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We propose a new method for unsupervised clustering for collider physics named UCluster, where
information in the embedding space created by a neural network is used to categorize collision events into
different clusters that share similar properties. We show how this method can be developed into an
unsupervised multiclass classification of different processes and applied in the anomaly detection of events
to search for new physics phenomena at colliders.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been
successful so far at describing the interaction of funda-
mental particles in high energy physics (HEP). The ATLAS
[1] and CMS [2] Collaborations have tested the SM
extensively using particle collision events at the CERN
Large Hadron Collider (LHC), while also looking for
deviations from the SM that could point to physics beyond
the SM (BSM). Since the underlying nature of the new
physics is not known, new methods designed to be model
independent have proliferated in the recent years. These
strategies aim at finding deviations or detecting anomalies
where only SM events are used and avoiding any depend-
ence on BSM signals. For a short review of recent
approaches, see [3].
For measurements of SM parameters, a fully unsuper-

vised multiclass classification method would be advanta-
geous. This is particularly true for precision measurements
of SM parameters. Simulations are often needed to describe
the properties of different processes produced in the LHC
collisions. However, simulated events are not always
precise in all physics process. This can be caused either
by a lack of simulated events compared to the data
expectation or the need of corrections that are beyond
the accuracy of the approximations used in the simulation.
Further precision might be computationally prohibitive to
achieve or beyond the capability of our current methods.
To mitigate these issues, different data-driven methods
often replace the event simulations. See [4–7] for recent
examples.

When two or more processes are not well modeled, the
common approach is to design multiple control regions,
often defined using high-level distributions, to create a high
purity sample that allows a data-driven estimation and
modeling for this process. However, since it is not always
straightforward to define each of these regions without
relying on simulations, an unsupervised multiclass classi-
fication approach could be used instead.
In this paper, we introduce a method for unsupervised

clustering (UCluster). The main idea of UCluster is to use a
neural network (NN) to reduce the data dimensionality
while retaining the main properties of the dataset. In this
reduced representation, a clustering objective is added to
the training to encourage points embedded in this space to
be close together when they share similar properties and far
apart otherwise. We test the performance of UCluster in the
context of two different tasks: unsupervised multiclass
classification of three different SM processes and unsu-
pervised anomaly detection.

II. RELATED WORKS

Recently, different and innovative strategies have been
proposed for unsupervised training in HEP, mostly in the
context of event classification. A few examples of methods
exploiting anomaly detection signatures as overdensities
are [8,9] and, more recently, [3]. In these approaches,
anomalous events are identified as localized excesses in
some distribution, where machine learning is then used to
enhance the local significance of the new physics process.
While many strategies focus on unsupervised anomaly

detection, other methods have also been proposed to better
understand SM processes without relying on simulation,
like the work developed in [10] for quark and gluon
classification with jet topics and the methods developed
in [11], employing latent Dirichlet allocation to build a
data-driven top-quark tagger. In order to create an unsu-
pervised and model independent approach, the majority of

*vinicius.massami.mikuni@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 103, 092007 (2021)

2470-0010=2021=103(9)=092007(12) 092007-1 Published by the American Physical Society

https://orcid.org/0000-0002-1579-2421
https://orcid.org/0000-0001-6361-2117
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.092007&domain=pdf&date_stamp=2021-05-24
https://doi.org/10.1103/PhysRevD.103.092007
https://doi.org/10.1103/PhysRevD.103.092007
https://doi.org/10.1103/PhysRevD.103.092007
https://doi.org/10.1103/PhysRevD.103.092007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the strategies rely on binary classification, where the main
goal is to test if an event (or a group of events) resulting
from a particle collision is compatible with one out of two
competing hypotheses. Approaches applied to mixed sam-
ples with more than two components were also studied in
[12,13], where prior knowledge of the label proportion for
each component in the mixed sample is required to achieve
a good performance.
In this work, we propose an unsupervised method for

multiclass classification whose only requirement is on the
expected number of different components inside a mixed
sample. The same method is applied to anomalous event
detection, where the data is partitioned into clusters that
isolate the anomaly from backgrounds.

III. METHOD DESCRIPTION

UCluster consists of two components: a classification
step to ensure events with similar properties are close in the
embedding space created by a NN and a clustering step,
where the network learns to cluster embedded events of
similar properties. These two tasks are accomplished by
means of a combined loss function containing independent
components to guarantee each of the described steps.
The classification loss (Lfocal), applied to the output

nodes of a NN, is defined by the focal loss [14]. The focal
loss improves the classification performance for unbal-
anced labels; the case for the classification tasks is to be
introduced in the following sections. The expression for the
focal loss is

Lfocal ¼ −
1

N

XN

j

XM

m

yj;mð1 − pθ;mðxjÞÞγ

× logðpθ;mðxjÞÞ; ð1Þ

where pθ;mðxjÞ is the networks confidence, for event xj
with trainable parameters θ, to be classified as class m. The
term yj;m is 1 if classm is the correct assignment for event j
and 0 otherwise. In this work, we fix the hyperparameter
γ ¼ 2 of the focal loss.
The clustering loss (Lcluster) is defined similarly as the

loss developed in [15]

Lcluster ¼
1

N

XK

k

Xn

j

kfθðxjÞ − μkk2πjk; ð2Þ

where the distance between each event j and each cluster
centroid μk is calculated in the embedding space fθ of the
neural network with trainable parameters θ. The function
πjk weighs the importance of each event and takes the form,

πjk ¼
e−αkfθðxjÞ−μkkP
k0e

−αkfθðxjÞ−μkk ; ð3Þ

with hyperparameter α identified as an inverse temperature
term. Since Lcluster is differentiable, stochastic gradient
descent can be used to optimize jointly the trainable
parameters θ and the centroid positions μk.
The combined loss to be minimized is

L ¼ Lfocal þ βLcluster: ð4Þ

The hyperparameter β controls the relative importance
between the two losses. For these studies, we fix β ¼ 10 to
ensure that both components have the same order of
magnitude.
Since Lcluster requires an initial guess for the centroid

positions, we pretrain the model using only Lfocal for 10
epochs. After the pretraining, the k-means algorithm [16] is
applied to the object embeddings to initialize the cluster
centroids. The full training is then carried out with the
combined loss defined in Eq. (4). To allow the cluster centers
to change, the inverse temperature α has a starting value of 1
and linearly increases by 2 for each following epoch.

IV. GENERAL IMPLEMENTATION

The implementation of UCluster is done using ABCNet
[17]. ABCNet is a graph-based neural network where each
reconstructed particle is taken as a node in a graph. The
importance of each node is then learned by the model by
the usage of attention mechanisms. The embedding space
for the clustering loss in Eq. (2) is taken as the output of a
max-pooling layer. For the following studies, the 10 nearest
neighbors from each particle are used to calculate the
GAPLayers [18]. The initial distances are calculated in the
pseudorapidity-azimuth (η − ϕ) space using the distance
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
. The second GAPLayer uses the

Euclidean distances in the space created by subsequent
fully connected layers. The architectures used for multi-
class classification and anomaly detection are depicted in
Fig. 1. Besides the output classification size, both tasks
share almost identical architectures. The model used for
anomaly detection uses additional high-level distributions
and additional skip connections after the pooling layer to
improve the classification performance. In both cases, the
batch size is set to 1024, and the training is stopped after for
100 epochs.
ABCNet is implemented in TENSORFLOW v1.14 [19]. An

Nvidia GTX 1080 Ti graphics card is used for the training
and evaluation steps. For all tasks described in this paper,
the Adam optimizer [20] is used. The learning rate starts
from 0.001 and decreases by a factor 2 every three epochs,
until reaching a minimum of 1e-5.

V. UNSUPERVISED MULTICLASS
CLASSIFICATION

The applicability of UCluster is demonstrated on an
important problem in high energy physics: unsupervised
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multiclass classification. To achieve good performance, we
require a task that results in a suitable embedding space.
This task should be such that events stemming from the
same physics process are found close together in the
embedding space as compared to events from different
physics processes. Here, a jet mass classification task is
chosen in order to provide meaningful event embeddings.
Given a set of particles belonging to a jet, we ask our model
to correctly identify the invariant mass of the jet. This task
chosen is inspired by the correlation of jet substructure
observables and the invariant mass of a jet [21,22]. The goal
is to have our machine learning method learn to extract
relevant information regarding the different jet substruc-
tures by first learning how to correctly identify the mass of
a jet. The simplest solution to this problem could be
achieved by the four-vector sum of all the particle’s
constituents, leading to an embedding space that does
not have separation power for different types of jets. To
alleviate this issue, we instead define a jet mass label by
taking 20 equidistant steps from 10 to 200 GeV, as shown in
Fig. 2. The task is then to identify the correct mass interval
a jet belongs to, instead of the specific mass value. The
input distributions used for the training are listed in Table I.
For this study, a sample containing simulated jets

originating from W bosons, Z bosons, and top quarks
produced at

ffiffiffi
s

p ¼ 13 TeV proton-proton collisions is used.
This dataset is created and configured using a parametric

description of a generic LHC detector, described in [24,25].
The jets are clustered with the anti-kt algorithm [26] with
radius parameter R ¼ 0.8, while also requiring that the
jet’s pT is around 1 TeV, ensuring that most of the decay

20 40 60 80 100 120 140 160 180 200
Jet mass [GeV]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 e
nt

rie
s 

/ b
in

W

Z

Top

FIG. 2. Normalized distribution of the jet mass of each category
used in the unsupervised multiclass classification task. The bin
boundaries represent the boundaries used to define the jet mass
labels.
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FIG. 1. ABCNet architecture used in UCluster for a batch size N, F input features, and embedding space of size E. Fully connected
layers and encoding node sizes are denoted inside “fg”. For each GAPLayer, the number of k-nearest neighbors (k) and heads (H) are
given. The additional components used only for anomaly detection are shown in red.
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products of the generated particles are found inside a
single jet.
The samples are available at [27]. For each jet, up to 100

particles are stored. If more particles were found inside a
jet, the event is truncated, otherwise zero padded up to 100.

The training set contains 300,000 jets, while the validation
sample consists of 140,000 jets.
To visualize the embedding space, the t-SNE visualiza-

tion method [28] is used for 1000 jets, taken just after the
pretraining with only the classification loss, and compared

TABLE I. Description of each feature used to define a point in the ABCNet implementation for unsupervised
multiclass classification.

Variable Description

Δη Difference between the pseudorapidity of the constituent and the jet
Δϕ Difference between the azimuthal angle of the constituent and the jet
logpT Logarithm of the constituent’s pT
log E Logarithm of the constituent’s E
log pT

pTðjetÞ Logarithm of the ratio between the constituent’s pT and the jet pT

log E
EðjetÞ Logarithm of the ratio between the constituent’s E and the jet E

ΔR Distance in the η − ϕ space between the constituent and the jet
PID Particle type identifier as described in [23].

FIG. 3. t-SNE visualization of the embedding space after the pretraining and before the full training (top row) and after the full training
(bottom row) for multiclass classification with 1000 jets. The true label information is shown on the left, while the initial cluster labels
using a k-means approach is shown on the right.
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to the space created after full training is performed. After
the pretraining, the initial label assignment is taken from a
k-means approach, shown in Fig. 3 (top right), while the
true labels are shown in Fig. 3 (top left). At this stage, the
clustering accuracy, calculated using the Hungarian algo-
rithm [29], is 51%. After the full training is performed, the
trained labels are shown in Fig. 3 (bottom right) with a
clustering accuracy of 81% compared to the true label
assignment in Fig. 3 (bottom left).
To inspect the quality of the embedding space further, a

supervised KNN is trained using only the embedding
features as inputs. Its performance is then compared to a
separate KNN with the same setup, but using only the jet
mass as input. The supervised KNNs are trained to
determine class membership given the label of the 30
nearest neighbors. For the training, 35k events are used and
tested on an independent sample with 15k events.
The one-vs-all performance is compared using a receiver

operating characteristic (ROC) curve in Fig. 4, where one
category is considered the signal of interest, while the

others are considered a background. The area under curve
(AUC) for each process is also shown. The resulting AUC
for the supervised training using the event embeddings is
higher than the jet mass alone for all categories. Top quark
classification shows a particularly large improvement by
using the embedding space information. We attribute this
improvement to jets containing a top quark showing a
broader mass distribution compared to W and Z bosons,
resulting in a worse invariant mass separation as seen in
Fig. 2. UCluster is able to learn other jet properties beyond
the invariant mass, improving the overall performance.
To estimate an upper bound on the UCluster perfor-

mance, a fully supervised model using the full ABCNet
architecture is also trained. The ABCNet architecture is
used to train a classifier containing the real class labels as
targets, achieving an accuracy of 92%. The comparable
results between the fully supervised approach and the KNN
trained on the event embeddings demonstrate how the
method is able to reduce the dimensionality of the input
data while retaining relevant information.
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The accuracies achieved with the full supervision and the
other approaches are summarized in Table II.

VI. ANOMALY DETECTION

UCluster can also be applied to anomaly detection. Here,
we show an example where anomalous events, created from
an unknown physics process, are found to be close in the
embedding space created from a suitable classification task.
This technique is motivated by the fact that, irrespective to
the underlying physics model, events created by the same
physics process carry similar event signatures.
To create a suitable embedding space, we modify the

approach described in Sec. V to take into account all the
particles created in a collision event rather than a single jet.
To do so, the classification task is instead changed to a part
segmentation task. We consider all particles associated to a
clustered jet. Each particle then receives a label propor-
tional to the mass of the jet that it was clustered into. For
this task, we require the model to learn not only the mass of
the associated jet the particle belongs to, but also to learn
which particles should belong to the same jet. This
approach is motivated by the fact that jet substructure
often contains useful information for distinguishing differ-
ent physics processes, as studied in the previous section.
The mass labels are then created by defining 20

equidistant intervals from 10 to 1000 GeV. For simplicity,
only the two heaviest jets are considered per event. A
simplified example of the label definition is shown
in Fig. 5.
To perform these studies, we use the R&D dataset

created for the LHC Olympics 2020 [30]. The dataset

consists of a million quantum chromodynamic (QCD) dijet
events simulated with PYTHIA 8 [31] without pileup or
multiple parton interactions. The BSM signal consists of a
hypothetical W’ boson with mass mW ¼ 3.5 TeV that
decays into an X and Y bosons with masses mX ¼
500 GeV and mY ¼ 100 GeV, respectively. The X and
Y bosons, on the other hand, decay promptly into
quarks.The detector simulation is performed with
DELPHES 3.4.1 [32], and particle flow objects are clustered
into jets using the FASTJET [33] implementation of the anti-
kt algorithm with R ¼ 1.0 for the jet radius. Events are
required to have at least one jet with pT > 1.3 TeV. The
number of signal events generated is set as 1% of the total
number of events. From this dataset, 300k events are
randomly selected for training, 150k for testing and
300k events, are used to evaluate the clustering
performance.
The distributions used as an input for ABCNet are

described in Table III. To improve the clustering perfor-
mance, a set of high-level variables is added to the network.
The goal of the additional distributions is to parameterize
the model performance as described in [34].
Here, we would also like to point out that, even if a proxy

of jet masses is given as an input, the trivial solution is still
not achieved, since the model also has to identify which
particles belong to which jets. To quantify the performance
of UCluster, we start by considering only two clusters with
an embedding space of same dimension. Figure 6 shows the
resulting embedding space without any transformation for
1000 random events.
Most of the BSM events are found in the same trained

cluster, confirming the assumption that the signal events
would end up close together in the embedding space.
However, because of the large QCD background contami-
nation present in the same cluster, the signal-to-background
(SB) ratio remains low, increasing only from 1% to 2.5%. If
the proximity assumption holds, then the cluster SB ratio
can be further enhanced by partitioning the events into
more clusters. Indeed, if the classification loss favors an
embedding space where signal events remain close
together, increasing the number of clusters will decrease
the QCD contamination in the signal clusters whose
properties differ from the signal events. To test this
assumption, the cluster size is varied while keeping all
the other network parameters fixed. The maximum SB ratio
found in a cluster for different clusters sizes is shown in
Fig. 7 left. The SB ratio steadily increases with cluster size,
reaching an average of around 28%. To test how the
performance changes with the number of events, different
training sample sizes were used while keeping the model
fixed, the signal fraction fixed to 1% and number of clusters
fixed to 30. The result of each training is then evaluated in
an independent sample, which is the same size as the
training sample. The result of the approximate significance
(S

ffiffiffiffi
B

p
) is shown in Fig. 7 on the right. For initial

TABLE II. Supervised and unsupervised clustering accuracy of
UCluster when using only the embedding space features.

Algorithm Accuracy

Pretraining k-means 51%
UCluster 81%
Supervised KNN 89%
Supervised training 92%

3

3

3

8
8

8

FIG. 5. Schematic of the labels for anomaly detection. Each
particle associated to a clustered jet receives a mass label
proportional to the respective jet mass. The larger the number,
the more massive the associated jet.
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FIG. 6. Visualization of the embedding space created for anomaly detection using 1000 events. Since the embedding space is already
two-dimensional, no additional transformation is applied. The true labels are shown on the left, while the clusters created by UCluster
are shown on the right.

TABLE III. Descriptions of each feature used to define a point in the point cloud implementation for anomaly
detection. The last two lines are the global information added to parameterize the network.

Variable Description

Δη Pseudorapidity difference between the constituent and the associated jet
Δϕ Azimuthal angle difference between the constituent and the associated jet
logpT Logarithm of the constituent’s pT
log E Logarithm of the constituent’s E
log pT

pTðjetÞ Logarithm of the ratio between the constituent’s pT and the associated jet pT

log E
EðjetÞ Logarithm of the ratio between the constituent’s E and the associated jet E

ΔR Distance in the η − ϕ space between the constituent and the associated jet
logmJf1;2g Logarithm of the masses of the two heaviest jets in the event

τf1;2g21
Ratio of τ1 to τ2 for the two heaviest jets in the event, with τN defined in [35]
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significance in the range 2–6, we observe enhancements by
factors 3–4.
The uncertainties in Fig. 7 show the standard deviation of

five independent trainings with different random initial
weights. When many clusters are used, the clustering
stability starts to decrease, as evidenced by the larger error
bars. This behavior is expected, since a large cluster
multiplicity requires clusters to target more specific
event properties that might differ in between different
trainings.
To qualitatively verify the cluster composition, the dijet

mass distributions for all events (left) and for the cluster
with the highest SB ratio (right) are shown in Fig. 8.

A. Background estimation

In the previous section, the sensitivity to an anomalous
signal was shown to improve with the number of clusters
required by UCluster. However, requiring a larger number
of clusters also requires a method to select interesting
partitions for further inspection. A local p value for each
cluster can be determined for a background-only hypoth-
esis, where the cluster with the lowest p value is selected for
further investigation. We also note that a global p value can
be derived by taking into account the look-elsewhere effect
[36], which is already mitigated by the usage of indepen-
dent samples during training, testing, and evaluation of
UCluster. The main difficulty to estimate the p value is to
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FIG. 8. Dijet mass distributions of the events prior to clustering (left) and for the cluster with the highest SB ratio (right), found when
the data are partitioned into 60 clusters.
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have a reliable background estimation for each cluster.
Given that UCluster is encouraged to create clusters with
more specific properties, the background shape for a given
partition might not have a trivial description. A possible
way to mitigate this issue is to use the nearest cluster, in
embedding space, as a background model for the cluster
under study. Given that the anomalous signal remains
localized in a particular cluster, the nearest clusters have
the benefit to be signal free while still retaining similar
properties to the cluster under consideration. To exemplify
this idea, the cluster with the highest SB ratio shown in
Fig. 8 is used. To model the data distribution in the closest
cluster, a smooth falling distribution with four free param-
eters, commonly used in dijet resonance searches, is used
[37–39], described as

dN
dmjj

¼ p0

ð1 − xÞp1

xp2þp3 lnðxÞ ; x ¼ mjj=1 TeV: ð5Þ

After the fit is performed, all background parameters,
besides the overall normalization, are kept frozen. This
function is then used to model the background in the cluster
with the highest SB ratio. The signal modeling is done with
a Gaussian function. The results of both fits are shown
in Fig. 9.

B. Global distribution effects on clusters

In order to relate the clusters in embedding space to
physical observables, four high-level features were added
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to the anomaly detection model: the invariant mass and τ21
of the two heaviest jets in the event.
To visualize the physical properties of the clusters,

histograms of these four observables are shown in
Fig. 10 with the stacked contributions of each individual
cluster shown for UCluster with five clusters. From these
distributions, there is a sharp separation between the
cluster boundaries for the mass of heaviest jet in the dijet
event. The sharp separation in jet mass is also related to
the separation that is observed in the heaviest jet τ21. As
pointed out in [22], QCD jets show a more distinctive
two-prong structure when they have a larger mass.
Therefore, heavier jets tend to have lower values of τ21.
This correlation between jet mass and jet substructure is
why the jet mass classification task leads to clusters where
jets within a cluster have similar substructure.

VII. CONCLUSION AND FUTURE PROSPECTS

In this work, we presented UCluster, a new method to
perform unsupervised clustering for collision events in high
energy physics. We explored two potential applications for
this method: unsupervised multiclass classification and
anomaly detection.
The ability of the embedding space to separate different

processes is directly connected to the secondary task
used in conjunction with the clustering objective. We
proposed a classification task, which was motivated by
the observations of the correlation between the jet mass
and jet substructure observables, which is often useful for
jet tagging. By learning to classify the mass of a jet,
UCluster created an embedding space that was shown to
have a better separation power for all the class components
in the dataset compared to the jet mass alone.
UCluster was also studied for unsupervised anomaly

detection. In this context, the classification task on jet
masses was expanded to cover the entire event topology.
Using this method, we were able to increase the signal-to-
background ratio in a given cluster from an initial value of
1% up to 28%, while also observing a stable performance
even for a large cluster multiplicity. A data-driven back-
ground estimation is also possible by using the closest
cluster in embedding space to the cluster under investiga-
tion. This data-driven method allows for the selection of
interesting clusters by comparing the background compat-
ibility with the nearest cluster. Clusters of interest can be
further investigated by a dedicated analysis.
We remark that different tasks than the ones proposed

in this work can also be used to create meaningful

embeddings. In particular, recent advances in autoencoders
applied to particle physics [40] are strong candidates for a
summary statistic that can encapsulate the event informa-
tion in a lower dimensional representation, suitable for
clustering.
Compared to [12,13], we relax the requirements on the

label proportion for each different component in a mixed
sample. One interesting point to notice is that, as presented
in [41], the clustering assignment problem can instead be
interpreted as an optimal transport problem. This insight is
particularly interesting when the label proportions are
known a priori. In this case, the additional knowledge
of the label proportions can be directly added to the model
as a regularization term of the form,

Lreg: cluster ¼ min
XK

k

Xn

j

kfθðxjÞ − μkk2πjk

þ απjkðlogðπjkÞ − 1Þ: ð6Þ

This approach requires the term πjk to be numerically
solved, subject to

π1K ¼ 1

n
1N;

πT1N ¼ w; ð7Þ

where w represents the vector of label proportions.
Furthermore, we considered an application where the

initial number of mixed components was known. This
condition was necessary to select a suitable number of
clusters. However, this requirement could also be relaxed,
as shown in [42,43], for example, where the clustering
model is able to identify the optimal number of partitions
given the properties of a dataset.
Finally, UCluster can also be used in conjunction with

other anomaly detection approaches, where first a set of
interesting clusters is identified and then further inspected
by other methods.
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