMD parton distribution functions and fragmentation
functions:

dσa
dxdQ2dzdq⊥

¼ HijðQ; x; y; μÞ
Z

db
ð2πÞ2 expð−ib · q⊥Þ

× Bj=Pðx; b; μ; νÞDi=aðz; b; μ; νÞSðb; μ; νÞ;
ð13Þ

where b is the Fourier conjugate of q⊥ and b ¼ jbj. Bj=P is
the TMD beam function, S is the soft function, and Di=a is
the fragmentation function for parton i to hadron a.
Integrating against the weighing factor and summing

over all possible hadrons, we have,

X
a

Z
1

0

dzz
dσa

dxdQ2dzdτ

¼ HijðQ; x; y; μÞ
Z

dq⊥δ
�
τ −

jq⊥j2
Q2

�

×
Z

db
ð2πÞ2 expð−ib · q⊥Þ

× Bj=Pðx; b; μ; νÞSðb; μ; νÞJiðb; μ; νÞ; ð14Þ

where Jqðq̄Þ is the EEC (anti-)quark jet function defined as
the weighed sum of TMD fragmentation functions,

Jiðb; μ; νÞ≡
X
a

Z
1

0

dzzDi=aðz; b; μ; νÞ: ð15Þ

Note that this is the same jet function that appears in the
conventional EEC observable for electron-positron annihi-
lation. Through an OPE, the TMDFFs can be expressed in
terms of a convolution of short distance matching coef-
ficients, I ij, and the collinear fragmentation functions,
di=h,

2

DOPE
i=a ðz; b; μ; νÞ ¼

X
j

Z
1

z

du
u
I ij

�
b
z=u

; z=u; μ; ν

�

× dj=aðu; μÞ
�
1þO

�Λ2
QCD

Q2
;Λ2

QCDb
2

��
;

ð16Þ
where we have used the superscript OPE to denote that this
is the leading contribution in the expansion and is consid-
ered a good approximation of the true TMDs in the
perturbative regime where qT ≫ ΛQCD. Therefore, for
the EEC jet function in the same approximation we have,

JOPEi ðb; μ; νÞ ¼
X
j

Z
1

0

dwwI ij

�
b
w
; w; μ; ν

�
: ð17Þ

To obtain this, we used the fragmentation function sum
rule,

X
a

Z
1

0

dzzdi=aðz; μÞ ¼ 1; ð18Þ

which gives the normalization of the fragmentation func-
tions as number density.

1. Renormalization group evolution and resummation

The various elements of the factorized expression have
renormalization scale, μ, dependence. The resummed
cross-section, where all large logarithms are summed up
to a particular logarithmic accuracy, is obtained by evalu-
ating the elements of factorization at their canonical scales
and then using the renormalization group (RG) equations to
evolve them up to a common scale. The RG equation
satisfied by each of the relevant functions is,

FIG. 1. Illustration of the measurement of the transverse momentum q⊥ of the hadron-a with respect to the proton axis in the Breit
frame.

2Note that in the literature there are multiple conventions for
the matching coefficients. Here we use the ones from Ref. [11],
however other equivalent choices can be made.
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d
d ln μ

GðμÞ ¼ γGðμÞGðμÞ; ð19Þ

where G can be any of the functions that appear in the
factorization theorem in Eq. (14). The solution of the RG
equation in Laplace space can be written as a product of the
evolution kernel UG and the function G, evaluated at some
initial scale μ0,

GðμÞ ¼ Gðμ0Þ × exp
�Z

μ

μ0

d ln μ0γGðμ0Þ
�

¼ Gðμ0Þ ×UGðμ; μ0Þ: ð20Þ

For each of the functions that appear in the factorization
theorem, a different choice of the initial scale μ0 is
appropriate. In this work the initial scales of the evolution
are chosen such that they minimize large logarithms in the
fixed order expansion of the corresponding functions,

μH ¼ Q; μS ¼ μB ¼ μJ ¼ μb ≡ 2e−γE

b
: ð21Þ

In our scheme the final scales on the evolution are chosen
such that they minimize logarithms in the beam and jet
functions, μ ¼ μb. In addition to the renormalization
evolution, the soft, beam, and jet functions also satisfy
rapidity evolution. Here, we consider the evolution of the
soft function alone,

Sðb; μ; νÞ ¼ Sðb; μ; νSÞ × exp

�Z
ν

νS

d ln ν0γRðμ; μbÞ
�
; ð22Þ

and choose the common rapidity scale, ν such that it
minimizes the rapidity logs in the beam and jet function:

ν ¼ νB ¼ νJ ¼ Q: ð23Þ

The anomalous dimension γR is the soft function rapidity
anomalous dimension. Then, the RG evolved cross section
reads

dσ
dxdQ2dτ

¼ HijðQ; x; y; μHÞ
Z

dq⊥δ
�
τ −

jq⊥j2
Q2

�

×
Z

db
ð2πÞ2 expð−ib · q⊥ÞBj=Pðx; b; μ; νÞ

× Sðb; μS; νSÞJiðb; μ; νÞRðb; μ; νÞ: ð24Þ

Here, R is the combined evolution kernel for both renorm-
alization evolution and rapidity evolution,

Rðb; μ; νÞ ¼ exp

�Z
μ

μH

dμ0

μ0
γHðμ0Þ þ

Z
ν

νS

dν0

ν0
γRðμ; μbÞ

�
;

ð25Þ

where γH and γS are the anomalous dimensions of the hard
and soft functions.
Further details on evolution equations and anomalous

dimensions can be found in Ref. [20] and references
therein.

C. Hadronization and nonperturbative corrections

The result in Eq. (15) contains the same jet function
found in the conventional EEC observable in Refs. [11,45]
and can be expressed in terms of the perturbatively
calculable matching coefficients after OPE, as done in
Eq. (17). However, hadronization corrections are expected
to be important, particularly at the relatively small values of
Q anticipated at the EIC. The fact that EECDIS factorization
involves the universal back-to-back TMD soft function
allows us to consider hadronization and nonperturbative
corrections in a universal framework applicable to conven-
tional TMD observables.
There are two sources of nonperturbative corrections

for TMDs: (a) the corrections to the rapidity anomalous
dimension; and (b) the contribution to the TMD matrix
elements. For the soft rapidity anomalous dimension the
implementation of the nonperturbative model is done as in
conventional TMD observables at the level of evolution,

Rðb; μ; νÞ → Rðb; μ; νÞ × exp

�
gKðbÞ ln

ν

νS

�
; ð26Þ

where gKðbÞ is the model function for the nonperturbative
component of the rapidity anomalous dimension. Note that
since the EEC jet function satisfies the same rapidity and
renormalization group evolution as TMDFFs, this also
implies the same hadronization model for the rapidity
anomalous dimension. For the hadronization model of
the EEC jet function we can assume a generic multiplica-
tive ansatz. The final result reads,

ffiffiffi
S

p
Jiðb; μ0; ν0Þ ¼

ffiffiffiffiffiffiffiffi
Spert

p
JOPEi ðb; μ0; ν0ÞjiðbÞ; ð27Þ

where Spert is the perturbative expression for the soft
function and jiðbÞ is the multiplicative ansatz for hadro-
nization effects in the EEC jet function. The scales μ0 and
ν0 are arbitrary scales in the soft and jet functions. Since
this is the same jet function that appears in the standard
EEC observable one can extract the model function jiðbÞ
by fitting to experimental data from eþe− or in a simulta-
neous fit extraction of jet and TMDPDF from ep colliders.
Alternatively, we can relate the model function jiðbÞ to

the standard TMDFFs as follows,

jiðbÞ ¼ ½JOPEi ðb; μ0; ν0Þ�−1
X
a

Z
1

0

dudyðuyÞ

× I ij

�
b
u
; u; μ0; ν0

�
di=aðy; μ0ÞDNP

i=aðuy; bÞ; ð28Þ
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where the nonperturbative model function DNP
i=aðz; bÞ is

defined in the context of TMDFFs,

ffiffiffi
S

p
Di=aðz; b; μ0; ν0Þ ¼

ffiffiffiffiffiffiffiffi
Spert

p
DOPE

i=a ðz; b; μ0; ν0ÞDNP
i=aðz; bÞ:

ð29Þ

Therefore, given a specific model for TMD fragmentation
we can explicitly evaluate the model function jiðbÞ. This is
the approach we take here. We use the approach given
above to calculate the jet function from past extractions of
the TMDFF. Relatively recent extractions of the TMDFFs
can be found in Refs. [54–56]. The nonperturbative model
for the TMDPDF can be implemented the same way as is
done for in the case of TMD measurements in SIDIS and
Drell-Yan processes,

ffiffiffi
S

p
Bi=Pðx; b; μ0; ν0Þ ¼

ffiffiffiffiffiffiffiffi
Spert

p
BOPE
i=P ðx; b; μ0; ν0ÞfNPi=Pðx; bÞ:

ð30Þ

In this work we will be assuming a simplified model that is
independent of the Bjorken x:

fNPi=Pðx; bÞjsimplified ¼ fNPi=PðbÞ: ð31Þ

Thus, combining all elements at the level of the cross
section we can collect all nonperturbative contributions in a
single function, FNP

i=PðbÞ,

dσ
dxdQ2dτ

¼HijðQ;x; y;μHÞ
Z

dq⊥δ
�
τ−

jq⊥j2
Q2

�

×
Z

db
ð2πÞ2 expð−ib · q⊥ÞB

OPE
j=P ðx;b;μ;νÞ

× Spertðb;μS;νSÞJOPEi ðb;μ;νÞRðb;μ;νÞFNP
i=PðbÞ;
ð32Þ

where

FNP
i=PðbÞ ¼ fNPi=PðbÞjNPi ðbÞ exp

�
gKðbÞ ln

ν

νS

�
; ð33Þ

The nonperturbative corrections in this work are imple-
mented following the model and parameters in Refs. [54,57],

FNP
i=PðbÞ∼jiðbÞ×exp

�
−0.106b2−0.42ln

�
1þ b2

b2max

�
ln

ν

νS

�
;

ð34Þ

where the last term in the exponent corresponds to the
nonperturbative rapidity evolution model for gKðbÞ ¼
−0.42 lnð1þ b2=b2maxÞ, with bmax ¼ 1.5 GeV−1. For the

EEC jet function model jiðbÞ we will consider a LO
approximation based on Eq. (28),

jiðbÞjLO ¼
X
a

Z
1

0

dyydi=aðy; 1 GeVÞDNP
i=aðy; bÞ: ð35Þ

Note that for the trivial choice DNP
i=a ¼ 1 (i.e., no non-

perturbative effects in the TMDFF) we have from momen-
tum sum rules that also jiðbÞ ¼ 1. For this analysis we use
the DSS collinear fragmentation functions [58,59] and for
the TMDFF model we have,

DNP
i=aðy; bÞ ¼ exp

�
−0.042

b2

y2

�
: ð36Þ

Performing the sum over a ∈ fπþ=−=0; p=n;Kþ=−=0g and
the integrating over the momentum fraction y in Eq. (35)
we find,

jiðbÞ ¼ expð−0.59b − 0.03b2Þ; ð37Þ

for i ∈ fu; d; s; ū; d̄; s̄g with very small flavor dependence
which in this study we will ignore for simplicity.
In this section we discussed how the nonperturbative

corrections are implemented in our work. Our approach is
phenomenologically motivated and it aligns with what is
traditionally used for TMD extractions from semi-inclusive
DIS. Nonetheless, there are other ways to take into account
nonperturbative effects in EEC. A detailed field theoretic
treatment of nonperturbative corrections to EEC in eþe−
was presented in Ref. [60]. We find that the linear in b
terms in the nonperturbative component of the jet function
are consistent with the NP-model introduced in [60]. The
question of power corrections and nonperturbative effects
in a field theoretic manner is a rather interesting and
important subject, but beyond the scope of this paper.

III. NUMERICS AND COMPARISON WITH
MONTE-CARLO SIMULATIONS

In this section we present numerical results for the
EECDIS distributions at the future electron-ion collider
(EIC) [29]. In particular, we consider the following beam
energies: 18 GeV electrons on 275 GeV protons, which
corresponds to the center-of-mass energy

ffiffiffi
s

p
≈ 141 GeV.

For all the calculations we select events with Q > 20 GeV
and use the PDF4LHC15_nnlo_mc PDF sets [61] with the
associated strong coupling provided by Lhapdf 6 [62].
We present the TEECLab [20] and EECDIS distributions

predicted by PYTHIA 8 [63,64] in Fig. 2. The red, blue, and
green lines represent the results with pseudorapidity cuts
jηj < 5.5, jηj < 4.5, and jηj < 3.5 in the lab frame, respec-
tively, which imitates detector limitations in the backward
and forward regions. In order to compare the results with
different pseudorapidity cuts, all the distributions in Fig. 2
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are normalized by the sum of weights of all entries relative
to the same quantity for jηj < 5.5. Because TEECLab
measures the correlation between hadrons and the final
state lepton in the lab frame, pseudorapidity cuts have an
impact on the full cosϕ range, as shown in left panel of
Fig. 2. EECDIS is defined as the correlation between the
final state hadrons and incoming proton in the Breit frame,
and the pseudorapidity cuts only remove particles in the
forward region where the weighted cross section is small.
In the backward region (cos θ → −1) the EECDIS distribu-
tion is independent on the pseudorapidity cuts.
Figure 3 shows the fixed order ln τ distributions in

QCD compared against the singular distributions derived
from the fixed order expansion of the factorized cross
section in Eq. (14). The factorization and renormalization
scales are set to Q. The nontrivial contribution to EECDIS
starts from two-jet production in DIS, which is considered
as LO. The singular distributions are provided up to NNLO
and shown with solid lines; their τ → 0 behavior is driven
by the logarithmic terms. The fixed order QCD predictions
are shown with the dashed lines, and are calculated
using NLOJet++ [53,65]. The nonsingular contributions
are defined as

dσ
d ln τ

����
nonsing

≡ dσ
d ln τ

����
QCD

−
dσ

d ln τ

����
sing

; ð38Þ

and are represented by the dash-dotted lines. The non-
singular results correspond to the power corrections to the
factorized cross section which are of OðτÞ or higher and
vanish in the limit τ → 0. This, equivalently, implies that

the singular behavior of the full QCD calculation is
reproduced by the singular distributions in the same limit.
The purpose of this comparison is twofold. First, it is a
consistency check of our approach and our calculations,
and, second, it is an indicator for the size of power
corrections as a function of τ. In particular, we find that
large power corrections are observed for τ → 1 where the
TMD factorization is not valid.
In the τ → 0 limit the logarithmic enhancements can

spoil the convergence of the perturbative expansion. This is

FIG. 2. TEECLab (left) and EECDIS (right) distributions from PYTHIA 8 with different rapidity cuts in the lab frame. For TEECLab we
consider a cut on the scattered lepton transverse momentum pe

T > 20 GeV and for EECDIS we consider cut on the photon virtuality
Q > 20 GeV. For both case we consider cut on y ¼ 2P · q=s: 0.01 < y < 0.95.

FIG. 3. Fixed-order ln τ distributions in the τ → 1 limit. The
solid lines represent the singular distribution predictions of
SCET. The dashed lines are the fixed order QCD results. The
dash-dotted lines are power corrections.
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apparent from the relative size of the various terms in Fig. 3.
Therefore, resummation of these logarithms to all orders in
the strong coupling is necessary for reliable predictions and
comparison with experimental data. The resummed cross
section can be evaluated by evolving the hard, soft, beam,
and jet functions in Eq. (14) from their canonical scales to
common rapidity and renormalization scales, ν and μ
respectively. As discussed in Sec. II B, we chose to evolve
the hard function to the common soft and jet renormaliza-
tion scales: μ ¼ μS ¼ μB ¼ μJ. For the rapidity evolution
we evolve the soft function up to the common jet and beam
rapidity scale by making the choice ν ¼ νB ¼ νJ. In our
scale choice, in order to avoid the Landau pole, we adopt
the conventional scheme,

νS ¼ μS ¼ μB ¼ μJ∶ b → b� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=b2max

p ; ð39Þ

where bmax is fixed as discuss above Eq. (34). The scale
uncertainties are evaluated by varying μ, μH, ν, and νH by a
factor of two independently. Figure 4 shows resummed
distributions over ln τ in the infrared region. We observe
large corrections from NLL to N2LL and a good perturba-
tive convergence from N2LL to N3LL. Furthermore we find
that the scale uncertainties are significantly reduced for the
N3LL compared to the lower accuracy distributions. For
comparison, in Fig. 4 we also show the LO and NLO
nonsingular distributions. We find that the power correc-
tions become numerically relevant for ln τ ≳ −4.
In comparison with the equivalent TEECLab distribu-

tions, i.e., Fig. 3 of Ref. [20], the peaks of EECDIS
distributions are at larger τ values, which corresponds to
a larger energy scale. This suggests that the EECDIS
observable has a more stable and reliable perturbative
behavior at the bulk of the distribution. Also, compared
to TEECLab, we expect smaller nonperturbative corrections
since, in principle, the hadronization effects will suppress
the cross section in the region qT ∼ 0. For the nonpertur-
bative models discussed in Sec. II C the numerical results
are present in Fig. 5 (left panel). As anticipated, for EECDIS,
nonperturbative corrections shift the cross sections to larger
τ. In the right panel the same figure we focus on the very
small transverse momentum region in which sensitivity to
TMDPDF is stronger. In this region we show the effect of
the different nonperturbative components. We note that the
hadronization effects are as important in magnitude as the
TMDPDF, at least for the extractions from [54,57] which
we used in this paper.
The final EECDIS distributions are presented in Fig. 6,

where we matched the NLL and N3LL resummed distri-
butions to the QCD NLO ones in the τ → 1 region. The left

FIG. 4. Resummed ln τ distributions for EEC. The dark red,
dark blue, and dark green bands correspond to NLL, NNLL, and
NNNLL distribution. The dot-dashed lines are the LO non-
singular distributions (dark red) and the absolute value of NLO
nonsingular ones (dark green).

FIG. 5. Left: Resummed ln τ distributions without (solid) and with nonperturbative factor. The color scheme is the same as in Fig. 4.
Right: Comparing the effect of the hadronization effects and TMDPDF effects in the small transverse momentum region for N3LL only.
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panel shows the comparison between our calculations
without nonperturbative effects to PYTHIA 8 simulations
run without a hadronization modeling. The right panel
presents the equivalent distributions including nonpertur-
bative effects and hadronization. For −0.8 < cos θ the
distributions are described by the fixed order results and
for cos θ < −0.95 by the sum of resummed and non-
singular power corrections. In region −0.95< cosθ<−0.8
we impose our matching scheme where the cross section
smoothly transitions from the resummed and the fixed
order cross section and is defined as

dσ
d cosθ

����
−0.95<cosθ<−0.8

¼ ð1− f2Þ dσ
d cosθ

����
QCD

þ f2
�

dσ
d cosθ

����
nonsing

þ dσ
d cosθ

����
Res

�
;

ð40Þ

where

f ¼ 1

2

�
cos

�
cos θ þ 0.95

0.15
π

�
þ 1

�
: ð41Þ

A similar matching procedure and detailed discussion
about matching can be found in Ref. [66]. The difference
between NLLþ NLO and N3LLþ NLO in the region
cos θ > −0.8 is purely from the total normalization, which
is dominated by the resummation region.
For large cos θ, where the cross section is dominated by

the fixed order result, the theoretical uncertainties are
estimated by varying the renormalization and factorization
scales (μr and μf respectively) by a factor of 2 and 1=2:
μr ¼ μf ¼ κQ with κ ¼ ð0.5; 1; 2Þ.
By comparing the PYTHIA distributions (gray band) in

the left and right panels of Fig. 6 we see that hadronization
effects, as implemented in PYTHIA 8, enhance the distribution

for large cos θ. In the collinear limit, θ → 0, the distribution
from hadronic-level PYTHIA increases in comparison to the
partonic-level and in comparison with our NLO predictions.
Note, however, that this region is sensitive to the rapidity
cutoffs and thus comparison to experiment requires a
different formalism to incorporate these effects. Such a
formalism will have to resum logarithmic enchantments
from the rapidity cutoff, see for example Refs. [67–69].

IV. CORRELATIONS WITH SUBSETS OF
HADRONS

In this section we discuss an EEC-like observable, but
this time considering only a subset of hadrons. There are
various reasons why one might want to introduce such a
modification and at the end of this section we give two
possibilities. In the discussion that follows, we denote the
subset of hadrons with S. Taking the τ-differential and
z-weighed cross section but only summing over a subset of
all hadrons we have,3

OS ¼
X
a∈S

Z
1

0

dzz
dσa

dxdQ2dzdτ
: ð42Þ

In the back-to-back limit the factorization theorem formu-
lation for this observable follows exactly the same steps as
for EECDIS and the final result is given by Eq. (14) with the
replacement of the EEC jet function with the appropriate
subset jet function, Gi→S:

Jiðb; μ; νÞ → Gi→Sðb; μ; νÞ ¼
X
a∈S

Z
1

0

dzzDi=aðz; b; μ; νÞ:

ð43Þ

FIG. 6. Comparison of cos θ distributions between the SCET predictions and PYTHIA simulations. The dark red and dark green bands
are the NLLþ NLO and N3LLþ NLO. The gray bands are from PYTHIA 8 simulations with the default settings for uncertainty bands.

3For EECDIS, there is no collinear singularity in the forward
region. In this section we focus on the back-to-back limit.
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Beyond the dependence on the initiating parton i, the
subset jet function (SJF) also depends on the subset of
hadrons S and, thus, is a fundamentally nonperturbative
function (similar to fragmentation functions and PDFs).
Nonetheless, similarly to the EEC jet function we can
employ the OPE and at leading order match the TMD FF
onto the collinear FFs. Doing so we get,

GOPE
i→Sðb; μ; νÞ ¼

X
j

F j→SðμÞ
Z

1

0

dwwI ij

�
b
w
;w; μ; ν

�
;

ð44Þ
where F j→S is interpreted as the average fraction the
momentum of the fragmenting parton j carried by the
hadrons included in S,

F j→SðμÞ ¼
X
a∈S

Z
1

0

dzzdi→aðz; μÞ: ð45Þ

From the fragmentation function sum rules we also have
that if S ¼ all hadrons then F j→S ¼ 1 and we retrieve the
EEC jet function. In-contrast to the EEC jet function,
the SJF in Eq. (44) cannot be expressed only in terms of the
perturbatively calculable matching coefficients since it
depends explicitly on the subset S. However, in the OPE
limit this dependence is rather simple and enter through the
fraction F j→S. Beyond this limit, further nonperturbative
corrections can be implemented through a model in a way
similar to the one for the EEC jet function in Eq. (46):
ffiffiffi
S

p
Gi→Sðb; μ; νÞ ¼

ffiffiffiffiffiffiffiffi
Spert

p
Rðb; μ; νÞGOPE

i→Sðb; μ0; ν0Þgi→SðbÞ;
ð46Þ

where

gi→SðbÞ ¼ ½GOPE
i→Sðb; μ0; ν0Þ�−1

X
a∈S

Z
1

0

dzzDi=aðz; b; μ0; ν0Þ;

ð47Þ
is the nonperturbative ansatz for the SJF to be determined
from the flavor sensitive TMD FFs or directly measured
from experiment.
The subset of hadrons S can be chosen accordingly in

order to accommodate the experimental and phenomeno-
logical needs. Two cases we find particularly interesting:

(i) S ¼ C: where C is the subset of all charged particles.
This case is important since often experimental
measurements consider only charged particles for
which the energy resolution is much better, yielding
smaller experimental uncertainties. To apply our
formalism in the back-to-back limit one needs the
fraction F i→C which can be obtained from extraction
of charge hadron fragmentation functions [58].
Considering only charged particles will most defi-
nitely have an effect in the weighed cross section,

however, is unclear how much this will affect the
EECDIS since it is a normalized observable.

(ii) S ¼ h: where h is an identified hadron. This case is
particularly interesting since it allows us to probe the
flavor of the incoming parton by appropriately choos-
ing the final state hadron h. This is similar to what has
been done in TMD observables [70]. Obviously, the
nonperturbative number F i→h can be obtain by
integrating the single hadron collinear FF, Di→h.

In this work we do not explore any numerical implemen-
tations of this modified EEC-like observable but we foresee
those to be relevant for future studies when comparing to
experimental data.

V. CONCLUSION

In this paper, we introduced a new definition of energy-
energy-correlator (EEC) suitable for Breit frame studies of
the DIS process, where the opening angle θ between final
state particles and the incoming proton is measured and
the cross section is weighted by the four-momentum
product of final state particles and incoming proton. As
a consequence of this definition, the contributions that arise
from wide angle soft particles and initial-state radiation
close to the beam direction, are suppressed. The usual
transverse momentum factorization can be applied in the
back-to-back limit (θ → π). In this limit, the novel EEC
observable in DIS is insensitive to pseudorapidity cuts,
usually imposed in the forward and backward regions due
to detector acceptance limitations.
We obtained the singular distributions for EEC in DIS up

to NNLO from the factorized formula and compared them
against the full fixed-order QCD calculations up to NLO.
The purpose of this comparison is twofold, first the
numerical agreement in the θ → π limit serves as a
validation of our factorization formalism. Second, the point
of deviation of the two distributions indicates the region
where power corrections become relevant. Predictions up to
N3LLþ NLO were presented.
Nonperturbative and hadronization effects for the EEC

observable were investigated by considering nonperturba-
tive form factors extracted from the semi-inclusive hadron
production in DIS. Incorporating these nonperturbative
models, we also presented the comparison of our predic-
tions to PYTHIA simulations.
Last but not least, we introduced a generalization of EEC

in DIS where a subset of hadrons can be chosen. The
modified observable can be used to tag the initial state and
final state flavor, or for comparison against experimental
measurements where only charged hadrons are considered.
To conclude, we propose EEC in DIS as a way to check the
universality of TMD factorization and study TMD PDFs
and FFs with high precision, both experimentally and
theoretically. We remark that EEC can be expanded for
the study of spin effects in a polarized target hadron and
therefore, constitutes a useful tool for the study TMD
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physics and nuclear matter effects in electron-ion collisions
[71,72] at the future EIC.
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APPENDIX: LORENTZ INVARIANT DEFINITION
OF EEC IN DIS

One can also write down a Lorentz invariant definition of
the EEC in DIS. We denote this definition of the observable
with EECLI and it is given as follows,

EECLI ¼
X
a

Z
dσlþh→lþaþX

σ
zaδðtanh η̄a − tanh η̄Þ;

ðA1Þ

where

η̄a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q · pa

xBP · pa

r
⟶
Breit

frame

2pa⊥
pþ
a

: ðA2Þ

For particles that satisfy the n̄-collinear scaling as described
in Eq. (9) we have η̄n̄ ≃ π − θn̄. Therefore, in the back-to-
back limit (η̄ → 0), similarly to the case of EECDIS the new
observable can be expressed in terms of the conventional
TMD factorization. A advantage of using the above
definition is that, in contrast to the one in Eq. (2), it can
be applied in the laboratory frame and, thus, reduce the
propagation of experimental uncertainties associated with
the Lorentz transformation to the Breit frame.
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