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We describe numerical and analytical investigations of causal sets sprinkled into spacetime manifolds.
The first part of the paper is a numerical study of finite causal sets sprinkled into Alexandrov subsets of
Minkowski spacetime of dimensions 1þ 1, 1þ 2 and 1þ 3. In particular we consider the rank 2 past of
sprinkled causet events, which is the set of events that are two links to the past. Assigning one of the rank 2
past events as “preferred past” for each event yields a “preferred past structure,” which was recently
proposed as the basis for a causal set d’Alembertian. We test six criteria for selecting rank 2 past subsets.
One criterion performs particularly well at uniquely selecting—with very high probability—a preferred
past satisfying desirable properties. The second part of the paper concerns (infinite) sprinkled causal sets for
general spacetime manifolds. After reviewing the construction of the sprinkling process with the Poisson
measure, we consider various specific applications. Among other things, we compute the probability of
obtaining a sprinkled causal set of a given isomorphism class by combinatorial means, using a
correspondence between causal sets in Alexandrov subsets of 1þ 1 dimensional Minkowski spacetime
and 2D-orders. These methods are also used to compute the expected size of the past infinity as a
proportion of the total size of a sprinkled causal set.
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I. INTRODUCTION

Microscopic phenomena in physics are well described by
quantum theory, while the theory of general relativity
becomes relevant for the macroscopic regime of gravity.
The interaction of strong gravitational fields with quantum
fields requires a theory of quantum gravity. One framework
for quantumgravity is causal set theory [1–3],which replaces
the classical spacetime continuumby the discrete structure of
a causal set (causet for short) at small length scales. One
hopes to find the physics of the spacetime continuumat larger
length scales emerging from this discrete structure.
The aim of this paper is twofold. On the one hand, it

describes a numerical investigation into the local structure of
finite causal sets “sprinkled” on Minkowski spacetimes of
dimensions 1þ 1, 1þ 2, and 1þ 3. On the other hand, it
addresses various questions relating to (infinite) causal sets
sprinkled on an arbitrary spacetime manifold by analyti-
cal means.
Our investigation is motivated by the problem of

describing classical and quantum fields on causets, as a
first step toward the larger goal of considering the inter-
action of the fields with the causets. Part of this problem is
to find appropriate discrete replacements for the equations

of motion for (classical and quantum) fields and associated
operators (like the d’Alembertian and its Green’s functions)
[4–6]. A recent approach is based on a new supplementary
structure called a preferred past [7]. For any causet event,
the events that are two links to its past constitute its rank 2
past. A preferred past structure chooses one of these rank 2
past elements for each causet event, other than those with
empty rank 2 past, which are said to belong to the 2-layer
past infinity.
The first main objective of this work is to study

selections of the rank 2 past in order to motivate a “good”
choice for the preferred past structure by prescribing further
conditions on the set of rank 2 past events. For this task, we
classify the causal intervals ½x; y� (referred to as diamonds)
that are spanned by an event x and any of its rank 2 past
events y. We conduct numerical simulations to test 6
criteria that select subsets of the rank 2 past within causets
arising from a Poisson process called sprinkling that
randomly selects a set of events from the given spacetime
[8], here from Alexandrov subsets of Minkowski space-
time. We discuss the statistics of past diamonds that are
selected by each criterion. Each statistic is based on an
ensemble of 10000 sprinkled causets for the flat spacetimes
with dimensions 1þ 1, 1þ 2 and 1þ 3. Thereby, the
dimensional dependence can be visualized. As quality
indicators for the criteria, we consider the number of rank
2 past events that are selected, the distribution of the
selected events projected along the unit hyperboloid (the
tendency toward Lorentz invariance), and the proper time
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separation spanned by the diamonds, with the goal to obtain
mostly unique preferred past diamonds with a low cardi-
nality and uniformly distributed along the unit hyperboloid.
It transpires that one criterion performs particularly well in
all the indicators.
To further study the advantages and disadvantages of the

criteria, we present statistics for diamonds that are spanned
between next-to-nearest neighbors along all geodesics
(which are maximal link paths for causal sets) connecting
the bottom to the top of the sprinkling region (events with
the smallest and largest time coordinate). Any such
diamond along the geodesics only contains x, y, and events
that are linked to x in the past and linked to y in the future;
we call it a pure diamond. Our numerical study shows that
the diamonds along the geodesics are very small pure
diamonds and their size is almost independent of the
dimension of the sprinkled Minkowski spacetime within
the range of dimensions we investigated.
The second main objective concerns (infinite) causal sets

sprinkled on a given spacetime manifold. We review the
rigorous construction of the Poisson probability measure
[9] and bring it into the context of causal set theory. With
this, one can compute the probability that a sprinkle (a
possible outcome of the sprinkling process) belongs to a
given causet isomorphism class containing all sprinkles
with the same causal relations. As an analytically feasible
example, we consider an Alexandrov subset in 1þ 1
dimensional Minkowski spacetime. Here, the probability
is related to counting all 2D-orders that correspond to the
same causal set. The 2D-orders are known to be the product
of the total orders of the two null coordinates ðu; vÞ for the
sprinkled events [10]. We compare analytically computed
probabilities that a uniformly chosen random event of such
a sprinkled causet is in the 1-layer or 2-layer past infinities
with numerical results. Our findings on the 1-layer past
infinity confirm previously known results asymptotically
for very large sprinkles [11], while our results on the
2-layer past infinity are new. On the one hand, this serves as
a consistency check for the numerical techniques, and on
the other hand, it demonstrates that the proportion of events
without a rank 2 past is negligible for large sprinkles.
In Sec. II, we introduce the notations and terminology for

the preferred past structure, so that we can study the
diamond to rank 2 past events for finite sprinkles in
Sec. III. The discussion of infinite (sprinkled) causal sets
on spacetime manifolds is presented in Sec. IV. We
conclude in Sec. V and relegate various technical details
to the appendixes.

II. (LOCAL) STRUCTURE OF CAUSAL SETS

In this section, we lay out the necessary notations and
definitions to review the preferred past structure that was
introduced for the discretization of the d’Alembertian in the
Klein-Gordon equation on causal sets by [7]. This review
leads to a characterization of the causal intervals

(diamonds) that are spanned by events (points of a causal
set) and their rank 2 past.

A. Preliminaries

A causal set is a type of a partially ordered set.
Definition 1. A partially ordered set ðC;≼Þ is a set C

equipped with a binary relation ≼ such that the following
axioms are fulfilled for all x; y; z ∈ C

Reflexivity∶ x ≼ x; ð1Þ

Antisymmetry∶ ðx ≼ y ∧ y ≼ xÞ ⇔ x ¼ y; ð2Þ

Transitivity∶ ðx ≼ y ∧ y ≼ zÞ ⇒ x ≼ z: ð3Þ

If two points x and y are ordered, but not equal
ðx ≼ y ∧ x ≠ yÞ, we write x ≺ y.
Definition 2. Let ðC;≼Þ be a partially ordered set of

spacetime events where the partial order ≼ is the causal
relation. For any pair of events x; y ∈ C,

½x; y� ≔ fz ∈ Cjx ≼ z ≼ yg ð4Þ
defines the closed causal interval between x and y, while

ðx; yÞ ≔ fz ∈ Cjx ≺ z ≺ yg ð5Þ

defines the open causal interval between them. Causal
intervals are also known as Alexandrov sets. A causal set
(causet) is a partially ordered set ðC;≼Þ that is locally finite,
i.e., the cardinality of every causal interval (for all x; y ∈ C)
is finite,

Local finiteness∶ j½x; y�j < ∞: ð6Þ

The axiom of antisymmetry (2) is also referred to as the
axiom of acyclicity for causal sets, since it ensures that the
causet does not have causal loops.
Definition 3. An event of a causet ðC;≼Þ, x ∈ C is

linked to another event y ∈ C when ½x; y� ¼ fx; yg and
x ≠ y. In these circumstances, we write x≺� y. A Hasse
diagram represents a causet as a graph with the events as
vertices and the links as edges pointing up the page, see
Fig. 1 for an example.

FIG. 1. Hasse diagram of a causet with 5 events xi
(i ∈ f1; 2; 3; 4; 5g) shown as vertices. One can read off the links
from the edges of the graph (directed toward the top of the paper).
The full causal structure follows by transitivity as we show on the
right.
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Paths in causal sets are concatenations of links.
Definition 4. A chain is a totally ordered subset of a

causet C. A path is a chain such that consecutive events are
linked. The set of paths from x to y is denoted by

pathsðx; yÞ ≔ ffx; z1; z2;…; zn−2; yg ⊂ ½x; y�j
x ≺� z1 ≺�…≺� zn−2 ≺� yg: ð7Þ

We call a path from x to yminimal (resp., maximal) if it has
minimal (resp., maximal) cardinality among the elements
of pathsðx; yÞ.
In particular, a maximal path is a causet analogue of a

timelike geodesic in the continuum (see also Sec. III G).

B. Past and future of causal set events

The past and future of events and subsets of events in a
causal set are defined by analogy with the continuum. The
following conventions agree with those given in [7].
Definition 5. The past (−) and future (þ) of an event

x ∈ C or subset D ⊂ C in the causet C are given by

J−ðxÞ ≔ fy ∈ Cjy ≼ xg; ð8aÞ

JþðxÞ ≔ fy ∈ Cjx ≼ yg; ð8bÞ

J∓ðDÞ ≔ ⋃
x∈D

J∓ðxÞ: ð8cÞ

The past and future of a point can be partitioned into
layers and ranks.
Definition 6. The layer k past and future of a point

x ∈ C in the causet C are the sets

L−
k ðxÞ ≔

n
y ∈ J−ðxÞ

���j½y; x�j − 1 ¼ k
o
; ð9aÞ

Lþ
k ðxÞ ≔

n
y ∈ JþðxÞ

���j½x; y�j − 1 ¼ k
o
; ð9bÞ

respectively, where k ∈ N0 [8].
Definition 7. The k-layer past (or future) infinity of a

causet C is the set

C∓
k ≔ fx ∈ Cj∀ j ≥ k∶L∓

j ðxÞ ¼ ∅g: ð10Þ

Definition 8. Given a causet C, the rank of an event
y ∈ C relative to another event x ∈ C is

rkðy; xÞ ≔
� min

P∈pathsðx;yÞ
jPj − 1 x ≼ y;

∞ otherwise:
ð11Þ

Notice that for every element x of a causet C:
pathsðx; xÞ ¼ ffxgg, so that it is in the zeroth rank to
itself, rkðx; xÞ ¼ 0. The relative rank of two spacelike
separated events is infinite. The future and past of an event
may be partitioned by rank.

Definition 9. The rank k past and future of an event
x ∈ C in the causet C are the sets

R−
k ðxÞ ≔ fy ∈ J−ðxÞjrkðx; yÞ ¼ kg; ð12aÞ

Rþ
k ðxÞ ≔ fy ∈ JþðxÞjrkðy; xÞ ¼ kg; ð12bÞ

respectively, where k ∈ N0.
The classification of points by layer or rank plays an

important role in the definition of discretized wave oper-
ators on causal sets. These discretizations typically involve
a weighted sum taken over field values with weights
determined by the layer or rank relative to the point where
the operator is notionally evaluated. For example, the
discretizations studied in [4–6,8] take a different number
of layers into account depending on the spacetime dimen-
sion that is described by the causal set. The spacetime
dimension is not a predefined property of a causet, but has
to be estimated by the Myrheim-Meyer estimator [12,13] or
other approximations [14,15]. A more recent alternative
approach [7] proposes a discretization scheme for the wave
operators that, while taking its inspiration from a discrete
lattice causet in 1þ 1 dimensions, has the aim of being
dimension-independent. Although this approach does not
need the approximated spacetime dimension as an input, it
does require the specification of an additional preferred
past structure. One of the primary goals of this paper is to
investigate ways in which a preferred past may be asso-
ciated intrinsically to a causal set and to evaluate their
performance on sprinkled causets in Minkowski spacetime.

C. Preferred past structure and diamonds

The rank 2 past (and future) is the basis for the preferred
past structure.
Definition 10. Given a causet C, a preferred past (or

future) structure [7] is a map

Λ∓∶CnC∓
2 → C; ð13Þ

such that

Λ∓ðxÞ ∈ R∓
2 ðxÞ ð14Þ

holds for all events x that are not in the 2-layer past (or
future) infinity, i.e., x ∈ CnC∓

2 .
The discretized Klein–Gordon operator □ proposed in

[7] is defined as follows. Suppose a preferred past Λ− is
specified on a causet C and let ϕ∶C → R be a scalar field.
Then□ϕ∶CnC−

2 → R is defined at x ∈ CnC−
2 as a weighted

sum over the values of ϕ on ½Λ−ðxÞ; x�,

ð□ϕÞðxÞ ¼ ϕðΛ−ðxÞÞ − 2

jIxj
X
z∈Ix

ϕðzÞ þ ϕðxÞ; ð15Þ

where Ix ¼ ðΛ−ðxÞ; xÞ is the open causal interval from
the preferred past of x. For a full discussion of this
discretization method, see [7]. In this paper, we will focus
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our attention on the preferred past structure itself. For an
arbitrary causet event x ∈ C, the rank 2 past R−

2 ðxÞ gen-
erally contains more than one event. Below, we analyze 6
methods for selecting subsets of R−

2 ðxÞ with the aim to find
one method that (among other things) selects singleton sets
with high probability. To this end, we introduce further
properties of the open causal intervals spanned between an
event and any of the events in its rank 2 past, and also of the
events within such intervals.
Definition 11. For a causet C and a pair of events x; y ∈

C such that rkðy; xÞ ¼ 2, we call the Alexandrov set ½x; y� a
diamond with diamond size given by the cardinality of its
open interval,

k ¼ jðx; yÞj: ð16Þ
It is a past k-diamond of the event y and a future k-diamond
of the event x. In particular, we call it the preferred past
(future) diamond if the event x (or y) is the preferred past
(future) of y (of x) with respect to some preferred past
(future) structure.
Events in the open interval ðx; yÞ can either be only

linked to x and y, or they are related to other events in this
set, which leads to the following diamond properties.
Definition 12. Let ½x; y� be a k-diamond in the causet C.

We call an event z ∈ ðx; yÞ perimetral if x ≺� z ≺� y, so
that the number of perimetral events is

prmðy; xÞ ≔ jfz ∈ ðx; yÞjx ≺� z ≺� ygj: ð17Þ
We call an event z ∈ ðx; yÞ internal if it is not perimetral.
There are

itnðy; xÞ ≔ jðx; yÞj − prmðy; xÞ
¼ k − prmðy; xÞ ð18Þ

internal events in ðx; yÞ. We call the diamond pure
if itnðy; xÞ ¼ 0.
Notice that the number of perimetral events of a diamond

(17) is the same as the number of minimal paths. As an
example, consider two events x; y ∈ C such that their
interval ½x; y� is a 4-diamond. For it to be a 4-diamond,
there has to be at least one event z in a pure relation
x ≺� z ≺� y, but the remaining three events can have an

arbitrary causal arrangement, so there are the 5 distinct
4-diamonds drawn in Fig. 2.

III. NUMERICAL RESULTS FOR SPRINKLINGS
ON FLAT SPACETIME

As we discussed in the previous section, diamonds are
spanned between events of a causet and their rank 2 past
events. The main aim of the simulations is to analyze how
to reduce the choices for the preferred past structure of a
causet by choosing subsets of the rank 2 past for the causet
events that are singletons, at least with high probability. We
carry out the investigation for three flat spacetimes with
dimensions from 1þ 1 to 1þ 3 so that the dimensional
dependence can be studied.

A. Outline of the simulations

We conducted the simulations with MATLAB R2018a
code and utilized the Viking high performance computing
cluster of the University of York.
For each dimension d ¼ 1þ 1, 1þ 2 and 1þ 3 of a

Minkowski spacetime Md, we consider a nonempty
Alexandrov subset U ¼ JþðpÞ ∩ J−ðqÞ for fixed p, q in
Md. On the subset U, we repeat a sprinkling process 10000
times with a fixed sprinkling density parameter such that
the sprinkles have an expected cardinality of 6000 events.
This corresponds to a grand-canonical ensemble of sprin-
kles in the given Alexandrov set. For each event x in each
sprinkled causet, we consider every event y ∈ R−

2 ðxÞ in the
rank 2 past of x and count the number of perimetral and
internal events in the diamonds spanned by x and y. The
counts are accumulated over all the 10000 sprinkles so that
we obtain results averaging over tens of millions of rank 2
past events. Details on the implementation of the sprinkling
process are given in Appendix A.
There will be effects from the past boundary of the

sprinkling region U. To mitigate these effects, we set up
various observation regions as subsets of U. For
i ∈ f0; 1;…; 5g, fix points pi ∈ Md along the straight line
from p to q in Md such that the observation regions Ui ¼
JþðpiÞ ∩ J−ðqÞ have a volume

Vi ¼ 2−di=4V0: ð19Þ

FIG. 2. Types of 4-diamonds ½x; y� spanned from events x to y ∈ Rþ
2 ðxÞ. From left to right, the pure 4-diamond, followed by the

4-diamond with 2 internal events (dashed ellipse), and three 4-diamonds with 3 internal events.
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So we obtain 6 regions per Alexandrov subset of
Minkowski space to compare. We consider all rank 2 past
diamonds in U whose future tip is contained in Ui ⊂ U. In
Fig. 3, for example, the observation region with volume V1

excludes the lowest events (orange), V2 further excludes the
next set of events (yellow), then V3 also excludes the darker
shaded events (green), and so on.
In Sec. III B we set out 6 methods for selecting a subset

SðxÞ ⊂ R−
2 ðxÞ for each event x outside the rank 2 past

infinity. The first criterion was proposed in [7], while the
others are newly introduced here. We compare the subsets
SðxÞ selected by each method so that we can identify the one
that performs best in relation to three qualitative measures:

(i) the selected sets SðxÞ should be singletons with high
probability, across all points x in each sprinkle in the
ensemble studied

(ii) the distribution of proper time separations between x
and the event(s) in SðxÞ should have low variance
and small expectation value, across the ensemble as
before

(iii) the distribution of the unit-normalized separation
vectors between x and the event(s) in SðxÞ, should be
approximately uniformly distributed on the unit
hyperboloid, across the ensemble.

The third of these is intended to ensure Lorentz invariance of
the preferred past structure, in a statistical sense, in the limit
of large sprinkles.
Furthermore, we study the diamond size and its expected

proper time separation in more generality. Consider the

events with the minimal and maximal time coordinates in a
given sprinkle. If they are causally related, as occurs with
high probability, there are maximal paths between them; an
example is illustrated as the line connecting the events with
the smallest and largest time coordinate in Fig. 3. Such
paths are analogous to timelike geodesics and may be
regarded as potential observer trajectories. We compute the
expected diamond size and proper time separation between
next-to-nearest neighbors along such paths. It transpires
that an observer traveling along such a path can hardly
determine the dimension of the underlying flat spacetime
by measuring the diamond size or the expected proper time
separation (ticking rate of a “diamond clock”) of the
diamonds spanned between next-to-nearest neighbors
along the geodesic, see Sec. III G.

B. Criteria for selecting rank 2 past subsets

As described in Definition 10, a preferred past structure
maps each causet event outside the 2-layer past infinity to
one of their rank 2 past events. In general, for any event
x ∈ CnC−

2 , the rank 2 past R
−
2 ðxÞ contains multiple events y

(see also Appendix B). The diamonds ½y; x� can be grouped
by their number of minimal paths prmðx; yÞ and their
number of internal events itnðx; yÞ as given in Definition
12. We introduce 6 criteria that select events in the rank 2
past whose corresponding diamonds have a specific size
(and a specific number of internal events). We evaluate
these selection criteria against the desirable features
described above.
To begin, we define some notation. For any causet event

x ∈ CnC−
2 , let

D−
max prmðxÞ ≔ argmax

y∈R−
2
ðxÞ

prmðx; yÞ ð20Þ

denote the set of events y in the past of x that span diamonds
with maximal number of perimetral events. Here, arg max
(and similarly argmin) of a function yields the set of points of
the function domain, where the function becomes maximal
(or minimal, respectively). Furthermore, let

D−
pureðxÞ ≔ fy ∈ R−

2 ðxÞjitnðx; yÞ ¼ 0g ð21Þ

be the set of events spanning pure diamonds only.We now set
out the six criteria that are compared in our simulations. For
i ∈ f1; 2;…; 6g, rule i selects a subset D−

crit iðxÞ ⊂ R−
2 ðxÞ of

the rank 2 past of each event x ∈ CnC−
2 .

To motivate our first criterion, consider a regular lattice
as depicted in Fig. 4, which has an obvious choice of a
preferred past for every element x characterized as the
largest past diamond corresponding to the event labeled
by 1. Using this preferred past structure with (15) yields a
good approximation to the d’Alembertian in the continuum
limit [7]. So the first criterion comprising those y ∈ R−

2 ðxÞ
such that the diamond ½y; x� is one of the

FIG. 3. Example sprinkle of 600 events into anAlexandrov subset
of 1þ 1 dimensional flat spacetime. To analyze the effects of the
past infinity, we observe the events that are sprinkled in a reduced
region Ui, from the entire region i ¼ 0 (no reduction) up to i ¼ 5
(smallest observation region, black shade). One possible maximal
path (timelike geodesic, see Sec. III G) is shown by a thick (red) line
that connects the past-most to the future-most event.
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(1) largest diamonds (“maximal layer rule” proposed
in [7]),

D−
crit 1ðxÞ ≔ argmax

y∈R−
2
ðxÞ

j½y; x�j: ð22Þ

For the sprinkled causets, it will turn out that choosing
the largest diamond is not the best criterion, since it tends to
yield a very large proper time separation between x and y
that is only limited by the finite past cardinality of x in our
simulation. In order to get the smallest proper time, we
consider the

(2) smallest diamonds,

D−
crit 2ðxÞ ≔ argmin

y∈R−
2
ðxÞ

j½y; x�j: ð23Þ

We will see that these diamonds correspond to the
smallest proper time separation, but they are not unique
for the regular lattice nor for typical events in a sprinkled
causet. In further criteria, we consider maximizing and
minimizing the diamond properties of the number of
internal and perimetral events. Physically, perimetral
events of a diamond ½y; x� in the sprinkle are points
that fall very close to the boundary of the Alexandrov
subset from y to x within Md, while internal events form
timelike paths between these two events. As the
d’Alembertian describes the propagation of light, we want
to maximize the number of perimetral events, so we
compare the

(3) largest (or maximal perimetral) pure diamonds,

D−
crit 3ðxÞ ≔ argmax

y∈D−
pureðxÞ

j½y; x�j

¼ argmax
y∈D−

pureðxÞ
prmðx; yÞ; ð24Þ

(4) diamonds with the most internal events among the
diamonds with the most perimetral events,

D−
crit 4ðxÞ ≔ argmax

y∈D−
max prmðxÞ

itnðx; yÞ; ð25Þ

(5) diamonds with the least internal events among the
diamonds with the most perimetral events,

D−
crit 5ðxÞ ≔ argmin

y∈D−
max prmðxÞ

itnðx; yÞ: ð26Þ

It might be expected that criterion 4 does not perform the
best as it yields diamonds that may also contain a larger
number of internal events. This presumption will be
supported by the comparison of the results for criteria 3
to 5. Criteria 3 and 5 can still be refined and we suggest one
possible improvement, which will give even better results.
The 6th criterion is designed to combine the best features of
criteria 3 and 5. Our results will show that criterion 5 selects
a single rank 2 past event with high probability, but its
proper time distribution has a large variance. On the other
hand, criterion 3 yields a prominent peak for the proper
time separation, but with a lower probability of selecting a
singleton. This suggests the following rule:

(6) Select the same subset as criterion 5 when there are
no singletons among the sets of rank 2 past events
y so that ½y; x� contains i ∈ N0 internal events and
p ∈ N perimetral events,

D−
i;pðxÞ ≔ fy ∈ R−

2 ðxÞjitnðx; yÞ ¼ i;

prmðx; yÞ ¼ pg: ð27Þ

If there is at least one singleton among (27), then
choose the singleton with the indices

jðxÞ ≔ min
n
i ∈ N0

���jD−
i;pðxÞj ¼ 1

o
; ð28Þ

qðxÞ ≔ max
n
p ∈ N

���jD−
jðxÞ;pðxÞj ¼ 1

o
ð29Þ

to minimize the number of internal events first and
then maximize the number of perimetral events. So

D−
crit 6ðxÞ ≔

�D−
crit 5ðxÞ; if no singletons;

D−
jðxÞ;qðxÞðxÞ; if jðxÞ < ∞

ð30Þ
The 6th criterion yields events that correspond to

diamonds with a size between the size of the diamonds
selected by criteria 3 and 5. If criterion 3 selects a singleton,
criterion 6 selects the same singleton. The subset selected
by criterion 6 is only nonsingleton if there is no singleton
among all the subsets (27), so that it selects the same subset
as criterion 5. Note that this list of criteria is not exhaustive
and one might consider further criteria determined by other
diamond properties.
All criteria yield nonempty subsets of the rank 2 past for

an event outside the 2-layer past infinity, see Fig. 5 for an
example and Appendix C for the proofs. Notice that similar

FIG. 4. Subset of a regular 2-dimensional lattice with an
element x and its 3 rank 2 past events. The event labeled by 1
is the preferred past corresponding to the largest past diamond of
x, while the 2 events labeled by 2 correspond to smallest past
diamonds of x.
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criteria could be considered for subsets of the rank 2 future
Rþ
2 ðxÞ for any causet event x ∈ CnCþ

2 . The statistics for
rank 2 future subsets are equivalent to the statistics for rank
2 past subsets, because of the time symmetry for the
Alexandrov subsets of Minkowski spacetimes.

C. Cardinality of the rank 2 past subsets

Figure 6 displays the size distribution of the sets selected
by each criterion, in dimensions 1þ 1 (top), 1þ 2 (middle)
and 1þ 3 (bottom) as indicated by outlines in the dia-
grams’ top right corners, using observation region U2 to
mitigate edge effects [see (19)]. To indicate how the results
depend on the observation region, each bar is accompanied
by horizontal red and black lines corresponding to the
values that would be obtained if observing the entire
sprinkling region U0, or the smallest region U5, respec-
tively. Note that the latter deviates less from the bar than the
former, indicating that edge effects are substantially
ameliorated when using U2, even though the influence
of the past infinity increases with dimension.
The probability of selecting a singleton (unique rank 2

past event) increases with the spacetime dimension to
almost certainty at dimension 1þ 3 for all criteria but

the 2nd and 3rd criterion. The 3rd criterion, selecting the
rank 2 past events associated to the largest pure diamonds,
also shows an increase in the probability for a unique
preferred past with increasing spacetime dimension, but for
about 30% of the events there is still more than one rank 2
past event selected at dimension 1þ 3. The 2nd criterion
selects mostly the 1-diamonds that are formed by a single
3-path (smallest possible diamond), so that the number of
rank 2 past events is very large and, furthermore, increases
with the spacetime dimension. The 1st criterion performs

FIG. 5. Example matrix of the number of past diamonds for an
event in a sprinkled causet to demonstrate the 6 criteria. The
p-axis labels the number of perimetral points and the i-axis
represents the number of internal events (note that diamonds with
1 internal event do not exist). Thus, in this example there are 7
diamonds with 1 perimetral and 4 internal events. The selection
for each of the 6 criteria is labeled. Criterion 6, in particular, picks
one of the singletons (which are the ones in this matrix).

FIG. 6. Discrete probability distributions for the cardinality of
the subset of rank 2 past events that are selected by the 6 criteria,
observed for the region U2 in sprinkles with an expected
cardinality of 6000. The horizontal lines across each column
indicate the value obtained using the entire sprinkling region U0

in red and the smallest observation region U5 in black.
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very well across our results for all 3 dimensions. Criterion 6
selects a singleton if and only if there is at least one
singleton among all the subsets in matrix (27). The chance
to find an event in region V2 for which criterion 6 selects
more than one rank 2 past event is almost as low as 1 in
925000 for dimension 1þ 2. For the observation regionU2

in dimension 1þ 3, criterion 6 selects a singleton with
certainty within our numerical accuracy, so that the
probability to find a nonsingleton is less than 10−7.
Criterion 6 has the highest probability to select a unique

rank 2 past event, followed in order by criteria 1, 4, 5, 3, 2,
where criteria 1, 4, and 5 are equally goodat dimension1þ 3.

D. Proper time separation for the rank 2 past subsets

We compare the statistics of proper time separation
(measured in length units

ffiffiffiffiffiffiffiffi
1=ρd

p
) between an event and

its rank 2 past events selected by each criterion, see Fig. 7.
Once again, we display the proper time distributions in
dimensions d ¼ 1þ 1 (top), d ¼ 1þ 2 (middle) and d ¼
1þ 3 (bottom), using the observation region U2 [see (19)].
Criteria 4 and 5 yield proper time distributions that

broaden with increasing spacetime dimension, while the
peaks of criteria 2, 3, and 6 are more pronounced and get
sharper with increasing spacetime dimension. In 1þ 3
dimensional Minkowski space, about 70% of the subsets
selected by criterion 3 (largest pure diamonds) are singleton
(see Fig. 6) so that the same subsets are selected by criterion
6 as well. Other singletons selected by criterion 6 span
diamonds with almost the same size. This is reflected in
very similar proper time distributions for criteria 3 and 6 in
dimension 1þ 3.
Criterion 1 yields the worst result here, since the

diamonds corresponding to the rank 2 past events in
D−

crit 1ðxÞ (for a causet event x ∈ CnC−
2 ) can have any size

almost up to the entire past of x in C. In Fig. 7, the
probability densities for criterion 1 reach their maxima at
approximately 37 for dimension d ¼ 1þ 1, at 14.5 for
dimension d ¼ 1þ 2 and around 7.2 for dimension d ¼
1þ 3 in units

ffiffiffiffiffiffiffiffi
1=ρd

p
, thus falling far beyond the plotting

range of the proper time axes.
When looking at the proper time separation, we find that

criterion 6, followed by criterion 3 and 2 perform best
giving a probability distribution with relatively low expect-
ation value and variance.

E. Distribution of the rank 2 past subsets
along the unit hyperboloid

Even though discrete subsets of Minkowski spacetime
like a sprinkle break Lorentz symmetry, the entire con-
figuration space for the spacetime (see details in Sec. IV) is
Lorentz invariant since it includes all transformed versions
of the sprinkle. If the distributions of rank 2 past events
selected by most criteria are uniform in the limit of large
sprinkles, the selected subsets tend to be Lorentz invariant.

We check this by viewing the relative coordinates
ðx0; x1;…Þ of all rank 2 past events D−

crit nðxÞ correspond-
ing to the criterion n with respect to event x and project it
onto the unit past hyperboloid, i.e., dividing by the proper
time separation

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 − r2

q
; where r2 ¼

Xd−1
i¼1

x2i : ð31Þ

FIG. 7. Probability distributions for the proper time separations
between each causet event and its preferred past, according to the
6 criteria. The histograms have a bin size of a twentieth of the
time scale

ffiffiffiffiffiffiffiffi
1=ρd

p
and are observed for the region U2 in sprinkles

with an expected cardinality of 6000.
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For example, see the scatter plots for criteria 1 and 6 at
dimension 1þ 2 in Fig. 8. The data points in the scatter
plots are shaded corresponding to the observation regionUi
(i ∈ f2; 3; 4; 5g) to which the event x belongs. These plots
suggest, by eye, that the events selected by criterion 1 tend
to cluster on the unit hyperboloid while those selected by
criterion 6 are more uniformly distributed. This is inves-
tigated more systematically in the following and shown
in Fig. 9.
In order to obtain the graphs of Fig. 9, we define the

rescaled coordinate ρd such that its differential dρd
describes equal volume slices along the radial direction
of the unit hyperboloid. It is the product of the volume of
the unit d − 2 sphere Sd−2 and the integral over the
hyperbolic radius up to the value u0 ¼ arsinhðr=τÞ,

ρd ¼
Z
Sd−2

dΩd−2

Z
u0

0

sinhd−2ðuÞdu: ð32Þ

Evaluate these integrals to find ρd as function of the
normalized radial coordinate r=τ,

ρ1þ1 ¼ 2arsinh
r
τ
; ð33aÞ

ρ1þ2 ¼ 2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
r
τ

�
2

s
− 1

�
; ð33bÞ

ρ1þ3 ¼ 4π

�
1

4
sinh

�
2arsinh

r
τ

�
−
1

2
arsinh

r
τ

�
: ð33cÞ

FIG. 8. Scatter plots of the rank 2 past events distributed along
the unit hyperboloid for dimensions 1þ 2 and all observation
regions Ui (i ∈ f2; 3; 4; 5g from lighter to darker shades, green,
blue, dark blue, black) for criteria 1 (left) and 6 (right). Both plots
are for single sprinkles with about 6000 events.

FIG. 9. Probability distribution of the rank 2 past subsets
projected onto the unit hyperboloid, for all 6 criteria at obser-
vation volume U2 for a single sprinkle (of about 6000 events) in
Minkowski spacetime of dimension 1þ 1 (top), 1þ 2 (middle)
and 1þ 3 (bottom).
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Note that the hyperbolic radius u0 ¼ arsinhðr=τÞ is the
rapidity (with respect to the inertial coordinates) of the
inertial motion connecting the point on the hyperboloid to
the origin.
All criteria but the first yield a constant distribution

falling off at values close to the outer boundary of the
sprinkling region at dimensions 1þ 1 and 1þ 2. Boundary
effects at dimension 1þ 3 are more pronounced, so that we
only have criteria 2, 3, and 6 with a close to uniform
distribution. Criterion 1 has a strong bias to select rank 2
events close to the origin for all investigated Minkowski

spacetimes, because the selected events correspond to the
largest diamond so that it tends to be as close as possible to
the bottom tip of the entire sprinkling regionU. Comparing
similar plots for all observation regions Ui (not shown), we
find that the distributions are getting more and more
homogeneous from i ¼ 0 to i ¼ 5, except for criterion 1,
which concentrates more and more around the origin when
decreasing the observation region.
In combination of the characteristics, we find that

criterion 6 has the highest probability for a unique rank
2 past event, while also yielding a sharply peaked proper

FIG. 10. Discrete probability distribution of diamond cardinalities and how they change by shrinking the observed region Ui from
i ¼ 0 (light/orange shade) to i ¼ 5 (black shade). The plot legends show the observation volume (and causet fraction that has at least one
preferred past). The spacetime dimension increases from 1þ 1 (top plot) to 1þ 3 (bottom plot). Along the horizontal axis, the histogram
bins are labeled by the diamond size.
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time distribution with a maximum at low proper time
separation, and tend to give a uniform distribution along the
unit hyperboloid. The next part of this section is focused on
this criterion only.

F. Diamond sizes for criterion 6

The analysis presented in the previous part of the section
indicates that criterion 6 has the best performance among
those studied. We proceed to investigate criterion 6 in more
depth by computing the resulting distribution of diamond
sizes spanned between the causet event x and the elements
of D−

crit 6ðxÞ. The plots in Fig. 10 show the probability
distribution of the diamond size. The plot legends list the
actual size of the respective observed volumes as fraction of
the entire sprinkling region. In brackets, we denote the
fractions of the causets that are within the observation
regions and have a nonempty rank 2 past.
Note the change of the histograms when reducing the

observation region Ui from i ¼ 0 (light/orange shade) to
i ¼ 5 (black shade), because the diamonds that are getting
smaller toward the past infinity are excluded. Especially for
d ¼ 1þ 3, the reduction from observation region U0 to the
first smaller region U1 causes a strong increase in the
diamond sizes.

G. Diamonds along a timelike geodesic path

The causal set analogue of a timelike geodesic is defined
as follows.
Definition 13. A (timelike) geodesic between 2 events

x ≼ y ∈ C of a causet C is a path in pathsðx; yÞ with
maximal cardinality [13].
For all sprinkles in our simulations, we also investigate

the diamonds that are spanned by next-to-nearest neighbors
along the timelike geodesic paths between the events with
minimum and maximum time coordinate. See Fig. 3 above
for an example. The paths have an expected length of 137.4
events in 1þ 1, 26.2 events in 1þ 2, and 8.1 events in
1þ 3 dimensional Minkowski spacetime, again taking the
average over 10000 sprinkles for each dimension.
In Fig. 11, we show the probability distributions for the

size of the diamonds and the proper time separation
spanned by them along the geodesics. These statistics
are taken for the entire sprinkling region (without reducing
the observation region), since the diamonds along the
geodesic are not influenced by the past or future infinities
of the finite sprinkles.
The histograms in the top plot of Fig. 11 peak at

1-diamonds and barely differ for the three Alexandrov
subsets of flat spacetimes in dimensions 1þ 1, 1þ 2 and
1þ 3. An observer traveling along a geodesic path in a
causet might be unable to identify the spacetime dimension
from the local structure of diamonds. Notice that each
diamond along this path can only be a pure diamond, since
every geodesic is a maximal path.

Because each sprinkle is embedded, we can assign the
proper time separation to the diamonds and thus determine
a ticking rate of a diamond clock for an observer following
a geodesic path. The results are shown in the second plot of
Fig. 11. The proper time statistics have very similar
expectation values:

hτi1þ1 ¼ 1.236ρ−1=2; ð34aÞ

hτi1þ2 ¼ 1.193ρ−1=3; ð34bÞ

hτi1þ3 ¼ 1.278ρ−1=4: ð34cÞ

In sprinkling units (such that ρ ¼ 1), the expected proper
times are quite close and a clock that is ticking in
accordance with the diamonds shows a similar time passing
along an equal path length (number of diamonds) in all
dimensions. The distributions of the proper time separation
are also very similar to the results for criterion 2 in
dimension 1þ 1, see Fig. 7, since that criterion selects
the smallest diamonds. However, here we observe almost

FIG. 11. Probability distributions of diamond sizes (top plot)
and their proper time separations (bottom plot) for the diamonds
along all timelike geodesics from the bottom to the top through
the sprinkles (with an expected cardinality of 6000).
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the same statistics for the timelike geodesic paths in
sprinkling dimensions 1þ 2 and 1þ 3. This evidence
supports the discussion from [16] suggesting a dimensional
reduction to dimension 1þ 1 for an observer in causal set
theory at very small scales. For a conclusive argument,
however, further investigations including dimension
estimators (like the Myrheim-Meyer estimator [12,13])
are necessary.

IV. (INFINITE) SPRINKLED CAUSAL SETS
ON A SPACETIME MANIFOLD

We construct the probability space for sprinkling on any
globally hyperbolic spacetime. In this paper, wewill use the
Poisson probability measure primarily to compute the
expectation values of past infinity cardinalities in sprinkled
causets. However, the precise construction of the proba-
bility space may also find other applications. For example,
it may facilitate a more general discussion of the continuum
limit of causal sets, like previously considered for compact
spacetime manifolds in [17].
Throughout this section, let M be a fixed globally

hyperbolic, d-dimensional spacetime manifold with metric
g. The Poisson process called sprinkling randomly selects a
finite subset as a causal set from the spacetime M [8]. For
the construction of a probability space for the sprinkling
process, we need to find a space of “possible outcomes,” an
appropriate class of measurable subsets (a σ-algebra), and a
probability measure.
For the sprinkling process, the sample space—or con-

figuration space—is given by the set of all discrete subsets
of the manifold M. We review the configuration space for
M and compact subsets of the manifold U ⊂ M as
introduced by [9]. This framework was constructed for
applications in quantum theory [18] but, as we will show,
may be applied to causal set theory. The construction
provides a Borel σ-algebra over the configuration space and
leads to the discussion of the Poisson probability measure
for the subsets U and the entire manifold M.
For examples of sprinkling in an Alexandrov subset of

1þ 1 dimensional Minkowski space, we compute the
probability for sprinkling a given causet by counting
2D-orders. This leads to the computation of the probability
for a causet event to be in the 1- and 2- layer past infinity
and their asymptotic behavior for infinite sprinkles on
1þ 1 dimensional Minkowski space.

A. The sprinkling probability space

In the literature, the term “sprinkling” is used to refer to
the random Poisson process as well as to an element of the
configuration space [8]. Here we want to make the notions
more distinct and put the sprinkling process in a more
formal language.
Definition 14. The sprinkling configuration space is the

set of all locally finite subsets of M,

Q ≔ fS ⊂ Mj∀ compactU ⊂ M∶

jS ∩ Uj < ∞g: ð35Þ

We call each element of this configuration space a sprinkle
on M and refer to the Poisson process of constructing
causets for M as sprinkling.
To find the σ-algebra BðQÞ over this configuration

space—the space of subsets of Q to which we can assign
a probability—first, consider a compact subset U ⊂ M. The
sprinkling configuration space QU for U is the (disjoint)
union of configuration spacesQU;nwith fixed cardinalitiesn,

QU;n ≔
n
S ⊂ U

���jSj ¼ n
o
; ð36Þ

QU ¼ ⋃
∞

n¼0

QU;n: ð37Þ

The n-fold Cartesian product Un has the n-fold product
topology. Let Fn denote the fat diagonal of the Cartesian
product, which is the subset of all n-tuples that have at least
one pair of identical components. DeletingFn, we obtain the
configuration space of n indistinguishable points in U,

Q̃U;n ≔ UnnFn; ð38Þ
with the subspace topology. As there is no physical signifi-
cance to the order in which a set of spacetime events is listed,
the configuration space QU;n is the image of

ΣU;n∶Q̃U;n → QU;n;

ðx1; x2;…; xnÞ ↦ fx1; x2;…; xng; ð39Þ

which maps all n! permutations of some n-tuple to the same
set of n events. So the configuration space QU;n is the
quotient by the nth symmetric group acting on the n-tuples
and endowed with the quotient topology induced by ΣU;n.
The elements of the Borel σ-algebra BðQU;nÞ are generated
by subsets that are open on Q̃U;n under the preimage of ΣU;n.
Take the disjoint union over n, see (37), to find the disjoint
union topology on QU and the Borel σ-algebra BðQUÞ.
Finally, the inverse limit over all configuration spaces QU
leads to the Borel σ-algebra BðQÞ.
So far, we have the configuration space Q with the Borel

σ-algebra. For the probability space ðQ;BðQÞ; μÞ, it
remains to specify the Poisson probability measure

μ∶BðQÞ → ½0; 1� ð40Þ

that corresponds to the sprinkling process on M with a
given positive constant that we call the sprinkling density ρ.
The measure restricted to any compact subset U ⊂ M is
derived from the metric induced volume measure on the
spacetime ðM; gÞ. For every measurable spacetime subset
O ∈ BðMÞ the volume measure ν assigns a positive real
value
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νðOÞ ≔
Z
O

ffiffiffiffiffi
jgj

p
ddx ð41Þ

(including the metric factor in some coordinate chart). The
sprinkling measure is defined using the product measure νn

for subsets of the Cartesian product Un and its push-
forward by the map ΣU;n.
Definition 15. The Poisson (probability) measure μU

with sprinkling density ρ on any compact subset U of the
manifoldM with volume measure ν assigns a probability to
each subset in BðQUÞ such that for every n ∈ N0 and
Bn ∈ BðQU;nÞ

μUðBnÞ ¼ e−ρνðUÞ ρ
n

n!
νnðΣ−1

U;nðBnÞÞ: ð42Þ

where Σ−1
U;n denotes the preimage by (39).

Note that the exponential factor normalizes μU to a
probability measure so that μUðQUÞ ¼ 1. The sprinkling
process on M is obtained by an inverse limit over the
measures μU for all compact subsets U ⊂ M as an appli-
cation of the Hahn-Kolmogorov theorem so that the
Poisson measure μ is uniquely determined by the measure
family of μU for all U [[19], Theorem 4.2]. It is described
by a measure μ on Q with the following property: for all
compact subsets U ⊂ M and all B ∈ BðQUÞ,

μðB̂UÞ ¼ μUðBÞ;
where B̂U ≔ fS ∈ QjS ∩ U ∈ Bg: ð43Þ

It is shown in [[9], Sec. 2.2] that the following integral
formula holds

Z
Q
exp

�X
x∈S

fðxÞ
�
dμðSÞ ¼ exp

�
ρ

Z
M
ðefðxÞ − 1ÞdνðxÞ

�

ð44Þ

for every compactly supported, continuous function f on
M, where the integral on the left-hand side runs over all
sprinkles S ∈ Q. This provides an alternative definition of
μ; see [[9], sec. 2] for more details.
In summary, this construction yields the probability

spaces ðQU;BðQUÞ; μUÞ for all compact subsets U ⊂ M
and ðQ;BðQÞ; μÞ for the manifold M.

B. Causet isomorphism classes

Given any sprinkle S ∈ Q, the partial order x ≼ y for
x; y ∈ S is the causal relation ofM restricted to the subset S.
It is given by the future and past J� such that

x ≼ y ⇔ x ∈ J−ðyÞ; ð45Þ
where J−ðyÞ ⊂ M is the set of all events that are in the
causal past of y. Two sprinkles are isomorphic, denoted by

the symbol ∼, if there exists a bijection between them that
preserves the causal relation. The sprinkles S ∈ Q that are
isomorphic to a given causet C form an isomorphism class
½C� ⊂ Q, which is the set of all possible embeddings of the
causet C in M.
For every compact subset U ⊂ M, all sprinkles S ∈ QU

have a finite cardinality jSj ¼ n and, for any fixed cardi-
nality n, there is a finite number aðnÞ of distinct causet
isomorphism classes, forming an integer sequence labelled
as A000112 [20]. A closed expression for the term aðnÞ of
this sequence is unknown, but the first 16 terms have been
computed [21]—and the first 12 terms are given in Table I.
To the right of the table, we show all aðnÞ ¼ 16 causets for
n ¼ 4 as Hasse diagrams. For cardinalities up to 5, one can
embed every causet in an Alexandrov subset of 1þ 1
dimensional Minkowski spacetime. For cardinalities
greater than 5, there exist causets that cannot be embedded
in 1þ 1 dimensional flat spacetime.
We can use causet isomorphism classes ½C� ⊂ QU to

compute the probability that a random sprinkle S (arising
from sprinkling into U with density ρ) has the causal
relations of ðC;≼Þ,

PrðS ∼ CÞ ¼ μUð½C�Þ: ð46Þ

Here we use the fact that any causet isomorphism class ½C�
is a measurable set in BðQUÞ (ultimately due to the causal
relation describing a closed subset ofQU). For example, the
causet C12 of 2 causally related events has equivalence class

½C12� ¼ ffx1; x2g ∈ QUjx1 ≺ x2g; ð47Þ

with preimage

TABLE I. First elements of the integer sequence A000112:
number of partial ordered sets (posets) with n indistinguishable
elements. The Hasse diagrams for all possible 4-event causets are
shown on the right.
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Σ−1
U;2ð½C12�Þ ¼ ffx1; x2g ∈ Q̃U;2jðx1 ≺ x2Þ∨ðx2 ≺ x1Þg

ð48Þ

in Q̃U;2. Using (42), and noting that Σ−1
U;2ð½C12�Þ consists

of 2! ¼ 2 disjoint sets of equal volume, it follows that
the probability of sprinkling a causal set of this type
into U is

Pr ðS ∼ C12Þ ¼ μUð½C12�Þ

¼ e−ρνðUÞρ2
Z
U
dνðx1Þ

Z
Jþðx1Þ∩U

dνðx2Þ: ð49Þ

C. 2D-orders and the past infinity of causets

In the following, we use the correspondence between
sprinkles on an Alexandrov subset U of 1þ 1 dimensional
Minkowski spacetime and their 2D-orders [11,22] to
compute probabilities of obtaining an element of any
given causet isomorphism class when sprinkling into U.
A 2D-order is the product of two total orders.
Starting with an example, consider the sprinkles S ∈ QU

that are isomorphic to the chain causet C123 of 3 events.
Using standard null coordinates ðu; vÞ and excluding a set
of measure zero, we restrict to those sprinkles comprising
events at ðui; viÞ; i ∈ f1; 2; 3g such that u1 < u2 < u3 and
v1 < v2 < v3. One such sprinkle is pictured in Fig. 12.
Using (42), the probability for a random sprinkle S into U
to be isomorphic to C123 is

PrðS ∼ C123Þ ¼
�
3!

Z
1

0

du1

Z
1

u1

du2

Z
1

u2

du3

×
Z

1

0

dv1

Z
1

v1

dv2

Z
1

v2

dv3

�

×

�
e−ρνðUÞ ρ

3

3!
νðUÞ3

�
ð50Þ

PrðS ∼ C123Þ ¼
1

3!

�
e−ρνðUÞ ρ

3

3!
νðUÞ3

�
; ð51Þ

where we have pulled out a volume factor and correspond-
ingly scaled the null coordinates such that they range over
the unit interval. The 6-fold integral in (50) has a factor of
3!, since there are that many distinct labelings (total orders)
of the events by their u-coordinate. The bracketed expres-
sion in (51) is the probability for a random sprinkle to have
3 events,

PrðjSj ¼ 3Þ ¼ μUðQU;3Þ

¼ e−ρνðUÞ ρ
3

3!
νðUÞ3: ð52Þ

Thus by Bayes’ theorem, the remaining factor must be the
conditional probability for “the sprinkled causet is the
3-chain given that the sprinkle has 3 events”,

Pr
	
S ∼ C123

���jSj ¼ 3


¼ 1

3!
: ð53Þ

Now, we consider another method to determine this condi-
tional probability by combinatorial means.
Let S be any finite sprinkle on an Alexandrov subsets of

1þ 1 Minkowski spacetime, comprising events with null
coordinates ðui; viÞ (1 ≤ i ≤ n ¼ jSj). We will say that S is
nondegenerate if all the u-coordinates are distinct, and
likewise all the v-coordinates are distinct. In this case we
may, without loss, assume that the events are labeled so that
the ui form a strictly increasing sequence. Then the causal
relation of S induces a total order on the v-coordinates,
vi ≤ vj. The product of the two total orders in ðu; vÞ is a
2D-order [10]. Nondegenerate sprinkles with equal cardi-
nality that induce the same total order are necessarily
isomorphic, but two nondegenerate sprinkles in the same
isomorphism class can induce different orders. This can be
seen in Fig. 13, which displays an example of nondegen-
erate sprinkles inducing each of the 6 distinct total orders.
Of these, there are two that are in the same isomorphism
class, while the others correspond to distinct causets.
For any finite causet C, let mð½C�Þ be the number of total

orders induced by nondegenerate sprinkles isomorphic to C.
In the case where ½C� has no representative embedded in
1þ 1 Minkowski, mð½C�Þ ¼ 0; on the other hand, every
causet that can be embedded in 1þ 1 Minkowski can be
embedded nondegenerately. Furthermore, a random sprinkle
S in 1þ 1 Minkowski spacetime is almost surely non-
degenerate. While the combinatorics of random 2D-orders
(including the number mð½C�Þ) has been studied in the large
cardinality limit [11], we want to use this idea to compute
sprinkling probabilities for finite causets in the following.
Proposition 16. Let U be an Alexandrov subset of

1þ 1 Minkowski spacetime. If C is a finite causet, the
probability that a random sprinkle into U with cardinality
jCj has the same causal structure as C is

FIG. 12. Sprinkle with three events in an Alexandrov subset of
1þ 1-dimensional Minkowski spacetime that is isomorphic to
the 3-chain causet C123. The futures of the events are shaded.
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Pr
	
S ∼ C

���jSj ¼ jCj


¼ mð½C�Þ

jCj! ; ð54Þ

Consequently,

PrðS ∼ CÞ ¼ μð½C�Þ

¼ mð½C�Þ
ðjCj!Þ2 ðρνðUÞÞjCje−ρνðUÞ: ð55Þ

Proof.—There are n! distinct total orders of the v-
coordinate for a given labeling of the n event sprinkle.
Each of these total orders has the same probability.
Therefore, the probability for the random sprinkle S to
be isomorphic to C given the cardinality jCj is the number
mð½C�Þ of total orders along the v coordinate that can be
induced by any sprinkle S ∈ ½C�. ▪
In the following, we use this combinatorial method to

determine the expected size of the 1- and 2-layer past
infinity of random sprinkles in Alexandrov subsets of 1þ 1
dimensional Minkowski spacetime. We analytically
approximate these probabilities, compare the analytic
computations with results of simulations, and discuss the
past infinity in the infinite causet limit.
First, we make a general argument for random sprinkles

S on any compact subset U ∈ M of any given spacetime
manifold M. Consider the canonical ensemble of sprinkles
distributed according to the sprinkling measure but with
fixed cardinality n. The expected cardinality of the 1-layer
(index 1) or 2-layer (index 2) past infinity is given by a sum
over the set AðnÞ of all causets with cardinality n (as shown
in Table I for n ¼ 4),

E
	
jC−

1;2j
���jSj ¼ n



¼

X
C∈AðnÞ

Pr
	
S∼C

���jSj ¼ n


jC−

1;2ðCÞj:

ð56Þ

Here C−
1;2ðCÞ denotes the 1- or 2-layer past infinity of the

causet C. Because a general expression for the sets AðnÞ is
unknown, we use a different method to compute the
expectation values.

An event sprinkled at position x ∈ U is part of the
1-layer past infinity of a sprinkle with cardinality n if
all other (n − 1) events do not fall in its past region
Ux ¼ J−ðxÞ ∩ U but appear in the remaining region
UnJ−ðxÞ. For a fixed cardinality n of a random sprinkle
S on U, the expected size of the 1-layer past infinity
(normalized by n) follows from the integral

E
	
jC−

1 j
���jSj ¼ n



n

¼ 1

νðUÞn
Z
U
ðνðUÞ − νðUxÞÞn−1dνðxÞ:

ð57Þ
Similarly, for the 2-layer past infinity, a sprinkled event at x
is in the 2-layer past infinity if it has any number k ∈ N0 of
pairwise spacelike separated events to its past and the
remaining n − k − 1 events are found again in the rest of
the sprinkling region UnJ−ðxÞ. So the integral reads

E
	
jC−

2 j
���jSj ¼ n



n

¼ 1

νðUÞn
Xn−1
k¼0

Z
U

�
n − 1

k

�
ðνðUÞ − νðUxÞÞn−1−k

× PkðUxÞðνðUxÞÞkdνðxÞ; ð58Þ
where the weight PkðUxÞ is the probability that the k events
form a subcauset Ck;…;1 of pairwise spacelike separated
events within the region Ux. This probability is given by

PkðUxÞ ¼ Pr
	
Sx ∼ Ck;…;1

���jSxj ¼ k



¼ μUx
ð½Ck;…;1�Þ

μUx
ðQUx

Þ ð59Þ

where Sx is a random sprinkle on Ux.
In the full grand canonical ensemble of all sprinkles, the

cardinality n is determined by the Poisson process with a
fixed sprinkling density ρ, which leads to the normalized
expectation values

EðjC−
1;2jÞ

ρνðUÞ ¼ e−ρνðUÞX∞
n¼1

�ðρνðUÞÞn−1
n!

E
	
jC−

1;2j
���jSj ¼ n


�
:

ð60Þ
The conditional expectation values (canonical ensemble)

are easier to compute analytically and approximates the
grand-canonical ensemble for larger sprinkling cardinali-
ties, as we will see in the following.
From these general results, we now return to the explicit

computations in the special case of an Alexandrov subsetU
in 1þ 1 dimensional Minkowski spacetime. Here, we may
express the position x of an event in null coordinates
x ¼ ðu0; v0Þ ranging over u0; v0 ∈ ½0; a� or rescaled over
u; v ∈ ½0; 1� for a total volume of νðUÞ ¼ a2, so that

νðUxÞ ¼ a2uv: ð61Þ

FIG. 13. Choosing an event labeling by an increasing
u-coordinate (upwards on the right of the diamonds), there exist
6 distinct total orders along the v-coordinate (upwards on the left
of the diamonds). The corresponding 5 causets are shown at the
bottom [23].
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Evaluating (57), we find the normalized expected size of
the 1-layer past infinity for cardinality n,

E
	
jC−

1 j
���jSj ¼ n



n

¼ hn
n

≍
1

n

�
lnðnÞ þ γ þ 1

2n
þOðn−2Þ

�
; ð62Þ

where hn is the nth harmonic number,

hn ≔
Xn
k¼1

1

k
: ð63Þ

The asymptotic behavior for large n is shown on the right-
hand side of (62) where γ is the Euler-Mascheroni constant.
For large n, these asymptotics agree with the known results
for random 2D-orders, for which the 1-layer past infinity is
referred to as the minimal points of the partially ordered
sets [11,22]. However, the following results are new.
The normalized expectation value in the grand-canonical

ensemble may be given in terms of the entire exponential
integral Ein, which is the generating function of harmonic
numbers,

EðjC−
1 jÞ

ρa2
¼ Einðρa2Þ

ρa2

¼ 1

ρa2
ðlnðρa2Þ þ γ þ Γð0; ρa2ÞÞ: ð64Þ

The symbol Γð0; zÞ is the incomplete Gamma function,
which falls off rapidly in the limit z → ∞, so that the
asymptotic behavior (for ρ → ∞) is the same as for the
conditional expectation value (62).
We complement these results by calculating the expected

size of the 2-layer past infinity. Because the subset
Ux ¼ J−ðxÞ ∩ U in (59) is an Alexandrov subset of

1þ 1 dimensional Minkowski spacetime for all positions
x ∈ U, the probability PkðUxÞ is given by Proposition 16 as
the x-independent expression

PkðUxÞ ¼
1

k!
: ð65Þ

There is only the total order vk < vk−1 < … < v1 along the
v-coordinate that corresponds to k events being spacelike
separated, assuming the u-coordinates are arranged in
ascending order, u1 < u2 < … < uk. Hence the integration
in (58) yields the expression

E
	
jC−

2 j
���jSj ¼ n



n

¼ 1

n

Xn−1
k¼0

hn − hk
k!

≍
e
n

�
lnðnÞ þ γ̃ þ 1

2n
þOðn−2Þ

�
ð66Þ

with the constant

γ̃ ¼ γ −
1

e

X∞
k¼0

hk
k!

¼ γ − Einð1Þ
≈ −0.21938: ð67Þ

We do not have an expression for the expectation value in
the grand-canonical case, however, the summation in (60)
is quickly converging so that it can be computed numeri-
cally with sufficient accuracy.
Table II shows some examples for the normalized expect-

ation values at fixed cardinalities n (canonical) and fixed
sprinkling densities ρ (grand-canonical). The numbers are
presented as a percentage, since they may also be interpreted
as the probabilities that an event randomly chosen from a

TABLE II. Normalized expectation values for the 1-layer (C−
1 ) or 2-layer (C

−
2 ) past infinity for ensembles with increasing causet

cardinalities n (top half), and increasing sprinkling density ρ (bottom half) in units of the inverse volume a−2, respectively. Simulated
values are computed as averages over 100000 sprinkles.

E
	
jC−

1;2j
���jSj ¼ n



=%

n ¼ 1 2 5 10 15 50 100 200

C−
1 Analytic 100.0 75.00 45.67 29.29 22.12 8.998 5.187 2.939

Simulated 100.0 74.96 45.61 29.28 22.09 8.986 5.191 2.941
C−
2 Analytic 100.0 100.0 80.83 57.96 45.70 20.13 11.94 6.906

Simulated 100.0 100.0 80.79 57.97 45.61 20.14 11.93 6.910

EðjC−
1;2jÞ=%

ρa2 ¼ 1 2 5 10 15 50 100 200

C−
1 Analytic 79.66 65.96 43.76 28.80 21.90 8.978 5.182 2.938

Simulated 79.96 66.03 43.77 28.79 21.91 8.966 5.181 2.941
C−
2 Analytic 97.82 93.08 76.43 56.63 45.10 20.08 11.92 6.902

Simulated 97.96 93.27 76.49 56.59 45.10 20.05 11.92 6.910
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sprinkle is in the 1- or 2-layer past infinity, respectively. The
simulations results below the analytic results are computed
from the cardinalities of the past infinities averaged over
100000 sprinkles. Note that the values for the two ensembles
become asymptotically equal as the cardinality increases.
Furthermore, the values decrease with increasing sprinkle
cardinality so that sufficiently many events in sprinkles of
more than 200 events lie outside the 2-layer past infinity and
thus have nonempty rank 2 pasts. As the sprinkle size
increases, the proportion of the sprinkle lying in past infinity
tends to zero and the influence of the past infinity on the
preferred pasts becomes negligible.
Remark 17. Normalized expected sizes of higher

j-layer past infinities (with j ∈ N) are computed with
the same integral (58) as for the 2-layer past infinity.
However, in general we have to account for all possible
arrangements of the k events to the past of position x ∈ U
such that an event at x is part of the j-layer past infinity.
Thus the probability weight (59) has to be replaced by
the sum

PðjÞ
k ðUxÞ ¼

X
Cj

Pr
	
Sx ∼ Cj

���jSxj ¼ k



ð68Þ

running over all causets Cj with cardinality k such that an
event that has a sprinkle isomorphic to Cj as its past is in the
j-layer past infinity. All subcausets Cj can have at most
j − 1 layers. For j ¼ 1, the sum is trivially 1 since k ¼ 0,
and for j ¼ 2, there is only one term, the k-event antichain.

V. CONCLUSION

In this work, we used ensembles of 10000 sprinkles in
Alexandrov subsets of 1þ 1 to 1þ 3 dimensional
Minkowski spacetime to study the preferred past structure
for causal sets, which was recently proposed as a supple-
ment to causets in order to discretize the Klein-Gordon
field equation [7]. We compared 6 criteria to find subsets
of the rank 2 past that can be used to determine a preferred
past by investigating the corresponding past diamonds. As
criterion 1, we considered the largest diamond criterion
that was suggested in [7], which performs well in selecting
a unique event of the rank 2 past for almost every event in
a causet. However, since the diamonds according to this
criterion can be arbitrarily large, the proper time distri-
bution of the diamonds has a large expectation value. It
transpired that criterion 6 performs best in selecting a
unique diamond with the highest probability among the
investigated criteria. The distribution of the proper time
separation for the diamonds selected by criterion 6 has a
relatively small expectation value and small variance. The
selected rank 2 past events are approximately uniformly
distributed on the unit past hyperboloid, which indicates
that criterion 6 tends to be Lorentz invariant in the large
limit. For criterion 6, we first minimize the number of

internal events and then maximize the number of peri-
metral events among those past diamonds that are unique
(have no duplicate among the diamonds in the rank 2
past). If there is no singleton rank 2 past subset selected by
this rule, then criterion 6 takes the subset of rank 2 past
events spanning diamonds that minimize the number of
internal events among those diamonds with a maximal
number of perimetral events.
We also analysed the diamonds that are spanned by next-

to-nearest neighbors along geodesic paths through the
sprinkled causets. These diamonds are always pure, mostly
small and their distribution is similar across the three
considered flat spacetime dimensions. This observation
supports the argument of a dimensional reduction for small
causal intervals in causets [16]. One might hope that a
discretization method for field equations on causal sets
should be independent of the spacetime dimension, which
is an emergent property rather than built in as a funda-
mental parameter. Therefore, the indication of dimensional
independence of small diamonds tends to support the use of
criteria that select such diamonds, like criterion 6. Within
the limits of our numerical investigations, we conclude that
a preferred past structure determined by criterion 6 may
give rise to a dimension independent discretization method.
Further studies with an explicit comparison to the space-
time continuum and investigations of sprinkles on curved
spacetimes are open tasks.
In the secondpart of thework,we reviewed the construction

of the Poisson probability measure [9] and applied the results
in the context of sprinklings in causal set theory for a given
spacetime manifold. The sprinkling probability space can be
used to discuss the limit to infinite causal sets. For now, we
used thismethod todetermine the expected sizeof the1- and2-
layer past infinities for Alexandrov subsets of 1þ 1 dimen-
sional Minkowski spacetime normalized by the causet cardi-
nality. This served as a consistency check for the numerical
analysis.We showed that in the limit of arbitrarily large causets
the proportionate size of the past infinity is negligible.
In general, the rank 2 past of an event in an infinite causet

is infinite and we do not expect that any of the criteria
presented above would still select a singleton subset with
high probability. However, this problem could be avoided
by working on a past-finite subset, which is the analogue of
a past-compact subset in the continuum. In globally hyper-
bolic spacetimes, the future of a Cauchy surface is a past-
compact subset. The definitions of the causet analogues of a
globally hyperbolic spacetime and Cauchy surface may
need to be refined so that a similar statement is true.
Potential applications of our results include the algebraic

formulation of (quantum) fields on causal sets and the study
of the causet analogues of Cauchy surfaces. They could
also be adapted to study preferred past structures for
sprinkles on curved spacetimes. The probability space
for sprinkling into arbitrary globally hyperbolic spacetimes
given in the second part of this paper may facilitate a more
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general discussion of the continuum limit of causal sets. We
leave these ideas for future projects.
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APPENDIX A: IMPLEMENTATION OF THE
SPRINKLING PROCESS

The sprinkling process is implemented as follows.
The sprinkling region is an Alexandrov interval U in
d-dimensional Minkowski spacetime. Using Lorentz
invariance of the sprinkling measure, we may, without
loss, take U to be the Cauchy development of a ball of
radius R centered a the origin of the t ¼ 0 hypersurface in
standard inertial coordinates.
A sprinkle is obtained as follows.
(1) Randomly choose the sprinkle cardinality n ∈ N0

according to the Poisson distributionwithmean 6000.
(2) The sprinkle comprises n events, each of which has a

spacetime position x chosen independently from a
uniform distribution onU with respect to the volume
measure. This is achieved by setting

x ¼
�
tsignð1 − hÞR; rR v⃗

jv⃗j
�
;

where:
(a) tsign ∈ f−1; 1g is the uniformly chosen sign of

the time coordinate.
(b) h ¼ u1=dh is determined by a uniformly distrib-

uted random number uh ∈ ½0; 1�.
(c) r ¼ hu1=ðd−1Þr is the radial scaling determined by

a uniformly distributed random value ur ∈ ½0; 1�.
(d) v⃗ ∈ Rd−1 is a vector with components that are

independently chosen from a normal distribution
with zero mean and unit variance, such that the
resulting normalised vectors v⃗=jv⃗j are uniformly
distributed on the unit (d − 2)-sphere.

APPENDIX B: CARDINALITY
OF THE RANK 2 PAST

In this appendix, we show the cardinality of the
rank 2 past for a typical event in our sprinkles on an
Alexandrov subset U of 1þ 1, 1þ 2, or 1þ 3 dimensional
Minkowski spacetimes. The sprinkles are generated by a
Poisson process with an expected total cardinality of 6000
events.
For a given causet C in the ensemble of sprinkles, a

random event x ∈ CnC−
2 (not in the 2-layer past infinity)

has a rank 2 past with an expected cardinality as displayed
in Fig. 14. We can see that the expected cardinality of the
rank 2 past R−

2 ðxÞ grows with the cardinality of the past
J−ðxÞ, since the past of x becomes larger with decrea-
sing volume (increasing index i) of the observation
region Ui.
In arbitrary large sprinkles, this growth is unbounded and

events in infinite causal sets typically have infinitely many
links to their past, thus also infinitely many elements in the
rank 2 past.

APPENDIX C: NONEMPTY SUBSETS SELECTED
BY THE 6 CRITERIA

It remains to show that the rank 2 past subsets selected by
our 6 criteria are nonempty. For the proofs that any of our
criteria yields a nonempty subset of the rank 2 past, note
that a causet event that is not part of the 2-layer past infinity
has a nonempty rank 2 past, so we can make the following
arguments.
Lemma 18. If x ∈ CnC−

2 for some causet C, then R−
2 ðxÞ

contains at least one event that spans a pure diamond
with x.

FIG. 14. Discrete distributions of the expected numbers of
rank 2 past events for a random event x that is not in the 2-layer
past infinity of a sprinkle on the Alexandrov subset U of 1þ 1
(darkest blue shade), 1þ 2 (lighter blue shade), and 1þ 3
(lightest/green shade) dimensional Minkowski spacetime. For
all dimensions, the expected cardinality of R−

2 ðxÞ increases with
the observation region Ui from i ¼ 0 to i ¼ 5.
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Proof.—Take any event y0 ∈ R−
2 ðxÞ. Either ½y0; x� is pure

or it contains internal events including at least one event y1
that is also two links in the past of x, y1 ∈ R−

2 ðxÞ. The
diamond ½y1; x� ⊂ ½y0; x� is either pure or contains yet
another internal event that is also in the rank 2 past,
y2 ∈ R−

2 ðxÞ. This process may be repeated until it termi-
nates (recall that ½y; x� is finite) with a diamond spanned by
x and an event yi ∈ R−

2 ðxÞ for some i ∈ N0 such that ½yi; x�
has no internal events (it is pure). ▪
For example, the two smallest diamonds (the 1- and the

2-diamond) are pure. Out of the two possible 3-diamonds,
one is pure and the other contains a 1-diamond, and so on.
Proposition 19. Let x ∈ CnC−

2 for some causet C. All
subsets of its rank 2 past that are determined by the six
criteria (defined in Sec. III B) are nonempty.
Proof.—Nonemptiness of the subsets for criteria 1

(largest diamonds) and 2 (smallest diamonds) is a direct
consequence of the fact that the functions

arg max
y∈R−

2
ðxÞ

j½y; x�j and arg min
y∈R−

2
ðxÞ

j½y; x�j

are taken over the nonempty set R−
2 ðxÞ. For criterion 3

(largest pure diamonds), we consider the subset of pure
diamonds only, which is nonempty as shown in Lemma 18,
so that the arg max, function yields again a nonempty
subset. Criteria 4 and criteria 5 take the extrema of two
properties in succession, so that their selections are non-
empty. Finally, criterion 6 yields either a singleton or the
same result as criterion 5 if there are no singletons among
all subsets D−

i;pðxÞ as defined in (27). Any singleton is by
definition nonempty and we have just shown that the rank 2
past subset given by criterion 5 is nonempty as well. So in
summary, all criteria yield a nonempty subset of rank 2
events for any causet event that has a nonempty rank 2
past. ▪
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