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To clarify the geometric information encoded in the SOðDþ 1Þ spin-network states for the higher
dimensional loop quantum gravity, we generalize the twisted-geometry parametrization of the SUð2Þ phase
space for (1þ 3)-dimensional loop quantum gravity to that of the SOðDþ 1Þ phase space for the all-
dimensional case. The Poisson structure in terms of the twisted geometric variables suggests a new gauge
reduction procedure, with respect to the discretized gauss and simplicity constraints governing the kinematics
of the theory. Endowedwith the geometricmeaning via the parametrization, our reduction procedure serves to
identify proper gauge freedom associated with the anomalous discretized simplicity constraints and
subsequently leads to the desired classical state space of the (twisted) discrete Arnowitt-Deser-Misner data.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1–4] as a candidate theory
of quantumgravity provides a possibility of deriving general
relativity (GR) from the foundation of plank-scale quantum
geometry. Thus the theory, in a broader context, provides a
concrete platform for exploring the relation between the
continuum classical GR variables and the discretized geo-
metric quantum data, such as those of the twistor theory and
Regge calculus [5,6]. On the other hand, it has been realized
that the correspondence between the field-geometric and the
quantum data is far beyond the issue of merely taking the
continuum limits. This is due to the fact that canonical GR is
governed by a constraint system, and the correspondence
may be fully revealed only for the physical degrees of
freedom—with all the constraints properly imposed in the
quantum theory. From the opposite direction of this view,
the concrete goal of recovering the familiar Arnowitt-Deser-
Misner data (ADM data) [7] from LQG may provide useful
instructions in tackling the abstract problems of quantum
constraint reductions in the theory.
A series of illuminating analysis in this direction has

been carried out in the case of the SUð2Þ formulation of
(1þ 3)-dimensional loop quantum gravity. Based on the
Ashtekar formulation of canonical GR using the SUð2Þ
densitized triad and connection conjugate variables, LQG
in this formulation has a kinematic Hilbert space spanned
by the spin-network states, each of which is given by a
network of the connection holonomies, with each edge of

the graph of the network colored by a specific SUð2Þ
representation, and each of the vertices colored by an
intertwiner specifying a coupling among the neighboring
SUð2Þ representations. Under the well-defined flux-hol-
onomy geometric operators, the SUð2Þ representations
indicate the quanta of the triad fluxes as the area elements
dual to the graph’s edges, while the intertwiners indicate the
intersection angles amongst these triad-fluxes at the ver-
tices. This discretized distribution of the two-dimensional
spatial area elements with the intersection angles leads to a
specific notion of quantum geometry that is the foundation
of LQG. The classical constraints—the scalar, vector and
SUð2Þ Gauss constraints—can be represented via the flux-
holonomy operators for the quantum theory. It has been
shown that the imposition of the quantum Gauss constraints
on the coherent spin-network states gives rise to a proper
semiclassical symplectic reduction, in the holonomy-flux
phase of the discretized Ashtekar formulation on the given
graph. Remarkably, in the reduced state space, the coherent
spin-network states satisfying the quantum Gauss con-
straints not only describe the intrinsic spatial geometry built
from the polytope-cells dual to the network [5,8,9], but also
carry precisely the right data to specify the extrinsic
curvature of the hypersurface made of the polytopes
[6,10]. Through this first stage of the semiclassical gauge
reduction, a notion of kinematic ADM data may thus
appear in the discrete form of Regge geometry, upon which
the further reductions with the momentum and scalar
constraints should to be carried out. The quantum vector
and scalar constraints take much more complicated forms
in the flux-holonomy operators, and unlike the quantum
Gauss constraint, their anomalous algebra is no longer of
first class. With the quantum anomaly hindering the
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standard Dirac procedure mirroring the classical gauge
reduction, the treatment of these loop-quantized ADM
constraints remains a crucial challenge for LQG tackled
by many ongoing projects.
As we introduced above, loop quantum gravity is first

constructed as a quantum theory of GR in four dimensional
spacetime. Nevertheless, with the various classical and
quantum gravity theories in higher-dimensional spacetimes
(i.e., Kaluza-Klein theory, super string theories) showing
remarkable potentials in unifying gravity and other funda-
mental interactions, it has been recognized that the frame-
work of arbitrary dimensional loop quantum gravity may
serve as a novel approach toward the higher-dimensional
ideas of unification upon the background-independent and
nonperturbative construction of the discretized quantum
geometry. Pioneered by Bodendorfer, Thiemann and
Thurn [11–13], the loop quantization approach for general
relativity in all dimensions has been developed. In the
context of the higher dimensional loop quantum gravity,
the challenge of loop quantum anomaly already exists at the
kinematic level before the accounts of the quantum ADM
constraints; though, here it is in a simpler form for us to
develop concrete insights and solutions to the problem. In
detail, the all dimensional LQG is based on the universal
Ashtekar formulation of (1þD)-dimensional general rela-
tivity in the form of the SOðDþ 1Þ Yang-Mills theory, with
the kinematic phase space coordinatized by the canonical
pairs ðAaIJ; πbKLÞ, consisting of the spatial SOðDþ 1Þ
connection fields AaIJ and the vector fields πbKL. In this
formulation, the theory is governed by the first class system
of the SOðDþ 1Þ Gauss constraints, the (Dþ 1)-dimen-
sional ADM constraints and the additional constraints
called the simplicity constraints. Taking the form
SabIJKL ≔ πa½IJπjbjKL�, the simplicity constraints generate
extra gauge symmetries in the SOðDþ 1Þ Yang-Mills phase
space. It is known that the phase space correctly reduces to
the familiar ADM phase space after the symplectic reduc-
tions with respected to the Gauss and simplicity constraints.
Similar to the case of the SUð2Þ formulation, the loop
quantization of the SOðDþ 1Þ formulation leads to the spin-
network states of the SOðDþ 1Þ holonomies carrying the
quanta of the flux operators representing the flux of πbKL

over a (D − 1)-dimensional surface. Following the previous
experience, one may attempt to look for the all-dimensional
Regge ADM data encoded in the SOðDþ 1Þ spin-network
states, through a gauge reduction procedure with respect to
both the quantum SOðDþ 1Þ gauss constraints and the
quantum simplicity constraints.
This is where the challenge arises—the standard quan-

tum simplicity constraints in LQG carry serious quantum
anomaly. As a result of the loop quantization, the Abelian
algebra of the classical simplicity constraints becomes the
deformed algebra of the quantum simplicity constraints
that is not even close [13]. As an important consequence,
the transformations generated by these anomalous quantum

simplicity constraints can happen between states supposed
to be physically distinct in terms of the semiclassical limits.
Strong impositions of the quantum simplicity constraints
thus lead to overconstrained physical states unable to
reproduce the semiclassical degrees of freedom. In a closer
look, the quantum simplicity constraints in LQG consist
of two types of local constraints due to the network
discretization—the edge-simplicity constraints and the
vertex-simplicity constraints. Importantly, the algebra
anomaly happens only amongst the vertex-simplicity con-
straints, while the edge-simplicity constraints remain
anomaly free in the sense of having a weakly Abelian
algebra. Previously, we have proposed a new method [14]
of weakly imposing the anomalous vertex-simplicity con-
straints for the vanishing expectation values and minimal
quantum fluctuations, upon a special class of states in the
space of the SOðDþ 1Þ-invariant spin-network states
satisfying the quantum Gauss constraints. With their edges
labeled by only the simple representations and their vertices
by specific coherent states of intertwiners, this class of
states strongly satisfy the quantum edge-simplicity con-
straints and are sharply peaked for the flux operators. We
found that, among this class of states, each weak solution of
the vertex-simplicity constraints describes a set of quantum
D-dimensional polytopes dual to the vertices of its graph.
Also, in large quantum-number limits, these weak solutions
indeed recover all the degrees of freedom in the classical
D-dimensional polytopes, which may be assembled to des-
cribe all possible states of quantum spatial geometry. Con-
cerning the proper gauge-reduction procedure, this remark-
able result suggests that, in the space of strong solutions to
the first class system of the quantum Gauss constraints and
edge-simplicity constraints, the vertex-simplicity con-
straints should serve as additional constraints—unrelated
to the quantum gauge symmetries—and select the special
gauge-invariant states capable of giving the desired quan-
tum discrete spatial intrinsic geometry.
As mentioned, in our previous work we have identified

the local polytope geometry dual to the specific spin
network states with coherent intertwiners, which suggests
the discretized intrinsic geometry of space emerging from
all-dimensional LQG [14]. Clearly, in order to recover the
discrete ADM data of a hypersurface from the all-dimen-
sional spin network states, one must carry on and complete
the correspondence prescription not only for the suggested
intrinsic geometry, but also for the missing piece of
extrinsic geometry. This prescription should follow a
proper reduction procedure with respect to the quantum
Gauss constraints and anomalous quantum simplicity con-
straints, in a way that the physical degrees of freedom in the
flux-holonomy variables are identified with the desired
discretized ADM data of Regge geometry.
Thus on the basis of the previous work, our remaining

task would be completing the other half gauge-reduction
procedure following our strategy above: identifying the
proper gauge orbits associated with the quantum simplicity
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constraints and finding the geometrical interpretation to the
invariant degrees of freedom. It is known that the classical
simplicity constraints transform only the pure-gauge com-
ponents of the SOðDþ 1Þ Ashtekar connection AaIJ, while
leaving the vector fields πbKL invariant. We will demon-
strate that this picture could emerge in the LQG flux-
holonomy phase space associated with a graph, following
the other half of our reduction procedure at the classical and
discrete level under a satisfying geometric interpretation, in
spite of the anomaly of quantum simplicity constraint
already appearing in this classical and discrete formulation.
In the crucial step for establishing such an interpretation,
we will generalize the existing twisted-geometry para-
metrization for the SUð2Þ flux-holonomy phase space,
into that for the SOðDþ 1Þ setting. These new geometric
coordinates for the phase space, along with their well-
formulated expressions for the symplectic structure, enable
the full analysis of the gauge reductions in the language of
the twisted geometry.
Our result shows that, the discretized classical Gauss,

edge-simplicity and vertex-simplicity constraints capturing
the anomaly of quantum vertex simplicity constraint define
a constraint surface in the discrete phase space of all
dimensional LQG, and the kinematic physical degrees of
freedom parameterized by the generalized hypersurface
twisted-geometry are given by the gauge orbits in the con-
straint surface generated by the first class system of discrete
gauss and edge-simplicity constraints. In particular, we find
the orbits of the edge-simplicity constraints to be along the
angle variables of the twisted geometry, which indeed
represent the smeared form of the pure-gauge components
of the Ashtekar connection in the continuous theory.
Finally, the complete ADM data of a Regge hypersurface
can be identified as the degrees of freedom of the reduced
generalized twisted geometry space, under an additional
condition called the shape matching condition.
In our brief review of the classical Ashtekar formulation of

all dimensional GR in Sec. II, wewill also introduce the flux-
holonomy phase space for the discretized formulation with
the anomalous vertex simplicity constraints. In Secs. III and
IV we will introduce the twisted-geometry parametrization
for the SOðDþ 1Þ phase space, and analyze the Poisson
structures among the new geometric parametrization varia-
bles and the discretized simplicity constraints. Finally in
Sec. V we will combine the obtained gauge transformations
with the geometric interpretations and formalize the gauge
reduction procedure that leads to the desired ADM data. We
will then concludewith the outlook for the possible next steps
of the future research.

II. PHASE SPACE OF ALL DIMENSIONAL LOOP
QUANTUM GRAVITY AND SIMPLICITY

CONSTRAINT

The classical Ashtekar formulation of general relativity
with arbitrary spacetime dimensionality of (Dþ 1) has

been developed by Bodendofer, Thiemann and Thurn in
[11]. The continuum connection phase space of the theory
is coordinatized by a soðDþ 1Þ valued canonical pair
ðAaIJ; πbKLÞ with the nontrivial Poisson brackets

fAaIJðxÞ; πbKLðyÞg ¼ 2κβδbaδ
K
½Iδ

L
J�δ

ðDÞðx − yÞ; ð1Þ

where β is the Barbero-Immirzi parameter and κ is the
gravitational constant. It is known that this phase space
correctly reduces to the familiar ADM phase space after the
standard sympletic reduction procedure with respect to the
first-class constraint system of the Gauss constraints
GIJ≈0 and simplicity constraints SabIJKL≔πa½IJπjbjKL�≈0.
Specifically, the spatial metric qab is given by qab ¼
eaIeIb, where eIa is a D-bein field parametrizing the
simplicity constraint solutions in the form πaIJ ¼
2

ffiffiffi
q

p
N ½IejajJ� together with a chosen field N I satisfying

N IN I ¼ 1 and N IeaI ¼ 0. The densitized extrinsic cur-
vature is given by K̃ b

a ¼ KaIJπ
bIJ where KaIJ is the

component of AaIJ under the splitting

AaIJ ≡ ΓaIJðeÞ þ βKaIJ ð2Þ

on simplicity constraint surface, where ΓaIJðeÞ is the
unique torsionless spin connection compatible with the
D-bein eaI .
Let us look into the simplicity constraints from the

perspectives of the corresponding reductions. First, the
solutions πaIJ ¼ 2

ffiffiffi
q

p
N ½IejajJ� to the quadratic simplicity

constraints introduced above defines the constraint surface
of the simplicity constraints. It is easy to check that the
infinitesimal gauge transformations induced by simplicity
constraints are given by

δKPQ
c ¼

�Z
σ
dDxfIJKLab πa½IJπ

b
KL�ðxÞ; KPQ

c ðyÞ
�

¼ 4κβf½PQKL�
cb πbKLðyÞ: ð3Þ

On the simplicity constraint surface we have πaIJ ¼
2

ffiffiffi
q

p
N ½IejajJ� and thus δKIJ

c N I ¼ 0. Therefore, introducing
the decomposition of KaIJ as

KaIJ ≡ 2N ½IKjajJ� þ K̄aIJ; ð4Þ

where K̄aIJ ≔ η̄KI η̄
L
JKaKL with η̄IJ ¼ δIJ −N IN J and

K̄aIJN I ¼ 0, we immediately see that the longitudinal
components K̄aIJ parametrize the gauge redundancy, while
the transverse components 2N ½IKjajJ� are gauge invariant
based on the transformations given in (3). From the
expressions for the ADM variables ˜̃qab ¼ 1

2
πaIJπbIJ and

K̃ b
a ¼ KaIJπ

bIJ, it is easy to see that these variables
are indeed invariant under the gauge transformations
by the simplicity constraints. Through the sympletic
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gauge-reduction procedure, the simplicity constraints
thus eliminate the two sets of degrees of freedom setting
π̄aIJ ≔ πaIJ − 2

ffiffiffi
q

p
n½IejajJ� ≈ 0 by the restriction to the

constraint surface and removing the pure-gauge compo-
nents K̄aIJ ≔ η̄KI η̄

L
JKaKL.

The foundation leading to the quantum geometry of
loop quantum gravity is the use of the spatially smeared
variables—the D-bein fluxes over surfaces and connection
holonomies over paths—for the conjugate pairs of elemen-
tary variables. The quantization of the flux-holonomy
algebra leads to the space of spin-network states mentioned
above, spanned by the basis states of holonomy networks
each labeled by a graph with the representation and
intertwiner colorings. We will focus on the holonomies
and fluxes based on one specific graph for the following.
The edges of the given graph naturally provide the set of
paths for a fixed set of holonomies, and the cell decom-
position dual to the graph provides the set of (D − 1)-
dimensional faces specifying a fixed set of fluxes. In this
setting, the holonomy over one of the edges is naturally
conjugating to the flux over the face traversed by the edge,
and the pairs associated with the given graph satisfy the
smeared version of the algebra (1) and form a new phase
space. More precisely, given the graph γ embedded in the
spatial manifold, we consider a new algebra given by
replacing ðAaIJ; πbKLÞ with the pairs ðge; XeÞ ∈ SOðDþ
1Þ × soðDþ 1Þ over all edges e of γ. These pairs of
variables represent the discretized version of the connection
and its conjugate momentum πaIJ, respectively via the
holonomies ge ¼ P exp

R
e A with P denoting the path-

ordered product, and fluxes Xe ¼
R
e⋆ðgπg−1ÞanadD−1S

with e⋆ being the dual (D − 1)-dimensional face to the
edge e, with the normal na and infinitesimal coordinate area
element dD−1S and g is the parallel transport from one fixed
vertex to the point of integration along a path adapted to the
graph. Since SOðDþ 1Þ × soðDþ 1Þ ≅ T�SOðDþ 1Þ,
this new discrete phase space called the phase space of
SOðDþ 1Þ loop quantum gravity on a fixed graph, is a
direct product of SOðDþ 1Þ cotangent bundles. Finally,
the complete phase space of the theory is given by taking
the union over the phase spaces of all possible graphs. Just
like the SUð2Þ case, the new variables ðge; XeÞ of the phase
space of SOðDþ 1Þ loop quantum gravity can be seen as a
discretized version of the continuum phase space.
A series of studies following the original works by

Freidel and Speziale show that the mentioned phase space
of SUð2Þ loop quantum gravity carries the notion of what is
called the twisted geometry [5,6], and this space can
undergo a symplectic reduction with respect to the dis-
cretized Gauss constraints (associated with the quantum
Gauss constraint operators), giving rise to a reduced
phase space containing the discretized ADM data of a
polyhedral Regge hypersurface. Based on such a founda-
tion, our first goal is providing a generalization to the above
approach for the SOðDþ 1Þ formulation. This includes the

generalization of the twisted-geometry parametrization for
the SOðDþ 1Þ phase space, which should provide a clear
correspondence between the original variables ðge; XeÞ
and the hypersurface geometry data. Our second goal is
addressing the proper treatment of the (discretized) gauss
and simplicity constraints, following the geometric mean-
ing of the phase space under the new parametrization.
We will use the standard forms of the (discretized) gauss
and simplicity constraints in agreement with the quantum
constraints. With X−e ¼ −g−1e Xege ≡ X̃e, the (discretized)
Gauss constraints GIJ

v ≈ 0 for each vertex v ∈ γ of the
graph take the form

GIJ
v ¼

X
ejsðeÞ¼v

XIJ
e þ

X
ejtðeÞ¼v

X̃IJ
e ≈ 0; ð5Þ

where sðeÞ and tðeÞ, respectively, denote the source and
target vertices of the oriented edge e. The (discretized)
simplicity constraints consist of the edge-simplicity
constraints SIJKLe ≈ 0 and vertex-simplicity constraints
SIJKLv;e;e0 ≈ 0 taking the forms

SIJKLe ≡ X½IJ
e XKL�

e ≈ 0; ∀ e ∈ γ;

SIJKLv;e;e0 ≡ X½IJ
e XKL�

e0 ≈ 0; ∀ e; e0 ∈ γ; sðeÞ ¼ sðe0Þ ¼ v:

ð6Þ

As we mentioned in the introduction, since the commuta-
tive set of conjugate momentum variables fπbKLg becomes
a noncommutative set of flux variables fXKL

e g after the
smearing, these discrete version of simplicity constraints
become noncommutative and thus anomalous.

III. GEOMETRIC PARAMETRIZATION OF
EDGE-SIMPLICITY CONSTRAINT SURFACE

IN SOðD+ 1Þ PHASE SPACE

A. Bivector parametrization of intrinsic geometry

In our previous work [14], we have explicitly constructed
specific flux-coherent states based on a chosen graph γ,
which are sharply peaked in every pair of flux variables
associated with the source and target points of each of
the edges, while having the coloring of the edges restricted
to the SOðDþ 1Þ simple representations. Such restriction
to the irreducible representations has been shown to
strongly solve the quantum edge-simplicity constraints.
Subsequently, this implies that the flux expectation values
associated to the source and target points of an edge must,
respectively, take the form NeVe andNeṼe, with Ve and Ṽe

given by normalized bivectors inRDþ1 and the shared norm
Ne is the Casimir value labeling the simple representation.
We have shown that, further, the quantum Gauss and
quantum vertex-simplicity constraints can be weakly
imposed upon our flux-coherent states by restricting and
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correlating the values of ðVe; Ṽe; NeÞ over all the edges,
and the resulted states describe the familiar discrete
geometry of a set of D-polytopes dual to the graph γ, with
the corresponding faces dual to the same edge having the
same area. In more details, with the fixed oriented graph γ,
each of our flux-coherent states has a SOðDþ 1Þ simple
representation Ne ∈ R to each of the edges, assigning the
area of the corresponding set of dual (D − 1)-dimensional
surfaces; for each vertex v ∈ γ connected to nv number of
edges, the state is also peaked at the nv number of unit
bivectors VIJ

e ðvÞ assigning the directions of the nv number
of the (D − 1)-dimensional surfaces. These parameters
describe a direct product space

Paux
γ ≡ ×eRe ×v Pv; Pv ≡ ×e∶v¼bðeÞ or v¼tðeÞQe

D−1;

ð7Þ

where QD−1 ≔ SOðDþ 1Þ=ðSOðD − 1Þ × SOð2ÞÞ is the
space of unit bivectors VIJ

e ðvÞ. Note that, by our assign-
ment, each edge is labeled by Ne and two unit bivectors.
Calling sðeÞ the source vertex and tðeÞ the target vertex of
an edge e, we denote the two bivectors as Ve ≡ VIJ

e ¼
VIJ
e ðsðeÞÞ and Ṽe ≡ ṼIJ

e ¼ VIJ
e ðtðeÞÞ. We may use this

notation to factorize the space as

Paux
γ ¼ ×ePaux

e ; Paux
e ¼ Qe

D−1 ×Qe
D−1 ×Re; ð8Þ

and the variables associated to each edge of the graph are
thus a triple ðVe; Ṽe; NeÞ. For our flux-coherent states [14],
the weak imposition of the quantum Gauss and vertex-
simplicity constraints amounts to imposing the correspond-
ing constraints in the space Paux

γ . The weak imposition of
the quantum Gauss constraints at a vertex v implies

CN⃗v
≡ X

e∶v¼bðeÞ
NeVIJ

e þ
X

e∶v¼tðeÞ
NeṼIJ

e ¼ 0; ð9Þ

and that of the vertex-simplicity constraints at a vertex v
(weakly) implies

SIJKLv ≡ V ½IJ
e{ ðvÞVKL�

e| ðvÞ ¼ 0; ∀ e{; e|∶v ¼ e{ ∩ e|: ð10Þ

The variables VIJ
e ðvÞ for the vertex v satisfying both

conditions defining the common constraint surface

Ps:
N⃗v

¼ fðVIJ
e1ðvÞ;…; VIJ

env
ðvÞÞ ∈ PvjCN⃗v

¼ 0; SIJKLv ¼ 0g
ð11Þ

must take the form of VIJ
e ðvÞ ¼ N ½IðvÞVJ�

e ðvÞ, where the
vectors VJ

eðvÞ ∈ RDþ1 for each v lie in the subspace RD ⊂
RDþ1 orthogonal to an unit vector N IðvÞ ∈ RDþ1, and
they satisfy the familiar D-dimensional Minkowski closure
conditions applied through the closure constraintsCN⃗v

¼ 0.

Therefore these solutions define the space of flat D-
dimensional polytopes embedded in the flat space
RD ⊂ RDþ1, and each of the nv-valent vertex v can be
thought of as dual to a flat convex D-dimensional polytope
whose nv number of (D − 1)-faces’ areas and normal
vectors are given by, respectively, fNejbðeÞ or tðeÞ¼vg
and fVJ

e;ṼJ
e0 jbðeÞ¼v, and tðe0Þ¼vg satisfying the closure

conditions. Since the shape of a D-dimensional polytope is
invariant under the rotations, it is useful to introduce the
space Ps:

N⃗v
of shapes of the D-dimensional polytopes, i.e.,

the space of closed normals modulo the vertex-wise
SOðDþ 1Þ rotations as [14]

Ps:
N⃗v

≡ Ps:
N⃗v
=SOðDþ 1Þ: ð12Þ

Therefore, we see that the bivector variables ðNeVe; NeṼeÞ
carried by the flux-coherent states, when taking the on shell
values of the Gauss and vertex-simplicity constraints, may
give a notion of discretized spatial geometry as an assembly
of the locally flat D-polytopes dual to the vertices, with the
identical areas for the pairs of corresponding faces amongst
neighboring polytopes.
We want to complete the description of such geometry

and extend it to the extrinsic part, so that a notion of
hypersurface ADM data could be identified for the relevant
region of the LQG phase space. Since the D-polytope
geometry arises only after imposing the edge-simplicity
constraints, in this context the relevant region of the LQG
phase space is expected to be the edge-simplicity constraint
surface. This surface, denoted as ×eT�

sSOðDþ 1Þe, is
obtained from the discrete phase space ×eT�SOðDþ 1Þe
by restricting the Xe to be of the bivector form of NeVIJ

e .
As shown in [15,16], the space QD−1 is a 2ðD − 1Þ-

dimensional phase space with the invariant Kahler form
ΩN2=2, and the SOðDþ 1Þ orbits in Pv are generated
precisely by the closure constraints; therefore we may
construct the SOðDþ 1Þ-reduced phase space given by

PN⃗v
¼ fðVIJ

e1ðvÞ;…;VIJ
env

ðvÞÞ ∈ PvjCN⃗v
¼ 0g=SOðDþ 1Þ:

ð13Þ

The Poisson structure on this nvðDðDþ1Þ
2

− 1 − ðD−2ÞðD−1Þ
2

Þ−
DðDþ 1Þ ¼ 2nvðD − 1Þ −DðDþ 1Þ-dimensional space
is obtained from ΩN2=2 defined in QD−1, via the standard
symplectic reduction. However, subject to the additional
vertex-simplicity constraints the space Ps:

N⃗v
. describing the

shapes of theD-dimensional polytopes is not a phase space
because the imposition of vertex-simplicity constraints
clearly does not give a symplectic reduction [14]. Just as
mentioned, we will demonstrate that a true reduction can be
carried out in the discrete phase space extended from Paux

γ ,
which includes the information about the extrinsic curva-
ture and contains the gauge degrees of freedom for the
discretized simplicity constraints.
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From now on, we denote the symplectic reduction by
double quotient PN⃗v

¼ Pv==CN⃗v
. Considering the space

Paux
γ defined for the whole graph γ, we can accordingly

apply the symplectic reduction by Cγ ¼ fCN⃗v
jv ∈ γg and

impose both the closure conditions and vertex-simplicity
constraints on all the vertices. The result is

Kγ ≡ Paux
γ ==C ¼ ×eRe ×v PN⃗v

;

Ks:
γ ≡KγjSIJKLv ¼0; ∀ v∈γ ¼ ×eRe ×v Ps:

N⃗v
: ð14Þ

B. Full parametrization

According to our discussion above, the space ðge; XeÞ is
parametrized by ðge; NeVeÞ in the constraint surface
×eT�

sSOðDþ 1Þe. However, this is not the end of the
story. For describing the hypersurface geometry, it is also
important to express ðge; Ve; Ṽe; NeÞ in terms of the
variables clearly describe the extrinsic geometry distinctly
from the intrinsic geometry, so that a concrete notion of
hypersurface can emerge after proper impositions of the
constraints. A method for this goal has been studied in the
SUð2Þ formulation, and in the following we will explicitly
work out the generalization of such method for our
SOðDþ 1Þ case. In both cases the key lies in extracting
the angle variables from the values ðge; Ve; Ṽe; NeÞ that
capture the extrinsic curvature of the hypersurface.
To extract the extrinsic data, we first identify the

intrinsic geometric data completely. Recall the emerging
D-polytopes dual to the vertices, that for any two D-
dimensional polytope next to each across an edge, the
neighboring pair of (D − 1)-dimensional faces associated
to an edge always have the same area. As observed in the
SUð2Þ case, when the neighboring pair of faces are subject
to an additional “shape matching” condition that they have
the same shape in addition to the same area, each of these
special values of ðNeVe; NeṼeÞ assigns one discretized
intrinsic-geometry of a D-dimensional hypersurface, given
by simply gluing the neighboring identical faces of the D-
dimensional polytopes. Such geometry is just the spatial
Regge geometry, with the local geometry within each D-
polytope flat and the curvature of the hypersurface captured
in the parallel transports amongst the constituent D-dimen-
sional polytopes. The area-matching D-polytopes dual to a
graph γ without the shape matching conditions define a
more general notion of geometry, which is called twisted
geometry in the existing literature.
Now let us look at the construction for the twisted

geometry associated to γ in all-dimensional case. Note that
two neighboring D-dimensional polytopes prescribed by
the flux variables must be rotated by a specific SOðDþ 1Þ
element, for their identified pair of faces to aligned in the
normal directions. In this manner, the flux data can specify
one SOðDþ 1Þ element to every edge e as the necessary

operation to align and glue the pair of faces dual to e, and
this element should rotate the inward (area-weighted)
normal −NeṼe of the (D − 1)-dimensional face for the
target D-dimensional polytope, into the outward normal
NeVe of the corresponding (D − 1)-dimensional face for
the source D-dimensional polytope. Under the generalized
Regge geometry interpretation [17], these transformations
across the edges carry the meaning of the Levi-Civita
holonomies. We thus define the SOðDþ 1Þ valued Levi-
Civita holonomy hΓe for every edge e as
a function of the bivector variables associated to the
neighborhood of e. Note that, by construction we have
Ve ¼ −hΓe∘Ṽe ≔ −hΓe ṼeðhΓe Þ−1.
We now adopt a decomposition of the holonomy as a

SOðDþ 1Þ element in the following way. First, we choose
once for all a fixed generator τ0 ∈ soðDþ 1Þ as a reference
bivector τIJ0 ≡ ð ∂

∂x1Þ½Ið ∂
∂x2ÞJ�. Then for each edge e ⊂ γ, we

specify a special pair of differentiable SOðDþ 1Þ-valued
functions of the bivector variables called the Hopf sections,
denoted as ueðVeÞ and ũeðṼeÞ; the Hopf sections for each
edge e are defined by the conditions

Ve ¼ ueτ0u−1e ; Ṽe ¼ −ũeτ0ũ−1e and

ueð−VeÞ ¼ ueðVeÞe2πτ13 ; ũeð−ṼeÞ ¼ ũeðṼeÞe2πτ13 ;
ð15Þ

with τ13 ≔ ð ∂
∂x1Þ½Ið ∂

∂x3ÞJ� and e2πτ13τ0e−2πτ13 ¼ −τ0. Observe
that the choice for the Hopf sections is clearly nonunique,
and from now on our parametrization will be given under
one fixed choice of fue; ũeg for every edge e, under which
the Levi-Civita holonomy hΓe can be expressed in the form

hΓe ðVe0 ; Ṽe0 Þ≡ ueðeη̄
μ
e τ̄μeηeτoÞũ−1e ; ð16Þ

where the eη̄
μτ̄μ takes value in the subgroup SOðD − 1Þ ⊂

SOðDþ 1Þ preserving both ∂
∂x1 and ∂

∂x2. Note that the

bivector functions ηe and η̄μe are well defined via the given
hΓe and the chosen Hopf sections. Accordingly, the hol-
onomy ge assigned to edge e can also be decomposed as

geðVe0 ; Ṽe0 ; ξe; ξ̄
μ
eÞ≡ ueðeξ̄

μ
e τ̄μeξeτoÞũ−1e : ð17Þ

Observe that while the η̄μe and ηe are already fixed by the
given hΓe ðVe0 ; Ṽe0 Þ and the Hopf sections, the free variables
ξ̄μe and ξe, which we will call the angle variables, para-
metrize the additional degrees of freedom in ge. Moreover,
we can factor out hΓe from ge through the expressions

ge ¼ hΓeðe−η̄
μ
eũe τ̄μũ−1e eξ̄

μ
eũe τ̄μũ−1e e−ðξe−ηeÞṼeÞ

¼ ðeξ̄μeue τ̄μu−1e e−η̄μeue τ̄μu−1e eðξe−ηeÞVeÞhΓe ; ð18Þ
where the ueτ̄μu−1e or ũeτ̄μũ−1e takes values from the
subgroups SOðD − 1Þ ⊂ SOðDþ 1Þ, respectively, preserv-
ing the bivector Ve or Ṽe.
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Having introduced the parametrization defined by (15)–
(18) for all points in the phase space, we now focus on
the points parametrized by the special angle-bivector
values with the flux data ðNeVe; NeṼeÞ describing a
Regge intrinsic geometry, so that we can identify the
extrinsic curvature data for these states through the angle
variables in the following manner. The above decomposi-
tion with the angle-bivector variables suggests a splitting of
the Ashtekar connection as Aa ¼ Γa þ βKa on a given
graph. For that, consider the integral of Aa ¼ Γa þ βKa ∈
soðDþ 1Þ along an infinitesimal edge direction la

e leading
to Ae ≡ Aala

e , Γe ≡ Γala
e and Ke ≡ Kala

e . Clearly, we
have the following obvious correspondence of

ge ¼ eAe and hΓe ¼ eΓe : ð19Þ

The remaining factor should account for the Ke. Here we
adopt the Regge interpretation that the descritized extrinsic
curvature K, just like the intrinsic curvature, is distributed
only at the faces of the polytope-decomposition dual to γ.
According to the above discussion, the value of Ke may
thus be expressed in either the local gauge for the source
polytope or that for the target polytope, respectively, as

ðeξ̄μeue τ̄μu−1e e−η̄μeue τ̄μu−1e eðξe−ηeÞVeÞ ¼ eβKe or

ðe−η̄μeũe τ̄μũ−1e eξ̄μeũe τ̄μũ−1e e−ðξe−ηeÞṼeÞ ¼ eβKe: ð20Þ

A well-known feature of a Regge hypersurface is that the
extrinsic curvature distribution at a specific face of a
constituent polytope must be a vector 1-form distribution
parallel to the normal of the face. This knowledge then
suggests the further correspondence of

1

β
ðξe − ηeÞVe ¼ K⊥

e or
1

β
ðξe − ηeÞṼe ¼ −K⊥

e ; ð21Þ

when expressed in the source frame or target frame. Finally,
this leaves the remaining degrees of freedom to account for
K==

e via

1

β
lnðeξ̄μeue τ̄μu−1e e−η̄μeue τ̄μu−1e Þ ¼ K==

e or

1

β
lnðe−η̄μeũe τ̄μũ−1e eξ̄μeũe τ̄μũ−1e Þ ¼ K==

e : ð22Þ

In general, the data in ðNe; Ve; ṼeÞ contains information
about both intrinsic and extrinsic geometry. Out of these
4D − 3 degrees of freedom of ðNe; Ve; ṼeÞ, only 2D − 1 of
them would be interpretable as intrinsic-geometry property
of the D-dimensional slice, while the other 2D − 2 of them
carry information about the extrinsic geometry. The extra
angle ξe is the missing ingredient necessary in order to
reconstruct the (2D − 1)th component of K⊥

e . As we will
demonstrate in more details, the angles ūe containing the

information about the components K==
e of Ke are purely

redundant variables, in views of both the Regge hypersur-
face geometry and gauge reduction involving the discre-
tized simplicity constraints.
The set of angle-bivector variables ðNe; Ve; Ṽe; ξe; ξ̄

μ
eÞ

gives the generalization of twisted geometry parametriza-
tion for SOðDþ 1Þ phase space. We will now carry out an
analysis of the canonical correspondence between these
variables and the LQG phase space, before coming back to
provide more support on the discrete hypersurface inter-
pretation and drawing insights on the proper treatment of
the gauge reduction with the anomalous discretized sim-
plicity constraints.

IV. SYMPLETIC ANALYSIS OF EDGE-
SIMPLICITY CONSTRAINT SURFACE IN

SO(D+ 1) LQG PHASE SPACE

A. Sympletic structure of SO(D+ 1) LQG phase space

Recall that the phase space of SOðDþ 1Þ loop quantum
gravity associated with each edge of a given graph can be
given by the group tangent space TSOðDþ 1Þ. Since this
space is bundle isomorphic to T�SOðDþ 1Þ, as a phase
space it enjoys the natural symplectic structure of the
SOðDþ 1Þ cotangent bundle. Explicitly, the bundle iso-
morphism TSOðDþ 1Þ → T�SOðDþ 1Þ is given by
the trivialization ðsoðDþ 1Þ; SOðDþ 1ÞÞ → TSOðDþ
1Þ using a basis of right-invariant soðDþ 1Þ vector fields,
followed by the identification soðDþ 1Þ → so�ðDþ 1Þ
that leads to the trivialization of the cotangent bun-
dle ðso�ðDþ 1Þ; SOðDþ 1ÞÞ → T�SOðDþ 1Þ.
A right-invariant vector field X̂ associated to the Lie

algebra element X ∈ g, acts on a function on the group
manifold via the right derivative ∇R

X as

∇R
XfðgÞ≡ d

dt
fðe−tXgÞjt¼0; ð23Þ

under the adjoint transformation X ↦ −gXg−1, we obtain
the corresponding left derivative

∇L
XfðgÞ≡ d

dt
fðgetXÞjt¼0 ¼ −∇R

gXg−1fðgÞ: ð24Þ

It is straight forward to show that the map from the right
invariant vector fields X̂ to the corresponding elements X of
the algebra is provided by the algebra-valued, right-invari-
ant 1-form dgg−1 satisfying

iX̂ðdgg−1Þ ¼ ðLX̂gÞg−1 ¼ −X; ð25Þ

where i denotes the interior product, and LŶ ≡ iŶdþ diŶ
denotes the Lie derivative. It is clear from the above that a
basis for g is then associated to a set of right-invariant
vector fields, which serves as a global tangent-space basis
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providing the trivialization as ðsoðDþ 1Þ; SOðDþ 1ÞÞ →
TSOðDþ 1Þ. Moreover, there is also a (local) coordinate
system GIJ∶SOðDþ 1Þ → soðDþ 1Þ for the base mani-
fold SOðDþ 1Þ, such that for any element g, we have
dGIJjg ≡ ðdgg−1ÞIJ. Using such a local coordinate system,
the trivialization thus locally takes the form of
ðXIJ; GIJÞ → TSOðDþ 1Þ. Next, to describe the cotangent
fiber bundle, we note that for every X ∈ g there is a
corresponding element hX in the dual algebra g�, which as a
linear function of Y ∈ g is defined by

hXðYÞ≡ TrðXYÞ≡ −2trðXIJτ
IJYKLτ

KLÞ
¼ 2XIJYKLδ

K½IδJ�L ¼ 2XKLYKL;

with the duality map given by the nondegenerate operator

1

2
TrðτIJτKLÞ ¼ δK½IδJ�L:

Using this ad-invariant pairing we have identified
soðDþ 1Þ to soðDþ 1Þ� and specified the trivial
cotangent bundle structure ðso�ðDþ 1Þ; SOðDþ 1ÞÞ →
T�SOðDþ 1Þ. Thereby, the above (local) coordinate
system describes the trivialization of the cotangent bundle
in the explicit form ðXIJ; GIJÞ → T�SOðDþ 1Þ.
Recognizing that by construction ðXIJ; GIJÞ (locally)

forms the dual coordinate pair of the cotangent bundle, we
can now simply read off the natural symplectic potential for
TSOðDþ 1Þ as

Θ≡ XIJdGIJ ¼
1

2
TrðXdgg−1Þ: ð26Þ

The symplectic 2-form then follows as

Ω≡ −dΘ ¼ −
1

2
dTrðXdgg−1Þ

¼ 1

4
TrðdX̃ ∧ g−1dg − dX ∧ dgg−1Þ; ð27Þ

where we have introduced X̃ ≡ −g−1Xg. Among the
interesting phase space functions in TSOðDþ 1Þ [or
equivalently in T�SOðDþ 1Þ], we will specifically study
the ones of the form f ≡ fðgÞ and hY ≡ hYðXÞ. From the
symplectic 2-form we can compute the following important
Poisson brackets among them:

fhY; hZg ¼ 2h½Y;Z�; fhY; fðgÞg ¼ 2∇R
YfðgÞ;

ffðgÞ; hðgÞg ¼ 0: ð28Þ

Proof. Let us identify soðDþ 1Þ with R
DðDþ1Þ

2 via
Xi ¼ TrðτiXÞ ¼ hτiðXÞ, where i ∈ f1;…; DðDþ1Þ

2
g and τi

is an element of the orthogonal basis of soðDþ 1Þ.
Consider the following vector field on T�SOðDþ 1Þ,

Ŷ ≡∇R
Y þ ½X; Y�i ∂

∂Xi : ð29Þ

This vector field is such that

iŶΘ ¼ −
1

2
TrðXYÞ;

LŶΘ ¼ 1

2
Trð½X; Y�dgg−1Þ − 1

2
TrðX½Y; dgg−1�Þ ¼ 0: ð30Þ

Therefore we have

iŶΩ ¼ diŶΘ − LŶΘ ¼ −
1

2
dTrðXYÞ; ð31Þ

which implies that Ŷ is the Hamiltonian vector field of
1
2
hYðXÞ and�

1

2
hY;

1

2
hZ

�
¼ ΩðŶ; ẐÞ ¼ −

1

2
iẐdhY ¼ 1

2
h½Y;Z�: ð32Þ

Next, the Hamiltonian vector field of a function fðgÞ on the
group is

f̂ ¼ −2∇R
Xif

∂
∂Xi ; ð33Þ

since

if̂Ω ¼ ∇R
XifTrðτidgg−1Þ≡ −df: ð34Þ

It is then easy to see that any two functions of the forms
fðgÞ and hðgÞ would have a vanishing Poisson bracket as
given by ΩT�GðX̂f; X̂hÞ ¼ 0. Finally, we have�

1

2
hY; f

�
¼ iŶdf ¼ −iX̂f

dhY ¼ ∇R
Yf: ð35Þ

▪
We see from the brackets (28) that the Poisson action of

hYðXÞ generates left derivatives. Similarly, the right deriva-
tive fh̃Y ; fðgÞg ¼ 2∇L

YfðgÞ is generated by the action of
h̃YðXÞ≡ TrðYX̃Þ with X̃ ¼ −g−1Xg. Finally, the two
Hamiltonians commute as given by fhY; h̃Zg ¼ 0.
Using the obtained Poisson brackets, one may evaluate

the algebra amongst the discretized Gauss constraints,
edge-simplicity constraints and vertex-simplicity con-
straints defined in (5) and (6). It turns out that Gv ≈ 0
and Se ≈ 0 form a first class constraint system, with the
algebra

fSe; Seg ∝ Se; fSe; Svg ∝ Se; fGv;Gvg ∝ Gv;

fGv; Seg ∝ Se; fGv; Svg ∝ Sv; bðeÞ ¼ v; ð36Þ

where the brackets within Gv ≈ 0 is just the soðDþ 1Þ
algebra, and the ones within Se ≈ 0 weakly vanish.
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The algebra involving the vertex-simplicity constraint are
the problematic ones, with the open anomalous brackets

fSv;e;e0 ; Sv;e;e00g ∝ anomaly term ð37Þ
where the phrase anomaly term is not proportional to any of
the existing constraints in the phase space.

B. Symplectomorphism between edge-simplicity
constraint surface and angle-bivector space

Having discussed the symplectic structure of the
T�SOðDþ 1Þ phase space, we recall the angle-bivector
parametrization for the edge-simplicity constraint surface
using the twisted-geometry variables ðV; Ṽ; ξ; N; ξ̄μÞ ∈
P ≔ QD−1 ×QD−1 × T�S × SOðD − 1Þ, where eξ̄

μτ̄μ ≔ ū,
and τ̄μ ∈ soðD − 1Þ, μ ∈ f1;…; ðD−1ÞðD−2Þ

2
g. To capture the

intrinsic curvature, we have specified one pair of the
SOðDþ 1Þ valued Hopf sections—uðVÞ and ũðṼÞ—for
each edge. With the specified uðVÞ and ũðṼÞ, the para-
metrization associated with each edge is given by the map

ðV; Ṽ; ξ; N; ξ̄μÞ ↦ ðX; gÞ∶ X ¼ NV ¼ NuðVÞτouðVÞ−1;
g ¼ uðVÞeξ̄μτ̄μeξτo ũðṼÞ−1;

ð38Þ
which implies that X̃ ≡ −g−1Xg ¼ NṼ. We first note that
the map is a two-to-one double covering of the image that
takes the bivector form X ¼ Nuτou−1 solving the edge-
simplicity constraint X½IJXKL� ¼ 0. Let us denote this
bivector subset as soðDþ 1Þs, and denote the image as
T�
sSOðDþ 1Þ≡ T�SOðDþ 1ÞjX½IJXKL�¼0 that is the edge-

simplicity constraint surface in the phase space. Clearly,
under the map introduced above from P to T�

sSOðDþ 1Þ,
the two points ðV; Ṽ; ξ; N; ξ̄μÞ and ð−V;−Ṽ;−ξ;−N; _ξμÞ
related by e_ξ

μτ̄μ ¼ e−2πτ13eξ̄
μτ̄μe2πτ13 and τ13 ¼ δ½I1 δ

J�
3 are

mapped to the same point ðg; XÞ ∈ T�
sSOðDþ 1Þ. A

bijection map can thus be established in the region
jXj ≠ 0 by selecting either branch among the two signs,
leading to the corresponding one of the two inverse maps
from the region with jXj ≠ 0 given by

N ¼ jXj; V ¼ X
jXj ; Ṽ ¼ −

g−1Xg
jXj ;

ξ ¼ Trðτo lnðu−1gũÞÞ; ξ̄μ ¼ Trðτ̄μ lnðe−ξτou−1gũÞÞ;
ð39Þ

or

N ¼ −jXj; V ¼ −
X
jXj ; Ṽ ¼ g−1Xg

jXj ;

ξ ¼ −Trðτo lnðu−1gũÞÞ;
_ξμ ¼ Trðτ̄μ lnðeξτoe−2πτ13u−1gũe2πτ13ÞÞ: ð40Þ

Thus, we have an isomorphism between the two sets

P�=Z2 → T�
sSOðDþ 1ÞnfjXj ¼ 0g; ð41Þ

where P� ≡ PjN≠0 denotes the region with N ≠ 0, and the
identifying Z2 operation is defined by

ðV; Ṽ; ξ; N; ξ̄μÞ → ð−V;−Ṽ;−ξ;−N; _ξμÞ ð42Þ

in the region N ≠ 0.
Since P� ≡ PjN≠0 provides a double-covering coordinate

system for T�
sSOðDþ 1ÞnfjXj ¼ 0g, we may use the

bivector-angle variables to express the induced presym-
plectic structure of T�

sSOðDþ 1ÞnfjXj ¼ 0g inherited
from the phase space T�SOðDþ 1Þ. First, the induced
presymplectic potential can be expressed as

ΘT�
sSOðDþ1ÞjjXj>0

¼ 1

2
TrðXdgg−1ÞjT�

sSOðDþ1Þ;jXj>0;

¼ 1

2
NTrðuτou−1ðduu−1 þ uðdξτo þ dξ̄μτ̄μÞu−1

− ueξ̄
μτ̄μeξτo ũ−1dũũ−1ũe−ξ̄

μτ̄μe−ξτou−1ÞÞ;

¼ 1

2
NTrðVduu−1Þ þ 1

2
Ndξ −

1

2
NTrðṼdũũ−1Þ: ð43Þ

From the point of view of the space P, we may extend this
potential in the limit N → 0 and simply define

ΘP ≡ 1

2
NTrðVduu−1Þ þ 1

2
Ndξ −

1

2
NTrðṼdũũ−1Þ ð44Þ

as the presymplectic potential in P. This potential gives the
presympletic form ΩP as

ΩP ¼ −dΘP ¼ 1

2
NTrðVduu−1 ∧ duu−1Þ

−
1

2
NTrðṼdũũ−1 ∧ dũũ−1Þ

−
1

2
dN ∧ ðdξþ TrðVduu−1Þ − TrðṼdũũ−1ÞÞ: ð45Þ

It is clear that the N ¼ 0 region of the above presymplectic
structure is degenerate, as expected due to the degeneracy
in the parametrization itself in the N ¼ 0 region of
T�
sSOðDþ 1Þ. More importantly, as we shall demonstrate

in the next section, the induced presymplectic structure for
P� coincides with the natural symplectic structures of the
two constituent spaces—the QD−1 and T�S1, while leaving
the third component SOðD − 1Þ completely degenerate.
Therefore, thisSOðD − 1Þ component faithfullyparametrizes
the symplectic degeneracies of T�

sSOðDþ 1ÞnfjXj ¼ 0g as
a presymplectic manifold. Since the edge-simplicity con-
straints form a first-class system with the discretized Gauss
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constraints, we expect the SOðD − 1Þ degenerate degrees of
freedom to be generated by the first-class constraints. Indeed,
we note that the induced symplectic form on T�

sSOðDþ
1ÞnfjXj ¼ 0g given by ΩT�SOðDþ1Þ ≡ −dΘT�SOðDþ1Þ is
different from ΩP� ≔ −dΘP� obtained from the induced
symplectic potential ΘP� , since the Hamiltonian vector fields
of any function on P� given by the two symplectic forms
always differ by a transformation induced by the edge-
simplicity constraints. More explicitly, we can evaluate the
transformations induced by the edge-simplicity constraints in
the LQG discrete phase space, and obtain

fSIJKLe ; XegjSe¼0 ¼ 0 and

fSIJKLe ; gegjSe¼0 ∝ X½IJ
e ðτKL�geÞjSe¼0

∝ V ½IJ
e ðτKL�geÞjVe¼ueτ0u−1e : ð46Þ

Now it is easy to see that the edge-simplicity constraint
transforms the holonomy ge by the left action of an
SOðD − 1Þ element preserving the two vectors forming
Ve. Then, via the parametrization (38) of ge, we conclude
that the edge-simplicity constraints generate the transforma-
tion of the SOðD − 1Þ angles, which are precisely the
degenerate component with respected to the presymplectic
form ΩP� . Lastly, let us view the above transformations
induced by SIJKLe under the discrete Regge geometry inter-
pretation proposed in Sec. III B. Since the edge-simplicity
constraints commute (on shell) with the flux variables, it is
clear that the transformations act trivially on the intrinsic
geometry as desired. Moreover, the above shows that the
transformations change only theSOðD − 1Þ angles ξ̄μe among
the twisted-geometry variables, then according to our inter-
pretation (22) the transformations act only upon K==

e , which
are indeed thepuregaugecomponents in theoriginalAshtekar
formulation.
To go further and study the gauge reductions in the new

geometric point of view, we need to compute the Poisson
brackets between the twisted-geometry variables using the
presymplectic formΩP. In order to do that, in the following
section we will study the Hopf sections uðVÞ and ũðṼÞ in
the perspectives of their contributions to the Hamiltonian
fields on P defined by ΩP.

C. Hopf map and Geometric action on the Hopf section

The Hopf map is defined as a special projection map
π∶SOðDþ 1Þ ↦ QD−1 withQD−1≔SOðDþ1Þ=ðSOð2Þ×
SOðD−1ÞÞ, such that every element in QD−1 comes from
the maximal subgroup of SOðDþ 1Þ that fixed τo. The
maximal subgroup takes the form SOð2Þ × SOðD − 1Þ,
and in the definition representation of SOðDþ 1Þ the Hopf
map reads

π∶SOðDþ 1Þ → QD−1

g → VðgÞ ¼ gτog−1: ð47Þ

Note that the vector VðgÞ is invariant under g ↦ gα;β
μ ¼

geατoþβμτ̄μ , thus it is a function of 2D − 2 variables only.
This result shows that SOðDþ 1Þ can be seen as a bundle
(we would call it the Hopf bundle) over QD−1 with a
SOð2Þ × SOðD − 1Þ fiber. On this bundle we can introduce
the Hopf sections, each as an inverse map to the above
projection

u∶QD−1 → SOðDþ 1Þ
V ↦ uðVÞ; ð48Þ

such that πðuðVÞÞ ¼ V. This section assigns a specific
SOðDþ 1Þ element u to each member of theQD−1, and it is
easy to see that any given section u is related to all other
sections via uα;α

0μ ≡ ueατoþα0μτ̄μ ; therefore the free angles
fα; α0μg parametrize the set of all possible Hopf sections.

Let us identify soðDþ 1Þ with R
DðDþ1Þ

2 via the represen-
tation X ¼ XIJ. Then, an element V ∈ QD−1 is identified

with a unit bivector in R
DðDþ1Þ

2 , and we have a natural action
of rotations by the group SOðDþ 1Þ in this space. Since
this action is given via the coadjoint representation, we can
further associate each algebra element X ∈ soðDþ 1Þ to a
vector field X̂ onQD−1, which acts on a function ofQD−1 as

LX̂fðVÞ ≔
d
dt

fðe−tXVetXÞjt¼0: ð49Þ

Specifically in the case of linear functions we have

LX̂V ¼ −½X; V�: ð50Þ

Next, we observe that the SOðDþ 1Þ action on QD−1 as
a symplectic manifold is Hamiltonian; by explicit calcu-
lation one can verify that X̂ is a Hamiltonian vector field
associated to the function 1

2
hXðVÞ≡ NVIJXIJ on QD−1,

and the action above can be obtained from the Poisson
bracket between V and 1

2
hX, which results in�

1

2
hX; V

�
¼ NΩQðX̂; V̂Þ ¼ −½X; V� ¼ LX̂V: ð51Þ

We are especially interested in the action of the algebra
on the Hopf section. Let us first note that

LX̂VðuÞ ¼ ðLX̂uÞτou−1þuτoðLX̂u
−1Þ ¼ ½ðLX̂uÞu−1;VðuÞ�:

ð52Þ

Comparing this with (50), we deduce that

ðLX̂uÞu−1 ¼ −X þ VðuÞFXðVÞ þ
X
μ

V̄μðuÞLμ
XðVÞ; ð53Þ

where V̄μðuÞ≡ uτ̄μu−1, FXðVÞ and Lμ
XðVÞ are functions of

V ∈ QD−1, with both VðuÞFXðVÞ and V̄μðuÞLμ
XðVÞ com-

muting with the element VðuÞ for all μ.
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Lemma. Define V̄μ
IJ ¼ uðVÞτ̄μIJuðVÞ−1, the solution

function LIJ ≡ L∶QD−1 ↦ soðDþ 1Þ of the equations

TrðLduu−1Þ ¼ 0; LIJVIJ ¼ 1; LIJV̄μ
IJ ¼ 0; ∀μ;

ð54Þ

appears in the Lie derivative of the Hopf map section
uðVÞ as,

LX ¼ 2FX; ð55Þ

and it satisfies the key coherence identity

LX̂LY − LŶLX ¼ L½X;Y�: ð56Þ

Finally, the general solution to this identity satisfying the
conditions LIJVIJ ¼ 1; LIJV̄μ

IJ ¼ 0 is given by

L0 ¼ Lþ dα ð57Þ

where α is a function on QD−1.
Proof. Takeing the interior product of an arbitrary vector

field X̂ with the defining expression TrðLduu−1Þ ¼ 0
and recalling that by definition of Lie derivative
ðLX̂uÞu−1 ¼ iX̂ðduu−1Þ, we have

0 ¼ iX̂TrðLduu−1Þ ¼ TrðLðLX̂uÞu−1Þ
¼ −TrðLXÞ þ FXTrðLVÞ ¼ −LX þ 2FX; ð58Þ

where we used LIJVIJ ¼ 1; LIJV̄μ
IJ ¼ 0, and (53). Hence

we proved 2FX ¼ LX.
To prove (56) we first observe that

LX̂ðduu−1Þ ¼ iX̂ðduu−1 ∧ duu−1Þ þ d½ðLX̂uÞu−1�;

¼
�
−X þ 1

2
VLX þ

X
μ

V̄μL
μ
X; duu

−1
�

þ d

�
−X þ 1

2
VLX þ

X
μ

V̄μL
μ
X

�
;

¼ 1

2
VdLX þ V̄μdL

μ
X − ½X; duu−1�; ð59Þ

where we used the definition of Lie derivative in the first
equality, (53) in the second and dV ¼ ½duu−1; V� with
dV̄μ ¼ ½duu−1; V̄μ� in the third. The above then leads to

0 ¼ LX̂TrðLduu−1Þ ¼ TrððLX̂L − ½L; X�Þduu−1Þ þ dLX

ð60Þ

with the help of the equalities LIJVIJ ¼ 1 and LIJV̄μ
IJ ¼ 0.

Finally, by taking the interior product of the last equation
with Ŷ we get

LŶLX ¼ Tr

�
ðLX̂L− ½L;X�Þ

�
Y −

1

2
VLY −

X
μ

V̄μL
μ
Y

��
;

¼LX̂LY −L½X;Y�−
1

2
LYðTrððLX̂LÞVÞ−TrðL½X;V�ÞÞ

−
X
μ

Lμ
YðTrðLX̂LV̄μÞ−TrðL½X; V̄μ�ÞÞ;

¼LX̂LY −L½X;Y�−
1

2
LYLX̂ðTrðLVÞÞ

−
X
μ

Lμ
YLX̂TrðLV̄μÞ; ð61Þ

and since the last two terms vanish, we obtain the
coherence identity (56).
Suppose we have another solution L0 to the coherence

identity and also the conditions LIJVIJ ¼ 1 and LIJV̄μ
IJ ¼ 0.

Using the 1-form β≡ −TrðL0duu−1Þ we see can that its
contraction with X̂

βX ≡ iX̂β ¼ −TrðL0ðLX̂uÞu−1Þ ¼ L0
X − LX ð62Þ

is the difference between the two solutions and thus also a
solution to the coherence identity. This, together with the
definition of the differential iX̂iŶdβ ¼ LŶβX − LX̂βY þ
β½X;Y�, implies that dβ ¼ 0, which means that there exist
a function α locally such that β ¼ dα at least, and thus
L0
X ¼ LX þ LX̂α. This proves the gauge freedom (57). ▪
Finally, let us recall that the freedom in choosing the

Hopf section lies in the two function parameters αðVÞ and
α0μðVÞ in the expression u0ðVÞ≡ uðVÞeαðVÞτoþα0μðVÞτμ for all
possible choices of the sections. Applying Eq. (53) to this
u0, we immediately get L0

X ¼ LX þ iX̂dα. Referring to (62),
we see now that the set of functions L satisfying the above
three key conditions is exactly the set of the function
coefficients for the component of ðduÞu−1 in the V direc-
tion, given under all possible choices of the Hopf section u.
Applying these conditions in the presympletic form ΩP, we
will now identify the Hamiltonian fields in P and compute
the Poisson brackets.

D. Computation of Hamiltonian vector fields
in presymplectic manifold P

Recall that we have obtained the presymplectic potential
ΘP ≔ 1

2
NTrðVduu−1Þ þ 1

2
Ndξ − 1

2
NTrðṼdũũ−1Þ induced

from the edge-simplicity constraint surface in the
SOðDþ 1Þ phase space. The potential defines a presym-
pletic form ΩP as

ΩP ¼ −dΘP ¼ 1

2
NTrðVduu−1 ∧ duu−1Þ

−
1

2
NTrðṼdũũ−1 ∧ dũũ−1Þ

−
1

2
dN ∧ ðdξþ TrðVduu−1Þ − TrðṼdũũ−1ÞÞ: ð63Þ
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To compute the associated Poisson brackets, we first need
to compute the Hamiltonian vector fields on P. Let us
denote the Hamiltonian vector field for the function f as χf,
where f ∈ fN; ξ; hX ≡ NVX; h̃X ≡ NṼXg. Using the def-
inition and iχfΩP ¼ −df, in the N ≠ 0 region the vector
fields could be checked to be given by

χhX ¼ 2X̂ − LXðVÞ∂ξ; χh̃X ¼ −2 ˆ̃X − LXðṼÞ∂ξ;

χN ¼ −2∂ξ; χξ ¼ 2∂N þ 4

N
d½L; V� þ 4

N
d½L; Ṽ�: ð64Þ

Here X̂ and d½L; V� are the vector fields generating the
adjoint action on QD−1 labeled by V, associated, respec-

tively, to the algebra elements X and ½LðVÞ; V�. Similarly, ˆ̃X

and d½L; Ṽ� are the vector fields generating the adjoint action
on QD−1 labeled by Ṽ, associated, respectively, to the
algebra elements X and ½LðṼÞ; Ṽ�.
Proof. To check the first equation of (64), we first note

that for a constant X we have

iX̂ΩP ¼ −
1

2
TrðdðNVÞXÞ þ 1

4
LXðVÞdN: ð65Þ

Since we have i∂ξΩP ¼ 1
2
dN, the first equation of (64)

follows immediately. The computation for χh̃X is similar
with an opposite sign due to the reversal of the orientation.
To check for χξ, we first evaluate

i∂N
ΩP ¼ −

1

2
dξ −

1

2
TrðVduu−1Þ þ 1

2
TrðṼdũũ−1Þ; ð66Þ

and then we have

id½L;V�Ω ¼ −
1

2
NTrð½V; ½L; V��duu−1Þ

−
1

2
dNTrððV − LÞ½L; V�Þ;

¼ −
1

2
NTr

�
1

4
ðL − TrðLVÞVÞduu−1

�

−
1

2
dNTrððV − LÞ½L; V�Þ ¼ 1

4
NTrðVduu−1Þ;

ð67Þ

where we decomposed L as L ¼ ðL − TrðLVÞVÞ þ
TrðLVÞV and used the definitional properties of L. A
similar calculation shows that

id½L;Ṽ�Ω ¼ −
1

4
NTrðṼdũũ−1Þ; ð68Þ

and thus the last equation of (64) follows ▪

Let us now address the degeneracy of ΩP resulting to the
nonuniqueness of the Hamiltonian vector fields. While ΩP
is trivally closed as coming from a local symplectic
potential, it has degeneracies in the directions tangent to
the SOðD − 1Þ fiber and also in the boundary region with
N ¼ 0. There are mainly two ways to reduce the manifold
P to obtain a sympletic manifold. The first way is to simply
consider a new space P� ≔ PjN≠0 and then reduce it
respected to the SOðD − 1Þ fiber, then the result would
be a (4D − 2)-dimensional sympletic manifold denoted by
P̌�. The second way is to reduce the presymplectic
manifold by the kernel of ΩP, i.e., to consider the quotient

manifold ¯̌P≡ P=KerðΩPÞ; the result would be a symplec-
tic manifold with nondegenerate 2-form given by the
quotient projection of ΩP.

In obtaining the space ¯̌P, we have introduced the
equivalence classes under the equivalence relation p ∼ p0

whenever p0 ¼ eD̂p, with D̂ ∈ KerðΩPÞ and p; p0 ∈ P.
The operation is thus determined by the vector fields in the
kernel of ΩP. Since it is obvious that all tangent vector
fields T̂SOðD−1Þ of the fiber SOðD − 1Þ belong to KerðΩPÞ,
we may first construct P̌ ¼ P=T̂SOðD−1Þ ¼ QD−1 × T�S1 ×
QD−1. Then, to remove the remaining kernel in the region
with N ¼ 0, we look for the vector fields preserving
the region while having the interior products with ΩP
proportional to N. The set of such vector fields turn out to
be given by

D̂X ≡ χhX − χh̃Y ; ð69Þ

where Y ¼ −g−1Xg with g ¼ ueξτ0eξ̄
μτ̄μ ũ−1 being a group

element rotating V to Ṽ ¼ −g−1Vg. Indeed, using the fact
that VX ¼ ṼY , the interior product of the field with the
symplectic 2-form is

iD̂X
ΩP ¼ −dðNVX − NṼYÞ − NTrðṼdYÞ

¼ −NTrð½V; X�dgg−1Þ; ð70Þ

which vanishes at N ¼ 0. Next, to find the equivalence
class generated by the vector fields D̂X, we note that the
actions of the fields should rotate jointly the vectors V and
Ṽ, that is we have D̂XðVÞ ¼−½X;V�, D̂XðṼÞ¼−g−1½X;V�g.
Further, the actions preserves the group element g, as
demonstrated by the fact that

D̂XðgÞ ¼ −Xg − gY ¼ 0: ð71Þ

Therefore, given p≡ ðV; Ṽ; 0; ξÞ and p0 ≡ ðV 0; Ṽ 0; 0; ξ0Þ,
we have p0 ∼ p if and only if the two are related by a joint
rotation in V and Ṽ and a g-preserving translations in ξ.
The two copies of QD−1 at the ends of each edge are
thus identified under this equivalence relation, and after
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the quotient we are left with a manifold SOðDþ 1Þ=
SOðD − 1Þ parametrized by only V and ξ.
Let us observe that the two quotient operations with

respected to T̂SOðD−1Þ and D̂X commute, since D̂X does not
change eξ

μτ̄μ ∈ SOðD − 1Þ, which is the degrees of freedom
reduced by T̂SOðD−1Þ. This fact can be illustrated as

where P̄ span P� for N ≠ 0 and SOðDþ 1Þ for N ¼ 0.

Similarly, ¯̌P span P̌� for N ≠ 0 and SOðDþ1Þ=SOðD−1Þ
for N ¼ 0.
Finally, let us point out that the symplectic potential is

invariant under the Z2 transformation

ðV; Ṽ; N; ξ; ξ̄μÞ → ð−V;−Ṽ;−N;−ξ; _ξμÞ: ð72Þ
This can be seen via the transformations of the Hopf
sections in the form of u → ue2πτ13 and ũ → ũe2πτ13 , with

τ13 ¼ δ½I1 δ
J�
3 . Clearly these transformations leave ΘP invari-

ant since dðue2πτ13Þðue2πτ13Þ−1 ¼ duu−1. Hence (72) is a

canonical transformation, and both P̌�=Z2 and ¯̌P=Z2 are
again symplectic manifolds.

E. Consistency with natural Poisson structures
of constituent spaces

We have seen that the manifold P ¼ QD−1 ×QD−1×
T�S1 × SOðD − 1Þ, viewed essentially as the edge-sim-
plicity constraint surface of the LQG phase space, is
equipped with the induced presymplectic potential ΘP.
On the other hand, the space is also a product space of the
components QD−1 and T�S1 each having a natural phase
space structure. Therefore, the product space P is also
endowed with a class of natural Poisson structures given by
the consistent gluing of the constituent spaces’ symplectic
structures. As it turns out, the Poisson structure given byΘP
indeed belongs to such a class.
The natural phase space structure of the constituent

spaces QD−1 and T�S1 are well known, and they are given
by the following:

(i) The cotangent bundle T�S1 with the symplectic
2-form ΩT�S1 ≔ 1

2
dN ∧ dξ, giving the Poisson

bracket fξ; Ng ¼ 2.
(ii) The manifold QD−1 with the natural invariant

Kahler metric and the corresponding Kahler form
ΩQ, which is induce from the standard Hermitian
metric on CDþ1 and rescaled into the form
�ΩN2=2 ≔ �NΩQ. The sympletic form �NΩQ

gives the Poisson brackets fNVIJ; NVKLg ¼
� N

2
ðδILVJK þ δJKVIL − δIKVJL − δJLVIKÞ, where

it becomes clear that N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NVIJNVIJ

p
is a

Casimir quantity satisfying fN;NVIJg ¼ 0.
Using the presymplectic potential ΘP, one could compute
the Poisson brackets and obtain

fξ; Ng ¼ 2;

fNVIJ; NVKLg

¼ N
2
ðδILVJK þ δJKVIL − δIKVJL − δJLVIKÞ;

fNṼIJ; NṼKLg

¼ −
N
2
ðδILṼJK þ δJKṼIL − δIKṼJL − δJLṼIKÞ;

fVIJ; Ng ¼ fṼIJ; Ng ¼ 0; ð73Þ

fVIJ; ṼKLg ¼ 0; ð74Þ

and

fξμ; ·g ¼ 0; ∀ · : ð75Þ

From the above, the ΘP indeed endows the source and
target QD−1 spaces, respectively, with the symplectic forms
NΩQ and −NΩQ. Also, from Eq. (74) the two spaces
truly Poisson commute. As for the space T�S1, the induced
symplectic form is also identical with ΩT�S1 . Lastly, the
vanishing brackets in Eq. (75) indicate the degeneracy in
ΘP in the SOðD − 1Þ directions. Separately in the sym-
plectic manifolds T�S1 and QD−1, the Hamiltonian vector
fields of the functions fhX; h̃X; N; ξg generating the above
brackets can be obtained respectively according to ΩT�S1

and ΩQ. In comparison, the Hamiltonian vector fields in P
of the same functions according to ΩP clearly differ by the
terms depending on the L as given in (64). As expected,
these difference terms are generated by ΩP via its mixing
components between T�S1 and QD−1, which in turn is a
result of N becoming a phase space degree of freedom in P.
The Poisson brackets given by ΘP between ξ and V, or

the ones between ξ and Ṽ, turn out to be nontrivial. The
results of the brackets are given by a function L∶QD−1 →
soðDþ 1Þ in the form

fξ; NVIJg≡ LIJðVÞ; fξ; NṼIJg≡ LIJðṼÞ: ð76Þ

Remarkably, the equations in (76) are taken as the
definition equations for the function L, together with the
brackets (73), and already constrained the set of possible
LIJ to be exactly the set of results of the brackets fξ; NVIJg
and fξ; NṼIJg given by the potential ΘP corresponding to
our choice of the Hopf sections. This result can be verified
by the fact that, the function L defined by Eq. (76) is
constrained by three conditions given by the above Poisson
brackets (73), and these three conditions are exactly the
definition of L in the Lemma in Sec. IV C, which can be
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illustrated as follows. The first of the conditions comes
from the equation

NVIJLIJ ¼NVIJfξ;NVIJg ¼ 1

4
fξ;N2g ¼ 1

2
Nfξ;Ng ¼N;

ð77Þ

which gives the normalization condition LIJðVÞVIJ ¼ 1.
The second condition comes from

NVIJLKLϵIJKLM̄ ¼ NVIJfξ; NVKLgϵIJKLM̄
¼ 1

2
fξ; NVIJNVKLgϵIJKLM̄ ¼ 0; ð78Þ

where we use the fact that V as a bivector satisfies
VIJVKLϵIJKLM̄ ¼ 0, with M̄ being a (D − 3)-tuple asym-
metry index. This result implies the orthogonality condition
LIJðVÞV̄μ

IJðVÞ ¼ 0; ∀ μ, where V̄μ
IJðVÞτIJ ∈ soðDþ 1Þ

denotes the basis members that commutes with
VIJτ

IJ ∈ soðDþ 1Þ. Finally, the third constraint just comes
from the Jacobi identity

fξ; fNVIJ; NVKLgg þ fNVIJ; fNVKL; ξgg
þ fNVKL; fξ; NVIJgg≡ 0; ð79Þ

from which we get the following coherence identity,

fNVIJ;LKLðVÞg− fNVKL;LIJðVÞg

≡ 1

2
ðδILLJKðVÞ þ δJKLILðVÞ− δIKLJLðVÞ− δJLLIKðVÞÞ:

ð80Þ

Similarly, the we have the conditions LIJðṼÞṼIJ ¼ 1,
LIJðṼÞV̄μ

IJðṼÞ ¼ 0; ∀ μ and

fNṼIJ;LKLðṼÞg−fNṼKL;LIJðṼÞg

≡−
1

2
ðδILLJKðṼÞþδJKLILðṼÞ−δIKLJLðṼÞ−δJLLIKðṼÞÞ:

ð81Þ

The Hamiltonian action (51) can be used to write the
coherence identity (80) and (81) as an identity involving
Lie derivatives: contracting (80) and (81) with XIJ and YKL,
we get

LX̂LY − LŶLX ¼ L½X;Y�; ð82Þ

where LX ≡ TrðLXÞ is the component of L along the
algebra element X. Now it is easy to see these three
conditions makes the Lemma above applicable and we can
verify the result given in the beginning of this paragraph.

V. SCHEME OF DISCRETIZED GAUSS
CONSTRAINTS AND SIMPLICITY

CONSTRAINTS REDUCTION PROCEDURE

So far we have discussed the phase space structure
mainly associated with a single edge of the graph γ, for
studying the edge-simplicity constraint surface. To carry on
the constraint reduction including the Gauss constraint
GIJ

v ≈ 0 and vertex-simplicity constraint SIJKLv ≈ 0, we
should now switch to the discrete phase space correspond-
ing to the full graph γ. Clearly, this phase space is just given
by the direct product Pγ ≡ ×eT�SOðDþ 1Þe, with any two
flux-holonomy variables associated with distinct edges
Poisson commuting with each other. Then, by solving
the edge-simplicity constraint equations on all of the edges
of γ, the above study can be applied to the result constraint
surface Ps

γ ≡ ×eT�
sSOðDþ 1Þe in a direct manner.

Recall that, the set fGIJ
v ≈ 0; SIJKLe ≈ 0g of the discre-

tized Gauss and edge-simplicity constraints form a first
class constraint system in Pγ, with the algebra given in
(36). Therefore, we may perform a standard sympletic
reduction with respect to this constraint system. Then, we
may treat the vertex-simplicity constraint SIJKLv ≈ 0 as
additional conditions, selecting from the reduced phase
space the correct physical degrees of freedom. Now we
proceed with the reductions upon Pγ through the follow-
ing steps.

(i) Symplectic reduction with respected to edge-
simplicity constraint SIJKLe ≈ 0

From our previous analysis, the edge-simplicity
constraint surface Ps

γ in Pγ would be given by
×eT�

sSOðDþ 1Þe, which is related to the full angle-
bivector space Pγ defined as

Pγ ≡ ×ePe;

Pe ¼ Qe
D−1 ×Qe

D−1 × T�S1e × SOðD − 1Þe; ð83Þ

where each DðDþ 1Þ − ðD−1ÞðD−2Þ
2

dimensional
space Pe is described by the coordinates ðNe; Ve;
Ṽe; ξe; ūeÞ. Following our analysis above, we
conclude that PγjNe≠0 provides a double-covering
coordinatization for Ps

γjXe≠0, and the symplecto-
morphism (up to some gauge transformation)

Ps
γ ≅ P̄γ=Z2; ð84Þ

with P̄γ ≔ ×e∈γP̄e and P̄e as defined in Sec. IV D.
Moreover, the gauge orbits generated by edge-
simplicity constraints in Pγ correspond to the
degrees of freedom of ūe. Therefore, the resulted
reduced phase space PS

γ with respected to edge-
simplicity constraint can be characterized by the
symplectomorphism
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PS
γ ≅

¯̌Pγ=Z2; ð85Þ

with ¯̌Pγ ≔ ×e∈γ
¯̌Pe, P̌γ ≔ ×e∈γP̌e and P̌e ≔ Qe

D−1 ×

Qe
D−1 × T�S1e and ¯̌Pe as defined in Sec. IV D. In

particular, the reduced angle-bivector variables
ðNe; Ve; Ṽe; ξe; Þ provide a double-covering coordi-
natization for the reduced phase space PS

γ in the
Xe ≠ 0 region.

(ii) Symplectic reduction with respected to discretized
Gauss constraints GIJ

v ≈ 0
Recall that the discretized Gauss constraints act-

ing upon Pγ take the form Gv ¼
P

ejsðeÞ¼v XeþP
ejtðeÞ¼v X̃e ≈ 0, and it is straightforward to see

that the constraints they induce in PS
γ are just

the closure constraints Cv ≔
P

ejsðeÞ¼v NeVe þP
ejtðeÞ¼v NeṼe ≈ 0 we mentioned in the beginning.

The symplectic reduction inside PS
γ can be perform

using the closure constraint with the results given by
the analysis described Sec. III A. Utilizing the
solutions (13), the obtained reduced phase space
PS;G

γ is characterized by the symplectomorphism

PS;G
γ ≅ ¯̌Hγ=Z2; ð86Þ

where we define

¯̌Hγ ≔ ¯̌Pγ==SOðDþ 1ÞVðγÞ;
Ȟγ ≔ P̌γ==SOðDþ 1ÞVðγÞ ¼ ð×eT�S1eÞ × ð×vPN⃗v

Þ;
ð87Þ

with VðγÞ being the number of the vertices in γ.
Observe that the double quotient operation in (87) is
“nonlocal” in terms of the original phase space
variables, due to the fact that the variables across
the two connected vertices for each edge subspace
are correlated by the condition X−e ¼ −g−1e Xege.
This technical difficulty is removed by the para-
metrization (38), through which the bivectors Ve and
Ṽe are assigned independently, with the relation
X−e ¼ −g−1e Xege implicitly ensured by the defini-
tion of the angle variables. The imposition of the
closure constraints and the quotient by SOðDþ 1ÞVγ

can then be taken at each of the vertices separately.
Further, the reduced space carries the T�S1 degrees
of freedom at every edge in the following manner.
The SOðDþ 1ÞVγ gauge orbits in this context are
generated by the closure constraints acting on the
remaining connection variables ξe in PS

γ ; according
to (76) the actions are given by

fξe; CIJ
sðeÞg ¼ LIJðVeÞ; fξe; CIJ

tðeÞg ¼ LIJðṼeÞ:
ð88Þ

Since ge andhΓe transform identically as anSOðDþ1Þ
holonomy over e and notice their decomposition (16),
referring to (17) we infer that ξe and ηe behave
the same under the transformations by the closure
constraint:

fηe; CIJ
sðeÞg ¼ fξe; CIJ

sðeÞg ¼ LIJðVeÞ;
fηe; CIJ

tðeÞg ¼ fξe; CIJ
tðeÞg ¼ LIJðṼeÞ: ð89Þ

This implies that the extrinsic curvature 1-form K⊥
e

identified in (21) is indeed SOðDþ 1Þ invariant.
Hence, assuming that the graph γ is such that ηe
can be given globally without ambiguities to ensure
that the Levi-Civita holonomy hΓe is properly defined
to capture the intrinsic curvature by Eq. (16), we may
use the gauge invariant ξoe ≔ ξe − ηe in place of the ξe
in ðNe; ξeÞ ∈ T�S1 and obtain the description of the
SOðDþ 1Þ-invariant degrees of freedom in T�S1
under the coordinates ðNe; ξoeÞ.

(iii) Imposing vertex-simplicity constraints SIJKLv ≈ 0.
As mentioned, here we treat the vertex-simplicity

constraint SIJKLv ≈ 0 as second-class constraints in
selecting the physical states of the discrete geom-
etries from which the ADM data can be recovered.
Indeed, with fGv; Svg ∝ Sv and fSe; Svg ∝ Se, the
vertex-simplicity constraints can be consistently
imposed as such in the reduced phase space PS;G

γ

and Ȟγ , where they take the form SIJKLv ≡
V ½IJ
e{ V

KL�
e| ≈ 0, (∀ e{; e|∶bðe{Þ ¼ bðe|Þ ¼ v). Denot-

ing the solution subspace in Ȟγ satisfying SIJKLv ¼ 0

as Ȟs:
γ , we refer again to the results in Sec. III A and

find that the subspace is characterized by

Ȟs:
γ ¼ ð×eT�S1eÞ × ð×vPs:

N⃗v
Þ: ð90Þ

To finalize our procedure, we divide Ȟs
γ . by the

kernel of the reduced symplectic 2-form
Ωγ ≡ ×eΩPe

==SOðDþ 1ÞVγ , to remove the artificial
degeneracy resulted from the parametrization singu-
larity described in Sec. IV D. Then we arrive the

final space ¯̌Hs:
γ ≔ Ȟs:

γ =KerðΩγÞ, which is isomorphic
by construction to the vertex-simplicity constraint
surface in PS;G

γ as

¯̌Hs:
γ =Z2 ≅ PS;G

γ jSIJKLv ¼0 ð91Þ
after moduling the identifying operation Z2.

Based upon this reduction procedure, we claim that the
kinematic physical degrees of freedom of the theory on a
given graph γ are captured by the collection of solutions of

vertex-simplicity constraints in the phase space ¯̌Hγ=Z2.
Let us supply the above reduction procedure in the

discrete LQG phase space with a classical picture under
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proper continuous limits for the Regge sector discussed
in Sec. III B, with the interpretation of the variables
ðVe; Ṽe; Ne; ξe; ξ

μ
eÞ as the extrinsic and intrinsic geometri-

cal data. Specifically, recall that the Ne has the meaning of
the area of the (D − 1)-dimensional face dual to e, and ξoe
represents the norm of the extrinsic curvature 1-form
integrated along e are clear. A concrete translation between
ðge; XeÞ and the hypersuface ADM data ðπaIJðxÞ; KaIJðxÞÞ
can be thus established using the straightforward conditions
ge ≃ I þ Ae and Xe ≃ πe, with which we have

1

2β
TrðXedgeg−1e Þ ≃ 1

β
πeIJdA

IJ
e : ð92Þ

In the limit of infinitely short edges one may then read off
the symplectic form Ω ¼ −dΘ ¼ 1

β dA ∧ dπ, and the
familiar brackets of loop quantum gravity follow,

fAIJ
e ðxÞ; πe0KLðyÞg ¼ 2βδ½IKδ

J�
L δ

e0
e δ

ðDÞðx − yÞ: ð93Þ

Also, recalling the splitting

AIJ
a ¼ ΓIJ

a ðπÞ þ βKIJ
a ð94Þ

with ΓIJ
a ðπÞ being a function of πbKL satisfying ΓIJ

a ðπÞ ¼
ΓIJ
a ðeÞ on simplicity constraint surface, one recovers the

Poisson bracket fKIJ
e ðxÞ; πe0KLðyÞg ¼ 2δ½IKδ

J�
L δ

e0
e δ

ðDÞðx − yÞ.
The same continuous limit also reveals the classical
counterpart to our simplicity constraint reduction in the
discrete phase space. Through the correspondence ge ¼
ueeξ

eτoeξ̄
μ
e τ̄μ ũ−1e and ueeη̄

μ
e τ̄μeη

eτo ũ−1e ≃ I þ Γe in the continu-
ous limits being taken, we have

Ke ≃
1

β
ueðξoeτo þ ξ̌μe τ̄μÞu−1e ; ð95Þ

with the notation eξ̌
μ
e τ̄μ ≡ e−η̄

μ
e τ̄μeξ̄

μ
e τ̄μ . Recalling our corre-

spondence K⊥
e ≔ 1

β ueðξoeτoÞu−1e , K==
e ≔ 1

β ueðξ̌μe τ̄μÞu−1e , we
can clearly see that despite of the anomaly in the vertex-
simplicity constraints, our reduction procedure correctly
removes the component K==

e , while preserving the compo-
nent K⊥

e that contributes to the extrinsic curvature as
expressed in the same form as in the classical Ashtekar
formulation:

trðKeπ
e0 Þ ¼ 1

β
trðueðξoeτo þ ξ̌μe τ̄μÞu−1e πe

0 Þ

¼ 1

β
trðueðξoeτoÞu−1e πe

0 Þ ¼ trðK⊥
e π

e0 Þ;

bðeÞ ¼ bðe0Þ: ð96Þ
Indeed, as a generator of the group preserving N bðeÞ ¼
N bðe0Þ, the component K==

e has no projection on the

bivector πe
0 ≃ Xe0 ¼ Ne0Ve0 ¼ Ne0N

½I
bðe0ÞV

J�
e0 and thus pro-

vides no contribution to the extrinsic curvature as it showed
in above Eq. (96).
This procedure is thus consistent to the symplectic

reduction with respect to simplicity constraint in connec-
tion phase space in which it act as a well first-class
constraint, where K==

e play the same role as the component
K̄aIJ in connection phase space, and trðKeπ

e0 Þ is proportion
to the densitized extrinsic curvature K̃ b

a along the graph in
continuum limit. This result means that we can choose the
SOðD − 1Þ fibers as the “gauge orbit” of simplicity
constraint in the discrete phase space, because the redun-
dant degrees of freedom K==

e are precisely those trans-
formed along the SOðD − 1Þ fibers, which is same as how
K̄aIJ acts along the true gauge orbits of simplicity con-
straint in continuum connection phase space.
Now based on the above discussions, we have demon-

strated that
(i) On both edge and vertex-simplicity constraints sur-

face, the degrees of freedoms in ξ̄μe [or equivalent,
the SOðD − 1Þ fiber] of the discrete LQG phase
space represent “gauge” degrees of freedom playing
the same role of the components K== eliminated in
the symplectic reduction with respect to the sim-
plicity constraints in the original Ashtekar formu-
lation of all dimensional LQG in the continuous
phase space.

Remarkably in this sense, under the correspondence
between the generalized twisted geometry variables and
smeared Ashtekar variables in the Regge sector, the
continuous limit of our reduction procedure indeed recov-
ers the symplectic reduction in the Ashtekar formula-
tion with respect to the original Gauss and simplicity
constraints.

VI. CONCLUSION AND OUTLOOK

To better explore the spacetime geometry information
encoded in the higher-dimensional spin-network states, we
proposed a new kinematic gauge-reduction procedure for
the SOðDþ 1Þ LQG at the classical and discrete level.
The reduction takes place with respect to the anomalous
kinematic constraint system consisting of the discrete
simplicity constraints fSIJKLe ≈ 0; SIJKLv ≈ 0g and the dis-
crete SOðDþ 1Þ Gauss constraints GIJ

v ≈ 0, defined in the
SOðDþ 1Þ LQG phase space associated with a given graph
for the spin network states.
Motivated by our previous work on the weak solutions of

the quantum vertex-simplicity constraints given by the
coherent intertwiners, we generalized the twisted-geometry
parametrization of the SUð2Þ LQG phase space, into the
angle-bivector parametrization of the constraint surface of
edge-simplicity constraints SIJKLe ≈ 0 in the SOðDþ 1Þ
LQG phase space. Further, when restricted to the common
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constraint surface of the full kinematic constraints
fGIJ

v ≈ 0; SIJKLe ≈ 0; SIJKLv ≈ 0g, the new parametrization
endows the angle-bivector variables with the meaning of
the constrained smeared formulations of Ashtekar varia-
bles. In particular, the SOðD − 1Þ angle variables are
identified with the smeared Ashtekar connection compo-
nents that are pure-gauge corresponding to the simplicity
constraint in the original classical and continuous theory.
Through studying the properties of the Hopf sections in

SOðDþ 1Þ Hopf fiber bundle, we obtained the Poisson
algebra among the angle-bivector variables, and sub-
sequently the action of the constraint system on the
twisted-geometry variables. Then, the full symplectic
reduction with respect to the first-class subsystem of the
discrete constraints fGIJ

v ≈ 0; SIJKLe ≈ 0g is performed and
results to the gauge-invariant reduced phase space PS;G

γ .
Crucially as we discovered, when again restricted to the
common constraint surface of the full system of the discrete
constraints, the first-class subsystem generates the orbits
that recover the gauge orbits generated by the original
continuous simplicity and Gauss constraints in the con-
tinuous limits. In particular, the edge-simplicity constraints
generate precisely the transformations in the SOðD − 1Þ
angle variables. Finally, we demonstrated that when the
remaining anomalous vertex-simplicity constraints are
imposed as additional constraints upon the gauge-invariant

reduced phase space, the selected state space ¯̌Hs:
γ ⊂ PS;G

γ

truly describes the discrete ADM data in the form of Regge
hypersurface geometry, up to the shape matching condition.
We are thus led to the new point of view, in which the

(quantum) discreteGauss and edge-simplicity constraints are
the true generators of the kinematic gauge symmetry for all-
dimensional LQG, while the anomalous vertex-simplicity
constraints only act as addition state-selection laws. From a
different view, this new gauge reduction has supplemented
the missing pieces in our previous prescription of the weak
solutions to the quantum vertex-simplicity constraint, where
the weak solutions are interpreted as semiclassical polytopes
used to assemble the spatial geometry. Indeed, the absent
description of the extrinsic curvature components in the
Ashtekar connection are captured by the angle variables
parametrizing the holonomies, left out from the previous
prescriptions based on only the bivectors labeling coherent
intertwiners. Remarkably, our gauge orbit reductions leave
the only angle variable ξoe giving precisely the (smeared)
Regge extrinsic curvature, for the states on the vertex-
simplicity constraint surface in the reduced phase space.
Our results point to two interesting future research

directions based upon the generalized twisted-geometry
parametrization of the SOðDþ 1Þ LQG phase space.
First, we have assumed the existence of the coherent
spin-network states sharply peaked in the angle-bivector
variables—this was based on the known explicit construc-
tion of the SUð2Þ coherent spin-network states sharply
peaked in the twisted-geometry variables [10]. As indicated

in this earlier study, these states are highly valuable for not
only do they recover the boundary semiclassical states for
the spinfoam models (a covariant version of LQG), but they
also serve as a special type of the Thiemann-Hall’s com-
plexifier coherent states in canonical LQG [18–20].
Through these connections, the clear intrinsic and extrinsic
geometry interpretations via the twisted-geometry variables
have illuminated many important perspectives of the classi-
cal limits for both canonical and covariant LQG in (1þ 3)
dimension. In the same manner, we expect our angle-
bivector parametrization to offer valuable insights to the
covariant and canonical LQG in higher dimensions, for
which the geometric meaning of the coherent states has
been even more elusive. In fact, it is known that the cur-
rently prevailing Thiemann-Hall’s SOðDþ 1Þ coherent
states are too complicated for explicit computations. It is
our hope that the angle-bivector coherent states, which
could be constructed and studied based on the recent works
[21], may serve as the alternative coherent states with the
much simpler gauss distribution formulation and clear
geometric meanings, for clarifying the semiclassical behav-
ior of the SOðDþ 1Þ LQG. The second direction is toward
the physical evolutions in canonical SOðDþ 1Þ LQG. This
may be pursued either in the context of the Dirac theory
with the Hamiltonian operators (arbitrary combinations of
the quantum scalar and vector constraints) to be solved as
additional quantum constraints and the local observables to
be constructed, or in the context of a classically depar-
ametrized theory with one physical Hamiltonian operator
giving the evolution in a specified notion of time. In both
cases, the new crucial challenge here is to deal with the
algebra involving the quantum Hamiltonian operators. As
mentioned, although the full system of Gauss, simplicity and
Hamiltonian constraints are of first class in the continuous
classical theory, it inevitably becomes anomalous under the
loop quantization [12,22]—especiallywith the typical closed
loop holonomy representation for the curvature factors in the
Hamiltonian operators. Our new insights in the quantum
orbits for the simplicity constraints may provide an approach
to the problem that is closely guided by the physical and
geometric picture. For instance in the context of the depar-
ametrized theory, our results suggest quantizing the discre-
tized physical Hamiltonian associated to each graph that is
gauge invariant with respect to just the quantum gauss
constraints and edge-simplicity constraints. This would lead
to the dynamics preserving the gauge symmetry, with which
one could then study the weak stability of the vertex-
simplicity constraints under the dynamics. Indeed, the
program in this manner would be guided by the ultimate
goal for the quantum evolutions of the Regge ADM data.
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