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Algebraic properties of the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated to the twisted
gauge symmetry occurring in the κ-Poincaré invariant gauge theories on the κ-Minkowski space are
investigated. We find that the BRST operation associated to the gauge invariance of the action functional
can be continuously deformed together with its corresponding Leibniz rule, into a nilpotent twisted BRST
operation, leading to a twisted BRST symmetry algebra which may be viewed as a noncommutative analog
of the usual Yang-Mills BRST algebra.
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I. INTRODUCTION

Some attention has been paid to noncommutative field
theories (NCFTs) on κ-Minkowski spaces for more than
two decades; see e.g., [1–4] and references therein. The
κ-Minkowski space Md

κ can be described in its simplest
version as the enveloping algebra of the solvable Lie
algebra of “noncommutative coordinates1” defined by
½x0; xi� ¼ i

κ xi; ½xi; xj� ¼ 0; i; j ¼ 1;…; ðd − 1Þ. This atten-
tion has been increased by the belief that κ-Minkowski
spacetimes may capture salient features of the quantum
spacetime underlying quantum gravity at least in some
limit. This is partly motivated by observing [5] that the
(2þ 1)-dimensional quantum gravity coupled to matter,
upon integrating out the gravitational degrees of freedom,
yields a field theory invariant under a deformation of
the Poincaré algebra, the κ-Poincaré algebra Pd

κ [6]. But
this latter quantum algebra is the building block of the
κ-Minkowski space Md

κ which is nothing but the dual of a
subalgebra of Pd

κ , the “algebra of deformed translations”
T d

κ , as first evidenced in [7] from the Hopf algebra
bicrossproduct structure of Pd

κ with covariant coaction
on Md

κ . For a general review, see e.g., [8]. For useful
properties of Pd

κ , see the Appendix B.
Extrapolating the validity of the above observation

to (3þ 1) dimensions has somehow reinforced the idea that

κ-Minkowski and κ-Poincaré structures are of some relevance
to understand the behavior of the (3þ 1)-dimensional
quantum gravity in some regime near the Planck scale,
triggering a huge number of works on NCFTs on κ-
Minkowski spaces. Comparatively to the noncommutative
gauge theories on Moyal spaces R2n

θ or on R3
λ [9] for which

classical and/or quantum properties have been examined to
some extent [10–15], it appears that noncommutative gauge
theories on κ-Minkowski spaces have been much less
investigated although past works [4] have opened the way
for their exploration.
Recently, we have taken advantage of the convenient star

product used in [3] to characterize the classical properties
of κ-Poincaré invariant gauge theories on κ-Minkowski
spaces [16]. It is given,2 together with the involution, by

ðf⋆gÞðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

fðx0 þ y0; x⃗Þgðx0; e−p0=κx⃗Þ;

ð1:1Þ

f†ðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

f̄ðx0 þ y0; e−p
0=κx⃗Þ; ð1:2Þ

for any f and g in a suitable multiplier algebra3 which we
will simply denote by Md

κ. Recall that this product stems
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1Here, x0 and xi are self-adjoint operators; it is often assumed
that κ ∼OðMPlanckÞ in four dimensions.

2Spacelike (respectively, timelike) coordinates refer to Latin
i; j;… ¼ 1; 2;…; ðd − 1Þ (respectively, 0) indices. x ≔ ðxμÞ ¼
ðx0; x⃗Þ and x:y ≔ xμyμ ¼ x0y0 þ x⃗ y⃗. The Fourier transform of
f ∈ L1ðRdÞ is ðFfÞðpÞ ≔ R

ddxe−iðp0x0þp⃗:x⃗ÞfðxÞ with inverse
F−1, f̄ its complex conjugate. Sc is the space of Schwartz
functions with compact support in the first variable.

3For a full characterization of this algebra multiplier, see [17].
It is the algebra of smooth functions with polynomial bounds
together with all their derivatives and such that their inverse
Fourier transform with respect to the x0 variable is compactly
supported.
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from a mere combination of the Weyl-Wigner quantization
map with the convolution algebra of the affine group
R ⋉ Rðd−1Þ. The κ-Poincaré invariance of the functional
action forces the trace in the action to be the usual Lebesgue
integral which however is no longer cyclic with respect to
the above star product. As a result, a twist shows up upon
cyclic permutation of the factors inside the trace. The twist,
called modular twist [3], and depending on the dimension d
that appears in the affine group from which Md

κ is built,
prevents the factors stemming from the gauge transforma-
tion to compensate each other. In [16], we have shown that
the modular twist effect can be entirely neutralized, leading
to a κ-Poincaré invariant and gauge invariant functional
action with physically acceptable commutative limit, pro-
vided the κ-Minkowski space is five dimensional.4 This can
be achieved thanks to the existence of a unique twisted
noncommutative differential calculus based on a family of
twisted derivations of T d

κ [19]. Some physical properties of
the four-dimensional effective theory obtained from stan-
dard compactification scenarios have been analyzed and
confronted to recent data from collider experiments and
gamma ray burst photons in [19].
In this paper, we study the algebraic characterization of

the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associ-
ated to the twisted gauge symmetry ruling the above κ-
Poincaré invariant gauge theories. The BRST symmetry for
noncommutative gauge theories was considered for the first
time in the literature in [20] for the Moyal space and in [21]
for the noncommutative torus. While the algebraic structure
of the BRST symmetry for gauge theories on Moyal spaces,
R3

λ , or on the noncommutative torus follows closely, at least
formally, the one of (commutative) Yang-Mills theory, the
appearance of a twisted gauge symmetry combined with a
twisted differential calculus, both mandatory to insure the
gauge invariance [16], modifies the algebraic structure
coding the BRST symmetry associated to the gauge
theories considered here. We find in particular that the
BRST operation related to the gauge invariance of the
action functional can be continuously distorted into a
twisted BRST operation, preserving nilpotency and anti-
commutativity with d, distorting continuously the Leibniz
rule. This twisted BRST operation gives rise to a twisted
BRST symmetry algebra, resulting in two nilpotent oper-
ations related to the gauge symmetry.
To make the paper self-contained, the useful properties

of the twisted differential calculus and of the twisted
connection are collected in Secs. II A and II B. The
BRST operation leaving the action functional invariant is
presented in Sec. II C. In Sec. III A, we recall the algebraic
structure of the BRST algebra for (commutative) Yang-
Mills theory while the basics of the Weil algebra are

collected in Appendix A. The twisted BRST symmetry
algebra is considered in Sec. III B. In Sec. IV, we conclude.

II. BRST SYMMETRY FOR GAUGE THEORIES ON
κ-MINKOWSKI SPACE

A. Twisted differential calculus

The relevant family of twisted derivations of T d
κ is

given by

X0 ¼ κEγð1− EÞ and Xi ¼ EγPi for i¼ 1;…; ðd− 1Þ;
ð2:1Þ

where for the moment we do not fix d to its special value
d ¼ 5 [16] and γ is a real parameter. One easily verifies that

½Xμ; Xν� ≔ XμXν − XνXμ ¼ 0 ð2:2Þ

so that the Xμ’s form an Abelian Lie algebra for the usual
commutator ½·; ·�, denoted below as Dγ .
Recall that the Xμ belong to a particular type of twisted

derivations sometimes known in the mathematical literature
as ðτ; σÞ derivations where the morphisms τ and σ twist the
standard Leibniz as we will show below. For recent
applications of these twisted derivations in Ore extensions
and Hom-Lie algebras, see e.g., [22,23].
In the case of (2.1), the twisted Leibniz rule is given by

Xμða⋆bÞ¼XμðaÞ⋆ðEγ⊳bÞþðE1þγ⊳aÞ⋆XμðbÞ; ð2:3Þ

for any a; b ∈ Md
κ (hence τ ¼ Eγ and σ ¼ E1þγ).

Equation (2.3) stems from the definition of the Xμ (2.1)
combined with the structure of the coproduct equippingPd

κ .
Furthermore, the algebra Dγ verifies

ðX:zÞðaÞ≔XðaÞ⋆z¼z⋆XðaÞ¼ðz:XÞðaÞ ð2:4Þ

for any a ∈ Md
κ and any z ∈ ZðMd

κ Þ, the center of Md
κ ,

thus exhibiting a structure of bimodule over ZðMd
κ Þ.

We first introduce the twisted differential calculus5

based on the algebra Dγ of twisted derivations (2.1) which
underlies the whole framework ruling the κ-Poincaré
invariant gauge theories developed in [16,19].
In this differential calculus, n-forms are defined from the

linear space ΩnðDγÞ of n-linear antisymmetric forms,
where linearity of forms holds with respect to ZðMd

κ Þ.
Then, for any n-form α ∈ ΩnðDγÞ, one has α∶Dγ → Md

κ

with

αðX1; X2;…; XnÞ ∈ Md
κ ; ð2:5Þ

4Starting from another star product, a four-dimensional gauge
theory on κ-Minkowski space has been obtained in [18], which
however does not give rise to a standard commutative limit.

5For untwisted noncommutative differential calculus, see [24]
and references therein.
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αðX1;X2;…;Xn:zÞ¼αðX1;X2;…;XnÞ⋆z; ð2:6Þ

for any z in ZðMd
κ Þ and any X1;…; Xn ∈ Dγ.

We now define

Ω• ≔ ⨁
d

n¼0

ΩnðDγÞ; ð2:7Þ

with Ω0ðDγÞ ¼ Md
κ . This linear space inherits a structure

of associative algebra when equipped with the product of
forms defined for any α ∈ ΩpðDγÞ, β ∈ ΩqðDγÞ by

α × β ∈ ΩpþqðDγÞ ð2:8Þ

with

ðα × βÞðX1;…; XpþqÞ

¼ 1

p!q!

X
s∈SðpþqÞ

ð−1ÞsgnðsÞαðXsð1Þ;…; XsðpÞÞ

⋆βðXsðpþ1Þ;…; XsðqÞÞ; ð2:9Þ

in whichSðpþ qÞ is the symmetric group of a set of pþ q
elements and sgnðsÞ is the signature of the permutation s.
Finally, the differential is defined by

d∶ΩpðDγÞ → Ωpþ1ðDγÞ; ∀p ∈ f0;…; ðd − 1Þg
ð2:10Þ

with

ðdαÞðX1;X2;…;Xpþ1Þ

¼
Xpþ1

i¼1

ð−1Þiþ1XiðαðX1;…;∨i;…;Xpþ1ÞÞ; ð2:11Þ

where the symbol ∨i indicates the omission of Xi. The
differential satisfies

d2 ¼ 0: ð2:12Þ

It can be easily verified that the differential d satisfies the
following twisted Leibniz rule:

dðα×βÞ¼dα×EγðβÞþð−1ÞδðαÞE1þγðαÞ×dβ; ð2:13Þ

where δðαÞ is the form degree of α and ExðαÞ is defined for
any real number x and any form αwith degree n by ExðαÞ ∈
ΩnðDγÞ with

ExðαÞðX1;…; XnÞ ¼ Ex ⊳ ðαðX1;…; XnÞÞ: ð2:14Þ

Then, the triple ðΩ•;×;dÞ defines a graded differential
algebra.

At this stage, three comments are in order:
(1) Given the algebra Dγ related to (2.1), the definition

of the elements of Ω• implies that the maximal
degree of the forms is equal to d, stemming simply
from the antisymmetry of forms.

(2) One has α × β ≠ ð−1ÞδðαÞδðβÞβ × α, contrary to what
happens for the standard commutative (de Rham)
differential calculus. In particular, given a 1-form A,
one has A × A ≠ 0 as it can be easily verified by
using (2.9). It follows that the differential algebra
ðΩ•;×;dÞ is not graded commutative.

(3) We recall for further use that the Xμ are self-
adjoint operators with respect to the Hilbert product
ha; bi ¼ R

ddxa†⋆b, i.e., ha; XμðbÞi ¼ hXμðaÞ; bi
and that

R
ddx is a twisted trace with respect to

the star product (1.1), namely [3]

Z
ddxa⋆b ¼

Z
ddxðEd−1 ⊳ bÞ⋆a ð2:15Þ

for any a; b ∈ Ω0ðDγÞ.

B. Twisted connection and curvature

Let E be a right module overMd
κ , assumed in the sequel

to be one copy of Md
κ , i.e.,

E ≃Md
κ : ð2:16Þ

We will nevertheless use separate symbols for the algebra
and the module in the sequel when necessary.
In the following, the action ofMd

κ on E is assumed to be
given by

m⊲a ¼ m⋆a: ð2:17Þ

The twisted connection is defined [16] as a map

∇Xμ
∶E → E; ∀Xμ ∈ Dγ ð2:18Þ

satisfying

∇XμþX0
μ
ðmÞ ¼ ∇Xμ

ðmÞ þ∇X0
μ
ðmÞ; ð2:19Þ

∇z:Xμ
ðmÞ ¼ ∇Xμ

ðmÞ⋆z; ð2:20Þ

∇Xμ
ðm⋆aÞ ¼ ∇Xμ

ðmÞ⋆ðEγ ⊳ aÞ þ ðEγþ1 ⊳mÞ⋆XμðaÞ;
ð2:21Þ

for any m ∈ E, Xμ, X0
μ ∈ Dγ, z ∈ ZðMd

κÞ, and a ∈ Md
κ .

Note that in (2.21) the factor ðEγþ1 ⊳mÞ in the second
term must be understood as a morphism, say β̃∶E → E,
whose action on the module is simply defined by β̃ðmÞ ¼
Eγþ1 ⊳m for any m in E ≃Mκ.
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For m ¼ I, (2.21) yields

∇Xμ
ðaÞ ¼ Aμ⋆ðEγ ⊳ aÞ þ XμðaÞ; ð2:22Þ

where we set

Aμ ≔ ∇Xμ
ðIÞ; ∇μ ≔ ∇Xμ

; ð2:23Þ

thus introducing the gauge potential. More generally, we
will denote the evaluation of any form α on any derivation
Xμ ∈ Dγ as αμ ≔ αðXμÞ.
The map defined by (2.22) easily extends to a map

∇∶E → E ⊗ Ω1ðDγÞ ð2:24Þ

such that

∇ðaÞ ¼ A⋆aþ 1 ⊗ da ð2:25Þ

with A ∈ Ω1ðDγÞ the 1-form gauge connection, and d is
still given by (2.11) with d2 ¼ 0.
The curvature can be defined from the map F ðXμ; XνÞ ≔

F μν∶E → E such that6

F μν ¼ E1−γð∇μE−1−γ∇ν −∇νE−1−γ∇μÞ: ð2:26Þ

By using Eq. (2.21), it can be easily verified that F μν (2.26)
is a morphism of module; namely one has

F μνðm⋆aÞ ¼ F μνðmÞ⋆a ð2:27Þ

for any m ∈ E and a ∈ Md
κ . We set

F μνðIÞ ≔ Fμν ð2:28Þ

with

Fμν ¼ E−2γ ⊳ ðXμAν − XνAμÞ þ ðE1−γ ⊳ AμÞ
⋆ðE−γ ⊳ AνÞ − ðE1−γ ⊳ AνÞ⋆ðE−γ ⊳ AμÞ: ð2:29Þ

It is easy to extend the (analog of) the field strength (2.29)
to a map

F∶E → E ⊗ Ω2ðDγÞ ð2:30Þ

related to the 2-form

F ¼ E−2γ ⊳ dAþ E−γ ⊳ ððE ⊳ AÞ × AÞ: ð2:31Þ

Finally, one can easily verify that F (2.31) fulfills the
Bianchi identity

dF ¼ ðE1þγ ⊳ FÞ × A − ðE2 ⊳ AÞ × ðEγ ⊳ FÞ: ð2:32Þ

It is convenient to define the gauge group [16] as

U ≔ fg ∈ E; g†⋆g ¼ g⋆g† ¼ Ig; ð2:33Þ

which characterizes the set of automorphisms of E,
say AutðEÞ, preserving its structure of right module and
compatible with the canonical Hermitian structure on Md

κ .
This latter is simply given by

hðm1; m2Þ ¼ m†
1⋆m2 ð2:34Þ

for any m1; m2 ∈ E. Indeed, for any φ ∈ AutðEÞ,
φðm⋆aÞ ¼ φðmÞ⋆a holds for any m ∈ E. Hence,
φðI⋆aÞ ¼ φðaÞ ¼ φðIÞ⋆a showing that the action of
any φ ∈ AutðEÞ on the algebra is fully determined
by its action on the unit φðIÞ. Then, set g ≔ φðIÞ
and consider the compatibility condition with the
Hermitian structure7 given by hðφðm1⋆a1Þ;φðm2⋆a2ÞÞ ¼
hðm1⋆a1; m2⋆a2Þ for m1 ¼ m2 ¼ I. The result (2.33)
follows.
The twisted gauge transformations are defined by

∇g
Xμ
ðaÞ ¼ ðEγþ1⊳ g†Þ⋆∇Xμ

ðg⋆aÞ; ∀g∈ U; ∀a∈Md
κ :

ð2:35Þ

Accordingly, the gauge transformation of the gauge poten-
tial Aμ is

Ag
μ ¼ ðEγþ1 ⊳ g†Þ⋆Aμ⋆ðEγ ⊳ gÞ

þ ðEγþ1 ⊳ g†Þ⋆XμðgÞ; ∀ g ∈ U; ð2:36Þ

with ∇g
Xμ
ðaÞ ¼ Ag

μ⋆ðEγ ⊳ aÞ þ XμðaÞ. The gauge trans-

formation for the 1-form connection reads

Ag ¼ ðEγþ1 ⊳ g†Þ × A⋆ðEγ ⊳ gÞ þ ðEγþ1 ⊳ g†Þ × dg:

ð2:37Þ

The corresponding gauge transformation for the field
strength and 2-form curvature are given for any g ∈ U by

Fg
μν ¼ E2ðg†Þ⋆Fμν⋆g and Fg ¼ E2ðg†Þ × F × g:

ð2:38Þ
6This definition is not exactly the same as the one we used in

[16,19]. In those references, the curvature was a morphism of
twisted module, while here we introduced a twist in order to turn
the curvature into a morphism of (nontwisted) module. As a
consequence, the expression of the classical actions will be
slightly different but also totally equivalent.

7Recall that a Hermitian structure is a sesquilinear
form h∶E ⊗ E → Md

κ satisfying hðm1; m2Þ† ¼ hðm2; m1Þ and
hðm1⋆a1; m2⋆a2Þ ¼ a†1⋆hðm1; m2Þ⋆a2 for any m1; m2 ∈ E and
any a1; a2 ∈ Md

κ.
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From now on, we will focus on the case γ ¼ 0. The
extension to nonzero values of γ is straightforward and will
not alter the conclusions obtained in the ensuing analysis.
At this point, one comment is in order: It can be realized

that the connection ∇Xμ
does not satisfy the usual relation

for Hermitian connection given by hð∇Xμ
ðm1Þ; m2Þ þ

hðm1;∇Xμ
ðm2ÞÞ ¼ Xμhðm1; m2Þ, giving rise to Aμ ¼ A†

μ.
This stems from the fact that the derivations are twisted
derivations, in view of (2.3), and not real derivations
since one has ðXμðaÞÞ† ¼ E−1Xμða†Þ. Instead, the relation
is twisted as it can be expected. Indeed, a standard
calculation yields

hðE−1 ⊳∇Xμ
ðm1Þ; m2Þ þ hðE−1 ⊳m1;∇Xμ

ðm2ÞÞ
¼ Xμhðm1; m2Þ ð2:39Þ

for any Xμ ∈ Dγ, m1, m2 ∈ E, provided Aμ ¼ E ⊳ A†
μ.

Note that a relation somewhat similar to (2.39) appears
within noncommutative differential calculus based on ε
derivations and corresponding ε connections [25].

C. The BRST symmetry

We will follow the algebraic route used a long time ago
in the context of the BRST symmetry for (commutative)
Yang-Mills theories which gave rise to the algebraic theory
of anomalies. Here, our purpose is to define algebraically
the structure equations characterizing the BRST symmetry
linked to the gauge symmetry (2.37) for γ ¼ 0 given by

Ag ¼ ðE ⊳ g†Þ × A⋆gþ ðE ⊳ g†Þ × dg; ð2:40Þ

together with (2.38).
First, one easily defines from (2.40) the following

operation:

δωAμ ¼ XμðωÞ þ Aμ⋆ω − ðE ⊳ ωÞ⋆Aμ;

δωA ¼ dωþ A × ω − ðE ⊳ ωÞ × A; ð2:41Þ

where ω ∈ Ω0ðD0Þ, which can be viewed as the infini-
tesimal transformations linked to (2.40). Recall that A ∈
Ω1ðD0Þ denotes the 1-form connection. One can verify that

½δω1
; δω2

� ≔ δω1
; δω2

− δω2
; δω1

¼ δ½ω1;ω2�; ð2:42Þ

where ½ω1;ω2� ¼ ω1⋆ω2 − ω2⋆ω1, hence entailing the set
of δω transformations with a structure of Lie algebra.
Furthermore, one can verify that the classical action

Scl ¼
Z

ðF × F†Þ ≔
Z

d5xFμν⋆F†
μν ð2:43Þ

is invariant under the gauge transformations (2.38) as well
as under the operation (2.41), namely

δωScl ¼ 0: ð2:44Þ

Note by the way that gauge invariance which now translates
into (2.44) holds only whenever the κ-Minkowski space is
five dimensional, i.e., d ¼ 5, as a consequence of the
analysis of [16].
Promoting ω to a Grassmann variable, i.e., introducing

the ghost field C, gives rise as usual to the BRST counter-
part of (2.41) given by the following structure equations:

s0A ¼ −dC − A × C − ðE ⊳ CÞ × A; ð2:45Þ

s0C ¼ −C × C; ð2:46Þ

which, combined with (2.31) with γ ¼ 0, giving

F ¼ dAþ ðE ⊳ AÞ × A; ð2:47Þ

yields

s0F ¼ F × C − ðE2 ⊳ CÞ × F; ð2:48Þ

while the invariance of Scl (2.44) translates as expected into

s0Scl ¼ 0: ð2:49Þ

Here, the operation s, sometimes called the Slavnov
operation, satisfies

s20 ¼ 0; ð2:50Þ

as it can be easily verified by a simple calculation.
Notice that the BRST transformations given in (2.45)

and (2.46) are formally similar to the BRST transforma-
tions for a commutative non-Abelian Yang-Mills theory, up
to a twist operating in the third term of (2.45). A similar
comment applies to the BRST transformation for F with a
twist occurring in the second term of (2.48). This reflects
merely the fact that the present twisted BRST symmetry
(2.45) and (2.46) is related to a twisted gauge trans-
formation corresponding to (2.41). Note that s0 acts on
products of forms as

s0ðρ × ηÞ ¼ sðρÞ × ηþ ð−1ÞδðρÞρ × η: ð2:51Þ

The above nilpotent operation s0 gives rise to the
functional Slavnov identity which permits one to control
the UV behavior of the BRST invariant action Scl [see
(2.49)] after a suitable gauge fixing obtained by adding a
BRST-exact term. Namely, a suitable gauge-fixed action is

S ¼ Scl þ s0

Z
d5xðC̄†⋆E−4ðXμAμÞÞ ð2:52Þ

¼ Scl þ
Z

d5xðb:ðXμAμÞ − C̄:XμðsAμÞÞ; ð2:53Þ
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where Xμ is given by (2.1) with γ ¼ 0, the symbol “.”
denotes the usual commutative product and we used the
identity [3,26]

Z
d5xðf⋆g†ÞðxÞ ¼

Z
d5xfðxÞ:ḡðxÞ ð2:54Þ

(ḡ is the complex conjugate of g) which holds for any
Schwartz functions. Here, the real-valued fields C̄ and b
are, respectively, the antighost field and the Stückelberg
auxiliary field whose functional integration serves to
implement the gauge-fixing condition. The respective ghost
numbers are −1 and 0. The BRST transformations of these
fields are

s0C̄ ¼ b; s0b ¼ 0: ð2:55Þ

The action of s0 on the fields gives rise to the functional
Slavnov identity. Namely, by supplementing S with source
terms one introduces

Γ0 ≔ Sþ Ssource; Ssource ¼
Z

d5xðjμ⋆s0Aμ þ j⋆s0CÞ:
ð2:56Þ

Then, one easily infers that the functional Slavnov identity
is given by

SΓ0 ≔
Z

d5x

�
δΓ0

δjμðxÞ
δΓ0

δAμðxÞ
þ δΓ0

δjðxÞ
δΓ0

δCðxÞ

þ bðxÞ δΓ0

δC̄ðxÞ
�

¼ 0; ð2:57Þ

capturing the BRST symmetry of the theory at the tree
level. This Slavnov identity should serve to control the UV
behavior of the theory as well as the gauge invariance at
each order in the perturbative expansion, Γ0 being replaced
by its renormalized counterpart at the given order. This will
not be of our concern here.

III. TWISTED BRST SYMMETRY AND ITS
RELATED ALGEBRAS

It turns out that (2.45) and (2.46) can be related, in a
particularly relevant way to be described in a while, to a
twisted BRST symmetry obtained from a noncommutative
analog of a horizontality condition. Indeed, the nilpotent
operation linked to this latter BRST symmetry acts as a
twisted derivation exactly as d acts, justifying the termi-
nology “twisted BRST,”while s0 given in (2.45) and (2.46),
which characterizes an invariance of Scl (2.43), is a non-
twisted derivation.
At this stage of the analysis, it is instructive to recall

the main features of the algebraic framework ruling the
BRST symmetry for commutative Yang-Mills theories,

introducing in particular the notion of BRST algebra as
a bigraded differential algebra encompassing the 1-form
connection, ghost field, related curvature and the BRST
operation as one component of the total differential. This
will be done in Sec. III A. This framework based on the
notion of Weil algebra, whose basic features are summa-
rized in Appendix A, is sufficiently universal and flexible to
serve as a guideline to define a suitable characterization of
the algebraic setup for the twisted BRST symmetry and its
nontwisted partner.
Recall that the usefulness of the BRST symmetry for

Yang-Mills theory goes much beyond the gauge-fixing
procedure of the classical action functional. For a geomet-
rical interpretation as well as related algebraic viewpoints,8

see [27–29]. Recall that the BRST symmetry plays a central
role in the algebraic theory of perturbative anomalies for
which “solving” the related Wess-Zumino consistency
condition actually reduces to solving the s-cohomology
modulo d [27–31], while the higher-order cocycles occur-
ring in the corresponding descent equations are linked with
a tower of anomalous correlation functions of the BRST
current algebra [32]. In the same way, the BRST symmetry
is essential in topological field theories [33] of cohomo-
logical class to perform a suitable gauge fixing [34] as well
as in the determination of the corresponding invariants.
This applies to the Donaldson invariants [35] stemming
from the four-dimensional topological Yang-Mills theory
[36] as well as the invariants related to the two-dimensional
topological gravity [37], where in each case the use of a
suitable BRST symmetry was shown [38] to be essential to
characterize the relations between the different schemes
describing the equivariant cohomology [39] relevant to
these theories.

A. BRST algebra and Weil algebra
in Yang-Mills theory

In this subsection, we use mostly the notations of [38].
Given a Lie algebra g, it is known that the structure of the
BRSTalgebra for commutative Yang-Mills theories follows
closely the generic structure of the Weil algebra [29,38,40].
As we now recall, this is a mere modification of the material
presented in Appendix A.
The relevant differential algebra is built from two copies

of the algebra WðgÞ (A1). One copy is still WðgÞ, the
free algebra generated by the ωa’s with degree 1 and by the
Ωa’s with degree 2. The other one, denoted by WϕπðgÞ, is
the free algebra generated by additional elements Ca’s with
new degree 1 and by the ϕa’s with new degree 2. fCaga∈I
and fϕaga∈I are therefore, respectively, basis of two
additional copies of g� and the dual of g with basis
fTaga∈I . As for (A1), one has WϕπðgÞ ¼ ⋀g�ðCÞ ⊗
⋁g�ðϕÞ with ⋀g�ðCÞ ¼ ⨁

g∈N
⋀g g�ðCÞ [respectively,

8The relevance of the Weil algebra in the BRST framework
was initially suggested by Stora.
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⋁g�ðϕÞ ¼ ⨁
g∈N

⋁g g�ðϕÞ] where ⋀gg�ðCÞ [respectively,

⋁gg�ðϕÞ] involves forms of new degree g (respectively,
2g), identified with the ghost number.
The elements ωa and Ωa still verify (A2) and (A3) while

Ca and ϕa obey similar relations

ϕ ¼ sCþ 1

2
½C;C�; ð3:1Þ

with the Bianchi identity

sϕþ ½C;ϕ� ¼ 0; ð3:2Þ

where C ¼ Ta ⊗ Ca, ϕ ¼ Ta ⊗ ϕa and one has s2 ¼ 0.
The differential s will be identified with the Slavnov
operation for the BRST symmetry.
From the two-graded differential algebra9 ðWðgÞ;dÞ and

ðWϕπðgÞ; sÞ, the BRST algebra can then be defined as the
following differential algebra:

WBRSTðgÞ ¼
�
WðgÞ ⊗ WϕπðgÞ; d̃ ¼ dþ s;

ω̃ ¼ Aþ C; Ω̃ ¼ d̃ ω̃þ 1

2
½ω̃; ω̃�

�
ð3:3Þ

[further supplemented by the condition Ω̃ ¼ Ω; see (3.6)
below], which is now bigraded, each element carrying a
bidegree ðp; gÞ where p (respectively, g) is the degree of
form (respectively, ghost number).10 d and s in the total
differential d̃ are now subdifferentials with respective
bidegree (1,0) and another one with bidegree (0,1).
Using d2 ¼ 0, s2 ¼ 0 and

sdþ ds ¼ 0; ð3:4Þ

one obtains d̃2 ¼ 0. The generators ω̃ ¼ Aþ C and Ω̃
of WBRSTðgÞ satisfy relations similar to (A2) and (A3)
given by

Ω̃¼ d̃ω̃þ1

2
½ω̃;ω̃�; d̃Ω̃þ½ω̃;Ω̃�¼0; ð3:5Þ

where the commutators are graded commutators with
respect to the total degree defined by the sum of the form
degree and the ghost number (mod 2). The structure
equations for the BRST symmetry for g stem from the
condition, sometimes called the “Russian formula” [27]:

Ω̃ ¼ Ω; ð3:6Þ

which, after expanding the lhs of (3.6) in ghost numbers
and identifying the terms of same ghost number in both
sides, yields

sω ¼ −dC − ½ω; C�; sC ¼ −CC: ð3:7Þ

Algebraic connections on WBRSTðgÞ (3.3) are split into
components of bidegree (1,0) and (0,1). If ω̃ ¼ Aþ C is
such a connection, one then has for any λ ∈ g

iðλÞω̃ ¼ λ; LðλÞω̃ ¼ ½ω̃; λ�; ð3:8Þ

in which, setting in obvious notation LϕπðλÞ ¼ iϕπðλÞsþ
siϕπðλÞ,

i ¼ iW þ iϕπ; L ¼ id̃þ d̃i ¼ LW þ Lϕπ; ð3:9Þ

stemming from

iϕπdþ diϕπ ¼ 0; iWsþ siW ¼ 0; ð3:10Þ

where iW and iϕπ carry respective bidegree ð−1; 0Þ and
ð0;−1Þ while the L’s have bidegree (0,0). From the
expansion in ghost numbers (bidegrees) of (3.9), one easily
obtains the action of iW , LW , iϕπ , and Lϕπ on the various
generators. Besides, one can check that Ω̃ fulfills

iðλÞΩ̃ ¼ 0; LðλÞΩ̃ ¼ ½Ω̃; λ�; ∀ λ ∈ g: ð3:11Þ

Hence, Ω̃ occurring in (3.6) is horizontal.
Note that, merely extending the notion of Weil

algebra recalled in Appendix A, one can define the Weil
algebra of the BRST symmetry for Yang-Mills theories as
ðWBRSTðgÞ; iÞ, where i defined in the first relation (3.9).

B. Twisted BRST symmetry from
a Russian formula

We now turn to the case of the BRST symmetry derived
in Sec. II C. We will follow rather closely the various steps
used in Appendix A and in Sec. III A, adapting when
necessary the initial framework to the relevant noncom-
mutative setting.
We start from the 1-form connection A ∈ Ω1ðD0Þ

introduced in (2.23) and (2.24) and its 2-form curvature
F ∈ Ω2ðD0Þ defined in (2.31). Define in a way somehow
similar to (A1) the free graded algebra WðAÞ generated by
A and F (respectively, with degree 1 and 2). The use of
degree of forms introduced in Sec. II A gives rise to
WðAÞ ¼ ⨁

p∈N
WpðAÞ, where p is the degree of form

(WðAÞ ⊂ Ω•ðD0Þ). According to (2.31) and (2.32), A
and F verify the by-now obvious relations

F ¼ dAþ ðE ⊳ AÞ × A; ð3:12Þ
9We drop from now on the subscript W in dW .
10The bigrading can be straightforwardly extended to a Z

bigrading for convenience.
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dF ¼ðE ⊳ FÞ × A − ðE2 ⊳ AÞ × F; ð3:13Þ

which may be viewed as the analogs of (A2) and (A3).
Equipping WðAÞ with the differential d, which obeys
d2 ¼ 0, as signaled by the Bianchi identity (3.13), turns
ðWðAÞ;dÞ into a graded differential algebra which how-
ever is no longer commutative, a change which will play no
role in the ensuing analysis. Recall that d is a twisted
differential with twists ðI; EÞ in view of (2.3); i.e., (2.13)
yields for γ ¼ 0

dðρ × ηÞ ¼ dρ × ηþ ð−1ÞδðρÞðE ⊳ ρÞ × dη;

∀ ρ; η ∈ WðAÞ; ð3:14Þ

which extends to ρ; η ∈ ΩðD0Þ, where δð:Þ is still the form
degree as in Sec. II A. Now, define one copy of ðWðAÞ;dÞ,
hereafter denoted by ðWðCÞ; s1Þ, by introducing new
generators C and ϕ playing, respectively, the role of A
and F and a new twisted differential s1 with twists ðI; EÞ;
that is, s1 satisfies

s1ðρ × ηÞ ¼ s1ρ × ηþ ð−1ÞδðρÞðE ⊳ ρÞ × s1η;

∀ ρ; η ∈ WðCÞ ð3:15Þ

[which extends to ρ; η ∈ Ω•0ðD0Þ, one copy of Ω•ðD0Þ�.
The new degree resulting from this construction is

identified with the ghost number, as in Sec. III A. One
hasWðCÞ ¼ ⨁

g∈N
WgðCÞwith g being the ghost number. The

generators C and F verify by construction

ϕ ¼ s1Cþ ðE ⊳ CÞ × C; ð3:16Þ

s1ϕ¼ðE⊳ϕÞ×C−ðE2⊳CÞ×ϕ; ð3:17Þ

and the twisted differential s1 with twists ðI; EÞ is such that
s21 ¼ 0 in view of (3.17). ðWðCÞ; s1Þ is again a graded
differential algebra and it can be easily seen that the data
ðŴ ¼ WðAÞ ⊗ WðCÞ; d̂1Þ are a bigraded differential alge-
bra where the total twisted differential d̂1 ¼ dþ s1 with
twists ðI; EÞ. d and s1 are differentials of respective
bidegree (1,0) and (0,1). To see that, one first notices that
forms in Ŵ have a bidegree ðp; gÞ, where p (respectively, g)
is the form degree (respectively, ghost number). For
instance, A carries a bidegree (1,0) while C has bidegree
(0,1). Since WðAÞ and WðCÞ are each a subalgebra of
Ω•ðD0Þ, it is convenient to view Ŵ as a subalgebra of the
bigraded algebra Ω̂ built from these two copies of Ω•ðD0Þ.
One then can write Ŵ ⊂ Ω̂ ¼ ⨁

p;g
Ω̂p;gðD0Þ and the differ-

entials d and s1 extend to maps such that

d∶Ωp;gðD0Þ → Ωpþ1;gðD0Þ; ð3:18Þ

s1∶Ωp;gðD0Þ → Ωp;gþ1ðD0Þ: ð3:19Þ

Note that the product of forms verifies Ω̂p1;g1ðD0Þ×
Ω̂p2;g2ðD0Þ ⊂ Ω̂p1þp2;g1þg2ðD0Þ.
Next, for any α ∈ Ω̂ with form degree p and ghost

number g, define the total degree jαj as

jαj ≔ δðαÞ þ g ð3:20Þ

in which δðαÞ is the form degree of α, already introduced
below Eq. (2.13). The Leibniz rule obeyed by d and s1 then
extends for any ρ, η ∈ Ω̂ as

s1ðρ × ηÞ ¼ s1ðρÞ × ηþ ð−1ÞjρjðE ⊳ ρÞ × s1ðηÞ; ð3:21Þ

dðρ × ηÞ ¼ dρ × ηþ ð−1ÞjρjðE ⊳ ρÞ × dη: ð3:22Þ

Now, define

d̂1 ¼ dþ s1 ð3:23Þ

which satisfies

d̂2
1 ¼ 0 ð3:24Þ

whenever one has

s1dþ ds1 ¼ 0; ð3:25Þ

which holds here. It follows that d̂1 can be interpreted as the
total differential which can equip Ŵ ⊂ Ω̂. Processing in
analogy with Sec. III A, we now introduce

Â ¼ Aþ C; ð3:26Þ

F̂ ¼ d̂1Âþ 1

2
hÂ; Âi; ð3:27Þ

where the graded twisted commutator is given by

hρ; ηi ≔ ðEjρjδðηÞ ⊳ ρÞ × η − ð−1ÞjρjjηjðEjηjδðρÞ ⊳ ηÞ × ρ;

ð3:28Þ

for any bigraded forms ρ, η with jρj ¼ jηj ¼ 1.
Then, the data ðŴ; d̂1; Â; F̂Þ with F̂ verifying

F̂ ¼ F ð3:29Þ

can be viewed as a noncommutative analog of the BRST
algebra. The expansion of the lhs of the Russian for-
mula (3.29) in ghost numbers, using
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hA; Ai ¼ 2ðE ⊳ AÞ × A;

hA;Ci ¼ hC;Ai ¼ A × Cþ ðE ⊳ CÞ × A;

hC;Ci ¼ 2C × C; ð3:30Þ

yields the following structure equations:

s1C ¼ −ðE ⊳ CÞ × C; ð3:31Þ

s1A ¼ −dC − ðE ⊳ CÞ × A − ðE ⊳ AÞ × C: ð3:32Þ

The curvature F̂ of the algebraic connection Â satisfies the
Bianchi identity

d̂1F̂ ¼ ðE ⊳ F̂Þ × Â − ðE2 ⊳ ÂÞ × F̂; ð3:33Þ

which combined with (3.29) gives rise to

s1F ¼ ðE ⊳ FÞ × C − ðE2 ⊳ CÞ × F: ð3:34Þ

Summarizing the above analysis, it is natural to define the
noncommutative analog of the BRST algebra for Yang-
Mills theory (3.3) by the data

�
Ŵ; d̂1 ¼ dþ s1; Â ¼ Aþ C; F̂ ¼ d̂1Âþ 1

2
hÂ; Âi

�
;

ð3:35Þ

with F̂ ∈ Ω2;0ðD0Þ. Since s1 acts as a twisted derivation
(3.21), this differential algebra actually corresponds to a
twisted BRST symmetry which we will call the twisted
BRST symmetry algebra.
However, assuming now that d ¼ 5 (i.e., working with

M5
κ), it appears that the nilpotent operation s1 is not a

symmetry of the classical action Scl (2.43), i.e., s1Scl ≠ 0,
while s0Scl ¼ 0. This can be easily verified by combining
(2.43) with (3.34). It would be tempting to simply replace
into the above construction s1 by s0 defined in (2.45) and
(2.46), but this would change the rhs of d̂1 (3.23) into
dþ s0, where d has twists ðI; EÞ while s0 is nontwisted in
view of (2.51), implying that dþ s0 is no longer a
derivation. Therefore, dþ s0 will never be a differential
and the resulting ðŴ;dþ s0Þ fails to be a differential
algebra.
Nevertheless, it turns out that the BRST operation s0

representing a symmetry of the classical action can be
rigidly linked to the twisted BRST operation s1. We now
show that s1 can be continuously deformed into s0, as
elements of EndðΩ̂Þ.
First, notice that the use of a deformation of the form

fst ¼ ð1 − tÞs0 þ ts1; t ∈ ½0; 1�g is unsuitable for our pur-
pose. Indeed, the elements of this one-parameter family do
not satisfy a (possibly twisted) Leibniz rule.

Instead of this one-parameter family, consider the one-
parameter family fst; t ∈ ½0; 1�g such that, for any t ∈ ½0; 1�,
st satisfies a twisted Leibniz rule with twists ðI; EtÞ, i.e.,

stðρ⋆ηÞ ¼ stðρÞ × ηþ ð−1ÞjρjðEt ⊳ ρÞ⋆stðbÞ;
∀ t ∈ ½0; 1�; ∀ ρ; η ∈ Ω̂: ð3:36Þ

The action of st on the generators is defined by

stC ¼ −ðEt ⊳ CÞ × C; ð3:37Þ

stA ¼ −dC − ðE ⊳ CÞ × A − ðEt ⊳ AÞ × C; ð3:38Þ

which implies in particular that

stF¼ðEt⊳FÞ×C−ðE2⊳CÞ×F: ð3:39Þ

One easily check that st¼0 ¼ s0 and st¼1 ¼ s1. Note that
(3.37) and (3.38) are formally obtained from the expansion in
ghost numbers of F̂t ¼ F in which F̂t is defined by

F̂t ¼ d̂tÂþ 1

2
hÂ; Âit ð3:40Þ

with d̂t ¼ dþ st and

hA; Ait ¼ 2ðE ⊳ AÞ × A; hC;Cit ¼ 2ðEt ⊳ CÞ × C;

ð3:41Þ

hA;Cit ¼ hC;Ait ¼ ðE ⊳ CÞ × Aþ ðEt ⊳ AÞ × C:

ð3:42Þ

Furthermore, it can be verified by a standard computation
that

s2t ¼ 0; stdþ dst ¼ 0; ∀ t ∈ ½0; 1�: ð3:43Þ

Notice that d̂t still verifies d̂2
t ¼ 0 but is plainly not a

derivation. Notice also that st is not an invariance of the
classical action, i.e., stScl ≠ 0, unless t ¼ 0.
Let us comment on the above analysis. It appears that

(3.35) can be viewed as the natural algebraic structure
describing a noncommutative analog of the BRST algebra
(3.3). Furthermore, since d and s1 carry the same twists
ðI; EÞ, d̂1 is a differential which, as such, is nilpotent and
obeys in particular a twisted Leibniz rule. This is why a
Bianchi identity (3.33) of usual form for the total curvature
(3.27) holds true (basically, it involves only hatted varia-
bles). This is no longer valid for Ft (3.40) stemming from
d̂t ¼ dþ st, for any t ∈ ½0; 1½ since d̂t, albeit still nilpotent,
does not obey a twisted Leibniz rule, implying the
occurrence of unwanted terms in the counterpart of
(3.33). Note that since there is basically no standard
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Bianchi identity for Ft, t ≠ 1, this latter quantity cannot be
viewed as a curvature so that the algebraic status of the
condition F̂t ¼ F, t ≠ 1, giving rise to (3.37) and (3.38) is
unclear.
Finally, remark that the deformation we exhibit here is

unique by construction. It could be regarded as a homotopy
in EndðΩ̂Þ. However, this terminology is not quite appro-
priate, as it implies somehow forgetting at least the Leibniz
rule, which is fundamental for the present work. If, for
t ∈ ½0; 1�, we call Lt the subspace of EndðΩ̂Þ, consisting in
the elements that anticommute with d and satisfy the
twisted Leibniz rule with the twists ðI; EtÞ, then our path
fst; t ∈ ½0; 1�g actually crosses once and only once each of
these Lt transversally, i.e., at exactly one point (and for each
t ∈ ½0; 1�, this point is the operator st, which is nilpotent),
while we would require the deformation to happen in the
same subspace to call it appropriately a homotopy.

IV. CONCLUSION

To summarize, we have exhibited a (continuous) map
defined by st∶½0; 1� × Ω̂ → Ω̂, (3.21)–(3.38) and satisfying
st¼1 ¼ s1 given by (3.31) and (3.32) together with st¼0 ¼
s0 given by (2.45) and (2.46). This map defines a path in
EndðΩ̂Þ such that each point of this path is a twisted
derivation which is nilpotent and anticommutes with d. In
other words, although the data ðŴ; d̂0 ¼ dþ s0Þ cannot be
promoted to a differential algebra (d̂0 is not a differential)
so that it cannot be reliably viewed as a BRST algebra, it
can be deformed to a full differential algebra given by
(3.35), preserving nilpotency and anticommutativity with d
and twisting continuously the Leibniz rule, through the
map st. In some sense, the gauge invariance of the classical
action represented by s0 is rigidly (by uniqueness of st)
linked by this map to the twisted BRST symmetry algebra
(3.35). This results in two nilpotent operations. One, s0
presented in Sec. II C, is actually the noncommutative
analog of the (historical) Slavnov operation directly related
to field theory as generating the Slavnov-Taylor identities
(2.57) controlling its perturbative behavior. The other one,
s1 defined in Sec. III B, is actually the ghost number þ1
component of the total differential of the twisted BRST
symmetry algebra and as such is rigidly linked to the
corresponding algebraic structure, stemming in particular
from a noncommutative analog of the Russian formula.
The immediate application of the present framework is

the use of s0 and its functional Slavnov-Taylor identity to
investigate quantum properties of the κ-Poincaré invariant
gauge theory constructed in [16]. This will be considered in
a forthcoming publication.
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APPENDIX A: THE WEIL ALGEBRA
OF A LIE ALGEBRA

The notion of Weil algebra is a flexible algebraic tool
encompassing various situations whenever an action (of
e.g., a Lie algebra) comes into play. This action can be
translated into the action of suitable Cartan operations [39].
The simplest example is provided by the case of a principal
fiber bundle with connection, with the algebra of differ-
ential forms on the fiber bundle as relevant differential
algebra and usual Cartan operations for the Lie algebra of
the structure group acting on forms (and in particular the
form connection) describing the Lie algebra action on the
fiber bundle.
A convenient way to describe the Weil algebra of a Lie

algebra goes as follows. For a complete mathematical
presentation, see Chap. 6 in [39]. In this Appendix, we
use mostly the notations of Ref. [38]. Let G be a Lie group
with Lie algebra g and dual space g�. Let fTaga∈I be the
basis of g and let fωaga∈I and fΩaga∈I denote, respec-
tively, the basis of g�ðωÞ and g�ðΩÞ, two copies of g�.
Consider the free (graded commutative) algebra WðgÞ
generated by the ωa’s with degree 1 and by the Ωa’s with
degree 2. Namely, one has

WðgÞ ¼ ⋀g�ðωÞ ⊗ ⋁g�ðΩÞ; ðA1Þ

where ⋀g�ðωÞ ¼ ⨁p∈N⋀pg�ðωÞ denotes as usual the
exterior algebra on g and ⋁g�ðΩÞ ¼ ⨁p∈N⋁pg�ðΩÞ is
the symmetric algebra on g. ⋀pg�ðωÞ involves forms of
degree p while ⋁pg�ðΩÞ involves elements of degree 2p,
which therefore define the grading.11

Define the following elements of g ⊗ WðgÞ
ω ≔ Ta ⊗ ωa, Ω ≔ Ta ⊗ Ωa which obey

Ω ¼ dWωþ 1

2
½ω;ω� ðA2Þ

together with the Bianchi identity

dWΩþ ½ω;Ω� ¼ 0; ðA3Þ

and d2
W ¼ 0 which permits one to identify the derivation

dW with degree 1 as a differential on WðgÞ. In (A2) and
(A3) the commutator and differential satisfy for any ua,
va ∈ WðgÞ ½Ta ⊗ ua; Tb ⊗ vb� ¼ ½Ta; Tb�ðua:vbÞ and
dWðTa ⊗ uaÞ ¼ Ta ⊗ dWðuaÞ where the symbol · in the
first relation denotes the product of forms.

11This N grading can be easily extended to a Z grading for
further convenience (thus allowing one in particular to include
objects with negative ghost numbers).
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To make contact with the Weil algebra, we now
introduce the Cartan operations [39,40] characterizing
the action of g on ðWðgÞ;dWÞ.12 These are iWðλÞ and
LWðλÞ ¼ iWðλÞdW þ dWiWðλÞ for any λ ∈ g, respectively,
the inner product and the Lie derivative [39]. iWðλÞ acts
as a derivation of degree −1. iWðλÞ maps n-forms into
(n − 1)-forms; in particular, for any 1-form η in WðgÞ,
iWðλÞη ¼ ηðλÞ. Then, one easily infers that LWðλÞLWðρÞ −
LWðρÞLWðλÞ ¼ LWð½λ; ρ�Þ and LWðλÞiWðρÞ − iWðρÞ×
LWðλÞ ¼ iWð½λ; ρ�Þ.
Now, assume that the 1-form ω is an algebraic con-

nection [39]. As such, it verifies [39]

iWðλÞω ¼ λ; LWðλÞω ¼ ½ω; λ� ðA4Þ

for any λ ∈ g. Combining (A4) with (A2), one easily
obtains

iWðλÞΩ ¼ 0; ðA5Þ

LWðλÞΩ ¼½Ω; λ� ðA6Þ

for any λ ∈ g. The first (respectively, second) relation
(A4) is a mere generalization of the “vertical condition”

(respectively, equivariance condition) satisfied by a con-
nection on a principal fiber bundle. The relation (A5)
signals that the 2-form Ω is horizontal. Indeed, pick a
principal fiber bundle PðM;GÞ ≔ P over a manifold M
with structure group G of Lie algebra LieðGÞ. Then a
LieðGÞ-valued 1-form connection A on P is such that
iPðXÞA ¼ X, LPðXÞA ¼ ½A;X� for any X ∈ LieðGÞ while
its curvature F is horizontal, namely iPðXÞF ¼ 0.
TheWeil algebra ofg can be defined as ððWðgÞ;dWÞ; iWÞ.

The differential algebra ðWðgÞ;dWÞ generalizes the algebra
of forms on the fiber bundle P, while the Cartan operation
iWðλÞ generalizes the action of LieðGÞ on P and on the
related connection.

APPENDIX B: κ-POINCARÉ ALGEBRA AND
DEFORMED TRANSLATIONS

We use the bicrossproduct basis [7] in this paper.
Let Δ∶Pd

κ ⊗ Pd
κ → Pd

κ , ϵ∶Pd
κ → C and S∶Pd

κ → Pd
κ be,

respectively, the coproduct, counit and antipode endowing
Pd

κ with a Hopf algebra structure. Let ðPi; Ni;Mi; E; E−1Þ,
i ¼ 1; 2;…; d − 1, be, respectively, the momenta, boosts,
rotations and E ≔ e−P0=κ generating the Lie algebra

½Mi;Mj� ¼ iϵijkMk; ½Mi;Nj� ¼ iϵijkNk; ½Ni; Nj� ¼ −iϵijkMk; ðB1Þ

½Mi; Pj� ¼ iϵijkPk; ½Pi; E� ¼ ½Mi; E� ¼ 0; ½Ni; E� ¼
i
κ
PiE; ðB2Þ

½Ni; Pj� ¼ −
i
2
δij

�
κð1 − E2Þ þ 1

κ
P⃗2

�
þ i
κ
PiPj: ðB3Þ

The Hopf algebra structure is defined by

ΔP0 ¼ P0 ⊗ I þ I ⊗ P0; ΔPi ¼ Pi ⊗ I þ E ⊗ Pi; ΔE ¼ E ⊗ E; ðB4Þ

ΔMi ¼ Mi ⊗ I þ I ⊗ Mi; ΔNi ¼ Ni ⊗ I þ E ⊗ Ni −
1

κ
ϵjki Pj ⊗ Mk; ðB5Þ

ϵðP0Þ ¼ ϵðPiÞ ¼ ϵðMiÞ ¼ ϵðNiÞ ¼ 0; ϵðEÞ ¼ 1; ðB6Þ

SðP0Þ ¼ −P0; SðEÞ ¼ E−1; SðPiÞ ¼ −E−1Pi; SðMiÞ ¼ −Mi; ðB7Þ

SðNiÞ ¼ −E−1
�
Ni −

1

κ
ϵjki PjMk

�
: ðB8Þ

Recall that the κ-Minkowski space Md
κ can be viewed as the dual of the Hopf subalgebra T d

κ generated by Pμ, E, the
deformed translation algebra, which inherits a structure of �-Hopf algebra through P†

μ ¼ Pμ, E† ¼ E. Then, the following
relation holds true:

12Indeed, there is a natural action of g on itself through the adjoint representation; i.e., any λ ∈ g acts on g as Adλ ¼ ½λ; :�. This induces
an action of g on g� by duality of linear spaces. This action extends to the exterior algebra ⋀g�ðωÞ, hence on the above differential
algebra.
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ðt⊳ fÞ† ¼ SðtÞ† ⊳ f†; ðB9Þ

for any t in T d
κ and any f ∈ Md

κ, implying

ðP0 ⊳ fÞ† ¼ −P0 ⊳ ðf†Þ; ðPi ⊳ fÞ† ¼ −E−1Pi ⊳ ðf†Þ; ðE ⊳ fÞ† ¼ E−1 ⊳ ðf†Þ: ðB10Þ

The action of T d
κ on Md

κ is

ðE ⊳ fÞðxÞ ¼ f

�
x0 þ

i
κ
; x⃗

�
; ðPμ ⊳ fÞðxÞ ¼ −ið∂μfÞðxÞ: ðB11Þ
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κ-Poincaré and gauge invariance, arXiv:2007.14187.

[20] C. P. Martin and D. Sánchez-Ruiz, The One-Loop UV
Divergent Structure of U(1) Yang-Mills Theory on Non-
commutative R4, Phys. Rev. Lett. 83, 476 (1999).

[21] T. Krajewski and R. Wulkenhaar, Perturbative quantum
gauge fields on the noncommutative torus, Int. J. Mod.
Phys. A 15, 1011 (2000).

[22] L. H. Rowen, Ring Theory, Vol. 1, Pure and Applied
Mathematics Vol. 127 (Academic, Boston, 1988).

[23] For a recent work including useful references, see e.g. P.
Bäck, J. Richter, and S. Silvestrov, Hom-associative Ore
extensions and weak unitalizations, Int. Electron. J. Algebra
24, 174 (2018).

[24] M. Dubois-Violette, Lectures on graded differential algebras
and noncommutative geometry, in Noncommutative Differ-
ential Geometry and Its Applications to Physics (Springer,
Netherlands, 2001), pp. 245–306; J.-C. Wallet, Derivations
of the Moyal algebra and noncommutative gauge theories,
SIGMA 5, 013 (2009).

[25] A. de Goursac, T. Masson, and J.-C. Wallet, J. Noncommut.
Geom. 6, 343 (2012).

[26] T. Poulain and J.-C. Wallet, κ-Poincaré invariant orientable
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aux groupes de Lie et aux variétés où opère un groupe
de Lie, and La transgression dans un groupe de Lie
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