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We investigate the geometry of a quantum universe with the topology of the four-torus. The study of
noncontractible geodesic loops reveals that a typical quantum geometry consists of a small semiclassical
toroidal bulk part, dressed with many outgrowths, which contain most of the four-volume and which have
almost spherical topologies, but nevertheless are quite fractal.
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I. INTRODUCTION

Causal dynamical triangulation (CDT) is a model that
attempts to apply methods of quantum field theory in the
context of a quantum model of geometric degrees of
freedom.1 As will be described below, the model comes
with a (proper) time, whereas the description of the
geometries in the spatial directions is genuinely coordinate
independent. The existence of the time coordinate has been
instrumental for the construction of an effective minisuper-
space action of the quantum theory, where we have
integrated over the spatial geometries. In particular, it
allowed us to talk about the emergence of a semiclassical
minisuperspace geometry, as well as quantum fluctuations
thereof [15–19]. There is no reason not to expect a similar
emergence of geometry in the spatial directions. However,
bearing in mind the importance of the proper time coor-
dinate in our analysis of the minisuperspace geometry, it
might be preferable to reintroduce some aspects of coor-
dinates in the spatial directions, too. In some sense this is

against the spirit of general relativity which is coordinate
independent, but coordinates can be very useful.
In our recent paper [20] we discussed one possibility of

reintroducing coordinates in CDT in the spatial directions.
In many of the former studies of four-dimensional CDT, the
spatial topology was chosen to be that of a three-sphere S3,
and, given a spatial geometry as it appears in the path
integral, we know of no simple way of reintroducing useful
spatial coordinates in that case. However, in [20] the spatial
topology of the Universe was chosen to be that of a three-
torus T3. A d-dimensional manifold with a toroidal top-
ology can be viewed as consisting of an elementary cell,
which is periodically repeated infinitely many times in all d
directions. Although the choice of the elementary cell is not
unique, the possibility of introducing such an object
enables the use of its boundaries as a reference frame,
with respect to which a Cartesian-like system of coordi-
nates determined by the geodesic distance to the boundaries
may be constructed. One conclusion drawn from the
analysis in [20] was that the geometry of a typical
triangulation which appears in the CDT path integral is
surprisingly fractal. Before trying to extract any emergent
spatial geometry from such triangulations it is thus impor-
tant to understand the spatial geometry of a typical quantum
configuration better. For that purpose we have found it
advantageous to use topological observables: closed non-
contractible geodesic loops, connecting the same geometric
object in different copies of the elementary cell. The
distribution of the length of shortest loops with a given
set of winding numbers passing through particular elements
of geometry yields information about geometric structures,
and this kind of analysis has been used successfully in the
study of two-dimensional Euclidean quantum gravity [21].
The upper part of Fig. 1 provides a two-dimensional

illustration of what we are looking for in the case of the
higher dimensional tori. We imagine that we have an
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1Reviews of the model can be found in [1,2]. The main idea is
to have a lattice model of quantum gravity where one in a
nonperturbative way can test the idea of asymptotic safety [3–8].
Models of dynamical triangulations (DT) were earlier attempts
in this direction [9–11], which however did not work, but see
[12–14] for recent attempts to revive that class of lattice models.
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underlying “semiclassical” toroidal structure, but there can
be many outgrowths, which can be viewed as its quantum
fluctuations. A point in an outgrowth will have a long
noncontractible geodesic loop passing through it, while a
point on the “semiclassical” toroidal part will have a short
noncontractible geodesic loop. In this way one can map out
the geometry of the toroidal universe in considerable detail,
as will be described below. An example point in an
outgrowth is marked with a green dot in the upper part
of Fig. 1. and the green line is a noncontractible geodesic
loop for this point.
In the lower part of Fig. 1 we have shown how a two-

dimensional toroidal quantum configuration looks. The
configuration is a two-dimensional triangulation made of
150000 equilateral triangles, generated by Monte Carlo
simulations of two-dimensional Euclidean quantum grav-
ity. By a conformal mapping the triangulation can be
mapped to an elementary cell in the plane. What is shown
is a piecewise-linear approximation to this mapping (plus
an affine mapping to make it a square). The figure
illustrates how such a quantum configuration consists of

mountains (outgrowths) and valleys. By far the most two-
volume (the greatest number of triangles) is contained in
the outgrowths, as can readily be seen from the picture. In
four-dimensional CDT, we consider paths that connect
centers of simplices, i.e., which consist of edges of the dual
triangulation (see Sec. II). In the two-dimensional case, the
red line shown in the lower part of Fig. 1 consists of links of
the direct lattice. The picture shows quite precisely the
fractal structure of two-dimensional quantum gravity. It is
known that the Hausdorff dimension of spacetime in two-
dimensional quantum gravity is four and not two, as one
might perhaps naively expect [22–24]. On a regular torus
consisting of N triangles one would expect a shortest loop
of length approximately N1=2 links. However, here we see
that the length is much closer to N1=4. In particular, this
implies that the number of triangles in the valleys scale as
N1=2, and not proportionally to N. The area of the valleys
will thus disappear in anN → ∞ limit where the continuum
area V ∝ Na2 is kept fixed, a being the length of a link in
the triangulation before it was projected onto the plane.
Therefore, in the two-dimensional case the valleys are not
semiclassical, but a quantum phenomenon. We expect the
situation to be different in the case of a four-dimensional
CDT torus, the reason being that the Hausdorff dimension
of a typical CDT configuration is four, i.e., the same as the
canonical dimension of the spacetime. We might then have
a picture where the valleys of T3 constitute a semiclassical
configuration which can act as a starting point for a
description of a semiclassical spatial geometry. This is
one of the points we will investigate in this article.
The rest of the article is organized as follows: in Sec. II

we shortly define the CDT model of quantum gravity, in
order to fix the notation (we refer to [1,2] for more detailed
definitions). In Sec. III we define certain characteristics
which are special for spacetimes with toroidal topologies.
Section IV describes how the Monte Carlo simulations are
performed, whereas Sec. V reports on the measurements of
the shortest loops of winding number one. In Sec. VI these
measurements are generalized to loops with higher winding
numbers. In Sec. VII we generalize even the possibilities of
higher winding numbers, acknowledging the fact that our
winding numbers are dependent on our chosen reference
frame and that a true geometric winding can be any linear
combination of our labeling of windings. Section VIII
discusses if simplices in the outgrowths and simplices in
the valleys have different geometric neighborhoods, pos-
sibly signifying that the valleys can be viewed as semi-
classical, while the outgrowths might be viewed as
quantum fluctuations. Finally, Sec. IX contains a discussion
of the results and our conclusions.

II. THE MODEL

The basic idea in CDT is to calculate the quantum
amplitude of the transition between two physical

FIG. 1. Up: Illustration of a torus with outgrowths. The blue and
red lines represent two nonequivalent and noncontractible loops.
The green loop is the shortest loop passing through the green point
in the same direction as the blue line. Down: Embedding of a
triangulation of the two-torus consisting of 150000 triangles into
the Euclidean plane (picture from [21]). Shown in red is the
shortest noncontractible loop.
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states. The amplitude is defined as a path integral over
field configurations, which in this case are spacetime
geometries,

Z ¼
Z

D½gμν�eiSEH½gμν�: ð1Þ

SEH is the Einstein-Hilbert action

SEH½gμν� ¼
1

16πG

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðR − 2ΛÞ; ð2Þ

where R is the scalar curvature and Λ is the cosmological
constant. This expression is formal and requires regulari-
zation and a precise definition of both the integration
measure over gμν and the domain of integration over
spacetimes. In CDT it is assumed that we will take into
account only spacetimes that admit a global time foliation:
M ¼ Σ × I. The term causality in the context of the model
means that the topology of space Σ is preserved in time
evolution. An additional assumption is that the spatial
topology of the Universe is closed. Corresponding to I
there is an initial and a final global time for the geometries
considered, and the amplitude (1) is the transition ampli-
tude between the spatial geometries at the initial and final
global times. This amplitude can be calculated analytically
if spacetime is two-dimensional [25], but in the case of
three- or four-dimensional spacetime we have to rely on
numerical simulations, and thus a discretization of space-
time geometries.
The spacetime geometries are discretized using a method

based on an idea of Regge [26], and the diffeomorphism-
invariant integral over metrics (1) is regularized by a sum
over a set of simplicial manifolds with a correct topological
structure. For each spacetime of this kind it is possible to
perform Wick rotation to Euclidean signature, after which
the exponent in the sum becomes real and the complex
amplitudes become real probabilities (see [27] for details):

PðT Þ ∝ e−SðT Þ: ð3Þ

This formulation is well suited to numerical simulations,
which, as mentioned, are the main tool used in the analysis.
The foliation of spacetime defines an ordering on the slices
(leaves) Σ, each of which can in a natural way be assigned
an integer time parameter t.
In the 3þ 1-dimensional case, the spacetime is built out

of four-dimensional simplices. Each of them is the convex
hull of five vertices that lie on two neighboring slices Σ.
There are thus two types of four-simplices: f4; 1g-simplices
with four vertices on a slice t and one vertex on a slice t� 1,
and f3; 2g-simplices with three vertices on a slice t and two
vertices on a slice t� 1. Each simplex abuts along its three-
dimensional faces on five other simplices, called its neigh-
bors. All spacelike links, i.e., line segments which connect

two vertices on the same time slice, are of length as, and all
timelike links, i.e., line segments which connect two vertices
on neighboring time slices, are of length at. Those lengths
are unchanging, and their ratio squared is the asymmetry
factor: α ¼ a2t =a2s .
The Regge action (the Hilbert-Einstein action on a

piecewise linear manifold) for a causal triangulation
depends only on global quantities:

SEHðT Þ ¼ −ðK0 þ 6ΔÞN0 þ K4ðNf4;1g þ Nf3;2gÞ
þ Δ · Nf4;1g; ð4Þ

where N0, Nf4;1g and Nf3;2g denote the total number of
vertices and of f4; 1g- and f3; 2g-simplices in the con-
figuration. The three dimensionless coupling constants,K0,
K4 and Δ, are related, respectively, to the inverse of the
gravitational constant G−1, the cosmological constant Λ,
and the asymmetry factor α.
To describe a configuration fully, one has to do the

following:
(i) choose the initial and final states. To avoid the

problem of making such a choice, we customarily
adopt the periodic boundary conditions with some
number of time slices T;

(ii) label all the vertices and all the four-simplices;
(iii) list all the vertex labels together with corresponding

time parameters;
(iv) list all the four-simplex labels together with the

quintuples of their vertices and their neighbors
placed opposite to the vertices.

The same data are contained in the dual description, which
is a graph (called the dual lattice) whose vertices corre-
spond to the four-simplices of the configuration, and whose
links correspond to interfaces between the four-simplices.
As mentioned, no analytic solution for the model exists

in 3þ 1 dimensions. Therefore, we probe the trajectory
space by random generation of configurations with desired
topology and scrutinize the results. The configurations are
not created one-by-one from scratch, but instead they are
generated in large number by performing a Monte Carlo
simulation, which starts from a very simple triangulation
and lets it gradually evolve by means of 7 types of
geometric moves. The moves modify the configuration
locally in a topology-preserving way and are ergodic,
which means that by performing them it is possible to
obtain any triangulation with the same topology. In every
simulation many billions of moves are performed, which
allows us to overcome autocorrelation and to generate
independent configurations. Moves are performed at
random in a way satisfying the detailed balance condition
and with correct probabilities derived from the action.
We set the values of the couplings K0 and Δ before
starting the simulation in order to study the model at a
chosen point in the coupling constant space (cf. [28]).
The number of triangulations grows exponentially with
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N4 ¼ Nf4;1g þ Nf3;2g for a fixed topology.2 Summing over
all triangulations with a fixedN4, using as a weight e−SEHðT Þ
for each triangulation T , will result (to leading order in N4)
in an expression

ZN4
ðK0;Δ; K4Þ ∝ eðKcrit

4
ðK0;ΔÞ−K4ÞN4 ; ð5Þ

and the full discretized version of (1) is then

ZðK0;Δ; K4Þ ¼
X
N4

ZN4
ðK0;Δ; K4Þ: ð6Þ

In general we are interested in the limit where the average
value of N4 → ∞, which corresponds to the limit
K4 → Kcritþ

4 . In simulations, taking this limit is replaced
by studying the properties of a sequence of spacetimes,
each with a fixed N4 and N4 → ∞.

III. TOPOLOGY, BOUNDARIES AND
COORDINATES

In the original formulation of CDT in four dimensions it
was assumed that the spatial topology of time slices was
spherical (S3). For technical reasons, related to the com-
puter simulations, it was assumed that time was periodic.
However, this periodicity played no role in the initial study
of universes with S3 topology as long as the time period
was sufficiently large. The existence of the time foliation
sufficed to analyze the phase structure of the model. The
phase diagram is surprisingly complex when one considers
the extreme simplicity of the action (4), which only
depends on the global quantities N0, Nf4;1g and Nf3;1g.
Of the four different phases, only one, the so-calledC phase
(also called the de Sitter phase) seems to be related in a
simple way to semiclassical spacetimes, and we will here
only discuss results obtained when the coupling constants
are chosen such that the system is in this phase. The
simplest observable measured was the spatial volume
profile N3ðtÞ, defined as the number of spatial tetrahedra
on a time slice t. A typical system with a sufficiently large
number of slices T consisted of a blob and a cutoff size
stalk (necessary to satisfy the periodic time boundary
conditions mentioned above). Owing to the invariance
with respect to (discrete) translations in time, the position
of the blob could be arbitrarily shifted in time. We used this
possibility to center it around a fixed time position. It was
shown that both the average volume hN3ðtÞi and its
fluctuations can be derived from the discretized version
of the effective minisuperspace action [30] for the isotropi-
cally homogeneous 4D universe. The classical solution in
this case corresponded to a 4D de Sitter sphere. It should be
noted that although the minisuperspace model was

originally proposed in the context of 4D general relativity
[31], where all degrees of freedom except the scale factor
were suppressed, the situation in CDT is different. The first
difference is that N3ðtÞ corresponds to a collective state,
where all degrees of freedom are integrated out. The second
difference is the sign of the effective action, opposite to the
one found in general relativity. In CDT the solution of
classical equations of motion gives a stable classical
vacuum state, where at each t we have all possible geo-
metric realizations with a particular value of N3ðtÞ. The
existence of this highly nontrivial classical general rela-
tivity limit of the model was one of the most important
results in the early studies of CDT. It also raises the
question about precisely what continuum theory CDT will
describe (if any). As we mentioned above, a time foliation
is built into the CDT formulation. From this point of view,
the CDT setup seems to be the natural one if one wants to
study Hořava-Lifshitz gravity [32,33], and such studies
have indeed been conducted in the case of a three-dimen-
sional spacetime [34]. In four dimensions, Hořava-Lifshitz
gravity contains higher derivative terms, which makes the
theory perturbatively renormalizable. Such terms are not
explicitly introduced into our CDT action. Effectively,
however, the parameter Δ appears as a new coupling
constant, and it could play the same role as higher
derivative terms in a continuum limit. Thus, our model
could well be describing Hořava-Lifshitz gravity rather
than general relativity (GR), as has also been advocated in
[35]. Support for this can be found in the case of two-
dimensional CDT, which can be solved analytically, and
where it was shown that it corresponds to a quantized
version of Hořava-Lifshitz gravity [36]. Finally, from a
Wilsonian point of view, one would expect that a con-
tinuum limit of CDT leading to Hořava-Lifshitz gravity is
more likely than a GR-limit, which has an enhanced
symmetry between space and time.
It is thus an interesting question to what extent the

semiclassical limit can be broadened to include degrees of
freedom in spatial directions, and it in turn might resolve
the question of whether four-dimensional CDT should be
viewed as a lattice version of GR or Hořava-Lifshitz
gravity. The simplicity of the S3 topology, however, makes
such analysis very difficult or even impossible to perform
because of the background independence. We do not have
any reference system with respect to which observables
could be measured. This may be different if we decide to
formulate the model with a richer spatial topology. In the
analysis presented in this article we chose Σ ¼ T3, and for
technical reasons (ease of computer implementation and
eschewal of the need for selecting the initial and the final
states) we imposed periodic boundary conditions in the
time direction: M ¼ T3 × T1.
Thus, each configuration is topologically a Cartesian

product of four circles. Each closed curve within the
configuration is homotopically equivalent to a combination

2There is no analytical proof of this, only numerical
evidence [29].
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of those circles, and the coefficients of that linear combi-
nation are the four winding numbers of the loop. Let us call
them the winding numbers in the x, y, z and t directions.
One can equivalently consider the four-torus as an

infinite periodic system. All the N4 simplices of the torus
are contained in an elementary cell, which repeats itself
infinitely many times in four directions. The elementary
cell can be defined in various ways, each of which is
equivalent to a choice of a set of faces between neighboring
four-simplices to form the cell’s four boundaries. A loop
within the torus corresponds in this picture to a path joining
the same simplices in two different copies of the elementary
cell. We can assign a set of four numbers to each copy of the
elementary cell in such a way that the differences between
them for any two copies are identical to the four winding
numbers of the corresponding loop.
Arguably it is the most convenient to look at loops in the

dual picture, and so henceforth we will most often use the
word “loop” to mean not a spacetime curve but an ordered
set of connected simplices whose image in the dual lattice is
a noncontractible directed cycle. The length of a loop is the
number of links in the cycle. (For simplicity we assume that
all links have the same length.) Similarly, a geodesic
between two simplices will mean a line connecting them
whose image in the dual lattice has minimal length.
The distance (the minimal number of links in the dual

lattice) from a simplex to each of the boundaries of the
elementary cell serves as pseudo-Cartesian coordinates of
the simplex. This definition was studied in a previous paper
[20]. In a regular hypercubic lattice a sum of distances from
any simplex to the two opposite boundaries is a constant,
equal to the geodesic distance between the boundaries. On
a random lattice generated by CDT this is, however, not the
case. We observe a nontrivial distribution of these values
(see Fig. 2), which may indicate either that the shape of the
elementary cell is far from being rectangular, or that
quantum fluctuations of the geometry can be viewed as
“mountains” and in effect simplices close to the top of the
mountains have a larger geodesic distance to the boundaries
than those lying in the valleys between the mountains.
Results indicate that both effects may be important. The
latter effect is supported by the difference visible in Fig. 2
between the distributions Pðxþ x0Þ for all simplices (solid
lines) and simplices adjacent to a boundary (dotted line,
x ¼ 1 or x0 ¼ 1). Boundaries are chosen to locally mini-
mize their area, thus they prefer the central region of a torus
(valleys) and omit outgrowths (mountains). Therefore,
simplices adjacent to one boundary are closer to the second
boundary than an average simplex.
In this paper we will try to perform a closer analysis of

relevant structures produced in simulations to understand
the properties of the quantum landscape. Of a primary
interest will be correlations between valleys, which in this
picture can be interpreted as a semiclassical background
geometry.

IV. DESCRIPTION OF SIMULATIONS

The starting point of all the Monte Carlo simulations was
a single simple configuration, which contained 4096
simplices in 44 regularly placed four-dimensional hyper-
cubes. The considered configuration consisted of T ¼ 4
time slices. Interfaces between some neighboring simplices
were chosen as the boundaries of the elementary cell
(cf. Fig. 3). The precise shape of the initial configuration
and the initial position of the boundaries can be chosen
freely as long as they have the correct topology.
The boundaries are encoded as an additional set of

numbers assigned to every dual link in a triangulation. Each
link fijg in a dual lattice is characterized by a set of four
numbers nμij ¼ �1, 0, where nonzero values mean that the
link crosses the corresponding boundary in a positive or
negative direction. Here, μ ¼ 1;…; 4 enumerates direc-
tions. These numbers have an obvious property nμij ¼ −nμji,
and their sums along a closed loop reproduce the winding
numbers of the loop.
In order to keep the size of the boundary small, after each

performed move a procedure that changes the position of
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FIG. 2. Distributions of a sum of distances from simplices to the
two opposite boundaries in the x direction (red), the y direction
(green) and z direction (blue) for systems with Nf4;1g ¼ 80 k (up)
and Nf4;1g ¼ 160 k (down). The distributions scale consistently
with the Hausdorff dimension dH ¼ 4. The dotted lines refer to
simplices adjacent to the boundary, x ¼ 1 or x0 ¼ 1, respectively,
for the two sides of the boundary.
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boundary if more than two faces of a single simplex belong
to it was invoked in the region affected by the move.
The simulations were performed at the canonical

point in the phase space of toroidal CDT, i.e., in the C
phase, for the parameters K0 ¼ 2.2 and Δ ¼ 0.6 and
for Nf4;1g ¼ 160000. For the analysis we chose a typical,
well-thermalized configuration. The total number of
simplices of the configuration we analyzed was equal
to N4 ¼ Nf4;1g þ Nf3;2g ¼ 370724.

V. SHORTEST LOOPS

In a previous article [20] we introduced the idea of
analyzing the shortest loops of nonzero winding numbers
passing through a given simplex to gain understanding of
the shape of the system. We described the distribution of
lengths of loops with low winding numbers and noted the
universality of its shape (cf. Fig. 4). We also noted the
strong correlations of distribution of loop lengths in differ-
ent directions.
To recapitulate, in order to find the shortest loop of a

given winding number passing through a simplex, we treat
the four-torus as an infinite periodic system and follow step
by step the front of a diffusion wave beginning at the
chosen simplex (using a diffusion wave in a system infinite
in four directions is applicable to the case of low winding
numbers; otherwise this method becomes computationally
inefficient and should be modified, cf. Sec. VI). The
number of loops with a given winding number that pass
through a simplex grows (eventually) exponentially fast
with the loop length. Thus, while it is feasible to list all the
shortest loops of a given type, in the case of longer loops we

usually have to pick one sample loop, representing their
universal properties.
Figure 5 presents the connections between simplices

forming the shortest loops of winding numbers f1; 0; 0; 0g
in the configuration. It is evident that such very short loops
are rare: in a configuration containing N4 ¼ 370724
simplices there are only 20 simplices belonging to loops
of length 18. Moreover, loops of length from 19 to 21 often
differ from each other only by a few simplices; the number
of separate short loops of the same length—the number of
distinct deepest valleys—is very small. The results in the
other spatial directions are similar.
Geometry of the random manifold generated by com-

puter simulation is highly fractal. It is tempting to interpret
the distribution of the lengths of loops with a unit winding
number in spatial or time directions, having its maximum at
a length above 30, as a signal that in most cases the starting
simplex is located inside one of the fractal structures
(mountains, outgrowths), whereas the (rarer) simplices
belonging to the loops with a length that is minimal or
close to minimal correspond to the (relatively simple) basic
structure of valleys in the configuration. With this

FIG. 3. A schematic view of a single time slice in the initial
configuration. Visible are the 43 hypercubes (each of which is
divided into 16 simplices) and the starting position of the
boundaries.
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FIG. 4. Distributions of distances from simplices to their copies
in neighboring elementary cells (heights) for systems with
Nf4;1g ¼ 80 k (up) and Nf4;1g ¼ 160 k (down). These are lengths
of minimal loops with winding numbers f1; 0; 0; 0g (red),
f0; 1; 0; 0g (green) and f0; 0; 1; 0g (blue) shifted in r by a shift
of order one. The dotted lines refer to simplices adjacent to the
boundary.
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interpretation, the length of a loop starting from a particular
simplex reflects the position of the simplex relative to the
valleys. And so, for a particular configuration we assign to
each simplex a unique set of four numbers: lengths of loops
with a unit winding number in a particular direction and
zero in the other three directions. Following these num-
bers along simplices belonging to any particular loop, we
may see how far the simplices belonging to the loop are
from the base, and how this distance changes along
the loop. The four numbers assigned to a simplex can
be called its heights, as they reflect its position above the
basic structure. For the sake of brevity, we can use the
names x-height, y-height, z-height, t-height for the length
of loops in the unit directions. It was checked that, as
expected, the height values of the five neighbors of any
simplex differ from its own height by �2, �1 or 0. In
general any loop starting deep inside a fractal structure is
expected to move closer to the base and then eventually
climb back to simplices in the same fractal. There are only
few loops whose simplices are all of equal height. This
property is possessed by the shortest loop in the configu-
ration and a few dozen other short loops, which are, so to
speak, the “locally deepest valleys”. To summarize, the
height of a simplex is defined as the length of the shortest
loop passing through it. It is determined separately for
each topological dimension of the torus. For a given
simplex and direction, there might exist, and often do,
several shortest loops, all with the length equal to the
height of the simplex. In further analysis we pick only one
of them for each simplex. Usually, through each simplex
pass also many loops (of the same length or longer) that

are minimal for other simplices (see the discussion near
the end of Sec. VII).

VI. LOOPS WITH HIGHER WINDING NUMBERS

The short loops contain important information about the
underlying structure of the manifold and about the dis-
tribution of valleys. The choice of four directions (x, y, z
and t) is nevertheless to a large extent arbitrary. It reflects a
particular structure of the initial configuration and the
memory about the initially chosen elementary cell. It
may give a false impression that the elementary cell
remains geometrically hypercubic during the thermaliza-
tion. We can extend the analysis of minimal loop length
distributions to include simplices in cells with an arbitrary
set of winding numbers fnμg. The analysis shows that
the network of minimal loops contains not only loops
in the four basic directions, as discussed above, but also
loops with nontrivial winding numbers. It is important
to note, that the winding numbers of a loop do not depend
on a particular choice of boundaries or, equivalently, the
elementary cell.
Using a four-dimensional diffusion wave in a system

treated as infinite in four directions is a simple method to
ensure that we find the shortest loop of a given winding
number, regardless of the shape of the dual lattice, as the
diffusion wave cannot “miss” any short path. One could
continue the diffusion to find loops with any higher
winding numbers. However, the number of visited sim-
plices at a distance R from the initial simplex grows as R3,
which means that eventually, for large R, the procedure
would become too time- and memory-consuming, and
computationally inefficient. We should, therefore, modify
the boundary conditions in such a way that the number
of simplices visited by the diffusion wave grows more
slowly. One example is to consider the four-torus as a
system infinite in only one direction—for example the
x-direction—and strictly periodic in all other directions.
This way we can measure loops with winding numbers
fn; 0; 0; 0g, n ¼ 1; 2;…. A small modification of this idea
is to assume that cell boundaries in all directions except x
are impenetrable for the diffusion wave. In both of the
methods the number of visited simplices in the Rth shell, for
R large enough, stabilizes and becomes independent of the
distance R. We will observe a faster growth only up to the
range where the diffusion wave reaches the boundaries of
the system in the finite directions. A similar result can be
obtained if we put the impenetrable walls in all directions
except x at boundaries between cells number �1 and �2.
This choice improves the behavior of the diffusion process
in case the initial simplex is near the boundary of the
elementary cell.
In Fig. 6 we present results of using this method (with

impenetrable walls in all directions except x at boundaries
between cells number �1 and �2) to measure the average
lengths of loops with winding numbers fn; 0; 0; 0g,

FIG. 5. The dual-lattice graphs of all the connections between
simplices of lowest x-heights: 18 (purple), 19 (red), 20 (yellow)
and 21 (blue). In general, loops longer than the minimal length
almost always contain fragments belonging to shorter loops, but
for small heights there exist also a small number of loops built
only of simplices with equal x-height.
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n ¼ 1; 2;…; 8. Similar measurements were performed in y-
and z-directions. It turns out that the difference between the
distance to the copy number n and the distance to the copy
number n − 1 of a given simplex decreases rapidly with
increasing n, down to the length of the minimal shortest
loop in the given direction (lowest height of a simplex), and
then it remains constant. The explanation is simple: in order
to minimize the length of a loop with a high winding
number n in a given direction, it becomes advantageous for
the loop to connect the initial simplex to a simplex of the
lowest possible height, then trace the shortest loop of unit
winding number n times, and finally return to the initial
simplex. As can be seen in Fig. 6, already for n ¼ 8 the
shortest loop of the configuration is a part of all the loops of
winding number n. The figure shows the distances averaged
over all simplices in the configuration. We note that the
average for loops with a unit winding number in the x
direction for this particular configuration is 34.64, which is
well above the minimal length of 18, showing that most
simplices belong to fractal structures.
Figure 7 shows the heights of consecutive simplices

along loops with a growing sequence of winding numbers
in the x-direction, starting from a simplex lying far within
such a fractal structure, called also an outgrowth. We can
see that as the winding number of the loop increases,
usually the minimal x-height of the simplices belonging to
the loop decreases, ultimately down to 18, which is the
length of the shortest f1; 0; 0; 0g loops in the configuration.
As there are no two completely separate x-loops of length
18, this means that all the loops of a high winding number
pass many times mostly through the same set of simplices.
The graphs showing the heights in the y, z and t directions
for the same set of loops demonstrate that although there is
a correlation between height in all the directions, the
correlation is not perfect, especially after the loop leaves

the outgrowth. The repeating sawlike pattern is a loop of a
high winding number tracing one of the shortest loops of
unit winding number several times. The heights of
simplices belonging to a loop that is shortest in the
x-direction are not minimal in the other three directions.
However, even though in the other directions the height
fluctuates, it still remains close to the minimal height, as
the simplices in the semiclassical region have low heights
in all directions.

VII. ALTERNATIVE BOUNDARY CONDITIONS

The other method, mentioned in Sec. VI, is searching for
a shortest path connecting a simplex to its copy in another
elementary cell in a system that is infinite in one direction
and has periodic boundary directions imposed in the other
three directions. The values of the winding numbers in the
other directions are irrelevant for this method, i.e., we find
loops with winding numbers of the form fn; a; b; cg, a, b, c
being any integers, instead of only fn; 0; 0; 0g.
It turns out that also for these boundary conditions paths

starting at various simplices tend to converge and follow a
handful of very short loops. However, those loops are
almost never the shortest loops with unit winding numbers,
e.g., f1; 0; 0; 0g. Rather than that, those loops have winding
numbers of the form fn; a; b; cg yet are shorter than n times
the length of the shortest f1; 0; 0; 0g loop in the configu-
ration (see Table I; we used data from a diffusion in a four-
dimensional infinite system to find the precise winding
numbers). One could conjecture that as we probe loops of
higher winding numbers we should eventually find loops
with even smaller ratio of total length to the winding
number, but in fact it turns out that even loops of winding
numbers of order 50 utilize the loops described in Table I,
so it appears that those loops are minimal. It seems likely
that the torus is twisted in such a way that it is impossible to
redefine the elementary cell so as to make loops in the basic
directions always an optimal choice as components for
loops of higher winding numbers.

34.64

20.09
19.17 18.59 18.18 18.02 18.0004 18

1 2 3 4 5 6 7 8

20

25

30

35

copy number

av
er

ag
e

di
st

an
ce

FIG. 6. Distance from a starting simplex to its copy in cell
fn; 0; 0; 0g minus distance from the same simplex to its copy in
cell fn − 1; 0; 0; 0g, averaged over all the simplices of the
configuration. Already for n ¼ 8 the minimal value of 18 is
reached.

TABLE I. Lengths of the shortest loops in the three basic spatial
directions.

Winding numbers

Lengthx y z t

1 0 0 0 18
1 −1 1 0 16
2 −1 1 0 27
0 1 0 0 19
0 1 0 1 16

−1 1 −1 0 16
−2 3 −1 1 43
1 0 0 0 18
1 −1 1 0 16
2 −1 3 0 47
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FIG. 7. Heights in the 4 basic directions of consecutive
simplices along loops of winding numbers f1; 0; 0; 0g (blue),
f2; 0; 0; 0g (orange), f3; 0; 0; 0g (green), f6; 0; 0; 0g (red) starting
from a simplex in an outgrowth. The dashed lines indicate the
minimal and maximal heights in the configuration, and the dotted
line indicates the height of the initial simplex.
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FIG. 8. The four basic heights of simplices belonging to one of
the loops from Table I: a loop of length 27 with winding numbers
f2;−1; 1; 0g.
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FIG. 9. The four basic heights of simplices belonging to one of
the loops from Table I: a loop of length 43 with winding numbers
f−2; 3;−1; 1g.
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FIG. 10. The four basic heights of simplices belonging to one of
the loops from Table I: a loop of length 47 with winding numbers
f2;−1; 3; 0g.
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Figures 8–10 show the heights in the basic directions
of the consecutive simplices along the shortest loops
described above. We can see that the heights, while not
minimal, are quite low compared to the average (which is,
as mentioned before, above 30). This signifies that these
paths too belong to the base (“bulk”) region of the torus and
are not composed of generic simplices, which mostly
belong to the fractal structures.
The algorithm we used creates a diffusion wave starting

from a chosen simplex. For each simplex reached in
consecutive steps it stores one of the simplices from which
it came. In this way, we obtain at the same time not only the
lengths of loops of winding number n in the chosen
direction but also the lists of simplices along those loops.
For each simplex in the configuration, we found and
wrote down one shortest path connecting it with its
nearest copy in the x-direction. In this way we obtained
the lists of simplices belonging to 370724 shortest
loops. We repeated the same process in the y- and
z-directions. Next, we removed from each list the
initial and final simplex of each loop, and we counted
the number of appearances of each simplex in the
lists. A log-log scale histogram is shown in Fig. 11.
The maximum value was more than 40000, which
corresponded to one of the bulk simplices, and the
minimal value was zero, which occurred numerous times
and corresponded to simplices at the far ends of the
outgrowths. The latter simplices are not a part of any
geodesics apart from those that start within them. We
were able to fit to the histogram a power law curve with
the exponent very close to −2, which seems to bear a
certain significance. This functional relationship is differ-
ent than in the cases of, e.g., a branched polymer or a
regular lattice. We have not yet found an algorithmic
method of constructing a toroidal graph with behavior
described by the same exponent. We plan to investigate
this point in a future article.
We also noted that the heights of the simplices and

the number of shortest loops passing through them are
strongly correlated. We sorted the simplices in the order

of descending number of loops passing through them,
divided the list into blocks containing 1000 simplices each,
and within each block averaged the heights in each of the
three spatial directions. With this ordering of simplices,
the heights turned out to be increasing functions of
the ordinal number of simplices in the list, modulo
statistical fluctuations (see Fig. 12). The fluctuations in
all three directions were strongly correlated. We fitted a
power law to the curves. The exponent is probably the same
for all the directions, and the constant factor depends on the
shape of the torus—it is higher for the directions in which
the torus is more elongated (and so the average height of the
simplices is greater).
This shows that the number of loops passing

through a given simplex can serve as another indicator
of its position within the torus. Most of the geodesics
between distant points pass through the bulk simplices in
the semiclassical region and do not enter the outgrowths,
which are the regions of quantum fluctuations. If a
geodesic passes through a simplex in the outgrowth, it
usually means that it had its beginning even deeper in the
same outgrowth.

VIII. NEIGHBORHOODS OF BULK- AND
OUTGROWTH-SIMPLICES

As observed, geodesics between distant simplices tend to
pass through simplices of low heights and avoid simplices
of middle and greater heights. It is tempting to interpret the
former as belonging to a semiclassical “bulk”, and the latter
to “outgrowths”, which are a result of quantum fluctuation.
If so, then those regions should differ also in other
properties apart from such nonlocal ones as height and
the number of loops passing through the simplices. This is
in fact the case. The neighborhoods of bulk simplices and
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FIG. 11. A log-log scale histogram of the number of simplices
crossed by a given number of shortest loops.
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FIG. 12. The x-, y-, and z-heights of simplices. The simplices
were sorted in the order of descending number of loops passing
through them, and then the heights were averaged over blocks
containing 1000 simplices each. The fitted functions are
hx ¼ 21.98k0.0732, hy ¼ 21.66k0.0723 and hz ¼ 22.74k0.0706.
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outgrowth simplices look considerably different, which
allows for a construction of local quantities distinguishing
between them.
Figures 13, 14 and 15 show subgraphs of the dual lattice,

depicting all the simplices of distance up to 6 from a
starting simplex, together with the connections between
them. The simplices—vertices of the dual lattice—are
represented by circles whose size is a decreasing function
of distance from the starting simplex. Colors of the circles
indicate heights, with red corresponding to the shortest and

violet to the longest loops in a given figure. The heights
are also noted as numbers in the circles.3
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FIG. 13. Six concentric shells around a simplex of height equal to 16. The colors and the numbers indicate the height of a simplex, and
the size of a vertex its distance from the starting simplex. The central simplex lies in the bulk region.

3Figures in this section are based on data obtained using the
version of algorithm with periodic boundary conditions in
directions y, z and t. Heights defined in this alternative way
have similar values and interpretation to x-heights defined
previously, though they are not directly equivalent, e.g., here
the minimal value is 16, which occurs in simplices that form the
shortest loop with winding numbers f1;−1; 1; 0g (see Table I).
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In Fig. 13 the starting simplex had height equal to 16. As
that is the minimal value, we can see that in the neighbor-
hood of the simplex height tends gradually to increase
together with distance from it. By the same token, loop
length decreases with increasing distance from a simplex
with height equal to 40, which is among largest in the
configuration—Fig. 14. Even a cursory glance at the
graphs, moreover, suffices to note a strong dependence
of the total number of simplices of distance up to 6 from the
starting simplex on its loop-length. As expected, “out-
growth” regions have an elongated shape and a lower

Hausdorff dimension than the “bulk” region, which is a
sign of their fractality.
Figure 16 shows the shortest f1;−1; 1; 0g loop

and its neighborhood. Comparing it also with Table I,
we note that it is among the very shortest nontrivial
loops in the configuration. It is the only loop with
that set of winding numbers and length 16. It is readily
seen that as we count loops with the same winding
numbers and length 17, 18, etc. in the vicinity of
the marked loop, the number grows approximately
exponentially.
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FIG. 14. Six concentric shells around a simplex of height equal to 40. The colors and the numbers indicate the height of a simplex, and
the size of a vertex its distance from the starting simplex. The central simplex lies near the deep end of an outgrowth.
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IX. CONCLUSION

The detailed measurements performed on a typical
toroidal configuration which appears in the CDT path
integral in the C phase shows the following: the spatial
T3 part consists of a relatively small bulk region, the
toroidal center, which we have denoted semiclassical, and
numerous fractal outgrowths of almost spherical topology
(with a single small boundary) which contains most of the
simplices. A lower-dimensional illustration of this is shown
in the upper part of Fig. 1. Introducing the lengths of the

shortest noncontractible loops in the coordinate directions
as the heights associate with a given simplex allowed us to
classify the simplex as belonging to the toroidal center or to
an outgrowth. Further, the number of simplices in the
outgrowths where the height is a local maximum is not
small. The interpretation of this is that the outgrowths are
quite fractal, again in the way illustrated in the upper part of
Fig. 1. An important feature of the length distributions of
noncontractible loops associated to the simplices is that
they scale as N1=4, where N denotes the size of the
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FIG. 15. Six concentric shells around a simplex of height equal to 30. The colors and the numbers indicate the height of a simplex, and
the size of a vertex its distance from the starting simplex. The central simplex lies in the middle of an outgrowth.
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triangulation, i.e., the number of four-simplices, as shown
in Fig. 2. The most likely consequence of such a “canoni-
cal” scaling is that the volume of the toroidal center,
although small compared to the volume of the outgrowths,
will also scale withN. It might thus be justified to think of it
as semiclassical, in contrast to the toroidal center-part of the
two-dimensional configuration shown in the lower part of
Fig. 1, which vanishes in the large N limit, as discussed in
the Introduction.
We conclude that there is a well defined geometric

structure underlying the typical path integral configuration
of T4 in CDT. It is somewhat more fractal than we had
hoped for in the sense that the outgrowths contain most of

the simplices, but it invites to use a classical scalar field to
define a coordinate system, a procedure common in
classical general relativity. By imposing suitable boundary
conditions on the scalar field one can make its values record
the structure of the toroidal center well, whereas the field is
almost constant in an outgrowth. It thus emphasizes what
we have denoted the semiclassical part of the configuration
and might be a good choice of coordinates if one wants to
construct a semiclassical action. Work in this direction will
be reported elsewhere.
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FIG. 16. The shortest f1;−1; 1; 0g loop together with its neighborhood. The colors and the numbers indicate the height of a simplex,
and the size of a vertex its distance from the loop.
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