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The BPS bound states of D4-D2-D0 branes on the noncompact divisors of Calabi-Yau threefolds and
the instantons in the dual quiver gauge theories are previously studied using two-dimensional crystal
melting model and dimer model, [T. Nishinaka et al., J. High Energy Phys. 5 (2014) 139]. Using the
tropical geometry associated with the toric quiver, we study the asymptotic of the quiver gauge theory to
compute some of their thermodynamic observables and extract the phase structure. We obtain that the
thermodynamic observables such as free energy, entropy, and growth rate are explicitly derived from the
limit shape of the crystal model, the boundary of the amoeba and its Harnack curve characterization.
Furthermore, we observe that there is a Hagedorn phase transition in the instanton sector inferred from the
Gumbel distribution of the fluctuations in the crystal model. We present explicit computations of the results
in concrete examples of C3, conifold, local P1 × P1 and local P2 quivers.
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I. INTRODUCTION

The D-brane configurations and their corresponding BPS
states in quiver gauge theories have been a fruitful field of
study in nonperturbative effects in gauge/string duality. They
have been studied extensively with a variety of possible
methods, including some integrable models. In particular,
the D6-D2-D0 brane bound states in IIA string theory on
toric Calabi-Yau threefold singularities and their dual, the 4d,
N ¼ 2 toric quiver gauge theories are studied via 3d crystal
melting model and toroidal dimer model [1–3].
In a similar approach, the D4-D2-D0 bound states are

obtained by replacing the D6-brane with a D4-brane on a
noncompact toric divisor of the Calabi-Yau threefolds.
Similar to the parent D6 theory, in which the D4 theory is
embedded, the low energy effective theory or the dual
quiver gauge theory of the D4 brane is characterized by the
toric geometry data of the Calabi-Yau, subject to additional
constraints imposed by the embedding [4]. The quiver
gauge theory in the world volume of the D4-brane is the
topologically twistedN ¼ 4 supersymmetric gauge theory,
called Vafa-Witten theory. In fact, the low energy effective
field theory on the bound states of N D4-branes wrapped
on the four-cycles with D2’s wrapping two-cycles and k
D0’s branes is equivalent to the k-instantons in the Vafa-
Witten theory. The BPS index of the quiver which is the

degeneracy of D4-D2-D0 bound states is the Euler char-
acteristics of the instanton moduli space.
Regarding the BPS states and instantons of the quiver

gauge theory, all the relevant data for the construction and
counting of them are encoded in a two-dimensional crystal
model living on the facets of the three-dimensional crystal
model. The 2d crystal model is constructed from the
representation of the moduli space of vacua of D4 theory,
called modules of path algebra.
We continue the study of a D4 brane on a noncompact

divisor and D2-D0 BPS bound states to that, using the
crystal melting model, which is initiated in [4]. Although,
the discussion in this article and in [4] is restricted to the
noncompact D4-brane, but it is straightforward to general-
ize the current framework to include the compact D4-
branes wrapping the four-cycles of the Calabi-Yau, and the
crystal melting model will accordingly counts the compact
D4-brane charges. We hope to come back to this problem in
the future. Our goal is to study the asymptotic of this theory
and compute the thermodynamics observables and extract
the possible phase structure of the system. We revisit the
well-known instanton counting of D4-D2-D0 bound states
in the class of toric divisors and compute the entropy of the
gas of instantons. In other words, we study the Vafa-Witten
theory and compute the asymptotics of Euler characteristic
of the moduli space of the instantons in the limit of a large
number of instantons.
In general, the asymptotic analysis is based on the

generating function of the BPS states and it is performed
by the analysis of the poles of the generating functions.
However, there are only few known explicit generating
functions for the BPS states, and thus one has to deal with
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other alternative approaches. In our previous works [5,6], we
introduced the applications of the statistical dimer model and
associated Mahler measure, as well as the hyperbolic
geometry, in the asymptotic analysis of the BPS sector
and the computations of the BPS growth rate, entropy and
free energy of the toric quivers and the particular class of
isoradial ones. The asymptotic analysis of the original BPS
counting in the 3d crystal melting model is based on the limit
shape of the crystal, i.e., the mirror curve of the Calabi-Yau
or the Ronkin function and its closed cousin the Mahler
measure of the statistical dimer model [6].
In this paper, we study the thermodynamics and critical

phenomena of the quiver theories on the toric divisors. The
new asymptotic techniques proposed in this study are based
on the tropical geometry of the Calabi-Yau threefolds. In
analogy to the 3d crystal model, in this study we use the
limit shape of the 2d crystal model, which is obtained from
the amoeba associated with the Newton polynomial of
the dimer model, and using a large deviation problem we
derive explicit results for the thermodynamics observables
such as the free energy and the entropy of the instanton
sector. In brief, the entropy density is directly computed by
the Legendre transform of the limit shape. Using the
Legendre duality between entropy and free energy we
obtain the free energy as the area of the amoeba. Then, by
using the tropical geometry and Harnack curve characteri-
zation of the amoebas of the toric quivers, we obtain a
simple explicit result for the free energy of the quiver given
by the area of the Newton polygon. Furthermore, the
instanton growth rates are computed either via the extrem-
ization of the entropy function or the saddle point tech-
nique. Eventually, we observe that the total free energy and
total BPS growth rate summed over all the divisors are
dependent of Kähler moduli.
Adopting and generalizing some results in number

theory, namely the Erdös-Lehner results [8] about the
asymptotic analysis of the restricted integer partitions,
we extract the phase structure of the instanton sector.
Roughly speaking, the statistical distribution of the fluc-
tuations around the boundaries of a 2d crystal model
captures the phase structure of the system. The asymmetric
distribution of the fluctuations, known as Gumbel distri-
bution, determines a Hagedorn phase transition in the
instanton sector. This phase transition can be explained
and interpreted from the limit shape formation and con-
densation of instantons.
Besides the nice geometrical interpretation and explicit

new results that our geometric method for asymptotic
analysis of quivers brings into the picture, the main
advantage and importance of the method is that it can
provide explicit asymptotic results even for the quivers/
geometries that their BPS generating function is not yet
available. In the examples in which the generating function
is available we compare our results obtained from the
geometric method with the results obtained from standard

asymptotic analysis of the generating function and we find
good agreement.
The rest of the paper is organized as follows. In chapter

two, we review the physics background of the D-brane
bound states and the quiver gauge theories, and the two-
dimensional crystal melting model. In chapter three, the
main results of the paper in the asymptotic analysis of
the quiver gauge theory is explained. In chapter four, our
method and results are implemented in some concrete
examples.

II. QUIVER BPS STATES, INSTANTON
COUNTING, AND CRYSTAL MELTING

In this part, we describe the main problem of this study,
the asymptotic counting of the BPS states of the quiver
gauge theory, and the instantons of the topologically
twisted N ¼ 4 super Yang-Mills theory, the low energy
effective theory in the world-volume of the D4 brane. The
BPS states/instantons are the D2-D0 brane bound states to
the D4 brane. After a brief review of the related gauge
theory and D-brane bound states, we explain the con-
struction of the crystal model as the main method of the
asymptotic analysis of the instanton sector.

A. D-branes bound states, gauge theory
on divisors and instantons

We consider D4-D2-D0 branes bound states on toric
Calabi-Yau threefolds X, consisting of a single D4-brane
wrapped on a noncompact toric divisor of the Calabi-Yau,
and arbitrary number of D2-branes wrapped on the com-
pact two-cycles and D0-branes as point particles in the
Calabi-Yau. By dimensionally reducing X, the 4d, N ¼ 2
supersymmetric Uð1Þ gauge theory is obtained and the
D4-D2-D0 bound states can be seen as the BPS states of the
gauge theory, carrying the charge γ ¼ ðn; βÞ with n and β
being the number of D0 and D2 branes. The spectrum of the
BPS bound states is captured by the so-called divisor BPS
index ΩDðγÞ.
The low-energy effective gauge theory on the D4-brane

wrapping the toric divisor is the 4d topologically twisted
N ¼ 4 super Yang-Mills theory, called Vafa-Witten theory.
The D2-D0 BPS bound states in D4-brane are the solutions
of the (anti)self-dual Yang-Mills equation, and they are
called instantons of the Vafa-Witten theory. The instanton
counting in this gauge theory on the 4d part of the D4 brane
in the Calabi-Yau can be performed via the enumeration of
the D4-D0 BPS states. The above theory is an example
of the geometric construction of the instantons in type II
string theory, where a configuration of N Dp-branes with n
Dðp − 4Þ-branes is considered. The low energy theory
in the world-volume of N Dp-branes is the (pþ 1)-
dimensional N ¼ 4, UðNÞ super Yang-Mills theory and
the instanton in the background Dp-brane is the Dðp − 4Þ-
brane. The gauge theory on Dðp − 4Þ-brane has UðnÞ
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gauge symmetry while the UðNÞ symmetry on the Dp-
branes are considered as the flavor symmetry. These
configurations describe the open strings stretching between
Dðp − 4Þ- and Dp-branes.
In order to count the D-branes BPS bound states we need

a generating function, called the BPS generating function,

ZDðq;QÞ ¼
X
n;β

ΩDðn; βÞqnQβ; ð1Þ

where the q and Q are the fugacity factors associated with

the D0 and D2 branes respectively, and Qβ ¼ Q
j Q

βj
j , with

the product over the two-cycles of the Calabi-Yau.
On the other hand, the BPS generating function is the

instanton partition function, and the BPS index is given by
the topological Euler characteristic of the moduli space of
instantons Minst

n;β ðDÞ,

ΩDðn; βÞ ¼ χðMinst
n;β ðDÞÞ ¼

Z
Minst

n;β ðDÞ
eulðTMinst

n;β ðDÞÞ;

ð2Þ

where eulðTMinst
n;β ðDÞÞ is the Euler class of stable tangent

bundle, for a review see for example [9].
Our main goal in this article is to count the BPS states/

instantons and compute the BPS index/ Euler characteristic.
In particular we are interested in the asymptotic behavior of
the BPS index in the large n limit, and possible phase
transitions in the system. The first step toward this goal is to
develop the asymptotic counting tools such as crystal
models and their generating functions which are appro-
priate for the study of the N ¼ 4 toric quiver quantum
mechanics, as the low energy effective theory on the
D-branes. In the following, we summarize the construction
of the toric quiver and associated two-dimensional crystal
melting model, following [4].

B. Quiver, dimer model, and two-dimensional
crystal model on divisors

This part is a brief review of essential constructions of
the quiver, dimer model and the two-dimensional crystal
models associated with the D4-D2-D0 bound states and
related gauge theories, introduced in [4].
The quiver is a directed graph denoted by Q ¼

ðQ0; Q1; Q2Þ as a set of nodes Q0, arrows Q1 and faces
Q2 in the graph. The nodes of the quivers are associated
with the gauge groups UðNiÞ at each node i. The field
content of the gauge theory is also encoded in the quiver,
and the arrows between the nodes of the quiver are the
chiral multiplets Xa ∈ Q1 in the bifundamental represen-
tation. Moreover, the possible interactions of the gauge
theory is explained by the superpotential of the gauge
theory and it is given by the sum over the trace of

the product of the chiral multiplets around the faces of
the quiver.
The dual graph of the quiver is called the brane tiling or

the dimer model. The brane tiling is a combinatorial
method to construct and represent the D-branes configu-
rations and associated gauge theories. The brane tiling Q0
is a bipartite graph and the duality implies Q0

0 ¼ Q2,
Q0

1 ¼ Q1, and Q0
2 ¼ Q0. In this work we mostly consider

the dimer models with isoradial embedding. This is an
embedding of the dimer model on the torus such that every
vertex of the dimer model at a boundary of a face is on a
unit circle [10]. The tropical geometry associated with the
statistical mechanics of the dimer model plays the key role
in the asymptotic analysis of the quiver.
The quiver quantum mechanics in the low energy limit

of the D4-D2-D0 branes is obtained from the quiver of the
D6-D2-D0 branes by replacing the flavor D6 brane with a
flavor D4-brane wrapped on a toric divisorD of the Calabi-
Yau and applying the associated constraints. Let us briefly
review the constraints from the embedding of the D4 flavor
brane. Notice, as there is no compact D4-branes wrapping
the four-cycles of the Calabi-Yau, one can associate the
D2-brane to the nodes of the quiver, without mixing with
compact D4-brane charges. Suppose there are two D2-
brane nodes i and j with a chiral fields XF associated with
the arrow from i to j, and the D4-brane node * is adjacent
to i and j. The brane tiling implies that there are two
massless quark and antiquark I and J attached to D4-brane,
associated with the arrows between * and i, and j and *.
Therefore, in addition to the superpotentialW0 made out of
the product of chiral multiplet Xa, the presence of the flavor
D4-brane in brane tiling, leads to an extra term Wf, to the
superpotential

W ¼ W0 þWf; Wf ¼ JXFI: ð3Þ

The F-term relations from the superpotential of the
quiver are

∂W0

∂Xa
¼ 0 for Xa ≠ XF;

∂W0

∂XF
þ IJ ¼ 0;

∂Wf

∂I ¼ JXF ¼ 0; and
∂Wf

∂J ¼ XFI ¼ 0: ð4Þ

As we review in the following, the dimer model plays a
crucial role in the identification of the constraints on the
instanton moduli space. A bipartite dimer model is a set of
black and white nodes connected with the oriented edges.
The perfect matching m in the dimer model Q0 is the set of
all oriented edges such that every vertex in Q0

0 is covered
by one and only one oriented edge in m. Every perfect
matching is assigned to a lattice point of the Newton
polygon Δ. Although, the map is not bijective, since the
corners of Δ are in one-to-one correspondence with the
toric divisors, thus there is unique perfect matching mD for
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any divisor D associated with the corner of Δ, if the brane
tiling admits an isoradial embedding [11,12]. At low energy
limit, the BPS index becomes the Witten index of the
quiver. To compute the Witten index, we need to study the
moduli space of the vacua MD4 of quiver quantum
mechanics on D4-D2-D0 via the quiver representation.
The moduli space MD4 is characterized by the invariance
under the torus action of a Uð1Þ-subgroup of Uð1Þ2 ×
Uð1ÞR, depending on the divisor D. For further explan-
ations on the symmetries of the problem consult with
chapter 3 in [4]. The F-term constraints imposed on the
moduli space MD4 are studied in [4], and we summarize
them without proof in the following,

J ¼ 0 which leads to
∂W0

∂XF
¼ 0; and

Xa ¼ 0 if ψðXaÞ ∈ mD; ð5Þ

where ψ∶Q → Q0 is the map from quiver to its dual, the
dimer model. To studyMD4 and compute the Witten index,
we need to elaborate on the path algebra associated with
the quiver CQ. The elements of this algebra are the paths
between nodes of the quiver and the product of the elements
is the concatenation of the paths. The factor algebra is
obtained by imposing the F-term relations on the path
algebra, A ¼ CQ=F, where F is the ideal generated by all
the F-terms. The factor algebra associated with the divisor
quiver is the original D6-D2-D0 factor algebra of the quiver
but further constrained by the F-term conditions implied
by the superpotential of the flavor D4 brane. The MD4 is
identified with the factor algebra imposed by D-term
relations, and it is sometimes called stable A-module.
The two-dimensional crystal model is constructed on the

universal cover of the dimer or equivalently its dual, the
quiver Q̃, by using the path algebra. Any path from a
reference node i0 ∈ Q̃0 to a arbitrary node j ∈ Q̃0 is given
in the form vi0jω

l, where vi0j is the shortest path between i0
and j, and ω is a loop around a face of the quiver. However,
for the paths in the A-module MD4, it is shown in [4], that
l ¼ 0, and all the paths crossing mD are eliminated. The
F-equivalent classes of all the paths which do not cross mD

form a set, and the Uð1Þ2-fixed points of MD4 are in one-
to-one correspondence with the finite ideals of this set. The
original crystal is constructed by stacking atoms on the end
points of the paths vi0jω

l, on the nodes j of the quiver, and
at the depths l inside the 3d crystal model, and thus all the
elements of the A-module MD4

will lie on the 2d plane of
depth zero, i.e., one of the facets of the 3d crystal model.
Therefore the two-dimensional crystal model is constructed
on Q̃ by the elements of the factor algebra which are the
shortest paths vi0j, via putting an atom at the ending point
of the path.
A particular facet of 3d crystal model is identified with a

chosen divisor and the precise shape of the 2d crystal model

is determined by some oriented paths in the dimer model,
called zigzag paths. The zigzag paths are the paths that turn
maximally left at white vertices and maximally right at
black vertices. In fact, they are the external legs of the toric
diagram and the ridges of the 3d crystal model. Thus, any
facet of the crystal is bounded by two zigzag paths.
Finally, we have all the elements to discuss the BPS

generating function. At low energy, the BPS index becomes
the Witten index of the quiver quantum mechanics and it
can be computed by the sum over the fixed-points of the
torus-action Uð1Þ2 on MD4. These fixed points are the
ideals of the A-module and the molten configurations λ of
the 2d crystal model. Thus, the generating function of BPS
states on divisor (1) is given by the partition function of the
2d crystal model,

ZDðq;QÞ ¼ ZCMðq1; q2;…Þ ¼
X
λ

Y
k∈Q0

qjλkjk ; ð6Þ

where the sum is over the molten configurations λ with jλij
being the number of atoms in the configuration λ at node i,
i.e., the rank of the gauge group associated with the node i
at the configuration λ, and qi is fugacity factor associated to
node i.
Having reviewed the construction of the crystal model,

we can move toward the next step and the heart of this study
which is the asymptotic analysis of the BPS states/instan-
tons on the divisors. Based on the counting tools of the
crystal models and by introducing asymptotic methods
from tropical geometry, large deviation technique and
number theory, we propose our new approach toward
the thermodynamics and phase structure of the instanton
sector, in the following section.

III. ASYMPTOTIC ANALYSIS AND PHASE
STRUCTURE OF INSTANTONS ON DIVISORS

In this part, we explain the main results of this paper
about the asymptotic analysis of the quiver and the phase
structure of the instanton sector. The first issue in the
asymptotic analysis of the crystal model is about the
definition of the asymptotic limit and the appropriate
scaling. The coupling g of the crystal model, defined as
g ¼ − logq, can be seen as the lattice spacing of the crystal.
The number of the boxes in the crystal is given by n, thus in
order to take the continuum and thermodynamics limits at
the same time, we need to g → 0 and n → ∞ in an
appropriate way. A possible approach to do this is by
fixing the volume of the crystal g2n at some large value.
Using the dimer model parameters, the original toric quiver
is on the M ×M cover of the torus. In the thermodynamic
limit, the quiver is enlarged on the universal cover,M → ∞
such that gM is fixed but large. This is consistent with the
scaling M2 ∼ n.
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A. Amoeba and asymptotics

The main object in the asymptotic analysis of the two-
dimensional crystal melting model and the associated
quiver is the limit shape. The limit shape is a smooth
convex function which is obtained, in the asymptotic limit,
by rescaling the profile function of the crystal, denoted by
ψðxÞ. This is the profile of the ranks of the gauge groups
of the quiver. Let us define the amoeba of the Newton
polynomial Pðz; wÞ ∈ C½z�; w��, as

AðPÞ ¼ fðlog jzj; log jwjÞjPðz; wÞ ¼ 0g: ð7Þ

Our first observation is that the limit shape of the 2d crystal
model on each facet of the 3d crystal model is the boundary
of the amoeba of the Newton polynomial of the dimer
model associated with that facet, and it is denoted by AB.
This can be argued by the fact that the limit shape of the 3d
crystal model is given by the Ronkin function and, roughly
speaking, the amoeba is the projection of the Ronkin
function in the plane [13]. Thus, it is easy to see that the
limit shape of the 2d crystals on the facets of the 3d crystals
are the boundaries of the amoeba. For the practical and
computational purposes, we can choose any of the bounda-
ries of the amoeba, however, it is more convenient to choose,
if possible, the one which after some reflections and/or
rotations resembles the limit shape of the random partitions
in the up-right quarter of the plane. This will become clear
once we consider explicit examples in Sec. IV.
In the asymptotic limit, the volume factor qn in gen-

erating function (1) can be written as an integral of the limit
shape, using the scaling relation M2

R
1
0 A

BðxÞdx ¼ n.
Similarly, the degeneracy factor in the generating function
can be formally written as an integral of the entropy
function denoted by σðsÞ. This is the tension of the 2d
crystal, a function of the slope of profile of the quiver.
We will elaborate on the entropy in the next part. But
before getting into the details, notice that in the asymptotic
limit, the generating function of the crystal model, by the
WKB approximation, is given by a continuous integral in
terms of the dominant configuration, the limit shape and its
tension, as

ZDðMÞ∼exp

�
M
Z

1

0

σDðsÞdx−gM2

Z
1

0

ABðxÞdx
�
: ð8Þ

As we observe in the above result, the partition function of
the 2d crystal model in the asymptotic limit is dominated by
the limit shape contribution and thus it is plausible to make
an analogy with the asymptotics of the three-dimensional
crystal model [3].

B. Entropy density and Legendre transform

The slope function of the profile ψðxÞ of the quiver is
defined as

∂ψðxÞ
∂x ¼ sðxÞ: ð9Þ

The tension of the quiver is a function of slope and is
obtained from the Legendre transform of the profile

σDðsÞ ¼ L½ψ � ¼ sup
ψ
½ψðxÞ − xsðxÞ� ¼ ABðxÞ − xs�ðxÞ;

ð10Þ

where the slope function is given by s�ðxÞ ¼ ∂ABðxÞ=∂x.
Furthermore, Legendre duality implies ∂σDðsÞ=∂s ¼ xðsÞ.
For more convenience we drop the � in the slope function,
from now on. As we expect, the limit shape of the crystal or
the boundaries of the amoeba are the maximizer of the
entropy. The idea is that the tension of the limit shape of
the crystal, or in other words, the profile of the quiver is the
entropy of the BPS states. Moreover, the instanton growth
rate, defined as the logarithm of the degeneracy, is given by
the number of fluctuating profiles lying close to the limit
shape. As we explained briefly, the asymptotics of the
instanton growth rate can be obtained from the asymptotics
of the partition function. In fact, the first integral in
generating function (8), is an area term, thus its second
root is the correct dimension for the number of fluctuating
profiles and thus using the scaling relation n ∼M2, the
instanton growth rate becomes

logΩDðnÞ ∼ n
1
2

�Z
σDðsÞdx

�1
2

; ð11Þ

where the integral is evaluated along a part of the spine of
the amoeba or the toric diagram that is captured by the limit
shape which is associated with the chosen divisor D.
In order to compute the above integral and obtain the
numerical factor, one needs to compute the entropy as a
function of coordinate x and evaluate the integral. This can
be done by first finding the entropy as a function of slope,
which is explained in the following, and then transforming
the entropy to a function of coordinate by using the explicit
slope function in terms of coordinate. Indeed, as we will see
in section III D, the saddle point analysis of the quiver,
leads to a parallel result up to a factor two, and both results
actually lead to the numerical factor for the instantons
growth rate. Notice that, since the number of D2 branes is
fixed in the asymptotic limit, the Qβ term in the generating
function (1) is finite and asymptotically irrelevant, i.e., it
does not contribute in the asymptotic formula, except than a
constant. However, the D2-branes wrapping the two-cycles
of the Calabi- Yau play an implicit role in the asymptotic
analysis by shaping the background mirror geometry and
the associated amoeba.
As we explained, in the asymptotic limit, the tension of

the crystal model is given by the Legendre transform of the
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limit shape. Moreover, from the properties of the Legendre
transform, we have

−
∂σD
∂s ∘s ¼ Id; ð12Þ

which can be solved to explicitly compute the entropy

σDðsÞ ¼ −
Z

xðsÞds; ð13Þ

where xðsÞ is the inverse function s−1ðxÞ. Thus, we find
that the Legendre transform of the amoeba of the quiver
gives the explicit functional form of the entropy as in
Eqs. (10) and (13). Wewill obtain explicit formulas in some
examples in Sec. IV.

C. Free energy and saddle point analysis

The free energy of the quiver is obtained via the integral
of the limit shape of the 2d crystal model, the boundary of
the amoeba. There are two different ways to compute the
area which is captured by the boundary of the amoeba,
either by direct computations of the integral of the amoeba
boundaries or via the tropical geometry and toric geometry.
To compute the free energy, F ¼ logZ, we start with
Eq. (8),

FDðMÞ ∼
�
M

Z
1

0

σDðsÞdx − gM2

Z
1

0

ABðxÞdx
�
: ð14Þ

Then by using the Legendre duality between tension and
the limit shape,

ABðgMxÞ ¼ σDðsÞ þ gMxsðxÞ;
dðxABðxÞÞ

dx
¼ ABðxÞ þ xsðxÞ; ð15Þ

and the fact that the total derivative term in the integral can
be put to zero as a boundary term, we have

FDðMÞ ∼M
Z

1

0

ðσDðsÞ − gMABðxÞÞdx

¼ M
Z

1

0

ðσDðsÞ þ gMxsÞdx

¼ M
Z

1

0

ABðgMxÞdx; ð16Þ

and finally by a change of variable we have

FDðgÞ ∼
1

g

Z
ABðxÞdx: ð17Þ

In the above equation, the area under the limit shape is the
area trapped between the boundary of the amoeba and the

spines of the amoeba surrounding a divisor. This result is
consistent with the scaling relation M ∼ g−1, obtained
earlier.
The actual computation of the area of the limit shape

and free energy depends on the geometry of the Newton
polygon and is a practical matter, However, as we men-
tioned earlier, in some symmetric cases we can compute the
free energy of a divisor more explicitly using the toric
geometry results. Let Δ be the Newton polygon of a
Newton polynomial Pðz; wÞ defined as a convex hull of
the exponents of the monomials with nonzero coefficients.
Then results in [13,14] imply that the area enclosed by the
amoeba of the dimer, as a Harnack curve, is given by the
area of the corresponding Newton polygon Δ,

AreaðAÞ ¼ π2AreaðΔÞ: ð18Þ

Further studies about the amoeba and its analytic aspects
can be found in [15,16]. Further relations between the
dimer mode and Harnack curves is studied in [17] and it is
found that the isoradial dimer models are characterized by
the genus zero Harnack curves.
In the case of symmetric toric diagrams and amoebas, the

above result leads to

ZDðgÞ ∼ exp
�
1

g

Z
ABðxÞdx

�

¼ exp

�
1

g
AðABÞ

�
¼ exp

�
π2

lg
AðΔÞ

�
; ð19Þ

where we denote the area by A and we used the symmetry
of the amoeba to observe that the area enclosed by the
amoeba is l times bigger than the area enclosed between
each boundary of the amoeba and the coordinates, with l
being the number of the tentacles of the amoeba. We will
see some examples of symmetric amoebas in Sec. IV.
The total free energy, as the sum of the free energies

associated with all the lattice points on the exterior of the
Newton polygon (including corner points which are asso-
ciated with the divisors of the Calabi-Yau and noncorner
points) can be computed as the sum of the captured areas by
all the boundaries of the amoeba,

F ðtÞðgÞ ¼
X
i

F ðiÞðgÞ ∼
X
i

1

g

Z
ABiðxÞdx

¼ 1

g
AðAÞ ¼ π2

g
AðΔÞ; ð20Þ

where i runs over all the lattice points of the exterior of the
Newton polygon or equivalently all the boundaries of the
amoeba. The free energy on each divisor might depends
on the Kähler parameters Qi’s but the total free energy (20)
is independent of the Kähler moduli Qi’s of the Calabi-
Yau and in fact is a topological invariant under any
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deformations of the Calabi-Yau and their Kähler parameters.
As the total free energy contains contributions from non-
divisor points, the physical interpretation of this observation
is not clear to the author. However, in the case of non
nondivisor points inNewtonpolygon, i.e., all the lattice points
are located in a corner of the Newton polygon, the total free
energy has the instanton total free energy interpretation.
In the tropical limit, Qi → 0, the amoeba decomposes to

the isolated C3 vertices. However, the area of the amoeba is
a topological invariant and independent of the Qi’s,
and thus by using the fact that the area of the amoeba
of each vertex is AðAvÞ ¼ π2AðΔvÞ ¼ π2=2, the area of
amoeba of any Calabi-Yau can be written as AðAÞ ¼P

v AðAvÞ ¼ π2

2
cv, where cv denotes the number of ver-

tices in the toric diagram.

1. Saddle point analysis and instanton growth rate

In this part, we apply the saddle point analysis to
compute the explicit numerical factor of the instanton
degeneracy and growth rate. Using the saddle point
analysis and the limit shape method, the instanton growth
rate on a divisor becomes,

ΩDðnÞ ¼
1

2πi

I
dqZDq−n−1

¼ 1

2πi

I
dq exp

�
1

g
AðABÞ

�
q−n−1

¼ 1

2πi

I
dqehðgÞ; ð21Þ

where hðgÞ ¼ ngþ 1
g AðABÞ. In the symmetric case, by

using the toric geometry, the asymptotic degeneracy can be
obtained by hðgÞ ¼ ngþ π2

lg AðΔÞ. By extremization of
hðgÞ, we obtain the extremizing value of the coupling,

g� ¼ π
ffiffiffiffiffiffiffiffi
AðΔÞ
ln

q
, at which we have

h0ðg�Þ ¼ 0; hðg�Þ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nAðΔÞ

l

r
;

h00ðg�Þ ¼ 2

π

ffiffiffiffiffiffiffiffiffiffiffi
ln3

AðΔÞ

s
: ð22Þ

After a Gaussian integration in Eq. (21), the instanton
degeneracy can be obtained as

ΩDðnÞ∼
ehðg�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πh00ðg�Þp ¼1

2

�
AðΔÞ
ln3

�
1=4

exp
�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAðΔÞ=l

p �
;

ð23Þ

and thus instanton growth rate, formally related to the
entropy as in Eq. (11), can be computed in the symmetric
cases from the area of the Newton polygon as

logΩDðnÞ ∼ n
1
2

�Z
σDðsÞdx

�1
2

∼ n
1
2ð4π2AðΔÞ=lÞ12

∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðABÞ

q
n

1
2: ð24Þ

The above result for the instanton growth rate, as stated
in terms of the area of the boundary of the amoeba,
logΩDðnÞ ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðABÞ

p
n

1
2 is in general valid for symmetric

cases as well as nonsymmetric cases. The above result can
also be obtained using the fact that the entropy as the
Legendre dual of the free energy can be extremized and
given by the free energy which is the area of the limit shape.
Similar to the total free energy discussed before, we can

think of the total Instanton growth rate on all the divisors, as
a topological invariant of the Calabi-Yau which is inde-
pendent of the Kähler parameters. By using the saddle point
result we can compute the total growth rate as

logΩðtÞðnÞ ∼ n
1
2ð4π2AðΔÞÞ12: ð25Þ

For more convenience, we drop the divisor subscript D in
the rest of this paper, unless it is necessary.

D. Phase structure and Gumbel distribution

In this part, we adopt and generalize some results in
number theory to explain the phase structure related to the
Hagedorn phase transition and instanton condensation.
This phase structure is basically originated from the
asymmetric Gumbel distribution of fluctuations in the
2d crystal model, as we will explain in the following.
The first heuristic observation is the convergence/

divergence phase transition in the partition function at a
critical point. Following the scaling relations explained
in the beginning of this chapter, by setting n ∼ g−2 with the
proportionality factor as β, and using the instanton growth
rate in Eq. (24), we observe that the partition function (1),
modulo the finite factor Qβ, behaves in the asymptotic
limit as

ZðβÞ ∼
X
n

exp ½−ðβ − βcÞ
ffiffiffi
n

p �; βc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðABÞ

q
;

ð26Þ

where the critical inverse temperature of the Hagedorn-like
phase transition is obtained from the asymptotic behavior
of the degeneracy, Eq. (23). We will denote the critical area
which is the area of the limit shape by Ac, and the critical

inverse temperature by βc ¼ 2A
1
2
c. Roughly speaking, the

partition function is convergent in the low temperature
regime β > βc and it diverges at high temperature β < βc.
In order to study the phase structure in a precise

manner, we need to study the fluctuations around the limit
shape that causes the phase transition. To regularize the
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fluctuations, we consider the restricted crystal model. In
other words, we put the system in a box of length N and
arbitrary width. In other words, there is an upper bound on
the length of the first row of the crystal model. Then, we
study the largest part of the system which is the first row of
the crystal model and its fluctuations in the thermodynamic
limit N → ∞. This leads to the study of the finite size
effects of the restricted model in contrast to the unrestricted
model and exploration of the associated phase transition.

1. Gumbel fluctuation distribution

The precise asymptotic analysis of the restricted parti-
tions with uniform measure, performed in [8], provides a
mathematical framework for the study of the phase struc-
ture in the 2d crystal models. A straightforward generali-
zation of the Erdös-Lehner result for the integer partitions,
as random partitions with a uniform measure, to the general
2d crystal model can be formulated as follows. As n → ∞,
(the upper bound on) the length of the first row of the
crystal tends to infinity,N ∼ 1

c

ffiffiffi
n

p
log n, and more precisely,

based on the analogy, we conjecture that the degeneracy of
the crystal model, which is the BPS index, in the finite box
behaves as

lim
n→∞

ΩNðnÞ
ΩðnÞ ¼ e−c

−1e−cx ; ð27Þ

where ΩðnÞ is the degeneracy of the unrestricted crystal,
x ¼ Nffiffi

n
p − 1

2c log n and the constant c is the square root of the

area of the limit shape and depends on the geometry of
the crystal, c ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðABÞ

p
. In the original setting for the

integer partition, the result is proved for the constant
c ¼ π=

ffiffiffi
6

p
. One naturally expects such a generalization,

as the 2d crystal model is a geometric generalization of the
partitions and the statistical weight is a uniform measure,
the volume of the crystal. To rephrase this result in the
canonical ensemble, let us consider the crystal model with
uniform measure PnðλÞ ¼ 1

ΩðnÞ in the canonical ensemble.

Then, the longest row of the crystal model has the Gumbel
distribution [8],

lim
n→∞

Prob

�
λ1ffiffiffi
n

p −
1

2c
log n ≤ x

�
¼ e−c

−1e−cx : ð28Þ

As we saw, one of the physical implications of this result
for the crystal model is that the size of the box tends to
infinity as N ∼

ffiffiffi
n

p
log n and it would be natural to fix the

finite ratio Nffiffi
n

p
log n ≡ jγj. In fact, the rescaled first row λ1ffiffi

n
p

does not have a finite average in the large n limit and it
diverges logarithmically, h λ1ffiffinp i ¼ 1

2c log n. This is unlike the

random partitions with Plancherel measure with h λ1ffiffinp i ¼ 2,

but this is consistent with the fact that the tails of the limit
shape do not cross the x, y axis at finite number. However,

the area of the limit shape is a finite parameter in the crystal
model and it can be proposed as the phase transition order
parameter, as we will see in the following.
In the grand canonical ensemble with volumeweight qjλj,

for the restricted partition function we have

ZNðqÞ ¼ Probðλ1 ≤ NÞ
¼

X
λ;λ1≤N

qjλj ¼
X
n

X
λ⊢n;λ1≤N

ΩNðnÞqn: ð29Þ

One can reformulate the results of [8] in the grand
canonical ensemble as explained in [18],

lim
q→1−

Prob

�
λ1j log qj −

j log qj logð1 − qÞ
logq

≤ x

�
¼ e−e

−x
;

ð30Þ

or equivalently, in terms of the partition function with
q ¼ e−g, we have

lim
g→0

ZNðgÞ
ZðgÞ ¼ e−e

−x
; ð31Þ

where ZðgÞ is the normalization factor, i.e., the partition
function where the restriction on the first row is relaxed
and x ¼ Ngþ log g. This result is consistent with the
results in the canonical ensemble, using the scaling relation
n ¼ c2g−2.

2. Phase structure

The asymptotic distribution of the fluctuations in the
above results is called Gumbel distribution. This is an
asymmetric distribution. As we will see, this asymmetry
is the origin of the phase transition in the system. In the
grand-canonical ensemble, for the free energy defined by
FN ¼ − limn→∞ logZNðgÞ, we have

lim
g→0

ðFNðgÞ − F ðgÞÞ ¼ e−x; x ¼ Ngþ log g: ð32Þ

Fixing the ratio Ng
log g ¼ −2cjγj, we observe

lim
g→0

ðFNðgÞ − F ðgÞÞ ¼ lim
g→0

gð2cjγj−1Þ ¼
�∞ for jγj < 1

2c

0 for jγj > 1
2c

:

ð33Þ

Thus, we observe that there is a critical point jγ�j ¼
1
2c ¼ 1

2
A−1=2
c , at which the fluctuation contribution to the

free energy jumps from zero to infinity. In other words, the
finite size effects, the infinite contribution is caused by
the fluctuations around the limit shape for A > Ac, otherwise
(A < Ac) there is no finite size effect and the free energy is
the free energy of the limit shape configuration F ðgÞ.
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Similarly, in the canonical ensemble for the entropy
SN ¼ logΩNðnÞ we have

lim
n→∞

ðSNðnÞ − SðnÞÞ ¼ 1

c
e−cx; x ¼ Nffiffiffi

n
p −

1

2c
log n;

ð34Þ

and for the fixed ratio Nffiffi
n

p
log n ¼ jγj ¼ 1

2
A−1=2, we obtain

lim
n→∞

ðSNðnÞ − SðnÞÞ ¼ lim
n→∞

−
1

c
n

1
2
ð1−ð A

Ac
Þ−1=2Þ

¼
�∞ for A > Ac

0 for A < Ac
: ð35Þ

There exists similar interpretation for the fluctuation con-
tribution to the entropy around the limit shape and the
system acquires a tension associated with the limit shape.
Furthermore, notice that in the regime with the nonzeros
fluctuation contribution to the entropy, naturally it is
subleading to the surface tension of the limit shape
SðnÞ ∼ n1=2, as we have

lim
n→∞

SNðnÞ
SðnÞ ∼ n−

1
2
ð A
Ac
Þ−1=2 → 0: ð36Þ

It is important to mention that the above results for the limit
shape fluctuation contributions are valid in the vicinity of
the limit shape, just before and after its formation.
Having explained the mathematical observation about

the singular points in the asymptotic limit, at which the
entropy and free energy diverge, in the next part we discuss
and elaborate on some possible interpretations of these
results.

3. Hagedorn phase transition
and instanton condensation

Possible interpretation of the above results concerns the
instantons and its moduli space in the asymptotic regime.
The phase transition happens at the large number of
instantons and thus it is associated with the behavior of
the gas of instantons on the divisors of the Calabi-Yau
threefold. There are some possible physical phenomena
happening in the gas of instantons such as the formation of
the instanton condensate. As we explain in the following,
similar condensation of the instantons associated with the
formation of the limit shape in the crystal model, is possibly
responsible for the Hagedorn phase transition. However, as
it is shown in [19], there is no Bose-Einstein condensation
in the 2d random partitions and instantons.
As we explained in the beginning of this section, there is

a Hagedorn phase transition at some critical temperature
β−1c between the strong and weak coupling regimes. We
observed that the critical temperature is closely related to
the limit shape area and the phase transition is associated

with the formation of the limit shape and the fluctuations
around that. In fact, the Hagedorn phase transition is
consistent with the idea that the limit shape formation
and developing a “surface” tension in the crystal is
associated with a phase transition and moreover the limit
shape itself is the critical one- and two-dimensional hyper-
surface separating the frozen and smooth phases in the 2d
and 3d crystal models, respectively.
To interpret the Hagedorn phase transition in the instan-

ton sector caused by the Gumbel fluctuations, the key point
is to focus on the density of instantons. The meaning of
the Hagedorn phase transition in the instanton sector is
that in the high temperature phase β < βc, the number of
BPS states grows with energy and we have Hagedorn
density of BPS states. In fact, for the instanton density
defined as ρ ¼ n=N2, by using the Erdös-Lehner scaling
N ∼ ðAðABÞÞ−1=2 ffiffiffi

n
p

logn, we observe that ρ ∼ A log−2 n
and thus, after re-scaling, one can define a regularized
density ρ̃ as the area of the profile function and the critical
density as the area of the limit shape ρ̃c ¼ Ac. Thus, the
limit shape formation and the fluctuations about it can be
seen as the condensation of the instantons and fluctuations
around the condensate in the high density phase ρ̃ > ρ̃c.
The Gumbel distribution implies that after the instan-

ton condensate forms, there is fluctuation around the
instanton condensate. This originates from the existence
of the finite size effect of the condensate and leading to
the finite size corrections to the free energy and entropy in
this phase. Notice that the phase transition extracted from
the Gumbel distribution happens exactly at the same
critical temperature of the Hagedorn phase transition.
This is natural since we speculated that the Hagedorn
phase transition emerged from the fluctuation patterns
around the limit shape.
Bearing in mind the relation between integer partitions

and bosonic strings on the one hand, and the relation
between the instantons, D0-D4 states and bosonic strings
on the other hand, the above phase transition seems to be
closely related to the Hagedorn phase transition in the
bosonic string theory [20]. It is also possibly connected
to the similar phase structure in the gas of D-branes and
D-instantons in [21–23], and similar asymptotic results for
the Betti numbers and Euler characterisitcs in [24].
From another perspective, as we mentioned before,

similar to the 3d crystal melting model, the 2d crystal
model has a smooth phase inside the amoeba and frozen
phases in the unbounded complement components of the
amoeba. The smooth phase is the fluctuating phase with
infinite number of instantons whereas the frozen phase has
zero number of instantons.
Having introduced a new approach toward the asymp-

totic analysis of the quiver gauge theory on the divisors
of the Calabi-Yau threefolds, in the following section we
implement our methods in some concrete examples and
obtain explicit results.
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IV. EXAMPLES

In this chapter we study some examples of quiver with
the amoebas and Harnack curves of genus zero and one,
such as C3, conifold, local P1 × P1 and local P2 quivers,
and study their asymptotics and thermodynamics. In each
example we compute the free energy, entropy function, and
growth rate, using the amoeba and its properties. Where
possible, we compare the free energy, entropy and growth
rate obtained from our geometric and analytic methods with
the results obtained from standard asymptotic analysis of
the explicit generating functions.

A. C3 divisors

We start with the fundamental example of C3 divisor.
This example is the most studied example as it is the integer
partition or the 2d random partition with uniform measure.
The quiver, Newton polygon and amoeba with spines of
this example is illustrated in Fig. 1. The Newton poly-
nomial of C3 is Pðz; wÞ ¼ −1þ zþ w, and the equations
of the boundaries the amoeba in Fig. 1, are ex þ ey ¼ 1,
−ex − ey ¼ 1, ex − ey ¼ 1. We choose the yellow boun-
dary of the amoeba and after the reflections x → −x and
y → −y, it becomes −1þ e−x þ e−y ¼ 0. Thus, the limit
shape, as the boundary of the amoeba, can be obtained by
solving the equation for yðxÞ and then denoting y byABðxÞ,

AB
C3ðxÞ ¼ − logð1 − e−xÞ: ð37Þ

This matches with the well-known result for the limit shape
of the uniform random partitions expð− πxffiffi

6
p Þ þ expð− πyffiffi

6
p Þ ¼

1 in which the coordinates are normalized by a numerical
factor (square root of area) so that the limit shape has the
unit area. The free energy of C2 quiver which lives on a
divisor of C3, can be computed from the area of the limit
shape and Newton polygon,

FC3ðgÞ ¼ 1

g

Z
AB

C2ðxÞdx ¼ π2

3g
AðΔC3Þ ¼ π2

6g
: ð38Þ

This result can be obtained directly by evaluating the area
under the limit shape,

FC3ðgÞ

¼ 1

g

Z
∞

0

− logð1 − e−xÞdx

¼ −
1

g

�
x2

2
þ x logð1 − e−xÞ − x logð1 − exÞ − Li2ðexÞ

�����∞
0

¼ π2

6g
: ð39Þ

Consider the integer partition generating function,

ZðqÞ ¼
X∞
n¼0

pðnÞqn ¼
Y∞
i¼1

1

1 − qi
: ð40Þ

Then our result for the free energy matches, up to leading
order, with the following result from the probability theory
of the uniform partitions, for a summary consult with [25],

logZðqÞ ¼ −
c2

log q
þ 1

2
log

− logq
2π

þOðj logqjÞ; ð41Þ

where c ¼ ffiffiffiffiffiffiffiffiffi
ζð2Þp ¼ π=

ffiffiffi
6

p
.

In the following we obtain the entropy of C2 crystals
from the Legendre transform of their limit shapes. The
entropy from the Legendre dual of the limit shapeAC3

B ðxÞ is
given by

σC3ðsÞ ¼ AB
C3ðxÞ − xsðxÞ: ð42Þ

We can use the limit shape equation (37), to obtain

sðxÞ ¼ −e−x

1 − e−x
; xðsÞ ¼ log

�
s − 1

s

�
; ð43Þ

and thus write the entropy in terms of the slope. In a
parallel approach, the entropy can be obtained by integrat-
ing ∂σ

∂s ¼ x, implied from the Legendre duality,

–4 –2 0 2 4

–4

–2

0

2

4

FIG. 1. Left: C3 quiver, middle: Newton polygon, right: amoeba and its spines
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σC3ðsÞ¼−
Z

xðsÞds¼ s logsþ logð1−sÞ−s logðs−1Þ:

ð44Þ

It is easy to check that the results from computing σðxÞ
in right-hand side of Eq. (42) and in Eq. (44) match.
Using Eqs. (44) and (43) in Eq. (11), we obtain the
instanton growth rate

logΩC3ðnÞ ∼ n
1
2

�Z
∞

0

σC3ðsÞdx
�1

2 ¼ π

ffiffiffi
n
3

r
: ð45Þ

On the other hand, the BPS growth rate from the saddle
point analysis is

logΩC3ðnÞ ∼ n
1
2ð4π2AðΔC3Þ=lC3Þ12: ð46Þ

Evaluating AðΔC3Þ=lC3 ¼ 1=6, we observe that saddle
point result matches with the Hardy-Ramanujan asymp-
totics of the integer partition,

pðnÞ ¼ 1

4π
ffiffiffi
3

p eπ
ffiffiffi
2n
3

p �
1þO

�
n−

1
2

��
: ð47Þ

The direct computation of the growth rate from the entropy
function in Eq. (45) also matches with the above result,
modulo a factor

ffiffiffi
2

p
. We will see in the following that the

same numerical factor appears in other examples, and that
is suggestive of the universality of this factor. The origin
of the discrepancy by the numerical factor

ffiffiffi
2

p
, is not

completely clear, but as the same factor seems to appear in
all examples, one might conjecture that its existence is
associated with the undercounting of states when using the
dimer model. One can think of this as an artifact of the
approximation in the dimer model.

Total free energy and growth rate of the C3 divisors, are

F ðtÞ
C3ðgÞ ∼ π2

g
AðΔC3Þ ¼ π2

2g
;

logΩðtÞ
C3ðnÞ ∼ n

1
2ð4π2AðΔC3ÞÞ12 ¼ π

ffiffiffi
n

p
: ð48Þ

Finally, the inverse critical temperature, Eq. (26), in C3

quiver is βc ¼ 2π=
ffiffiffi
6

p
.

B. Conifold divisors

The second example is the conifold divisor. The crystal
model associated with the conifold quiver is the pyramid
partition and its dimer model is the Aztec diamond
model [26]. We study the statistical mechanics of the 2d
crystal model that lives on the facets of the pyramid
partition. The Newton polynomial of the conifold quiver
is Pðz; wÞ ¼ −1þ zþ wþQzw, where Q is the Kähler
parameter, which is related to the geometry of the toric
diagram by Q ¼ e−t with t being the length of the internal
leg of the conifold. The conifold quiver, its Newton
polygon and the amoeba with the spines are shown in
Fig. 2. The Newton polynomial determines the equation of
the boundaries of the amoeba and we choose the blue
boundary of the amoeba in Fig. 2, with the following
equation to study, −1þ e−x þ e−y þQe−xe−y ¼ 0. Then,
from this equation, the boundary of the amoeba which is the
limit shape of the associated facet of the pyramid partition
can be obtained as

AB
C ðx;QÞ ¼ − log

�
1 − e−x

1þQe−x

�
: ð49Þ

The free energy can be obtained directly by evaluating
the area under the limit shape of the resolved conifold,

–10 –5 0 5 10
–10

–5

0

5

10

FIG. 2. Conifold quiver, Newton polygon and the amoeba with the spines at Q ¼ 1.
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FCðg;QÞ ¼ 1

g

Z
∞

0

− log

�
1 − e−x

1þQe−x

�
dx

¼ 1

g

�
x logð1 − exÞ − x log

�
ex − 1

ex þQ

�

−x log
�
ex þQ

Q

������∞
0

þ 1

g

�
Li2ðexÞ − Li2

�
−
ex

Q

������∞
0

¼ 1

g
ðπ2=6 − Li2ð−QÞÞ: ð50Þ

At Q ¼ 1, the free energy FCðg;Q ¼ 1Þ, as obtained
above, reproduces the free energy obtained from the area
of the amoeba,

FCðg;1Þ¼
1

g

Z
AB

C ðx;Q¼1Þdx¼ π2

4g
AðΔCÞ¼

π2

4g
: ð51Þ

Alternatively, we can compute the free energy by using the
standard asymptotic analysis of the generating function for
the conifold divisor obtained in [4], as

ZCðq;−QÞ ¼
Y∞
i¼1

�
1

1 − qi

�Y∞
j¼0

ð1 −QqjÞ; ð52Þ

and using the leading order in Eq. (41), or by replacing the
sum with the integral and direct computation, the free
energy defined by FCðq;−QÞ ¼ logZCðq;−QÞ, becomes

FCðq;−QÞ ¼ −
π2

6 log q
þ log

Y
j≥0

ð1 −QqjÞ

¼ −
π2

6 log q
þ
X
j≥0

logð1 −QqjÞ

¼ −
π2

6 log q
þ
X
j≥0

X
k≥1

−
Qkqjk

k

¼ −
π2

6 log q
−
X
k≥1

Qk

k

Z
∞

0

e−jkgdj

¼ −
π2

6 log q
−
X
k≥1

Qk

k2g
¼ −

π2

6 log q
þ Li2ðQÞ

log q
:

ð53Þ

This is consistent with the earlier result in Eq. (50).
In the following, we obtain the entropy of the conifold

divisors from the Legendre dual of their limit shapes. Using
the limit shape we can obtain the slope function and its
inverse,

sðxÞ ¼
�

1

1 − ex
−

Q
ex þQ

�
;

xðsÞ ¼ log

�
−1þ s −Q − sQþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Qs2 þ ð−1 −Qþ s −Qs2Þ2

p
2s

�
: ð54Þ

The entropy function is obtained from the inverse function of the slope as,

σCðs;QÞ ¼ −
Z

xðsÞds

¼ log
�
1 − s −Qð1þ sÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þQÞðð−1þ sÞ2 þQð1þ sÞ2Þ

q �

− s log

�
−1þ sþQð1þ sÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þQÞðð−1þ sÞ2 þ ð1þ sÞ2QÞ

p
2s

�
: ð55Þ

The growth rate of the conifold divisor can, in principle, be
computed via the entropy function, however it is easier to
obtain the explicit results by using the free energy in
Eq. (50) in the saddle point method,

logΩCðn; tÞ ∼ 2

�
π2

6
− Li2ð−e−tÞ

�1
2

n
1
2: ð56Þ

The numerical factor of the growth rate as the function of t
is depicted in Fig. 4. Notice that a t → ∞ one can reproduce
the growth rate of C3 divisor.
At Q ¼ 1, the slope of the limit shape and its inverse

become

sðxÞ ¼ −2
−e−x þ ex

; xðsÞ ¼ log

�
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

s

�
: ð57Þ
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The entropy function is obtained as

σCðsÞ ¼ −
Z

xðsÞds ¼ −s log
�
−
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

s

�

− log
�
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
; ð58Þ

and thus the instanton growth rate is

logΩCðnÞ ∼ n
1
2

�Z
∞

0

σCðsÞdx
�1

2 ¼ π

ffiffiffi
n
2

r
: ð59Þ

On the other hand, the growth rate from the saddle point
analysis is obtained as

logΩCðnÞ ∼ n
1
2ð4π2AðΔCÞ=lCÞ12 ¼ π

ffiffiffi
n

p
; ð60Þ

and as we expect, the growth rates obtained from two
methods agree up to a numerical factor

ffiffiffi
2

p
.

The amoeba of the conifold depends on the Kähler
parameter as depicted in Fig. 3, but the area of the amoeba
remains constant by changingQ. Thus, the total free energy
and growth rate of the conifold, for any Q, are

F ðtÞ
C ðgÞ ∼ π2

g
AðΔCÞ ¼

π2

g
;

logΩðtÞ
C ðnÞ ∼ n

1
2ð4π2AðΔCÞÞ12 ¼ 2π

ffiffiffi
n

p
: ð61Þ

We can consider different divisors of the conifold at anyQ.
In any divisor of the conifold, using the limit shape of that
divisor we can compute the free energy, entropy, and
growth rate. Alternatively, by using the total free energy
of the conifold given by the area of the amoeba and the free
energy of the other divisors, we can simply compute them.
At Q > 1, let us call the divisor that we considered so far
D1, this is the divisor associated with the green or blue
boundaries of the amoeba in Fig. 3, and then study another
divisor called D2, which is associated with the red or
orange boundaries of the amoeba. In this divisor, taking
into account the symmetry of the toric diagram, the free

energy and growth rate can be obtained from the free
energy of the D1 divisor and total free energy,

FD2
ðg;QÞ ¼ 1=2F ðtÞ − FD1

ðg;QÞ

¼ π2

2g
− FD1

ðg;QÞ ¼ 1

g
ðπ2=3þ Li2ð−QÞÞ:

ð62Þ

logΩD2
ðn; tÞ ∼ 2

�
π2

3
þ Li2ð−e−tÞ

�1
2

n
1
2: ð63Þ

Finally, the inverse critical temperature of the resolved
conifold quiver divisors can be computed from Eq. (26) as

βD1
c ðtÞ ¼ 2ðπ2=6 − Li2ð−e−tÞÞ12;

βD2
c ðtÞ ¼ 2ðπ2=3þ Li2ð−e−tÞÞ12; ð64Þ

and at Q ¼ 1, on both divisors we have βc ¼ π.

C. Local P1 × P1 divisors

Having discussed two examples with the known gen-
erating functions, the third example is the local P1 × P1,

FIG. 3. C amoeba at different values of Q, left: Q ¼ 1, middle: Q > 1, right: Q ≫ 1.

FIG. 4. Instanton growth rate of the conifold.
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known as Hirzebruch quiver F0, and its generating
function is unknown. Thus, we can only apply the geo-
metric approach in the asymptotic analysis of this quiver.
The Newton polynomial of this quiver is Pðz; wÞ ¼
−kþ zþ wþ 1=zþ 1=w. The quiver, Newton polygon
and its amoeba at the isoradial point k ¼ 4, and the spines

are depicted in Fig. 5. The size of the bounded component
(hole) of the amoeba increases with k, for k > 4, see Fig. 6.
The limit shape associated with the right blue boundary of

the amoeba, in Fig. 5, is computed via solving the spectral
curve ey þ e−y − ex − e−x − k ¼ 0, and after a rotation by
π=4, to fit into the ðx; yÞ coordinate system, it is

AB
F0
ðx; kÞ ¼

ffiffiffi
2

p
log

�
kex=

ffiffi
2

p
þ ð4 − 8e

ffiffi
2

p
x þ 4e2

ffiffi
2

p
x þ k2e2

ffiffi
2

p
xÞ1=2

2ð−1þ e
ffiffi
2

p
xÞ

�
: ð65Þ

In the following, we focus on the isoradial limit of this quiver. At the isoradial point, k ¼ 4, the limit shape is

AB
F0
ðx; 4Þ ¼

ffiffiffi
2

p
log

�
1þ ex=

ffiffi
2

p

−1þ ex=
ffiffi
2

p
�
: ð66Þ

The free energy at k ¼ 4, can be obtained by computing the area under the limit shape,

F F0ðg; 4Þ ¼
1

g

Z
∞

0

ffiffiffi
2

p
log

�
1þ ex=

ffiffi
2

p

−1þ ex=
ffiffi
2

p
�
dx

¼ 1

g

�
−2

ffiffiffi
2

p
xArc tan h½ex=

ffiffi
2

p
� þ

ffiffiffi
2

p
x log

�
coth

�
x

2
ffiffiffi
2

p
�������∞

0

þ 1

g
ð4Li2ðex=

ffiffi
2

p
Þ − Li2ðe

ffiffi
2

p
xÞÞ

���∞
0

¼ π2

2g
: ð67Þ

FIG. 5. Local P1 × P1 quiver, Newton polygon and the amoeba with spines at k ¼ 4.

FIG. 6. Local P1 × P1 amoeba at different k, left: k ¼ 4, middle: k > 4, right: k ≫ 4.
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Using different approximation method explained in the
conifold quiver, one can compute the above integral and
reproduce the same result. Moreover, the above result is
also consistent with the free energy computed from the area
of the amoeba, using the symmetry of the amoeba at any k,

F F0ðg; kÞ ¼
1

g

Z
AB

F0
ðxÞdx ¼ π2

4g
AðΔF0Þ ¼

π2

2g
: ð68Þ

and thus, as the area of the amoeba only depends on the
area of the Newton polygon and not the Kähler parameter k,
we observe that the free energy is a deformation invariant
quantity, and we have F F0ðg; kÞ ¼ F F0ðg; 4Þ.
From the limit shape we can compute the slope function

and its inverse,

sðxÞ ¼ −2
e−x=

ffiffi
2

p
þ ex=

ffiffi
2

p ; xðsÞ ¼
ffiffiffi
2

p
log

�
−1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

s

�
:

ð69Þ

Thus, the entropy function is obtained from the integral of
the inverse of the slope function,

σF 0
ðs; 4Þ ¼ −

Z
xðsÞds

¼ −
ffiffiffi
2

p
s log

�
−
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

s

�

−
ffiffiffi
2

p
log

�
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
: ð70Þ

The growth rate is computed via the entropy function

logΩF0ðn; 4Þ ∼ n
1
2

�Z
∞

0

σF0ðs; 4Þdx
�1

2 ¼ π
ffiffiffi
n

p
: ð71Þ

In consistency with the computation of the growth rate in
the saddle point analysis, we have

logΩF0ðn; 4Þ ∼ n
1
2ð4π2AðΔF0Þ=lF0Þ

1
2 ¼ π

ffiffiffiffiffiffi
2n

p
: ð72Þ

Amoeba of the quiver has fixed tentacles independent of
k, however, as we mentioned, the bounded component
of the amoeba which is a hole inside the amoeba emerges
for k > 4 and it grows as a function of k, see Fig. 6.
Although the size of the hole changes with k, but the area of
the amoeba remains constant, AðAP1×P1Þ¼π2AðΔP1×P1Þ¼
2π2. Finally, the total free energy and growth rate on all four
divisors of the F0 quiver, for any k, can be obtained as

F ðtÞ
F0
ðgÞ ∼ π2

g
AðΔF0Þ ¼

2π2

g
;

logΩðtÞ
F0
ðnÞ ∼ n

1
2ð4π2AðΔF0ÞÞ

1
2 ¼ 2π

ffiffiffiffiffiffi
2n

p
: ð73Þ

The inverse critical temperature of P1 × P1 quiver is given
by Eq. (26) as βc ¼ 2π=

ffiffiffi
2

p
at any k.

D. Local P2 divisors

In this part we consider the second example of quivers
with a Newton polygon which has an inside point, called
local P2 quiver. The Newton polynomial of this quiver is
Pðz; wÞ ¼ 1þ zþ wþ Q

zw and the dual graph of the
Newton polygon, the toric diagram and its amoeba are
illustrated in Fig. 7. There are two phases of the quiver,
the phase Q > 1=27, in which the amoeba has no hole,
corresponding to a genus zero Harnack curve and the phase
Q < 1=27, in which there is a hole inside the amoeba and
corresponding to a genus one Harnack curve.
We consider the blue boundary of the amoeba in Fig. 8,

as the limit shape for a generic Q and we obtain, from the
solutions of the spectral curve ex − ey −Qe−x−y ¼ 1,

AB
P2ðxÞ ¼ log

�
1

2
e−x

�
−exð1 − exÞ

� ex=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4Qþ ex − 2e2x þ e3x

p ��
; ð74Þ

FIG. 7. P2 quiver, the Newton polygon and the amoeba and its spines at Q ¼ 1=27.
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where plus/minus sign gives the two complementary parts
of the limit shape, meaning that it is made of union of these
two separate curves. In this example, and by using the
above spectral curve, the center of the amoeba which is the
point that the hole emerges is located at ð−1;−1Þ. However,
we expect that the center and the degenerate point of the
amoeba is located at the origin (0,0), as illustrated in Fig. 7.
In order to put the center of the amoeba at the origin, we
shift x → x − 1 and y → y − 1. However, this shift does not
change neither the area of the amoeba (limit shape) nor the
slope function and the entropy.
Taking into account the symmetry of the amoeba, the

free energy, independent of Q, can be evaluated from the
area of the amoeba, and thus for any Q we have

FP2ðgÞ ¼ 1

g

Z
AB

P2ðxÞdx ¼ π2

3g
AðΔP2Þ ¼ π2

2g
: ð75Þ

The free energy can be also obtained directly by computing
the area under the limit shape, however for the general Q
the computation is involved. The slope function is com-
puted from the limit shape as

sðx;QÞ ¼ −
1

2
� ex=2ð3ex − 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4Qþ exðex − 1Þ2

p ; ð76Þ

where � refers to two separate parts of the limit shape,
as explained before. In principle, the inverse function of the
slope of both parts of the limit shape can be computed
explicitly, although computationally involved. However, at
critical Kähler parameter, Qc ¼ 1=27, the computations
can be simplified and the inverse function of the slope for
both parts of the limit shape is obtained as

xðsÞ ¼ log

� ð1þ 2sÞ2
3ðs2 þ s − 2Þ

�
: ð77Þ

The entropy function can be computed from the slope as,

σP2ðs;QcÞ ¼ −
Z

xðsÞds

¼ − log

�ð1 − sÞð1þ 2sÞ
ð2þ sÞ2

�

− s log

� ð1þ 2sÞ2
3ðs2 þ s − 2Þ

�
: ð78Þ

Using the entropy function, in principle one can compute
the instanton growth rate and similar to previous examples,
we expect to have

logΩP2ðnÞ ∼ n
1
2

�Z
σP2ðsÞdx

�1
2 ¼ π

ffiffiffi
n

p
; ð79Þ

however, the actual computation of the integral to find the
numerical value is tedious and instead we can use an
alternative method. More explicitly, using the saddle point
analysis we can compute the growth rate, for any Q, as

logΩP2ðnÞ ∼ n
1
2ð4π2AðΔP2Þ=lP2Þ12 ¼ π

ffiffiffiffiffiffi
2n

p
; ð80Þ

which we have the agreement between Eqs. (79) and (80),
up to a constant numerical factor

ffiffiffi
2

p
.

Finally, we compute the total free energy and growth rate
on all the divisors. The tentacles of the amoeba is fixed and
independent of Kähler parameter, but the size of the hole
inside the amoeba increases as Q tends to zero. In Fig. 8,
we demonstrate the amoeba with three different values for
the Kähler parameter. However the area of the amoeba is
independent of Q and thus for the total free energy and
growth rate of the local P2 quiver we have,

F ðtÞ
P2ðgÞ ∼ π2

g
AðΔP2Þ ¼ 3π2

2g
;

logΩðtÞ
P2ðnÞ ∼ n

1
2ð4π2AðΔP2ÞÞ12 ¼ π

ffiffiffiffiffiffi
6n

p
: ð81Þ

The inverse critical temperature of P2 quiver is obtained
from Eq. (26) as βc ¼ 2π=

ffiffiffi
2

p
, for any Q.

FIG. 8. P2 Amoeba different Kähler parameters: left: Q ¼ 1=27, middle: 0 < Q < 1=27, right: 0 < Q ≪ 1=27.
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V. CONCLUSION AND DISCUSSION

In this study, the asymptotic analysis of the quiver gauge
theories associated with the divisors of the Calabi-Yau is
performed by using methods and results from tropical
geometry, large deviation techniques and number theory.
Consequently, the explicit results for the free energy,
entropy and growth rate of instantons are obtained. We
observed that the total free energy and the total growth rate
as the sum of contributions from all the divisors of the
Calabi-Yau threefold, is proportional to the area of the
amoeba. Therefore, as explicitly stated in the examples,
the larger area of the Newton polygon is, the larger free
energy and entropy we have. More explicitly, in terms of
the total instanton growth rate and inverse critical temper-
ature we observe

ΩðtÞ
P1×P1 > ΩðtÞ

P2 > ΩðtÞ
C > ΩðtÞ

C3 ; βP
1×P1

c ¼ βP
2

c > βCc > βC
3

c :

ð82Þ

The original 3d crystal model is interpreted as the
discrete building blocks of the Calabi-Yau manifolds since
the limit shape of the crystal model, given by the Ronkin
function, is the smooth mirror geometry of the Calabi-Yau
threefold, [3]. In the same spirit, we have the limit shape of
the 2d crystal model given by the amoeba, which is the
solution of the mirror curves of the Calabi-Yau. Thus,
the 2d crystal model can be seen as the discretization of the
smooth geometry of the toric divisors of the Calabi-Yau.
The extension of our methods to study the asymptotics

of the orbifold quivers, as an important infinite class of
quivers, is highly interesting, from a physical and math-
ematical point of view. There are extensive studies on the
D-brane bound states on the C2=ZN orbifold and the
instantons on the resolved AN−1 ALE spaces [27], and
also possible gravity duals and black holes [28]. We can
directly apply our method in this class of quivers and study
their thermodynamics and interpret the results for the
black holes.
The main focus of this study is the isoradial quivers. The

nonisoradial quivers are an interesting class of quivers and
their asymptotics are described by the amoebas with
bounded components, and Harnack curves of the genus

higher than zero. From the physical point of view, this class
of quivers contain the gas phase inside the holes of the
amoeba which has contributions to the entropy density.
Computation of the contributions of the gas phase to the
entropy is an interesting and challenging question.
There are related studies on the thermodynamics and

phase structure of the SUðNÞ Vafa-Witten theory on K3
surfaces in the large N limit and BTZ black holes [29,30]. It
would be interesting to generalize the construction in [4] to
includeN D4-branes wrapped on the toric divisors and then
adopt the similar asymptotic methods to study the phase
structure of these theories.
Since the BPS generating function in most of the quivers

is not known, using the geometric approach developed in
this article, one can study the asymptotic aspects of these
quivers, and the obtained result would be useful in the study
of the generating functions toward their finding.
An interesting direction for the future studies would be to

generalize the 2d crystal model to include the D4-branes on
the compact 4-cycles of the Calabi-Yau, and then study the
asymptotic analysis of these models. Presumably, this would
produce the entropy of the dual black holes which are widely
studied before, using other plausible techniques [31,32].
From the mathematical point of view, there are studies

about the D4-D2-D0 brane and Donaldson-Thomas/
Gromov-Witten invariants associated with the quiver
gauge theory on the divisors of the Calabi-Yau [33,34].
Furthermore, the elliptic version of Donaldson-Thomas
invariants and their motivic version and their generalization
to higher rank are introduced and studied recently, see for
example [35]. It would be interesting to investigate on the
possible applications and interpretations of our asymptotic
results in that context.
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