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We refine an earlier introduced 5-dimensional gravity solution capable of holographically capturing
several qualitative aspects of (lattice) QCD in a strong magnetic background such as the anisotropic
behavior of the string tension, inverse catalysis at the level of the deconfinement transition or sensitivity
of the entanglement entropy to the latter. Here, we consistently modify our solution of the considered
Einstein-Maxwell-dilaton system to not only overcome an unphysical flattening at large distances in the
quark-antiquark potential plaguing earlier work, but also to encapsulate inverse catalysis for the chiral
transition in the probe approximation. This brings our dynamical holographic QCD model yet again
closer to a stage at which it can be used to predict magnetic QCD quantities not directly computable via
lattice techniques.
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I. INTRODUCTION

Subjecting QCD to extreme external conditions such
as temperature, density, and/or electromagnetic fields is
not only a matter of formal and theoretically challenging
studies, but of direct possible relevance for current particle
accelerator driven research programs [1–3], early universe
physics [4,5], dense neutron stars [6], gravitational waves
physics [7], etc.
Next to the necessary high temperature conditions to

liberate quarks from their permanent confinement, (non-
central) relativistic heavy ion collisions might also create
during the short-lived quark-gluon plasma stage [8,9], a
strong magnetic background [10–15], another player affect-
ing the QCD phase diagram [16–18].

Unfortunately, understanding the QCD phase structure
under the aforementioned circumstances remains challeng-
ing [19]. Analytical approaches are hard because of the
strong coupling, and there are always some modeling or
truncation artifacts, etc. The simulation-based approach of
lattice QCD is a powerful ally, but due to the inherently
Euclidean nature of the Monte Carlo setup, the effects of a
chemical potential or transport coefficients—related to out-
of-equilibrium physics, are conceptually difficult to access
because of the infamous sign-problem. The modern tensor
network paradigm does not suffer from this particular
conceptual drawback, but as of now seems to be computa-
tionally limited to lower-dimensional gauge theories [20].
Another option—the one we will follow here—is apply-

ing the gauge-gravity correspondence rooted in [21–23],
which has become a key player in the field of theoretical
studies of the strongly coupled quark-gluon plasma. A key
modification of the original AdS=CFT vocabulary is that
QCD requires a mass scale/confinement, not available in a
conformal setting. This means the original AdS gravity
background is untenable and needs to be replaced by more
involved backgrounds reflecting the fundamental QCD
scale, allowing at least for confinement and a massive
spectrum built from the (almost) massless original degrees
of freedom. Relevant examples of such AdS/QCD theories
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are [24–26], some examples of the role of anisotropy, as
brought in by a magnetic field, in dual gauge theories can
be found in, e.g., [27–38].
In this work, we will mainly focus on the inverse

magnetic catalysis of chiral symmetry breaking, something
which was first perceived as unexpected and counterintui-
tive: indeed, the earlier papers [39,40] gave support to a
magnetic field induced catalysis of the chiral condensate,
from which naively a larger chiral restoration temperature
could be guessed. Nonetheless, the opposite behavior
received convincing lattice evidence from [41], see also
[42,43]. Likewise, the deconfinement transition temper-
ature also follows this inverse catalysis behavior. An
incomplete list on (inverse) magnetic catalysis motivated
works is [41–62], with holographic contributions being, for
example, [63–87].
This paper continues the study laid out in [88]. To model

QCD in a magnetic background, we will rely on an exact
solution of the Einstein-Maxwell-dilaton (EMD) gravity
system, obtainable via the potential reconstruction method
[89–100]. This solution, depending on a scale function
AðzÞ that can be chosen at will to mimic desired QCD
features, incorporates a magnetic field as well as a running
dilaton. A short survey of it will be presented in Sec. II,
including the Hawking-Page transition [101] in terms of the
magnetic field. Relative to [88], we will show how a small
deformation of the considered form factor AðzÞ can resolve
an unphysical feature in the heavy (static) quark potentials
computed in [88] via the holographic Wilson loop pre-
scription [102–105], namely that the increasing-linear-in-
distance (confining) behavior is replaced by a constant
value at large quark-antiquark separation. As we do not
include light dynamical quarks, this flattening behavior,
corresponding to string breaking, should not occur. Here,
we will show that this can be averted, restoring the linear
increase to arbitrary separation.
In Sec. III, we will add flavor (quark) matter via a

phenomenological probe brane construction and study the
occurrence of (inverse) magnetic catalysis at the level of the
chiral phase transition. For this we shall implement two
different numerical techniques, and use the form-factors
introduced in Sec. II.
We end with a short outlook to further research

in Sec. IV.

II. SURVEY OF THE GRAVITATIONAL
BACKGROUND

A. Magnetized Einstein-Maxwell-dilaton gravity

In order to study the effect of a magnetic field and
chemical potential on some features of QCD in the context
of holographic QCD (AdS/QCD) models, we rely on a
gravity background with two Maxwell fields, a first one
dual to the chemical potential (or better said, the neutral
baryon number current), and a second one dual to the

electromagnetic current in the boundary field theory.1 In
such Uð1Þ ×Uð1Þ setup, mesons are charge neutral, so we
cannot directly couple electromagnetism to the theory. We
will employ the second gauge field just to introduce a
(constant) magnetic field i.e., we have no interest in the
associated mesonic fluctuations.
So, the background that we have utilized is five-dimen-

sional EMD gravity [88],

SEM ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

f1ðϕÞ
4

Fð1ÞMNFMN
ð1Þ

−
f2ðϕÞ
4

Fð2ÞMNFMN
ð2Þ −

1

2
∂Mϕ∂Mϕ − VðϕÞ

�
;

ð2:1Þ

where G5 is the Newton constant in five dimensions, R is
the Ricci scalar, ϕ is the dilaton field, Fð1ÞMN and Fð2ÞMN

are the field strength tensors for the two Uð1Þ gauge fields,
f1ðϕÞ and f2ðϕÞ are the gauge kinetic functions that act as
coupling between gauge fields and dilaton field and VðϕÞ is
the potential of the dilaton field (for more details about this
action see [88]).
To obtain the on-shell solutions, the following Ansätze

have been considered for the metric field gMN , dilaton field
ϕ and electromagnetic field tensors FðiÞMN :

ds2 ¼ L2SðzÞ
z2

�
−gðzÞdt2 þ dz2

gðzÞ þ dy21

þ eB
2z2ðdy22 þ dy23Þ

�
;

ϕ ¼ ϕðzÞ; Að1ÞM ¼ AtðzÞδtM; Fð2ÞMN ¼ Bdy2 ∧ dy3;

ð2:2Þ

where L is the AdS length scale,2 SðzÞ is the scale factor,
and gðzÞ is the blackening function. Here, z is the radial
coordinate with z ¼ 0 at the AdS boundary. This coordinate
z runs from the boundary to the horizon at z ¼ zh for
the black hole case or to z ¼ ∞ for the thermal-AdS case.
Also, the magnetic field B⃗ is located parallel to the
y1-direction. We remind here that this magnetic field B
(mass dimension 1) is actually the 5-dimensional one,
which needs a rescaling via the AdS length L to get the
physical, 4-dimensional, boundary magnetic field B (mass
dimension 2) [63], see also [106]. For our current quali-
tative purposes, we will keep using the 5-dimensional
magnetic field. Notice this is more than just working in

1In this paper we will not be interested in studying the effect
of a chemical potential, so we will set it equal to zero after this
subsection.

2We set L ¼ 1 in the numerical calculations.
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units L ¼ 1, there is still an undetermined dimensionless
ratio between the two magnetic fields.
Utilizing the above Ansätze Eq. (2.2), imposing suitable

boundary conditions and following the procedure outlined

in [88], complete solutions can be expressed in terms of
two arbitrary functions, i.e., the gauge coupling function
f1ðzÞ and the scale function SðzÞ. Doing so, the solution for
AtðzÞ is

AtðzÞ ¼
μR zh

0 dξ ξe−B
2ξ2

f1ðξÞ
ffiffiffiffiffiffi
SðξÞ

p

"Z
zh

z
dξ

ξe−B
2ξ2

f1ðξÞ
ffiffiffiffiffiffiffiffiffi
SðξÞp

#
¼ μ̃

Z
zh

z
dξ

ξe−B
2ξ2

f1ðξÞ
ffiffiffiffiffiffiffiffiffi
SðξÞp ; ð2:3Þ

and the solution for gauge coupling function f2ðzÞ

f2ðzÞ ¼ −
e2B

2z2L2SðzÞ
z

�
gðzÞ

�
4B2zþ 3S0ðzÞ

SðzÞ −
4

z

�
þ 2g0ðzÞ

�
; ð2:4Þ

while for the potential VðzÞ

VðzÞ ¼ gðzÞ
L2

�
−
9B2z3S0ðzÞ
2SðzÞ2 þ 10B2z2

SðzÞ −
3z2S0ðzÞ2
SðzÞ3 þ 12zS0ðzÞ

SðzÞ2 þ z2ϕ0ðzÞ2
2SðzÞ −

12

SðzÞ
�

−
z4f1ðzÞA0

tðzÞ2
2L4SðzÞ2 þ g0ðzÞ

L2

�
−
B2z3

SðzÞ −
3z2S0ðzÞ
2SðzÞ2 þ 3z

SðzÞ
�
: ð2:5Þ

Also, via studying the vector meson mass spectrum and deconfinement transition temperature, one can make an educated

guess for the form of gauge coupling functions f1ðzÞ and SðzÞ, i.e., f1ðzÞ ¼ e−cz
2−B2z2ffiffiffiffiffiffi
SðzÞ

p and SðzÞ ¼ e2AðzÞ. Therefore, one can

write the solutions for gðzÞ and ϕðzÞ more explicitly as

gðzÞ ¼ 1þ
Z

z

0

dξ ξ3e−B
2ξ2−3AðξÞ

�
K3 þ

μ̃2

2cL2
ecξ

2

�
; with K3 ¼ −

½1þ μ̃2

2cL2

R zh
0 dξξ3e−B

2ξ2−3AðξÞþcξ2 �R zh
0 dξξ3e−B

2ξ2−3AðξÞ : ð2:6Þ

ϕðzÞ ¼
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

z
ð3zA00ðzÞ − 3zA0ðzÞ2 þ 6A0ðzÞ þ 2B4z3 þ 2B2zÞ

r
þ K5 ð2:7Þ

where we can fix the constant K5 by demanding that
ϕjz¼0 → 0, AðzÞ is scale factor, and c is a constant that can
be fixed as c ¼ 1.16 GeV2, see [88,98,99]. Also, to obtain
the critical Hawking-Page (deconfinement) transition tem-
perature Tcrit as a function of magnetic field, we need the
black hole temperature and entropy that are

T ¼ −
z3he

−3AðzhÞ−B2z2h

4π

�
K3 þ

μ̃2

2cL2
ecz

2
h

�
;

S ¼ eB
2z2hþ3AðzhÞ

4z3h
: ð2:8Þ

It is important to stress that the Eqs. (2.3)–(2.7) are a
complete solution for magnetized EMD gravity, just depend-
ing on the form factor choice AðzÞ. The consistency of this
potential reconstruction approach was thoroughly addressed

in our previous paper [88], including the compatibility of the
on-shell potential with the Gubser stability criterion [107],
next to the almost independence on the external parameters
zh (or T), B and μ of the (on-shell) potential VðzÞ.
In the rest of the paper, we will first shortly reconsider

our original choice for the form factor, as used in [88], and
then introduce a slightly modified form factor to overcome
the unphysical string breaking. Afterwards, we discuss the
chiral phase transition in Sec. III.

B. The original form factor AðzÞ=A1ðzÞ= − az2
Similar to [88,98] the first case for scale factor that we

have used is AðzÞ ¼ A1ðzÞ ¼ −az2 where a can be fixed by
matching to the deconfinement temperature obtained from
lattice QCD at B ¼ 0, yielding a ¼ 0.15 GeV2. Utilizing
this form factor, the dilaton field ϕðzÞ is
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ϕðzÞ ¼ ð9a − B2Þ log ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − B4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2z2 þ 9a − B4z2 − B2

p
þ 6a2z − B4zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6a2 − B4
p

þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2z2 þ 9a − B2ðB2z2 þ 1Þ

q
−
ð9a − B2Þ log ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a − B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 − B4

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6a2 − B4
p : ð2:9Þ

From Eq. (2.9) we see that there is maximal value of the
magnetic field for which our system is physical. Indeed, the
dilaton field should be real-valued and this will be satisfied
only if B4 ≤ B4

c ¼ 6a2. So, when we are working with this
form factor A1ðzÞ, the largest attainable value of magnetic
field is Bc ≃ 0.61 GeV.
In our previous paper [88], we already showed that

the magnetic field induced an inverse magnetic catalysis
behavior for the deconfinement transition temperature, the
situation is summarized in Fig. 1.

C. A new form factor: AðzÞ=A2ðzÞ= − az2 − dB2z5

We will now construct a new scale factor that respects
two important conditions:
(1) a real-valued dilaton field, preferably also for larger

values of the magnetic field.
(2) the free energy of a connected string attached to a

boundary quark-antiquark pair should be smaller
than the disconnected one3 to assure a confined
quark-antiquark pair in the dual boundary theory, at
least when the metric is of the thermal-AdS type (no
black hole), irrespective of the separation length
between quark and antiquark. In [88], we found that
the linearly increasing interquark potential becomes
flattened at large separation when the scale factor
A1ðzÞ is employed.

Here, we introduce the new scale factor AðzÞ ¼ A2ðzÞ ¼
−az2 − dB2z5, still with the parameter a as before, i.e.,
a ¼ 0.15 GeV2 as this was determined via comparison
with B ¼ 0 lattice data. For what concerns the value of the
extra parameter d, for every positive value and as long as
the magnetic field is not too large (the concrete maximal
value depending on d), the dilaton field is real, thence
satisfying the first condition.4

More restrictions will come from the second condition,
let us therefore look at the disconnected free energy of the
quark-antiquark [88,98],

F discon ¼
L2

πl2
s

Z
zh¼∞

ϵ
dz

e2AsðzÞ

z2
ð2:10Þ

where ϵ corresponds to a UV cut-off in boundary theory

[108] and the AsðzÞ ¼ A2ðzÞ þ
ffiffi
1
6

q
ϕðzÞ the form factor

converted to the string frame, with ϕðzÞ given in Eq. (2.7).
ls is the open string length, which is related to the
open string constant as Ts ¼ 1=2πl2

s . For the new form
factor A2ðzÞ, the disconnected free energy always diverges.
Indeed, we expand ϕðzÞ and AsðzÞ in the IR (viz. at large z)
and then plug this into Eq. (2.10),

F discon ¼
L2

πl2
s

Z
∞
dz

e2AsðzÞ

z2

¼ L2

πl2
s

Z
∞
dz

�
z4 þ 2B2z3

15d
þ…

�
; ð2:11Þ

where at z ¼ ∞ clearly the disconnected free energy will
diverge. So, the (ϵ-regularized) connected free energy will
always be smaller than the disconnected one, implying that
the quark-antiquark pair will always enjoy confinement.
Let us investigate now in a bit more detail the eventual

choice of d > 0, inasmuch as the influence d has on the
deconfinement phase transition. We set out the deconfine-
ment transition temperature Tcrit in terms of the magnetic
field B for different values of d > 0 in Fig. 2. We observe
that inverse magnetic catalysis is persistent just for
sufficiently small values of d, i.e., d ≤ 0.013 GeV3. We
will from now on consider d ¼ 0.013 GeV3 to have
the largest attainable value for the magnetic field, being

0.0 0.1 0.2 0.3 0.4 0.5 0.6
B

0.10

0.15

0.20

0.25

Tcrit

FIG. 1. Deconfinement transition temperature in terms of
magnetic field for the case A1ðzÞ ¼ −az2. Here we set μ ¼ 0.
In units GeV.

3The connected solution is a ∪-shape configuration starting at
the quark-antiquark pair living on the boundary (z ¼ 0) and
extends into the bulk. On the other hand, the disconnected
solution is a configuration of two lines extending from the
boundary to the horizon [88,98].

4The almost independent behavior of the dilaton potential on
the parameters T and B for this new form factor is discussed in
Appendix A.
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Bc ≃ 1.02 GeV. The corresponding confinement-decon-
finement phase diagram is displayed in Figure 3, to be
compared with Fig. 1 which is the d ¼ 0 case.
Finally, we delve a bit deeper into the free energy of the

quark-antiquark pair, see Figs. 4 and 5 fromwhich it is clear
that the flattening obtained in [88] is now avoided. We have
determined the string tensions for both parallel and
perpendicular orientation of the Wilson loop,5 shown in
Figs. 6 and 7. Our results for the associated QCD string
tensions with this new form factor A2ðzÞ are compatible
with lattice results for smaller values of the magnetic
field that were reported in [109,110], see also [111,112]
for other approaches: a weaker confinement for the parallel
orientation and a stronger one for the perpendicular case. At
larger B, we also find that the perpendicular string tension
starts to decrease again, something not really visible from
[109,110]. This being said, unlike these lattice works, we
do not have (2þ 1) dynamical quark flavors in our model.

III. CHIRAL PHASE TRANSITION

In this section, we will investigate the chiral sector of
the dual boundary theory and, in particular, investigate
the behavior of chiral condensate and the corresponding
chiral critical temperature as a function of the magnetic
field. The holographic action relevant for investigating
the chiral properties of the boundary QCD theory will be
taken as [63,113],6

Schiral ¼
Nc

16π2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ϕTr

�
jDXj2 −m2

5jXj2

−
f2ðϕÞ
3

ðF2
L þ F2

RÞ
�
: ð3:1Þ

d=0.3

d=0.1

d=0.05

d=0.013

0.0 0.2 0.4 0.6 0.8 1.0
B

0.2

0.3

0.4

0.5

Tcrit

FIG. 2. Deconfinement transition temperature in terms of
magnetic field for the case AðzÞ ¼ −az2 − dB2z5. Here we set
μ ¼ 0. In units GeV.

d = 0.013

0.0 0.2 0.4 0.6 0.8 1.0
B0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28
Tcrit

FIG. 3. Deconfinement transition temperature in terms of
magnetic field for the case AðzÞ ¼ −az2 − dB2z5. Here we set
μ ¼ 0. In units GeV.

5 10 15 20

– 40

– 20

20

40

60

80

FIG. 4. The connected free energy F k
con as a function of

separation length lk in the thermal-AdS background for the
case when the Wilson loop is parallel to B⃗. Here μ ¼ 0, and red,
green, blue, brown, and orange curves correspond to B ¼ 0, 0.2,
0.4, 0.6, and 0.8 respectively. In units GeV.

5 10 15 20

–40

–20

20

40

60

80

FIG. 5. The connected free energy F⊥
con as a function of

separation length l⊥ in the thermal-AdS background for the
case when the Wilson loop is perpendicular to B⃗. Here μ ¼ 0, and
red, green, blue, brown, and orange curves correspond to B ¼ 0,
0.2, 0.4, 0.6, and 0.8 respectively. In units GeV.

5That is, the q; q̄ pair is either oriented parallel or perpendicular
to the applied magnetic field. 6For more discussion about the action, see Appendix C.
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Here, X is a Nf × Nf matrix-valued complex field which
is in the bifundamental representation of SUðNfÞL ×
SUðNfÞR. In the AdS=CFT terminology, the field Xα;β is
dual to the quark field operator hψ̄αψβi, with α, β being the
flavor indices, and it is associated with the chiral symmetry
breaking on the dual boundary side. m2

5 is the mass of the
field X and in this work we will consider m2

5L
2 ¼ −3. FL;R

are the field strength tensors for the two (left and right)
gauge fields AL;R. The covariant derivative of the
chiral field is defined as DμX ¼ ∂μX − iAL;μX þ iXAR;μ,
which makes the above “chiral action” invariant under
SUðNfÞL × SUðNfÞR gauge transformations.
A word about the coupling constants. The comparison

between the gauge sectors of (3.1) and (2.1) in principle
implicitly fixes the Newton constant G5. In future work,
we will see how our choice of f2ðϕÞ [or better said self-
consistently determined solution (2.4)] is related to the

QCD OPE result for the vector current correlation function,
the standard way to fix by hand this gauge coupling
constant [25]. For the time being, in the present paper
we borrowed the prefactor of X-sector from [114], where it
was matched upon the QCD OPE result for the scalar
meson correlator.
For simplicity, following [63,113], we will work in the

approximation of degenerate flavors and consider the field
X to be proportional to the identity matrix in flavor space,
i.e., Xðz; xμÞ ¼ X0ðzÞ1Nf

eiπðz;xμÞ, where X0ðzÞ is the com-
ponent independent of the boundary directions and πðz; xμÞ
represents the chiral field. In this approximation, our main
quantity of interest—the chiral condensate—becomes pro-
portional to the quark field operator hψ̄αψαi. The con-
densate, therefore, can be extracted by solving the X-field
equation of motion.
Before we move on to investigate the quark condensate

for the different form factors case by case, it is important to
point out that there are effectively two ways by which the
magnetic field enters in the chiral action: (i) through the
background metric, and (ii) via the covariant derivative
of X. The latter contribution, however, vanishes identically
as the magnetic field is introduced into the (diagonal)
vector part of the flavor gauge group AL ¼ AR, for which

DμX → ∂μX: ð3:2Þ

Therefore, the only way the magnetic field can influence
the quark condensate and chiral critical temperature is
through its explicit presence in the background metric. The
sheer importance of this observation can even be more
appreciated from the recent work [115] where, also in the
probe brane approximation while using a tachyon con-
densation-based description of chiral symmetry breaking in
the B ¼ 0 background metric, magnetic catalysis rather
than its inverse version was found. To be more precise, our
EMD model is mimicking QCD in a magnetic background,
but we should not forget that we are using a dual (i.e.,
probe) version of quenched QCD, that is, no dynamical
quarks. As gluons can only couple to the magnetic field
through the charged quarks, strictly speaking there should
be no dependence of gluon-dominated quantum physics (as
confinement-deconfinement, dually encoded in the gravity
background) on the magnetic field in a quenched approxi-
mation. Constructing a fully dual background, including
the flavor brane backreaction, is however highly nontrivial
and leads to more intricate, B-dependent modeling, such as
the V-QCD based ones [78,79,116]. Needless to say, as
there is no top-down derivation of “standard” QCD from
string theory, there is certainly none for magnetized QCD.
So, one is always condemned to some level of modeling in
QCD-like features [85,117].
At the same time, the black hole metric also allows

investigating the temperature-dependent profile of the
quark condensate.

0.2 0.4 0.6 0.8 1.0
B

1

2

3

4

FIG. 6. The string tension in the parallel direction (σks ) as a
function of B in the thermal-AdS background with μ ¼ 0. In
units GeV.

0.0 0.2 0.4 0.6 0.8
B

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

FIG. 7. The string tension in the perpendicular direction σ⊥s as
a function of B in the thermal-AdS background with μ ¼ 0. In
units GeV.
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Now, a word about the numerical procedure for
extracting the chiral information from Eq. (3.1) is in order.
Using Eq. (3.2), the equation of motion of the X-field is
given by

X00
0ðzÞ þ X0

0ðzÞ
�
−
3

z
þ 2B2zþ g0ðzÞ

gðzÞ þ 3A0ðzÞ − ϕ0ðzÞ
�

þ 3e2AðzÞX0ðzÞ
z2gðzÞ ¼ 0: ð3:3Þ

The solution to this equation of motion will depend on the
confined-deconfined background geometries as well as
the form factor AðzÞ. Unfortunately, to the best of our
knowledge, the equation is not solvable analytically even
for the simplest form factor. However, it can be straight-
forwardly solved numerically. We employ two different
numerical shooting techniques. With the first method, we
numerically integrate Eq. (3.3) from the horizon to the
asymptotic boundary and then extract the boundary
information using the standard gauge-gravity dictionary.
In particular, according to this dictionary, the leading
term of the boundary expansion of X starts with the bare
quark mass mq (set by hand) as the lowest order
coefficient, whereas the subleading term contains the
information about the chiral condensate. Therefore, by
fixing the bare quark mass by hand, we can integrate
Eq. (3.3) and numerically obtain the chiral condensate.
With the second method, we do the opposite and shoot
from the AdS boundary until a normalizable solution
for the chiral condensate is found, see Appendix D.
Needless to say, both these numerical techniques render
the same answer.

A. Using the form factor AðzÞ=A1ðzÞ= − az2
Let us first evaluate the chiral condensate for the simplest

case AðzÞ ¼ A1ðzÞ ¼ −az2. Since the analytic results for
the background metric are explicitly known for A1ðzÞ ¼
−az2, this case will, therefore, allow us to showcase the
numerical routine through which we can extract results for
the chiral condensate. The results for more complicated
form factors can be obtained analogously.
Let us first consider the ultraviolet, near boundary

expansion of field XðzÞ.7 This is needed for the calculations
of physical observables in the dual field theory side. The
near boundary expansion of X is given by,8

XðzÞ ¼ mqzþmqb1z2 þ σz3 þmqb2z3 ln
ffiffiffi
a

p
zþOðz4Þ;

ð3:4Þ

where mq is the bare quark mass, b1 ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a − B2

p
, and

b2 ¼ −30aþ 3B2. The coefficient σ is related to the
actual quark condensate hψ̄ψi (see Appendix B for more
details). From the boundary expansion (3.4) and the
equation of motion (3.3), it can be easily shown that σ
scales linearly in mq. This is evidently a non-QCD-like
feature (no chiral symmetry breaking in the chiral limit),
directly due to the linearity of the Eq. (3.3). For now,
we will keep using this original chiral setup of, e.g.,
[25,113]. To produce our plots, we will always set
mq ¼ 1 GeV for illustrative purposes.
Since σ is a temperature and magnetic field dependent

quantity,9 it gives a temperature and magnetic field depen-
dent profile for the quark condensate hψ̄ψi. Here, we will
use the thermal-AdS background to calculate σðB; T ¼ 0Þ
in the confined phase, whereas the black hole background
will be used to calculate σðB; TÞ in the deconfined phase. It
should be noted that hψ̄ψi actually contains UV divergen-
ces. We are pragmatic here and will rely on a minimal
subtraction to only remove the pole parts. The very same
strategy was also applied to renormalize the free energies
entering the computations in Sec. 2 [88], based on [108].
The necessary counterterms in the chiral action for this
specific renormalization scheme could also be obtained
from a dedicated holographic renormalization analysis as
in, e.g., [115].
Here, we will also employ this minimum subtraction

renormalization scheme and compare our holographic
results with real QCD. Once we adopt this renormalization
procedure, the quark condensate hψ̄ψi is then related to
coefficient σ in the following way (see Appendix B for
more details),

hψ̄ψiB;T ¼ Nc

2π2
σðB; TÞ þ Ncmq

8π2
ð−18B2 þ 165aÞ: ð3:5Þ

Let us now also briefly discuss the infrared (near
horizon) expansion of X. Near the horizon, the field X
is considered to be smooth and we can assume the
following Taylor expansion,

XðzÞ ¼ A0 þ B0ðz − zhÞ þOðz − zhÞ2: ð3:6Þ

On substituting Eq. (3.6) into Eq. (3.3) and expanding
around the horizon, we get

B0 ¼
�
3e5AðzhÞþB2z2h

R zh
0 ξ3e−3AðξÞ−B2ξ2dξ

z5h
−

1

zh

�
A0: ð3:7Þ

Therefore, near the horizon X behaves as
7We will drop the subscript in X0ðzÞ from here onwards.
8This expansion is valid for both confined and deconfined

geometries.

9The coefficient σ here should not be confused with the string
tension.
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X ¼ A0

�
1þ e−5az

2
hð2e5az2hðB2 − 3aÞ2z4h þ e3az

2
hð3ðB2 − 3aÞz2h þ 3Þ − 3eB

2z2hÞ
2ðB2 − 3aÞ2z5h

ðz − zhÞ þOðz − zhÞ2
�
: ð3:8Þ

Hence, for a fixed a, zh, and B, there is one independent
parameter XðzhÞ at the horizon, viz. A0. This independent
parameter can be used to construct an initial value pro-
blem for the X-field. The chiral condensate can then be
obtained by numerically integrating the X-equation of
motion from the horizon to the boundary and imposing
the boundary condition (3.4). In particular, integrating out
from the horizon to boundary gives a map XðzhÞ ↦ σ, and
this map reduces to a one-parameter family of solutions for
each value of mq, a, zh, and B.
Let us first discuss the numerical results for the chiral

condensate in the confined phase for different values of B.
For this purpose, we use the thermal-AdS background. The
numerical result for mq ¼ 1.0 GeV is shown in Fig. 8. We
find that the magnitude of σ increases with B. This suggests
magnetic catalysis behavior in the confined phase. This
result also collaborates well with lattice QCD findings,
where a similar magnetic catalysis behavior has been
observed in the confined phase [42].
Our numerical results for the thermal profile of the quark

condensate in the deconfinement phase is shown in
Figure 9. We find that for a fixed value of B the magnitude
of σ first increases and then decreases with temperature.
This behavior of the chiral condensate can be compared
with the lattice findings, where a similar nonmonotonic
behavior in the chiral condensate was observed [41,42].
The low temperature nonmonotonic behavior of the con-
densate is explicitly demonstrated in Fig. 10. Therefore,
like in lattice QCD, there exists a inflection point where
the curvature of σ changes its sign with temperature,
i.e., (convex ↔ concave). Notice that, since the tem-
perature dependence of hψ̄ψi comes only from σ ∝ mq,

the inflection points of hψ̄ψi and σ coincide and more-
over, they will be mq-independent. Following the lattice
work [41], we can therefore also define the chiral critical
temperature Tchiral via this inflection point. A similar
definition has also been adopted in other holographic
related work, see [115]. We can, up to a sign convention,
compare our curve with [41] [bottom left of Fig. 6].
One noteworthy difference is that our ΔσðB; TÞ does not
saturate near zero for larger temperatures, this is again
rooted in having the linear equation (3.3), that is, not having
a potential for X present.
In Fig. 11, we have plotted the chiral critical temperature,

computed from the inflection point, with respect to the
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FIG. 9. ΔσðB; TÞ ¼ σðB; TÞ − σðB ¼ 0; T ¼ 0Þ as a function
of temperature T in the deconfined phase for the case A1ðzÞ ¼
−az2 for different values of the magnetic field. Here a quark mass
mq ¼ 1.0 GeV is used. In units GeV.
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FIG. 10. ΔσðB; TÞ ¼ σðB; TÞ − σðB ¼ 0; T ¼ 0Þ as a function
of temperature T near the inflection point in the deconfined
phase for the case A1ðzÞ ¼ −az2. Here B ¼ 0.3 and a quark mass
mq ¼ 1.0 GeV are used. In units GeV.
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FIG. 8. ΔσðB; T ¼ 0Þ ¼ σðB; T ¼ 0Þ − σðB ¼ 0; T ¼ 0Þ as a
function of magnetic field B in the confined phase for the case
A1ðzÞ ¼ −az2. Here a quark mass mq ¼ 1.0 GeV is used.
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magnetic field. To find the critical temperature, we used a
high degree polynomial fit for all data around the inflection
point and used that fit to estimate to a high degree of
precision a sign change in the second derivative of σ. We
find that the inflection point goes down with the magnetic
field. This is an indication that the model exhibits inverse
magnetic catalysis behavior in the deconfinement phase.
This result should be contrasted with the soft wall models,
where instead magnetic catalysis behavior was observed in
the chiral critical temperature.
This again indicates the versatility of our holographic

model in mimicking lattice QCD properties. Overall, our
holographic results for TchiralðBÞ agree qualitatively well
with state-of-the-art lattice results [41,42], albeit with a
slightly larger magnitude. For completeness, the magnetic
field dependence of the deconfinement and chiral critical
temperature, along with Tmin,

10 are combined in Fig. 12.
Note also that in most AdS/QCD models the black hole

geometry is thermodynamically stable only above the
Hawking-Page critical temperature, i.e., it only applies at
T > TcritðBÞ. Accordingly, one can study the thermal
profile of the quark condensate based on the black hole
metric only above TcritðBÞ, i.e., in the deconfined phase.
In the confined phase (dual to thermal-AdS), the temper-
ature does not appear in the geometry itself. This implies
that the chiral condensate would be a temperature inde-
pendent constant all the way up to TcritðBÞ and afterwards,
it would follow an analogous condensate pattern for
T > TcritðBÞ as shown before. A troublesome side effect
of this is that the chiral condensate would generally exhibit
a discontinuous jump at TcritðBÞ, which looks problematic.
In particular, the discontinuous jump of the chiral con-
densate at TcritðBÞ is in contrast with lattice findings, where
no such jump is observed. Unfortunately, this is an inherent
property of most holographic QCDmodels (arising because

of implicit N → ∞ approximation). This was already
established in [113]. Interestingly, thereby giving further
credit to our model, the magnitude of the chiral con-
densate at Tcrit and at T ¼ 0 almost coincide in our model,
i.e., σðB; T ¼ 0Þ ≃ σðB; T ¼ TcritÞ. Moreover, this result
remains true for the second A2ðzÞ form factor as well. This
indicates, yet again, from a different perspective that our
holographic model performs reasonably well in mimicking
real QCD properties.

B. Using the form factor AðzÞ=A2ðzÞ= − az2 − dB2z5

Let us now discuss the chiral sector of the dual boundary
theory using the second form factor AðzÞ ¼ A2ðzÞ. Most
of the numerical routine and procedure are similar to
what we alluded to in the above subsection, and can be
straightforwardly generalized to the A2ðzÞ case. The near
boundary expansion of the chiral field X remains the same
[cf. Eq. (3.4)] whereas the near horizon expansion changes
accordingly [Eq. (3.6)]. Since most of the chiral analysis is
similar to the previous case, therefore, we can be rather
brief here.
Our results for the chiral condensate for A2ðzÞ in the

confined phase is shown in Fig. 13. As the allowed range
of the magnetic field increases for A2ðzÞ, we can now probe
the chiral condensate for slightly larger magnetic field
values. For this form factor as well, the chiral condensate is
found to be increasing with the magnetic field. This again
indicates magnetic catalysis behavior in the chiral sector of
the confined phase, collaborating once again qualitatively
well with lattice results.
The thermal profile of the condensate results in the

deconfinement phase is shown in Figure 14. The condensate
again first increases and then decreases with temperature,
therefore exhibiting a lattice like nonmonotonic thermal
behavior. The low temperature near-inflection behavior of
the condensate is shown in Fig. 15. Therefore, there exists an
inflection temperaturewhere the curvature of σ changes from
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FIG. 11. Variation of the chiral critical temperature with respect
to the magnetic field B for the case A1ðzÞ ¼ −az2. Heremq ¼ 1.0
is used. In units GeV.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
B

0.2

0.3

0.4

T

Tchiral

Tcrit

Tmin

FIG. 12. Variation of the chiral critical temperature, deconfine-
ment critical temperature and Tmin with respect to the magnetic
field B for the case A1ðzÞ ¼ −az2. In units GeV.

10Tmin is the minimum temperature below which black hole
solution does not exist. See [88] for more details.
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convex to concave profile and vice versa. Our numerical
analysis suggests that this inflection point exists only up to
B ≃ 0.8 GeV, and for higher magnetic field values it ceases
to exist. To be more precise, the inflection point is moved
below the deconfinement temperature TcritðBÞ where the
black hole metric no longer applies. The chiral critical
temperature, computed from the inflection point, with
respect to the magnetic field is shown in Figure 16. It again
comes out to be a decreasing function of the magnetic field,
thereby explicitly confirming the inverse magnetic catalysis
behavior in the chiral sector. Importantly, the dual boundary
theory exhibits inverse magnetic catalysis behavior for all
values of mq. Further, in this case as well, the magnitude of
the chiral condensate at Tcrit and at T ¼ 0 almost coincide,
i.e., σðB; T ¼ 0Þ ≃ σðB; T ¼ TcritÞ, which we interpret as a
good sign. In Figure 17, the relative magnitude of the chiral
critical, deconfinement critical and Tmin temperatures are
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(B,T=0)

FIG. 13. ΔσðB; T ¼ 0Þ ¼ σðB; T ¼ 0Þ − σðB ¼ 0; T ¼ 0Þ as a
function of magnetic field B in the confined phase for the case
A2ðzÞ ¼ −az2 − dB2z5. Here a quark mass mq ¼ 1.0 is used. In
units of GeV.
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FIG. 14. ΔσðB; TÞ ¼ σðB; TÞ − σðB ¼ 0; T ¼ 0Þ as a function
of temperature T in the deconfined phase for the case A2ðzÞ ¼
−az2 − dB2z5 for different values of the magnetic field. Here a
quark mass mq ¼ 1.0 is used. In units GeV.
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FIG. 15. The profile of ΔσðB;TÞ¼σðB;TÞ−σðB¼0;T¼0Þ as
a function of temperature T near the inflection point in the
deconfined phase for the case A2ðzÞ ¼ −az2 − dB2z5. Here
B ¼ 0.4 and a quark mass mq ¼ 1.0 are used. In units GeV.
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FIG. 16. Variation of the chiral critical temperature with respect
to the magnetic field B for the case A2ðzÞ ¼ −az2 − dB2z5. Here
mq ¼ 1.0 is used. In units GeV.
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FIG. 17. Variation of the chiral critical temperature, deconfine-
ment critical temperature and Tmin with respect to the magnetic
field B for the case A2ðzÞ ¼ −az2 − dB2z5. In units GeV.

BOHRA, DUDAL, HAJILOU, and MAHAPATRA PHYS. REV. D 103, 086021 (2021)

086021-10



shown for completeness. For this form factor as well, the
chiral critical temperature turns out to be slightly higher than
the deconfinement critical temperature.

IV. OUTLOOK

We have continued the research set out in [88] and
constructed an Einstein-Maxwell-dilaton gravity model
that not only captures the inverse magnetic catalysis for
the deconfinement transition, but also the same phenome-
non affecting the chiral transition. As a byproduct, we also
investigated the anisotropy in the string tension, showing
that linear confinement is always realized within the range
of validity of our model. These findings are in qualitative
agreement with other studies, in particular those coming
from lattice simulations.
We computed the chiral condensate in the confined

and deconfined phases using two form factors and found
form-independent chiral features. The condensate magni-
tude was found to be increasing with B in the confined
phase, thereby suggesting magnetic catalysis, whereas
the inflection temperature in the deconfined phase
was found to be decreasing with B, thereby suggesting
inverse magnetic catalysis in the chiral critical temperature.
These results agree qualitatively well with lattice results.
However, unfortunately, TchiralðBÞ comes out to be slightly
larger compared to lattice results. We have investigated a
few other relatively simple form factors as well and found
similar results in all these cases. It thus appears that inverse
catalysis behavior in the chiral sector is a generic feature
of our model. To improve our model further, we plan on
including a potential VCðXÞ for the chiral X-field, follow-
ing earlier efforts as in [118,119], the latter without
magnetic field though. This will make the chiral condensate
a truly dynamical feature, as for now, the crucial parameter
σ entering the chiral condensate (B6) is directly propor-
tional to the bare quark mass mq, as can be rapidly proven
from the boundary expansion (3.4).
A subtle point in such construction will also be the

correct identification of the chiral condensate by extending
the analysis in our Appendix B, as [113,118,119] consid-
ered the σ entering the boundary expansion of X as an
avatar for the chiral condensate, but a correct identification
is more subtle, in particular at finite B, as we have shown,
see also [63].
Another issue worthy of our attention will be the proper

identification of the boundary magnetic field in terms of the
bulk one. To do this properly relative to QCD, we should use
Nf ¼ 2 flavors in the chiral sector and mimic a magnetic
field by slightly gauging the unbroken diagonal sector of
the underlying Uð1Þb × SUð2ÞV × SUð2ÞC model [24,120],
rather than the current simplified Uð1Þ ×Uð1Þ version.
Uð1Þb refers to the baryon number current, SUð2ÞV to
the (unbroken) flavor symmetries and SUð2ÞC to the
(broken) chiral symmetries, with SUð2ÞL × SUð2ÞR ≃
SUð2ÞV × SUð2ÞC. This also implies that there will be a

more direct link between the chiral and EMD-action, also
requiring a proper study of the coupling prefactors of both
parts of the action in relation to QCD OPE results.
In principle, we should also try to include the backreaction

of the chiral field X into the Einstein equations of motions,
which would correspond the unquenching of our setup.
Although this might sound as an ambitious step, it might be
possible via a generalization of the potential reconstruction
method, in combination with a phenomenological profile for
the potential VCðXÞ as proposed in e.g., [118].
Once all (or at least most) of the above is achieved, we

can aim at studying magnetic field dependent QCD
observables that are not accessible via lattice simulations,
such as various transport properties.
We will report on these and other topics in the near

future.
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APPENDIX A: (IN)DEPENDENCE OF THE
POTENTIAL ON TEMPERATURE AND

MAGNETIC FIELD FOR THE NEW FORM
FACTOR A2ðzÞ

In Figures 18–21, the almost independent behavior of
the dilaton potential on T and B for the new form factor
A2ðzÞ ¼ −az2 − dB2z5 is shown. A similar analysis was
performed in [88] for the first form factor A1ðzÞ ¼ −az2.
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FIG. 18. The variation of potential as a function of ϕ for
different zh. Here and B ¼ 0.3 is considered. Here red, green, and
blue curves correspond to zh ¼ 0.5, 1.0 and 1.5 respectively.
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APPENDIX B: THE CHIRAL CONDENSATE

In this Appendix, we derive the relation between the
coefficient σ and the chiral condensate hψ̄ψi, following
[63]. From the Lagrangian L ¼ ψ̄ðγμ∂μ −mqÞψ , the hψ̄ψi
condensate can be obtained by differentiating the partition
function W ¼ lnZ with respect to mq as,

1

Z
dZ
dmq

¼
R ½DψDψ̄ �ðR d4xψ̄ψÞe−

R
d4xLR ½DψDψ̄ �e−

R
d4xL

: ðB1Þ

Here we restrict ourselves to the single quark flavor sector.
Using the gauge-gravity duality and equating the bulk
and the boundary partition functions, i.e., Z ¼ e−Schiral , we
obtain

V4hψ̄ψi¼−
d

dmq

�
Nc

16π2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ϕ½∂μX∂μXþm2

5X
2�
�

ðB2Þ

where V4 is the volume of the four-dimensional boundary
spacetime. Using the X-equation of motion and restricting
to a homogeneous condensate Xðz; xμÞ ¼ XðzÞ, we can
further simplify the above expression to

hψ̄ψi ¼ −
Nc

16π2
d

dmq
ð ffiffiffiffiffiffi

−g
p

e−ϕgzzXðzÞX0ðzÞjz¼zh
z¼0 Þ

¼ Nc

16π2
d

dmq
ð ffiffiffiffiffiffi

−g
p

e−ϕgzzXðzÞX0ðzÞjz¼0Þ: ðB3Þ

Here we have considered the black hole background and
have used the fact that gzzðzhÞ ¼ 0. For the thermal-AdS
background, the upper limit z ¼ zh in the above equation
will get replaced by z ¼ ∞. Substituting the near boundary
expansion of the X-field,

XðzÞ ¼ mqzþmqb1z2 þ σz3 þmqb2z3 ln
ffiffiffi
a

p
zþOðz4Þ;

ðB4Þ

into Eq. (B3) and simplifying, we get

hψ̄ψi ¼ Nc

8π2

�
mq

ϵ2
−
8mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a − B2

p

ϵ
þ 4mqb2 log

ffiffiffi
a

p
ϵþ 4σ

þ b2mq − 21B2mq þ 195amq

�
: ðB5Þ

Using the minimal subtraction scheme and removing the
divergent terms by hand, we get desired equation,

hψ̄ψiB;T ¼ Nc

2π2
σðB; TÞ þ Ncmq

8π2
ð−18B2 þ 165aÞ: ðB6Þ
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FIG. 19. The variation of potential as a function of ϕ for
different zh. Here and B ¼ 0.5 is considered. Here red, green, and
blue curves correspond to zh ¼ 0.5, 1.0, and 1.5 respectively.
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FIG. 20. The variation of potential as a function of ϕ for
different B. Here and zh ¼ 1.0 is considered. Here red, green,
blue, brown and orange curves correspond to B ¼ 0.1, 0.2, 0.3,
0.4, and 0.5 respectively.
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FIG. 21. The variation of potential as a function of ϕ for
different B. Here and zh ¼ 1.5 is considered. Here red, green,
blue, brown, and orange curves correspond to B ¼ 0.1, 0.2, 0.3,
0.4, and 0.5 respectively.
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APPENDIX C: A FEW WORDS ABOUT THE
CHIRAL ACTION

Generally in the probe soft wall models, a multiplica-
tive dilaton factor e−ϕ is commonly included in the chiral
action in an ad-hoc way, this to get well-defined QCD-like
properties holographically11 [63,113]. The main reason for
this is that the usual background geometry does not contain
the back reaction of the dilaton field and, therefore, the
thermal-AdS geometry does not really correspond to
the confined phase. Moreover, in soft wall models, the
confinement-deconfinement phase transition exists only
because of this additional dilaton term. Now, in our model,
the back reaction of the dilaton field is introduced con-
sistently from the beginning, and, correspondingly, we have
a genuine confinement-deconfinement phase transition.
Therefore, we do not necessarily need to include the
dilaton field in the chiral action in an ad-hoc manner, as
the self-consistent background geometry could takes care
of it. Therefore, in our model, we actually have two
choices: (i) to include the dilaton factor, and (ii) not to
include the dilaton factor. It is hence important to analyse
both these choices carefully and see the similarities and
differences in their boundary chiral properties. In Sec. III,
we analyzed the chiral properties using the first choice by
including the dilaton field and found many important chiral
features holographically. Here, we will consider the second
choice and analyse what would happen if we do not include
the dilaton field in the chiral action.
In this case, the relevant chiral action would be,

Schiral ¼
Nc

16π2

Z
d5x

ffiffiffiffiffiffi
−g

p
Tr

�
jDXj2 −m2

5jXj2

−
f2ðϕÞ
3

ðF2
L þ F2

RÞ
�
: ðC1Þ

This would lead to X-field equation of motion,

X00ðzÞ þ X0ðzÞ
�
−
3

z
þ 2B2zþ g0ðzÞ

gðzÞ þ 3A0ðzÞ
�

þ 3e2AðzÞXðzÞ
z2gðzÞ ¼ 0: ðC2Þ

Following the steps of Sec. III, we can similarly find UV
and IR expansions of X field from which boundary chiral
properties can be extracted. In particular, the near UV
boundary expansion is

XðzÞ¼mqzþσz3þmqð6a−B2Þz3 ln ffiffiffi
a

p
zþOðz4Þ: ðC3Þ

The chiral condensate hψ̄ψi is now related to σ in the
following way,

hψ̄ψi ¼ Nc

8π2

�
mq

ϵ2
þ 4mqð6a−B2Þ log ffiffiffi

a
p

ϵþ 4σþ 3amq

�
:

ðC4Þ

We have again introduced a UV cut-off z ¼ ϵ. Notice that,
compared to the results of Appendix B, there is no 1=ϵ
divergent term. Using the minimal subtraction scheme, we
can again consider only the finite part, which gives us a
relation

hψ̄ψiB;T ¼ Nc

2π2
σðB; TÞ þ 3aNcmq

8π2
: ðC5Þ

In Figure 22, the condensate profile in the confined
phases is shown. Clearly, the condensate magnitude
decreases with B, suggesting inverse magnetic catalysis
behavior. This should be contrasted with the dilaton-
included case studied in Sec. III, where magnetic catalysis
was instead found in the confined phase. Since lattice
results do suggest magnetic catalysis in the confined phase
[42], therefore, as far as the condensate behavior in the
confined phase is concerned, the soft wall like chiral action,
having a dilaton prefactor in the chiral action, seems to be
the appropriate choice.
The thermal profile of the chiral condensate in the

deconfinement phase is shown in Fig. 23. Again the
condensate exhibits a non-monotonic profile, which first
increases and then decreases. However, unlike in Sec. III,
now there is no inflection point. In particular, σ00ðTÞ is
always negative and does not go to zero at any temperature.
This again brings out the difference with the dilaton-
included case, where maxima and inflection point both

0.1 0.2 0.3 0.4 0.5 0.6
B

–0.5

–0.4

–0.3

–0.2

–0.1

(B,T=0)

FIG. 22. ΔσðB; T ¼ 0Þ ¼ σðB; T ¼ 0Þ − σðB ¼ 0; T ¼ 0Þ as a
function of magnetic field B in the confined phase for the
case A1ðzÞ ¼ −az2. Here a quark mass mq ¼ 1.0 is used. In
units of GeV.

11In these soft wall models, the factor e−ϕ was introduced
merely based on the “analogy” with probe matter coming from
branes. At the practical level, the dilaton prefactor e−ϕ was
considered to “smoothly cut off” the standard AdS geometry to
ensure confinement dynamics.
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existed. This analysis further highlights the subtle
differences that the dilaton factor can introduce in the
chiral sector of the holographic models. Therefore, as far as
the chiral sector is concerned, the dilaton-included action
looks to be more relevant for the holographic studies.

APPENDIX D: A FEW WORDS ABOUT THE
SHOOTING METHOD

Here we briefly describe how to calculate the “chiral
parameter” σ via a shooting method. We start from the

confining metric and must integrate the equation of
motion from 0 to infinity. In practice, infinity is replaced
by a large number, for our purposes z ¼ 10 suffices. To
solve the ODE (3.3) from the boundary z ¼ 0 to z ≈∞,
we use the analytical series solution around z ¼ 0 to set
initial values for both XðϵÞ and X0ðϵÞ at 0 < ϵ ≪ 1.
Thence, utilizing the near boundary expansion of X,
Eq. (3.4), we have

XðϵÞ ¼ mqϵþ σϵ3 þmqnϵ3 ln
ffiffiffi
a

p
ϵ;

X0ðϵÞ ¼ 3nmqϵ
2 lnð ffiffiffi

a
p

ϵÞ þ ðnmq þ 3σÞϵ2 þmq: ðD1Þ

Here, σ enters as the shooting parameter. Its value can be
fixed by imposing that the numerical solution for XðzÞ is
normalizable and thus a finite number at infinity as it
follows from a large z expansion of the Eq. (3.3). This is
achieved as follows:
(1) Find initial values σ1 and σ2, for which Xσ1 ½10� < 0

and Xσ2 ½10� > 0.
(2) Define σ3 ¼ σ1þσ2

2
.

(3) If Xσ3 ½10� < 0, then we know the σ that we are
looking for is located in between σ2 and σ3.

(4) Redefine σ1 ¼ σ3, and keep σ2. Otherwise, if
Xσ3 ½10� > 0, σ2 ¼ σ3 and keep σ1.

(5) Repeat until jσ1 − σ2j < preset tolerance level.
Evidently, this method is based on the intermediate value
theorem.
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