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To clarify the geometric information encoded in the SO(D + 1) spin-network states for the higher
dimensional loop quantum gravity, we generalize the twisted-geometry parametrization of the SU(2) phase
space for (1 + 3)-dimensional loop quantum gravity to that of the SO(D + 1) phase space for the all-
dimensional case. The Poisson structure in terms of the twisted geometric variables suggests a new gauge
reduction procedure, with respect to the discretized gauss and simplicity constraints governing the kinematics
of the theory. Endowed with the geometric meaning via the parametrization, our reduction procedure serves to
identify proper gauge freedom associated with the anomalous discretized simplicity constraints and
subsequently leads to the desired classical state space of the (twisted) discrete Arnowitt-Deser-Misner data.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1-4] as a candidate theory
of quantum gravity provides a possibility of deriving general
relativity (GR) from the foundation of plank-scale quantum
geometry. Thus the theory, in a broader context, provides a
concrete platform for exploring the relation between the
continuum classical GR variables and the discretized geo-
metric quantum data, such as those of the twistor theory and
Regge calculus [5,6]. On the other hand, it has been realized
that the correspondence between the field-geometric and the
quantum data is far beyond the issue of merely taking the
continuum limits. This is due to the fact that canonical GR is
governed by a constraint system, and the correspondence
may be fully revealed only for the physical degrees of
freedom—with all the constraints properly imposed in the
quantum theory. From the opposite direction of this view,
the concrete goal of recovering the familiar Arnowitt-Deser-
Misner data (ADM data) [7] from LQG may provide useful
instructions in tackling the abstract problems of quantum
constraint reductions in the theory.

A series of illuminating analysis in this direction has
been carried out in the case of the SU(2) formulation of
(1 + 3)-dimensional loop quantum gravity. Based on the
Ashtekar formulation of canonical GR using the SU(2)
densitized triad and connection conjugate variables, LQG
in this formulation has a kinematic Hilbert space spanned
by the spin-network states, each of which is given by a
network of the connection holonomies, with each edge of
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the graph of the network colored by a specific SU(2)
representation, and each of the vertices colored by an
intertwiner specifying a coupling among the neighboring
SU(2) representations. Under the well-defined flux-hol-
onomy geometric operators, the SU(2) representations
indicate the quanta of the triad fluxes as the area elements
dual to the graph’s edges, while the intertwiners indicate the
intersection angles amongst these triad-fluxes at the ver-
tices. This discretized distribution of the two-dimensional
spatial area elements with the intersection angles leads to a
specific notion of quantum geometry that is the foundation
of LQG. The classical constraints—the scalar, vector and
SU(2) Gauss constraints—can be represented via the flux-
holonomy operators for the quantum theory. It has been
shown that the imposition of the quantum Gauss constraints
on the coherent spin-network states gives rise to a proper
semiclassical symplectic reduction, in the holonomy-flux
phase of the discretized Ashtekar formulation on the given
graph. Remarkably, in the reduced state space, the coherent
spin-network states satisfying the quantum Gauss con-
straints not only describe the intrinsic spatial geometry built
from the polytope-cells dual to the network [5,8,9], but also
carry precisely the right data to specify the extrinsic
curvature of the hypersurface made of the polytopes
[6,10]. Through this first stage of the semiclassical gauge
reduction, a notion of kinematic ADM data may thus
appear in the discrete form of Regge geometry, upon which
the further reductions with the momentum and scalar
constraints should to be carried out. The quantum vector
and scalar constraints take much more complicated forms
in the flux-holonomy operators, and unlike the quantum
Gauss constraint, their anomalous algebra is no longer of
first class. With the quantum anomaly hindering the
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standard Dirac procedure mirroring the classical gauge
reduction, the treatment of these loop-quantized ADM
constraints remains a crucial challenge for LQG tackled
by many ongoing projects.

As we introduced above, loop quantum gravity is first
constructed as a quantum theory of GR in four dimensional
spacetime. Nevertheless, with the various classical and
quantum gravity theories in higher-dimensional spacetimes
(i.e., Kaluza-Klein theory, super string theories) showing
remarkable potentials in unifying gravity and other funda-
mental interactions, it has been recognized that the frame-
work of arbitrary dimensional loop quantum gravity may
serve as a novel approach toward the higher-dimensional
ideas of unification upon the background-independent and
nonperturbative construction of the discretized quantum
geometry. Pioneered by Bodendorfer, Thiemann and
Thurn [11-13], the loop quantization approach for general
relativity in all dimensions has been developed. In the
context of the higher dimensional loop quantum gravity,
the challenge of loop quantum anomaly already exists at the
kinematic level before the accounts of the quantum ADM
constraints; though, here it is in a simpler form for us to
develop concrete insights and solutions to the problem. In
detail, the all dimensional LQG is based on the universal
Ashtekar formulation of (1 + D)-dimensional general rela-
tivity in the form of the SO(D + 1) Yang-Mills theory, with
the kinematic phase space coordinatized by the canonical
pairs (A, 7KL), consisting of the spatial SO(D + 1)
connection fields A,;; and the vector fields 7z”XL. In this
formulation, the theory is governed by the first class system
of the SO(D + 1) Gauss constraints, the (D + 1)-dimen-
sional ADM constraints and the additional constraints
called the simplicity constraints. Taking the form
Sgbe, i= nW glPIKLL the simplicity constraints generate
extra gauge symmetries in the SO(D + 1) Yang-Mills phase
space. It is known that the phase space correctly reduces to
the familiar ADM phase space after the symplectic reduc-
tions with respected to the Gauss and simplicity constraints.
Similar to the case of the SU(2) formulation, the loop
quantization of the SO(D + 1) formulation leads to the spin-
network states of the SO(D + 1) holonomies carrying the
quanta of the flux operators representing the flux of z°X~
over a (D — 1)-dimensional surface. Following the previous
experience, one may attempt to look for the all-dimensional
Regge ADM data encoded in the SO(D + 1) spin-network
states, through a gauge reduction procedure with respect to
both the quantum SO(D + 1) gauss constraints and the
quantum simplicity constraints.

This is where the challenge arises—the standard quan-
tum simplicity constraints in LQG carry serious quantum
anomaly. As a result of the loop quantization, the Abelian
algebra of the classical simplicity constraints becomes the
deformed algebra of the quantum simplicity constraints
that is not even close [13]. As an important consequence,
the transformations generated by these anomalous quantum

simplicity constraints can happen between states supposed
to be physically distinct in terms of the semiclassical limits.
Strong impositions of the quantum simplicity constraints
thus lead to overconstrained physical states unable to
reproduce the semiclassical degrees of freedom. In a closer
look, the quantum simplicity constraints in LQG consist
of two types of local constraints due to the network
discretization—the edge-simplicity constraints and the
vertex-simplicity constraints. Importantly, the algebra
anomaly happens only amongst the vertex-simplicity con-
straints, while the edge-simplicity constraints remain
anomaly free in the sense of having a weakly Abelian
algebra. Previously, we have proposed a new method [14]
of weakly imposing the anomalous vertex-simplicity con-
straints for the vanishing expectation values and minimal
quantum fluctuations, upon a special class of states in the
space of the SO(D + 1)-invariant spin-network states
satisfying the quantum Gauss constraints. With their edges
labeled by only the simple representations and their vertices
by specific coherent states of intertwiners, this class of
states strongly satisfy the quantum edge-simplicity con-
straints and are sharply peaked for the flux operators. We
found that, among this class of states, each weak solution of
the vertex-simplicity constraints describes a set of quantum
D-dimensional polytopes dual to the vertices of its graph.
Also, in large quantum-number limits, these weak solutions
indeed recover all the degrees of freedom in the classical
D-dimensional polytopes, which may be assembled to des-
cribe all possible states of quantum spatial geometry. Con-
cerning the proper gauge-reduction procedure, this remark-
able result suggests that, in the space of strong solutions to
the first class system of the quantum Gauss constraints and
edge-simplicity constraints, the vertex-simplicity con-
straints should serve as additional constraints—unrelated
to the quantum gauge symmetries—and select the special
gauge-invariant states capable of giving the desired quan-
tum discrete spatial intrinsic geometry.

As mentioned, in our previous work we have identified
the local polytope geometry dual to the specific spin
network states with coherent intertwiners, which suggests
the discretized intrinsic geometry of space emerging from
all-dimensional LQG [14]. Clearly, in order to recover the
discrete ADM data of a hypersurface from the all-dimen-
sional spin network states, one must carry on and complete
the correspondence prescription not only for the suggested
intrinsic geometry, but also for the missing piece of
extrinsic geometry. This prescription should follow a
proper reduction procedure with respect to the quantum
Gauss constraints and anomalous quantum simplicity con-
straints, in a way that the physical degrees of freedom in the
flux-holonomy variables are identified with the desired
discretized ADM data of Regge geometry.

Thus on the basis of the previous work, our remaining
task would be completing the other half gauge-reduction
procedure following our strategy above: identifying the
proper gauge orbits associated with the quantum simplicity
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constraints and finding the geometrical interpretation to the
invariant degrees of freedom. It is known that the classical
simplicity constraints transform only the pure-gauge com-
ponents of the SO(D + 1) Ashtekar connection A ,;;, while
leaving the vector fields z°%% invariant. We will demon-
strate that this picture could emerge in the LQG flux-
holonomy phase space associated with a graph, following
the other half of our reduction procedure at the classical and
discrete level under a satisfying geometric interpretation, in
spite of the anomaly of quantum simplicity constraint
already appearing in this classical and discrete formulation.
In the crucial step for establishing such an interpretation,
we will generalize the existing twisted-geometry para-
metrization for the SU(2) flux-holonomy phase space,
into that for the SO(D + 1) setting. These new geometric
coordinates for the phase space, along with their well-
formulated expressions for the symplectic structure, enable
the full analysis of the gauge reductions in the language of
the twisted geometry.

Our result shows that, the discretized classical Gauss,
edge-simplicity and vertex-simplicity constraints capturing
the anomaly of quantum vertex simplicity constraint define
a constraint surface in the discrete phase space of all
dimensional LQG, and the kinematic physical degrees of
freedom parameterized by the generalized hypersurface
twisted-geometry are given by the gauge orbits in the con-
straint surface generated by the first class system of discrete
gauss and edge-simplicity constraints. In particular, we find
the orbits of the edge-simplicity constraints to be along the
angle variables of the twisted geometry, which indeed
represent the smeared form of the pure-gauge components
of the Ashtekar connection in the continuous theory.
Finally, the complete ADM data of a Regge hypersurface
can be identified as the degrees of freedom of the reduced
generalized twisted geometry space, under an additional
condition called the shape matching condition.

In our brief review of the classical Ashtekar formulation of
all dimensional GR in Sec. I, we will also introduce the flux-
holonomy phase space for the discretized formulation with
the anomalous vertex simplicity constraints. In Secs. III and
IV we will introduce the twisted-geometry parametrization
for the SO(D + 1) phase space, and analyze the Poisson
structures among the new geometric parametrization varia-
bles and the discretized simplicity constraints. Finally in
Sec. V we will combine the obtained gauge transformations
with the geometric interpretations and formalize the gauge
reduction procedure that leads to the desired ADM data. We
will then conclude with the outlook for the possible next steps
of the future research.

I1. PHASE SPACE OF ALL DIMENSIONAL LOOP
QUANTUM GRAVITY AND SIMPLICITY
CONSTRAINT

The classical Ashtekar formulation of general relativity
with arbitrary spacetime dimensionality of (D + 1) has

been developed by Bodendofer, Thiemann and Thurn in
[11]. The continuum connection phase space of the theory
is coordinatized by a so(D + 1) valued canonical pair
(Aary, #°KL) with the nontrivial Poisson brackets

{Aay (), 2K ()} = 2688808767 (x = ), (1)

where f is the Barbero-Immirzi parameter and « is the
gravitational constant. It is known that this phase space
correctly reduces to the familiar ADM phase space after the
standard sympletic reduction procedure with respect to the
first-class constraint system of the Gauss constraints
G ~0 and simplicity constraints S”K 7l 7lPIKL 0,
Specifically, the spatial metric ¢,, is given by g, =
e.eh, where el is a D-bein field parametrizing the
simplicity constraint solutions in the form z%/ =
2/gNelaVl together with a chosen field A7 satisfying
NIN; =1 and N'e,; = 0. The densitized extrinsic cur-
vature is given by K} = K, ;z""/ where K, is the
component of A,;; under the splitting

Auy =Tay(e) + Ky (2)

on simplicity constraint surface, where I'j;;(e) is the
unique torsionless spin connection compatible with the
D-bein e;.

Let us look into the simplicity constraints from the
perspectives of the corresponding reductions. First, the
solutions 74! =2, /gNel?] to the quadratic simplicity
constraints introduced above defines the constraint surface
of the simplicity constraints. It is easy to check that the
infinitesimal gauge transformations induced by simplicity
constraints are given by

5K = { / dPxfiKEas (x),KfQ(y)}

= 4Bttt (y). (3)

On the simplicity constraint surface we have 7%/ =

2/gNV eVl and thus SKY N | =
the decomposition of K ;; as

0. Therefore, introducing

Kay = 2N K o) + Koty (4)

where K,y =& K,x, with 77, =8, = NIN; and
K, yN' =0, we immediately see that the longitudinal
components K ,;; parametrize the gauge redundancy, while
the transverse components 2N (1K|q) are gauge invariant
based on the transformations given in (3). From the
expressions for the ADM variables ¢** =%z}, and
K! =K, ,x", it is easy to see that these variables
are indeed invariant under the gauge transformations
by the simplicity constraints. Through the sympletic
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gauge-reduction procedure, the simplicity constraints
thus eliminate the two sets of degrees of freedom setting
7 =gl =2, fgnllel?) ~ 0 by the restriction to the
constraint surface and removing the pure-gauge compo-
nents K,z = 7 177 KakL-

The foundation leading to the quantum geometry of
loop quantum gravity is the use of the spatially smeared
variables—the D-bein fluxes over surfaces and connection
holonomies over paths—for the conjugate pairs of elemen-
tary variables. The quantization of the flux-holonomy
algebra leads to the space of spin-network states mentioned
above, spanned by the basis states of holonomy networks
each labeled by a graph with the representation and
intertwiner colorings. We will focus on the holonomies
and fluxes based on one specific graph for the following.
The edges of the given graph naturally provide the set of
paths for a fixed set of holonomies, and the cell decom-
position dual to the graph provides the set of (D — 1)-
dimensional faces specifying a fixed set of fluxes. In this
setting, the holonomy over one of the edges is naturally
conjugating to the flux over the face traversed by the edge,
and the pairs associated with the given graph satisfy the
smeared version of the algebra (1) and form a new phase
space. More precisely, given the graph y embedded in the
spatial manifold, we consider a new algebra given by
replacing (A,;;, z°%L) with the pairs (g,,X,) € SO(D +
1) x so(D + 1) over all edges e of y. These pairs of
variables represent the discretized version of the connection
and its conjugate momentum 7%, respectively via the
holonomies g, = Pexp [,A with P denoting the path-
ordered product, and fluxes X, = [ .(gng™')n,d"~'S
with e* being the dual (D — 1)-dimensional face to the
edge e, with the normal 7, and infinitesimal coordinate area
element d°~'S and g is the parallel transport from one fixed
vertex to the point of integration along a path adapted to the
graph. Since SO(D+ 1) xso(D+1)=T*SO(D + 1),
this new discrete phase space called the phase space of
SO(D + 1) loop quantum gravity on a fixed graph, is a
direct product of SO(D + 1) cotangent bundles. Finally,
the complete phase space of the theory is given by taking
the union over the phase spaces of all possible graphs. Just
like the SU(2) case, the new variables (g,, X,) of the phase
space of SO(D + 1) loop quantum gravity can be seen as a
discretized version of the continuum phase space.

A series of studies following the original works by
Freidel and Speziale show that the mentioned phase space
of SU(2) loop quantum gravity carries the notion of what is
called the twisted geometry [5,6], and this space can
undergo a symplectic reduction with respect to the dis-
cretized Gauss constraints (associated with the quantum
Gauss constraint operators), giving rise to a reduced
phase space containing the discretized ADM data of a
polyhedral Regge hypersurface. Based on such a founda-
tion, our first goal is providing a generalization to the above
approach for the SO(D + 1) formulation. This includes the

generalization of the twisted-geometry parametrization for
the SO(D + 1) phase space, which should provide a clear
correspondence between the original variables (g,,X,)
and the hypersurface geometry data. Our second goal is
addressing the proper treatment of the (discretized) gauss
and simplicity constraints, following the geometric mean-
ing of the phase space under the new parametrization.
We will use the standard forms of the (discretized) gauss
and simplicity constraints in agreement with the quantum
constraints. With X_, = —¢;'X,g, = X,, the (discretized)
Gauss constraints G ~ 0 for each vertex v € y of the
graph take the form
Gl =3 x4+ 3 X0, (5)
els(e)=v elt(e)=v
where s(e) and t(e), respectively, denote the source and
target vertices of the oriented edge e. The (discretized)
simplicity constraints consist of the edge-simplicity
constraints SX ~ (0 and vertex-simplicity constraints
SYKL ~ () taking the forms

v,e,e

SLKL — XxK 50, Vee 7,
SHKL = X[EUXf,L] ~0, Veeey, s(e)=s()=v

As we mentioned in the introduction, since the commuta-
tive set of conjugate momentum variables {7”%%} becomes
a noncommutative set of flux variables {XXL} after the
smearing, these discrete version of simplicity constraints
become noncommutative and thus anomalous.

III. GEOMETRIC PARAMETRIZATION OF
EDGE-SIMPLICITY CONSTRAINT SURFACE
IN SO(D +1) PHASE SPACE

A. Bivector parametrization of intrinsic geometry

In our previous work [14], we have explicitly constructed
specific flux-coherent states based on a chosen graph y,
which are sharply peaked in every pair of flux variables
associated with the source and target points of each of
the edges, while having the coloring of the edges restricted
to the SO(D + 1) simple representations. Such restriction
to the irreducible representations has been shown to
strongly solve the quantum edge-simplicity constraints.
Subsequently, this implies that the flux expectation values
associated to the source and target points of an edge must,
respectively, take the form N,V, and N,V,, with V, and V,
given by normalized bivectors in RP*! and the shared norm
N, is the Casimir value labeling the simple representation.
We have shown that, further, the quantum Gauss and
quantum vertex-simplicity constraints can be weakly
imposed upon our flux-coherent states by restricting and
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correlating the values of (V,, \7€,Ne) over all the edges,
and the resulted states describe the familiar discrete
geometry of a set of D-polytopes dual to the graph y, with
the corresponding faces dual to the same edge having the
same area. In more details, with the fixed oriented graph y,
each of our flux-coherent states has a SO(D + 1) simple
representation N, € R to each of the edges, assigning the
area of the corresponding set of dual (D — 1)-dimensional
surfaces; for each vertex v € y connected to n, number of
edges, the state is also peaked at the n, number of unit
bivectors V2’ (v) assigning the directions of the n, number
of the (D — 1)-dimensional surfaces. These parameters
describe a direct product space

P = xR, x, P,, —i(e)PD-1-

(7)

where Qp_; :=SO(D+1)/(SO(D —1) x SO(2)) is the
space of unit bivectors VZ/(v). Note that, by our assign-
ment, each edge is labeled by N, and two unit bivectors.
Calling s(e) the source vertex and #(e) the target vertex of
an edge e, we denote the two bivectors as V, = VI/ =
VI (s(e)) and V, =V =V (t(e)). We may use this
notation to factorize the space as

Pv = Xeip=b(e) or

P = x  PA, PY = Q¢ X Q% xR, (8)
and the variables associated to each edge of the graph are
thus a triple (V,, V., N,). For our flux-coherent states [14],
the weak imposition of the quantum Gauss and vertex-
simplicity constraints amounts to imposing the correspond-
ing constraints in the space Py"*. The weak imposition of
the quantum Gauss constraints at a vertex v implies

ZNVUJr ZNV”* (9)

e:v=>b(e e:v=t(e

and that of the vertex-simplicity constraints at a vertex v
(weakly) implies

SHKL = VL{J(U)VEIL](H) =0, Ve,ev=¢ne,. (10)
The variables VZ/(v) for the vertex v satisfying both
conditions defining the common constraint surface

s = {(VH(0).... VI (v)) € P,|C = 0.SK" = 0}

(11)

must take the form of V¥ (v) = N (»)VZ(v), where the
vectors VZ(v) € RPH! for each v lie in the subspace R? C
RP+! orthogonal to an unit vector N/(v) € RP*!, and
they satisfy the familiar D-dimensional Minkowski closure
conditions applied through the closure constraints C N = 0.

Therefore these solutions define the space of flat D-
dimensional polytopes embedded in the flat space
RP c RP*!, and each of the n,-valent vertex v can be
thought of as dual to a flat convex D-dimensional polytope
whose n, number of (D — 1)-faces’ areas and normal
vectors are given by, respectively, {N,|b(e) or t(e)=v}
and {V,V/|b(e) =v, and 1(¢') = v} satisfying the closure
conditions. Since the shape of a D-dimensional polytope is
invariant under the rotations, it is useful to introduce the
space 2131 of shapes of the D-dimensional polytopes, i.e.,

the space of closed normals modulo the vertex-wise
SO(D + 1) rotations as [14]

5 =Py [SO(D+1). (12)

Therefore, we see that the bivector variables (N,V,,N,V,)
carried by the flux-coherent states, when taking the on shell
values of the Gauss and vertex-simplicity constraints, may
give a notion of discretized spatial geometry as an assembly
of the locally flat D-polytopes dual to the vertices, with the
identical areas for the pairs of corresponding faces amongst
neighboring polytopes.

We want to complete the description of such geometry
and extend it to the extrinsic part, so that a notion of
hypersurface ADM data could be identified for the relevant
region of the LQG phase space. Since the D-polytope
geometry arises only after imposing the edge-simplicity
constraints, in this context the relevant region of the LQG
phase space is expected to be the edge-simplicity constraint
surface. This surface, denoted as x,7:SO(D +1),, is
obtained from the discrete phase space x,7°SO(D + 1),
by restricting the X, to be of the bivector form of N, V.

As shown in [15,16], the space Qp_; is a 2(D — 1)-
dimensional phase space with the invariant Kahler form
Qp2/p, and the SO(D + 1) orbits in P, are generated
precisely by the closure constraints; therefore we may
construct the SO(D + 1)-reduced phase space given by

Py, = {(VE(0)....V¥ (1)) €P,|Cy =0}/SO(D +1).

(13)
The Poisson structure on this nv(w -1- %) -
D(D+1) =2n,(D—1) - D(D + 1)-dimensional space
is obtained from Q2 , defined in Qp_;, via the standard

symplectic reduction. However, subject to the additional
vertex-simplicity constraints the space ’Bs describing the

shapes of the D-dimensional polytopes is not a phase space
because the imposition of vertex-simplicity constraints
clearly does not give a symplectic reduction [14]. Just as
mentioned, we will demonstrate that a true reduction can be
carried out in the discrete phase space extended from P}*™,
which includes the information about the extrinsic curva-
ture and contains the gauge degrees of freedom for the
discretized simplicity constraints.

086016-5



GAOPING LONG and CHUN-YEN LIN

PHYS. REV. D 103, 086016 (2021)

From now on, we denote the symplectic reduction by
double quotient Py = P,// Cy - Considering the space
P} defined for the whole graph y, we can accordingly
apply the symplectic reduction by C, = {C Nv|v €y} and
impose both the closure conditions and vertex-simplicity
constraints on all the vertices. The result is

K, =P¥//C = xR, x, ‘Dﬁn,
IC; = IC},|S{)JKL:0’ V1;€y - XelRe X?) m%}b (14)

B. Full parametrization

According to our discussion above, the space (g,, X, ) is
parametrized by (g,,N.V,) in the constraint surface
x,T5SO(D + 1),. However, this is not the end of the
story. For describing the hypersurface geometry, it is also
important to express (g,.V,.V,,N,) in terms of the
variables clearly describe the extrinsic geometry distinctly
from the intrinsic geometry, so that a concrete notion of
hypersurface can emerge after proper impositions of the
constraints. A method for this goal has been studied in the
SU(2) formulation, and in the following we will explicitly
work out the generalization of such method for our
SO(D + 1) case. In both cases the key lies in extracting
the angle variables from the values (g,.V,.V,,N,) that
capture the extrinsic curvature of the hypersurface.

To extract the extrinsic data, we first identify the
intrinsic geometric data completely. Recall the emerging
D-polytopes dual to the vertices, that for any two D-
dimensional polytope next to each across an edge, the
neighboring pair of (D — 1)-dimensional faces associated
to an edge always have the same area. As observed in the
SU(2) case, when the neighboring pair of faces are subject
to an additional “‘shape matching” condition that they have
the same shape in addition to the same area, each of these
special values of (N,V,,N,V,) assigns one discretized
intrinsic-geometry of a D-dimensional hypersurface, given
by simply gluing the neighboring identical faces of the D-
dimensional polytopes. Such geometry is just the spatial
Regge geometry, with the local geometry within each D-
polytope flat and the curvature of the hypersurface captured
in the parallel transports amongst the constituent D-dimen-
sional polytopes. The area-matching D-polytopes dual to a
graph y without the shape matching conditions define a
more general notion of geometry, which is called twisted
geometry in the existing literature.

Now let us look at the construction for the twisted
geometry associated to y in all-dimensional case. Note that
two neighboring D-dimensional polytopes prescribed by
the flux variables must be rotated by a specific SO(D + 1)
element, for their identified pair of faces to aligned in the
normal directions. In this manner, the flux data can specify
one SO(D + 1) element to every edge e as the necessary

operation to align and glue the pair of faces dual to e, and
this element should rotate the inward (area-weighted)
normal —N,V, of the (D — 1)-dimensional face for the
target D-dimensional polytope, into the outward normal
N,V, of the corresponding (D — 1)-dimensional face for
the source D-dimensional polytope. Under the generalized
Regge geometry interpretation [17], these transformations
across the edges carry the meaning of the Levi-Civita
holonomies. We thus define the SO(D + 1) valued Levi-
Civita holonomy AL for every edge e as
a function of the bivector variables associated to the
neighborhood of e. Note that, by construction we have
V,=—hLoV, = —=hlV, (k)™

We now adopt a decomposition of the holonomy as a
SO(D + 1) element in the following way. First, we choose
once for all a fixed generator 79 € so(D + 1) as areference
bivector 7}/ = (ax MW )J] Then for each edge e C y, we

specify a special pair of differentiable SO(D + 1)-valued
functions of the bivector variables called the Hopf sections,
denoted as u,(V,) and i,(V,); the Hopf sections for each
edge e are defined by the conditions

V, = u,ou;", V, = —ii,toi;' and
u(=Ve) = u,(Vo)e™,  i(=V,) = ii,(V,)e>™
(15)
with 7,5 := (dx )[’(dx )/l and e**7137pe =273 = —z,. Observe

that the choice for the Hopf sections is clearly nonunique,
and from now on our parametrization will be given under
one fixed choice of {u,, ii,} for every edge e, under which
the Levi-Civita holonomy Al can be expressed in the form

WV, V)= ue(eﬁ’""_ﬂe”f’f?)ﬁ;l, (16)

where the e takes value in the subgroup SO(D — 1) C

SO(D + 1) preserving both 21 and a . Note that the
bivector functions 7, and 77, are well deﬁned via the given
ht and the chosen Hopf sections. Accordingly, the hol-
onomy g, assigned to edge e can also be decomposed as

ge(Ve” ‘7@” é:e’ gg) = ue(ef’:f,,efe‘r(,)ﬁe—l. (17)

Observe that while the 7% and 7, are already fixed by the
given hL(V,, V,) and the Hopf sections, the free variables
& and ¢&,, which we will call the angle variables, para-
metrize the additional degrees of freedom in g,. Moreover,
we can factor out 4L from g, through the expressions

f— hr( _ﬁgﬁe‘fyﬁzleggﬁefyﬁ;] e_(ge_ne)‘?e:’)
(eé"u Ty =it Tuu7! o (Ee=ne)V. )hr (18)

where the u,7,u;' or i,7,i;' takes values from the
subgroups SO(D — 1) € SO(D + 1), respectively, preserv-
ing the bivector V, or V,.
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Having introduced the parametrization defined by (15)—
(18) for all points in the phase space, we now focus on
the points parametrized by the special angle-bivector
values with the flux data (N,V,,N,V,) describing a
Regge intrinsic geometry, so that we can identify the
extrinsic curvature data for these states through the angle
variables in the following manner. The above decomposi-
tion with the angle-bivector variables suggests a splitting of
the Ashtekar connection as A, =1, + K, on a given
graph. For that, consider the integral of A, =T, + K, €
so(D + 1) along an infinitesimal edge direction £¢ leading
to A, =A,04, I',=T,/¢ and K, = K,¢¢. Clearly, we
have the following obvious correspondence of

=e% and AL =ele. 19
g(f e

The remaining factor should account for the K,. Here we
adopt the Regge interpretation that the descritized extrinsic
curvature K, just like the intrinsic curvature, is distributed
only at the faces of the polytope-decomposition dual to y.
According to the above discussion, the value of K, may
thus be expressed in either the local gauge for the source
polytope or that for the target polytope, respectively, as

(eg’;uefpuzl e_ﬁ‘;uefpu;] e(ge_ne)ve) g eﬁKe or

(e_ﬁsﬁefuﬁzl eE};ﬁﬂfuﬁ;I e_(ée_”e)‘?e) — eﬂKe . (20)

A well-known feature of a Regge hypersurface is that the
extrinsic curvature distribution at a specific face of a
constituent polytope must be a vector 1-form distribution
parallel to the normal of the face. This knowledge then
suggests the further correspondence of

%(ge - ne)ve = Ké_ or %(56 _;76)‘78 = _Kﬁ’_7 (21)

when expressed in the source frame or target frame. Finally,
this leaves the remaining degrees of freedom to account for

Ké/ via
1 o= 1 =] //
Bln(e‘:euefuue e NelUeTylUe ) — Ke or

1 o o s =
Eln(e‘”f”ffﬂ”el efenaicy = g1/ (22)

In general, the data in (N,,V,,V,) contains information
about both intrinsic and extrinsic geometry. Out of these
4D — 3 degrees of freedom of (N,,V,,V,), only 2D — 1 of
them would be interpretable as intrinsic-geometry property
of the D-dimensional slice, while the other 2D — 2 of them
carry information about the extrinsic geometry. The extra
angle &, is the missing ingredient necessary in order to
reconstruct the (2D — 1)th component of K. As we will
demonstrate in more details, the angles if, containing the

information about the components K. of K, are purely
redundant variables, in views of both the Regge hypersur-
face geometry and gauge reduction involving the discre-
tized simplicity constraints.

The set of angle-bivector variables (N,,V,,V,,¢&,, &)
gives the generalization of twisted geometry parametriza-
tion for SO(D + 1) phase space. We will now carry out an
analysis of the canonical correspondence between these
variables and the LQG phase space, before coming back to
provide more support on the discrete hypersurface inter-
pretation and drawing insights on the proper treatment of
the gauge reduction with the anomalous discretized sim-
plicity constraints.

IV. SYMPLETIC ANALYSIS OF EDGE-
SIMPLICITY CONSTRAINT SURFACE IN
SO(D +1) LQG PHASE SPACE

A. Sympletic structure of SO(D +1) LQG phase space

Recall that the phase space of SO(D + 1) loop quantum
gravity associated with each edge of a given graph can be
given by the group tangent space TSO(D + 1). Since this
space is bundle isomorphic to T*SO(D + 1), as a phase
space it enjoys the natural symplectic structure of the
SO(D + 1) cotangent bundle. Explicitly, the bundle iso-
morphism TSO(D + 1) - T*SO(D + 1) is given by
the trivialization (so(D +1),SO(D + 1)) - TSO(D +
1) using a basis of right-invariant so(D + 1) vector fields,
followed by the identification so(D + 1) — so*(D + 1)
that leads to the trivialization of the cotangent bun-
dle (s0*(D + 1),50(D + 1)) = T*SO(D + 1).

A right-invariant vector field X associated to the Lie
algebra element X € g, acts on a function on the group
manifold via the right derivative V& as

VEf(9) = L Fleg)l o (23)

dt
under the adjoint transformation X > —gXg~!, we obtain
the corresponding left derivative

d
Vif(9) =7 f(9e™)io = =V, f(9). (24)

It is straight forward to show that the map from the right
invariant vector fields X to the corresponding elements X of
the algebra is provided by the algebra-valued, right-invari-
ant 1-form dgg~' satisfying

ig(dgg™) = (Lgg)g™" = X, (25)

where i denotes the interior product, and Ly = ipd + diy
denotes the Lie derivative. It is clear from the above that a
basis for g is then associated to a set of right-invariant
vector fields, which serves as a global tangent-space basis
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providing the trivialization as (so(D +1),SO(D + 1)) —
TSO(D + 1). Moreover, there is also a (local) coordinate
system G7;:SO(D + 1) — so(D + 1) for the base mani-
fold SO(D + 1), such that for any element g, we have
dGl, = (dgg™"),;. Using such a local coordinate system,
the trivialization thus locally takes the form of
(X17,Gyry) = TSO(D + 1). Next, to describe the cotangent
fiber bundle, we note that for every X € g there is a
corresponding element /iy in the dual algebra g*, which as a
linear function of Y € g is defined by

hx(Y) = Tr(XY) = —2tr(X]_]TIJYKLTKL)
- ZXIJYKL(SK[[&,]L - 2XKLYKL,

with the duality map given by the nondegenerate operator
lTr(TIJTKL) — sKlig/L

Using this ad-invariant pairing we have identified
so(D+1) to so(D+1)" and specified the trivial
cotangent bundle structure (so*(D+1),SO(D +1)) —
T*SO(D + 1). Thereby, the above (local) coordinate
system describes the trivialization of the cotangent bundle
in the explicit form (X", G;;) —» T*SO(D + 1).

Recognizing that by construction (X', G;;) (locally)
forms the dual coordinate pair of the cotangent bundle, we
can now simply read off the natural symplectic potential for
TSO(D +1) as

1
0 =x"dG,, zzTr(ngg‘l). (26)
The symplectic 2-form then follows as

1
Q=-do = —idTr(ngg_l)
1 -
= Tr(dX A gldg—dX ndgg™).  (27)

where we have introduced X = —¢~'Xg. Among the
interesting phase space functions in TSO(D + 1) [or
equivalently in 7*SO(D + 1)], we will specifically study
the ones of the form f = f(g) and hy = hy(X). From the
symplectic 2-form we can compute the following important
Poisson brackets among them:

{hy, hz} = Zh[y,z]’ {hy. f(9)} = 2V§f(g),
{f(9).h(g)} = 0. (28)

Proof. Let us identify so(D+1) with R*>" via

X! = Tr(r'X) = h.(X), where i € {1, ...,M} and 7'

is an element of the orthogonal basis of so(D + 1).
Consider the following vector field on T*SO(D + 1),

0
ox

Y =VE 4+ X, 1) (29)

This vector field is such that
) 1
i;® = —ETr(XY),
1 1
L0 = ETr([x, Y|dgg™') — 5Tr(x[Y, dgg~']) =0. (30)
Therefore we have
1
l'y.Q = diy@ - [,)7@ = —EdTI’(XY), (31)

which implies that ¥ is the Hamiltonian vector field of
Thy(X) and

1 1 A 1, 1
{Ehy,zhz} = Q(Y,Z) = —Elzdhy :Eh[yz] (32)
Next, the Hamiltonian vector field of a function f(g) on the
group is

0

T
f=-2V§, % (33)

since
i1Q =V fTr(z'dgg™") = —df. (34)

It is then easy to see that any two functions of the forms
f(g) and h(g) would have a vanishing Poisson bracket as
given by QT*G(X f,)? ») = 0. Finally, we have

1
(s} = igar =iz am = vtr. )
|

We see from the brackets (28) that the Poisson action of
hy(X) generates left derivatives. Similarly, the right deriva-
tive {iy, f(g)} = 2V%f(g) is generated by the action of
hy(X) =Tr(YX) with X = —g~'Xg. Finally, the two
Hamiltonians commute as given by {hy,h,} = 0.

Using the obtained Poisson brackets, one may evaluate
the algebra amongst the discretized Gauss constraints,
edge-simplicity constraints and vertex-simplicity con-
straints defined in (5) and (6). It turns out that G, ~ 0
and S, ~ 0 form a first class constraint system, with the
algebra

{Se.Se} xS
{G,. S} S,

{Se. 8} S,
{G,.5,} xS,

{G,,G,} xG,,
b(e) = v, (36)

where the brackets within G, ~ 0 is just the so(D + 1)
algebra, and the ones within S, ~0 weakly vanish.

086016-8



GEOMETRIC PARAMETRIZATION OF SO(D + 1) PHASE ...

PHYS. REV. D 103, 086016 (2021)

The algebra involving the vertex-simplicity constraint are
the problematic ones, with the open anomalous brackets

{Sy.ce's Speer} & anomaly term (37)

where the phrase anomaly term is not proportional to any of
the existing constraints in the phase space.

B. Symplectomorphism between edge-simplicity
constraint surface and angle-bivector space

Having discussed the symplectic structure of the
T*SO(D + 1) phase space, we recall the angle-bivector
parametrization for the edge-simplicity constraint surface
using the twisted-geometry variables (V, V.E N, E”) IS
P:=Qp_; X Qp_; X T*S x SO(D — 1), where %% := i,
and 7, € so(D — 1), u € {1, W} To capture the
intrinsic curvature, we have specified one pair of the
SO(D + 1) valued Hopf sections—u(V) and #(V)—for
each edge. With the specified u(V) and #(V), the para-
metrization associated with each edge is given by the map

(V.V.E,N, &) (X,g9): X =NV =NuV)r,u(V)™",

g=u(V)eduefnoq(V)1,
(38)

which implies that X = —g~'Xg = NV. We first note that
the map is a two-to-one double covering of the image that
takes the bivector form X = Nuz,u~' solving the edge-
simplicity constraint X/ XXL = 0. Let us denote this
bivector subset as so(D + 1), and denote the image as
TiSO(D+ 1) =T*SO(D + 1)|ywyxu_, that is the edge-
simplicity constraint surface in the phase space. Clearly,
under the map introduced above from P to T;SO(D + 1),
the two points (V,V,E N,E) and (=V, -V, —& —N, &)
related by e = 72130802 and 7,3 = 615, are
mapped to the same point (g,X) € T:SO(D+1). A
bijection map can thus be established in the region
|X| # 0 by selecting either branch among the two signs,
leading to the corresponding one of the two inverse maps
from the region with |X| # O given by

X . -1x
N=lx|, Vv=—, p=-979
| X| |X|
&= Tr(r, In(u""gii)), & = Tr(#* In(e~*%u~"git)),
(39)
or
X - -1x
N:—|X, V== V:g g’
IX| |X|
&= —Tr(z, In(u"'gii)),
tf” = Tr(# In(es e 3y~ giie?™3)). (40)

Thus, we have an isomorphism between the two sets
P*/7? - T:SO(D + 1)\{|X| = 0}, (41)

where P* = P|y_, denotes the region with N # 0, and the
identifying Z? operation is defined by

(V.V.EN.E) = (=V,-V. =& -N.&)  (42)

in the region N # 0.

Since P* = P|y, provides a double-covering coordinate
system for TiSO(D + 1)\{|X| =0}, we may use the
bivector-angle variables to express the induced presym-
plectic structure of 7:SO(D + 1)\{|X| =0} inherited
from the phase space T7*SO(D + 1). First, the induced
presymplectic potential can be expressed as

Or:s0(p+1)l1x>0
1

= ETr(ngg_l)|T§SO(D+1);|X\>0’
1 -

= ENTr(m'Ou‘l(duu_1 + u(dér, + d&z,)u™!
— uef et i\ diti e~ ety 1)),

1 1 1 i
= S NTe(Vduu™") + 5 Nd& — 5 NTr(Vdaia™). (43)

From the point of view of the space P, we may extend this
potential in the limit N — 0 and simply define

1 1 1 .
0, = 5NTr(Vdmf') +5Ndé - 5NTr(chr') (44)

as the presymplectic potential in P. This potential gives the
presympletic form Qp as

1
Qp =—-dOp = ENTr(Vduu‘] A duu")

1 .
- ENTr(Vdmz—l A diii")

1 -
—7dN A (dé + Tr(Vduu™") — Tr(Vdiia™")). (45)

It is clear that the N = O region of the above presymplectic
structure is degenerate, as expected due to the degeneracy
in the parametrization itself in the N =0 region of
T:SO(D + 1). More importantly, as we shall demonstrate
in the next section, the induced presymplectic structure for
P* coincides with the natural symplectic structures of the
two constituent spaces—the Qp_; and T*S', while leaving
the third component SO(D — 1) completely degenerate.
Therefore, this SO(D — 1) component faithfully parametrizes
the symplectic degeneracies of T:SO(D + 1)\{|X| = 0} as
a presymplectic manifold. Since the edge-simplicity con-
straints form a first-class system with the discretized Gauss
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constraints, we expect the SO(D — 1) degenerate degrees of
freedom to be generated by the first-class constraints. Indeed,
we note that the induced symplectic form on T5SO(D +
D\{|X| =0} given by Qr-so(p+1) = —dOrso(py1) 18
different from Qp- := —d®p- obtained from the induced
symplectic potential ®p-, since the Hamiltonian vector fields
of any function on P* given by the two symplectic forms
always differ by a transformation induced by the edge-
simplicity constraints. More explicitly, we can evaluate the
transformations induced by the edge-simplicity constraints in
the LQG discrete phase space, and obtain

{Se/*E. X }s,—o=0 and

1J
(SR, g, Y50 o X (K g,) 5o

53 V[e” (TKL] ge) | Ve=u,tou; " (46)

Now it is easy to see that the edge-simplicity constraint
transforms the holonomy ¢, by the left action of an
SO(D — 1) element preserving the two vectors forming
V,. Then, via the parametrization (38) of g,, we conclude
that the edge-simplicity constraints generate the transforma-
tion of the SO(D — 1) angles, which are precisely the
degenerate component with respected to the presymplectic
form Qp:. Lastly, let us view the above transformations
induced by SI/KL under the discrete Regge geometry inter-
pretation proposed in Sec. III B. Since the edge-simplicity
constraints commute (on shell) with the flux variables, it is
clear that the transformations act trivially on the intrinsic
geometry as desired. Moreover, the above shows that the
transformations change only the SO(D — 1) angles & among
the twisted-geometry variables, then according to our inter-

pretation (22) the transformations act only upon K !/, which
are indeed the pure gauge components in the original Ashtekar
formulation.

To go further and study the gauge reductions in the new
geometric point of view, we need to compute the Poisson
brackets between the twisted-geometry variables using the
presymplectic form Qp. In order to do that, in the following
section we will study the Hopf sections u(V) and ii(V) in
the perspectives of their contributions to the Hamiltonian
fields on P defined by Qp.

C. Hopf map and Geometric action on the Hopf section

The Hopf map is defined as a special projection map
7:S0(D + 1) > Qp_; with Op_, :=SO(D+1)/(SO(2)x
SO(D—1)), such that every element in Qp_; comes from
the maximal subgroup of SO(D + 1) that fixed z,. The
maximal subgroup takes the form SO(2) x SO(D — 1),
and in the definition representation of SO(D + 1) the Hopf
map reads

7:S0(D+1) > Qp_,
g—V(g) = gr.g". (47)

Note that the vector V(g) is invariant under g — ¢*/" =
ge® 7% thus it is a function of 2D — 2 variables only.
This result shows that SO(D + 1) can be seen as a bundle
(we would call it the Hopf bundle) over Qp_; with a
SO(2) x SO(D — 1) fiber. On this bundle we can introduce
the Hopf sections, each as an inverse map to the above
projection

u:Qp_1 = SOD+1)
Vi u(V), (48)

such that z(u(V)) = V. This section assigns a specific
SO(D + 1) element u to each member of the Qp_;, and it is
easy to see that any given section u is related to all other
sections via u®?" = ye®ot?"%; therefore the free angles

{a,a"} parametrize the set of all possible Hopf sections.
D(D+1)

Let us identify so(D + 1) with R™ 2 via the represen-
tation X = X!/, Then, an element V € Q_, is identified

with a unit bivector in RM, and we have a natural action
of rotations by the group SO(D + 1) in this space. Since
this action is given via the coadjoint representation, we can
further associate each algebra element X € so(D + 1) to a

vector field X on Qp_,, which acts on a function of Qj,_; as

d
Lef(V) = f(e¥VeX)| . (49)
Specifically in the case of linear functions we have
LV =—[X,V]. (50)

Next, we observe that the SO(D + 1) action on Qp_; as
a symplectic manifold is Hamiltonian; by explicit calcu-
lation one can verify that X is a Hamiltonian vector field
associated to the function 3hy (V) =NVYX,;; on Qp_y,
and the action above can be obtained from the Poisson
bracket between V and %hx, which results in

{% i, v} — NQY(R.V) = —[X.V] = L3V.  (51)

We are especially interested in the action of the algebra
on the Hopf section. Let us first note that

LV () = (Lgu)e,u™ +uz,(Lgu) = [(Lyu)u, V(u)].
(52)
Comparing this with (50), we deduce that

(Lgu)u™ ==X+ V(u)Fx(V) + Y _V,()Lk(V), (53)

where V, (1) = ut,u™", Fx(V) and L% (V) are functions of
V € Qp_, with both V(u)Fyx(V) and V,(u)L%(V) com-

muting with the element V(i) for all p.
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Lemma. Define V%, = u(V)#,u(V)™!, the solution
function L = L:Qp_; + so(D + 1) of the equations

Tr(Lduu') =0, LUV, =1 LVV" =0, Vu.

(54)

appears in the Lie derivative of the Hopf map section
u(V) as,

LX = 2FX’ (55)
and it satisfies the key coherence identity
L}E'LY - E?LX - L[X,Y]' (56)

Finally, the general solution to this identity satisfying the
conditions LYV, =1, LVV¥, = 0 is given by

L'=L+da (57)

where a is a function on Qp_;.

Proof. Takeing the interior product of an arbitrary vector
field X with the defining expression Tr(Lduu™') =0
and recalling that by definition of Lie derivative
(Lyu)u™ = ig(duu'), we have

0 = igTr(Lduu™) = Tr(L(Lgu)u™")
where we used LYV, = 1,LYVY, =0, and (53). Hence

we proved 2Fy = Ly.
To prove (56) we first observe that

Li(duu™) = ig(duu™ A duu™") + d[(Lgu)u™],

1 _
= |-X+ EVLX + ZVﬂLM , duu‘l]
"
1 N
+ d(—X +5 VL + ZV”L';()
"

1 }

=5 VdLx + V,dLY — (X, duu™], (59)

where we used the definition of Lie derivative in the first
equality, (53) in the second and dV = [duu~', V] with
dV* = [duu~"', V¥] in the third. The above then leads to

0= LiTr(Lduu™") = Tr((LyL — [L, X])duu™") + dLyx
(60)

with the help of the equalities L' V;; = 1 and L V¥, = 0.
Finally, by taking the interior product of the last equation
with ¥ we get

LyLy=Tr <(£;(L —[L.X]) (Y—%VLY - ;v,y;) > ,

= LiLy ~ Ly~ Ly(T(£L)V) = Te(L[X. V])

= > LH(Tr(L4LV,) = Tr(L[X, V,])),

1
=LgLly—Lixy - ELYL:X(TT(LV))

= LYLgTH(LV,), (61)

and since the last two terms vanish, we obtain the
coherence identity (56).

Suppose we have another solution L’ to the coherence
identity and also the conditions L'/ V;; = 1 and LY V¥, = 0.
Using the 1-form = —Tr(L'duu™") we see can that its
contraction with X

Py =igh = —Te(L'(Cquyu™) = Ly — Ly (62)

is the difference between the two solutions and thus also a
solution to the coherence identity. This, together with the
definition of the differential igzipdf = Lyfy — Lgfy +
Pix.y)» implies that dff = 0, which means that there exist
a function « locally such that f = da at least, and thus
Ly = Lx + Lga. This proves the gauge freedom (57). =

Finally, let us recall that the freedom in choosing the
Hopf section lies in the two function parameters (V) and
o*(V) in the expression /' (V) = u(V)e®V)%+@" (V)7 for all
possible choices of the sections. Applying Eq. (53) to this
u', we immediately get Ly = Ly + iyda. Referring to (62),
we see now that the set of functions L satisfying the above
three key conditions is exactly the set of the function
coefficients for the component of (du)u~" in the V direc-
tion, given under all possible choices of the Hopf section u.
Applying these conditions in the presympletic form Qp, we
will now identify the Hamiltonian fields in P and compute
the Poisson brackets.

D. Computation of Hamiltonian vector fields
in presymplectic manifold P
Recall that we have obtained the presymplectic potential
©p == INTr(Vduu=") + INdé — L NTr(Vdiia") induced
from the edge-simplicity constraint surface in the
SO(D + 1) phase space. The potential defines a presym-
pletic form Qp as

QP - —d®P =

1 .
- ENTr(Vdﬁa—l A diiii")

NTr(Vduu™ A duu=")

N[ —

- édN A (déE + Tr(Vduu™) — Tr(Vdiia™")). (63)

086016-11



GAOPING LONG and CHUN-YEN LIN

PHYS. REV. D 103, 086016 (2021)

To compute the associated Poisson brackets, we first need
to compute the Hamiltonian vector fields on P. Let us
denote the Hamiltonian vector field for the function f as y ¢,

where f € {N,& hy = NVy,hy = NVy}. Using the def-
inition and i, fQP = —df, in the N # 0 region the vector
fields could be checked to be given by

In, = 2X — Ly (V). X, = —2X = Lx(V)d;,

— 4 —

av =20 ye=20y+[LVI+ LV (64)

Here X and [l:\V | are the vector fields generating the
adjoint action on Qp_; labeled by V, associated, respec-

tively, to the algebra elements X and [L(V), V]. Similarly, X

and [L, V] are the vector fields generating the adjoint action
on Qp_; labeled by V, associated, respectively, to the

algebra elements X and [L(V),V].
Proof. To check the first equation of (64), we first note
that for a constant X we have

i Qp — —%Tr(d(NV)X) lvyan. (69)

Since we have iy Qp = %dN, the first equation of (64)
follows immediately. The computation for y; is similar

with an opposite sign due to the reversal of the orientation.
To check for y,, we first evaluate

1 1 1 -
i, Qp = =5 dE - 5Tr(vczuu—l) + 5Tr(\/dﬁﬁ—l), (66)
and then we have

. 1 _
lﬁg = —ENTr([V, (L, V]|duu™")
—%dNTr((V —L)[L.V)),

=~ NTr G (L -Tr(LV) V)duu—1>

1 1 -1
= ANTe((V = L)[L, V]) = I NTr(Vduu™),

(67)

where we decomposed L as L= (L-Tr(LV)V)+
Tr(LV)V and used the definitional properties of L. A
similar calculation shows that

1 -
i—Q = ——NTr(Vdii "), (68)
[L.V] 4
and thus the last equation of (64) follows (]

Let us now address the degeneracy of Qp resulting to the
nonuniqueness of the Hamiltonian vector fields. While Qp
is trivally closed as coming from a local symplectic
potential, it has degeneracies in the directions tangent to
the SO(D — 1) fiber and also in the boundary region with
N = 0. There are mainly two ways to reduce the manifold
P to obtain a sympletic manifold. The first way is to simply
consider a new space P*:= P|y,, and then reduce it
respected to the SO(D — 1) fiber, then the result would
be a (4D — 2)-dimensional sympletic manifold denoted by
P*. The second way is to reduce the presymplectic
manifold by the kernel of Qp, i.e., to consider the quotient
manifold P = P/Ker(Qp); the result would be a symplec-
tic manifold with nondegenerate 2-form given by the
quotient projection of Qp.

In obtaining the space P, we have introduced the
equivalence classes under the equivalence relation p ~ p’
whenever p’ = ePp, with D € Ker(Qp) and p,p’ € P.
The operation is thus determined by the vector fields in the
kernel of Qp. Since it is obvious that all tangent vector
fields TSO(D_I) of the fiber SO(D — 1) belong to Ker(Qp),
we may first construct P = P/fSO(D—l) =Qp_y xT*S" x
Op_1- Then, to remove the remaining kernel in the region
with N =0, we look for the vector fields preserving
the region while having the interior products with Qp
proportional to N. The set of such vector fields turn out to
be given by

DX =Xhy =Xy (69)

where ¥ = —g~'Xg with g = ueef% ! being a group
element rotating V to V = —g~!Vg. Indeed, using the fact
that Vy = Vy, the interior product of the field with the
symplectic 2-form is

ip Qp =—d(NVy —NVy) = NTr(VdY)
= —NTr([V, X]dgg™"), (70)

which vanishes at N = 0. Next, to find the equivalence
class generated by the vector fields ﬁx, we note that the
actions of the fields should rotate jointly the vectors V and
V, that is we have Dy (V) = =[X, V], Dy (V) =—¢'[X,V]g.
Further, the actions preserves the group element g, as
demonstrated by the fact that

A

Dyx(g) = —Xg—gY = 0. (71)

Therefore, given p = (V,V,0, &) and p' = (V. V',0, &),
we have p’ ~ p if and only if the two are related by a joint
rotation in V and V and a g-preserving translations in &.
The two copies of Qp_; at the ends of each edge are
thus identified under this equivalence relation, and after
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the quotient we are left with a manifold SO(D + 1)/
SO(D — 1) parametrized by only V and &.

Let us observe that the two quotient operations with
respected to TSO(D_ 1) and Dy commute, since Dy does not
change %% € SO(D — 1), which is the degrees of freedom
reduced by fwso(p—n‘ This fact can be illustrated as

where P span P* for N #0 and SO(D + 1) for N = 0.
Similarly, P span P* for N # 0 and SO(D+1)/SO(D—-1)
for N = 0.

Finally, let us point out that the symplectic potential is
invariant under the Z, transformation

(V.V.NEE) = (=V,=V.-N,=£&).  (72)

This can be seen via the transformations of the Hopf
sections in the form of u — ue?™™3 and i — iFe?™™, with

T3 = 6&15§]. Clearly these transformations leave ®p invari-
ant since d(ue®3)(ue*™3)~! = duu='. Hence (72) is a

canonical transformation, and both P*/Z, and 13/ Z, are
again symplectic manifolds.

E. Consistency with natural Poisson structures
of constituent spaces

We have seen that the manifold P = Qp_; X Op_; X
T*S' x SO(D — 1), viewed essentially as the edge-sim-
plicity constraint surface of the LQG phase space, is
equipped with the induced presymplectic potential ®p.
On the other hand, the space is also a product space of the
components Q,_; and T*S' each having a natural phase
space structure. Therefore, the product space P is also
endowed with a class of natural Poisson structures given by
the consistent gluing of the constituent spaces’ symplectic
structures. As it turns out, the Poisson structure given by Op
indeed belongs to such a class.

The natural phase space structure of the constituent
spaces Qp_; and T*S! are well known, and they are given
by the following:

(i) The cotangent bundle 7*S' with the symplectic
2-form Qg ::%dN A dé, giving the Poisson
bracket {&, N} = 2.

(i) The manifold Qp_; with the natural invariant
Kahler metric and the corresponding Kahler form
QQ, which is induce from the standard Hermitian
metric on CP*! and rescaled into the form
+Qp2 ) = £NQy. The sympletic form +NQ,
gives the Poisson brackets {NV¥ NVKL} =
+ N (SILVIK 4 §IKYIL — §IKYIL _ §ILYIK)  where

it becomes clear that N = \/2NVY/NV,, is a
Casimir quantity satisfying {N,NV;} = 0.
Using the presymplectic potential ®p, one could compute
the Poisson brackets and obtain

{&.Ny =2,
{NVIJ, NVKL}
— ﬁ(éIijK + 5./KvlL _ 51vaL _ 5JLle)
2 b
{NVIJ,NVKL}

— _g(alL"}JK + 5JK‘71L _ 51K‘7JL _ 5JLVIK)
2 ki

{VI/ N} = {VI/,N} =0, (73)
{vlV VKLY =, (74)

and
{¢.-}y=0. v-. (75)

From the above, the ®p indeed endows the source and
target Op_; spaces, respectively, with the symplectic forms
NQ, and —NQ,. Also, from Eq. (74) the two spaces
truly Poisson commute. As for the space 7*S ! the induced
symplectic form is also identical with Q.. Lastly, the
vanishing brackets in Eq. (75) indicate the degeneracy in
Op in the SO(D — 1) directions. Separately in the sym-
plectic manifolds 7*S' and Qp_,, the Hamiltonian vector
fields of the functions {/hy, iy, N, £} generating the above
brackets can be obtained respectively according to ;g
and Q. In comparison, the Hamiltonian vector fields in P
of the same functions according to Qp clearly differ by the
terms depending on the L as given in (64). As expected,
these difference terms are generated by Qp via its mixing
components between 7*S' and Q,_;, which in turn is a
result of N becoming a phase space degree of freedom in P.

The Poisson brackets given by ®p between & and V, or
the ones between & and V, turn out to be nontrivial. The
results of the brackets are given by a function L:Qp_; —
so(D + 1) in the form

{&NVI} =LY(V) &NV} =LY (V). (76)

Remarkably, the equations in (76) are taken as the
definition equations for the function L, together with the
brackets (73), and already constrained the set of possible
LY to be exactly the set of results of the brackets {&, NV*/}
and {& NV!’/} given by the potential ®, corresponding to
our choice of the Hopf sections. This result can be verified
by the fact that, the function L defined by Eq. (76) is
constrained by three conditions given by the above Poisson
brackets (73), and these three conditions are exactly the
definition of L in the Lemma in Sec. IV C, which can be
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illustrated as follows. The first of the conditions comes
from the equation

NV, LY =NV {&, NV} = % {&E,N?} = %N{af, N} =N,
(77)

which gives the normalization condition L (V)V,, = 1.
The second condition comes from

NVY LR e = NVILE NVE Yep ki

1
= B {¢, NV”NVKL}elJI(LM =0, (78)

where we use the fact that V as a bivector satisfies
VIVKLe, 1z =0, with M being a (D — 3)-tuple asym-
metry index. This result implies the orthogonality condition
LY(V)V,(V) =0, Vu, where V¥, (V)i € so(D+1)
denotes the basis members that commutes with
Ve’ € so(D + 1). Finally, the third constraint just comes
from the Jacobi identity

{&ANVI NVEEY) + {NVI {NVEE, £}}
+ {NVEL (£ NVI}) =0, (79)

from which we get the following coherence identity,

{NV”,LKL<V)} _ {NVKL,L”(V)}
1
2

(51LLJK(V) + 5JKLIL<V) —5IKLJL(V) —5JLL[K(V)).

(80)

Similarly, the we have the conditions L!(V)V,, =1,
LY(V)V4,(V) =0, Vu and

{NVI LEL(V)} = {NVKL LI (7}
- —%(6’%”((\7) + &KL (V) =K LIE (V) =LK (V).
(81)

The Hamiltonian action (51) can be used to write the
coherence identity (80) and (81) as an identity involving
Lie derivatives: contracting (80) and (81) with X’/ and YXI,
we get

[,)?Ly — ﬁszX == L[x_y], (82)

where Ly = Tr(LX) is the component of L along the
algebra element X. Now it is easy to see these three
conditions makes the Lemma above applicable and we can
verify the result given in the beginning of this paragraph.

V. SCHEME OF DISCRETIZED GAUSS
CONSTRAINTS AND SIMPLICITY
CONSTRAINTS REDUCTION PROCEDURE

So far we have discussed the phase space structure
mainly associated with a single edge of the graph y, for
studying the edge-simplicity constraint surface. To carry on
the constraint reduction including the Gauss constraint
Gl ~0 and vertex-simplicity constraint SI/KL ~0, we
should now switch to the discrete phase space correspond-
ing to the full graph y. Clearly, this phase space is just given
by the direct product P, = x,T*SO(D + 1),, with any two
flux-holonomy variables associated with distinct edges
Poisson commuting with each other. Then, by solving
the edge-simplicity constraint equations on all of the edges
of y, the above study can be applied to the result constraint
surface Py = x,T{SO(D + 1), in a direct manner.

Recall that, the set {G ~ 0, SKL ~ 0} of the discre-
tized Gauss and edge-simplicity constraints form a first
class constraint system in P,, with the algebra given in
(36). Therefore, we may perform a standard sympletic
reduction with respect to this constraint system. Then, we
may treat the vertex-simplicity constraint S/XL x~0 as
additional conditions, selecting from the reduced phase
space the correct physical degrees of freedom. Now we
proceed with the reductions upon P, through the follow-
ing steps.

(i) Symplectic reduction with respected to edge-

simplicity constraint SY/XF ~ 0

From our previous analysis, the edge-simplicity
constraint surface P, in P, would be given by
x,TsSO(D + 1),, which is related to the full angle-
bivector space P, defined as

P, =X,P,,

Po= 05 | x Qf  xT'Se xSO(D—1),.  (83)
where each D(D+1)— %Z(D_z) dimensional
space P, is described by the coordinates (N,,V,,
V,.&,.ii,). Following our analysis above, we
conclude that P,|y 4, provides a double-covering
coordinatization for P}|y .o, and the symplecto-
morphism (up to some gauge transformation)

Py xP,/Z,, (84)

with P, := X, P, and P, as defined in Sec. IV D.
Moreover, the gauge orbits generated by edge-
simplicity constraints in 7P, correspond to the
degrees of freedom of ii,. Therefore, the resulted
reduced phase space 79? with respected to edge-
simplicity constraint can be characterized by the
symplectomorphism
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(i)

S~ P, /7, (85)

with 15}, = xeeyPe, Iv’y = xeeyﬁe and P, = 05, X
Q%_, x T*S! and P, as defined in Sec. IVD. In
particular, the reduced angle-bivector variables
(N,,V,.V,.&,.) provide a double-covering coordi-
natization for the reduced phase space Pf in the
X, # 0 region.
Symplectic reduction with respected to discretized
Gauss constraints G/ ~ 0

Recall that the discretized Gauss constraints act-
ing upon P, take the form G, =} )=y X+
> eft(e)=v X, ~0, and it is straightforward to see
that the constraints they induce in P} are just
the closure constraints C, := Ze\s(e):v NV, +
> eft(e)=v Ne V. ~ 0 we mentioned in the beginning.
The symplectic reduction inside PE can be perform
using the closure constraint with the results given by
the analysis described Sec. III A. Utilizing the
solutions (13), the obtained reduced phase space
PE’G is characterized by the symplectomorphism

PSS~ H,/7,, (86)
where we define

H,:=P,//SOD+1)"D,
H,=P,//SOD+1)"V) = (x,T*S}) x (x,B5 ).

with V(y) being the number of the vertices in y.
Observe that the double quotient operation in (87) is
“nonlocal” in terms of the original phase space
variables, due to the fact that the variables across
the two connected vertices for each edge subspace
are correlated by the condition X_, = —¢;'X,g,.
This technical difficulty is removed by the para-
metrization (38), through which the bivectors V, and
V, are assigned independently, with the relation
X_, = —g;'X,g, implicitly ensured by the defini-
tion of the angle variables. The imposition of the
closure constraints and the quotient by SO(D + 1)
can then be taken at each of the vertices separately.
Further, the reduced space carries the T*S! degrees
of freedom at every edge in the following manner.
The SO(D + 1)"r gauge orbits in this context are
generated by the closure constraints acting on the
remaining connection variables £, in ’Pf ; according
to (76) the actions are given by

{ée’ C{{e)} = L”(VE)’ {ée’ Ci(Je)} = LU(VE)'
(88)

Since g, and /L transformidentically asan SO(D + 1)
holonomy over e and notice their decomposition (16),
referring to (17) we infer that £, and 7, behave
the same under the transformations by the closure

constraint:
[ €} = (6. €1} = LU(V,).
{ne’ C{{e)} = {éé” Ci{e)} = Ll!(‘7€)' (89)

This implies that the extrinsic curvature 1-form Kz
identified in (21) is indeed SO(D + 1) invariant.
Hence, assuming that the graph y is such that 7,
can be given globally without ambiguities to ensure
that the Levi-Civita holonomy AL is properly defined
to capture the intrinsic curvature by Eq. (16), we may
use the gauge invariant £9 := £, — 7, in place of the &,
in (N,,&,) € T*S' and obtain the description of the
SO(D + 1)-invariant degrees of freedom in T*S'
under the coordinates (N,, £2).
(iii) Imposing vertex-simplicity constraints S%/X% ~ 0.
As mentioned, here we treat the vertex-simplicity
constraint ST/KL ~ 0 as second-class constraints in
selecting the physical states of the discrete geom-
etries from which the ADM data can be recovered.
Indeed, with {G,,S,} « S, and {S,,S,} xS, the
vertex-simplicity constraints can be consistently
imposed as such in the reduced phase space PE’G
and I-VI where they take the form SIKL =
V[EIIJ ~0, (Ye, e, :b(e,) = b(e,) = v). Denot-
ing the solution subspace in I-VI], satisfying S/KE = 0
as H »» we refer again to the results in Sec. III A and
find that the subspace is characterized by
Hy = (xT"S¢) x (%, )- (90)
To finalize our procedure, we divide ﬁ; by the
kernel of the reduced symplectic 2-form
Q, =x,Qp //SO(D + 1)"r, to remove the artificial
degeneracy resulted from the parametrization singu-
larity described in Sec. IV D. Then we arrive the
final space H,, = HY /Ker(Q,), which is isomorphic
by construction to the vertex-simplicity constraint
surface in P3¢ as

Hy /7% = PO g (o1)

after moduling the identifying operation Z?.
Based upon this reduction procedure, we claim that the
kinematic physical degrees of freedom of the theory on a
given graph y are captured by the collection of solutions of

vertex-simplicity constraints in the phase space Ijvly /7.
Let us supply the above reduction procedure in the
discrete LQG phase space with a classical picture under
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proper continuous limits for the Regge sector discussed
in Sec. III B, with the interpretation of the variables
(V,, V,.N, & & ) as the extrinsic and intrinsic geometri-
cal data. Specifically, recall that the N, has the meaning of
the area of the (D — 1)-dimensional face dual to e, and &9
represents the norm of the extrinsic curvature 1-form
integrated along e are clear. A concrete translation between
(ge» X.) and the hypersuface ADM data (7% (x), K 5;;(x))
can be thus established using the straightforward conditions
ge~I1+ A, and X, ~ z,, with which we have

1 1
ﬁTr(X dgege ) ﬂ

In the limit of infinitely short edges one may then read off
the symplectic form Q = —-d® = %dA Adr, and the

familiar brackets of loop quantum gravity follow,

—n$,dAY. (92)

/ I ~J /
{AY (). 75, ()} = 205¢5,5.67) (x = ). (93)

Also, recalling the splitting

A = T (m) + pKY (94)
with T%/(z) being a function of z%XL satisfying T/ (z) =
'/ (e) on simplicity constraint surface, one recovers the
Poisson bracket {K% (x), 7%, (y)} = 2645, 6¢6P) (x — y).
The same continuous limit also reveals the classical
counterpart to our simplicity constraint reduction in the
discrete phase space. Through the correspondence g, =
u e ettt and u, e e o ;!
ous limits being taken, we have

~T+ T, in the continu-

1 S\

K, zﬁue(égro + f’e‘rﬂ)uel, (95)
with the notation e%% = ¢~% %% Recalling our corre-
Lue(Eor,)uzt, KU o= du (85,)uz", we
can clearly see that despite of the anomaly in the vertex-
simplicity constraints, our reduction procedure correctly

spondence K :=

removes the component K , while preserving the compo-
nent K} that contributes to the extrinsic curvature as
expressed in the same form as in the classical Ashtekar
formulation:

! 1 4 /
(K, ) = Btr(m(f?ro + &7, )u;'n¢)

- %tr(»te(fzro)u;lne’) — w(Kir).
b(e) = b(e). (96)

Indeed, as a generator of the group preserving N, =

N b(e')» the component Ké/ has no projection on the

N.,V, =N, J\/ V and thus pro-

vides no contribution to the extrinsic curvature as it showed
in above Eq. (96).

This procedure is thus consistent to the symplectic
reduction with respect to simplicity constraint in connec-
tion phase space in which it act as a well first-class

. /
bivector 7¢ ~ X¢ =

constraint, where K é/ play the same role as the component
K, in connection phase space, and tr(K,z¢) is proportion
to the densitized extrinsic curvature K2 along the graph in
continuum limit. This result means that we can choose the
SO(D —1) fibers as the “gauge orbit” of simplicity
constraint in the discrete phase space, because the redun-
dant degrees of freedom Ké/ are precisely those trans-
formed along the SO(D — 1) fibers, which is same as how
K, acts along the true gauge orbits of simplicity con-
straint in continuum connection phase space.
Now based on the above discussions, we have demon-
strated that
(i) On both edge and vertex-simplicity constraints sur-
face, the degrees of freedoms in & [or equivalent,
the SO(D — 1) fiber] of the discrete LQG phase
space represent “gauge” degrees of freedom playing
the same role of the components K// eliminated in
the symplectic reduction with respect to the sim-
plicity constraints in the original Ashtekar formu-
lation of all dimensional LQG in the continuous
phase space.
Remarkably in this sense, under the correspondence
between the generalized twisted geometry variables and
smeared Ashtekar variables in the Regge sector, the
continuous limit of our reduction procedure indeed recov-
ers the symplectic reduction in the Ashtekar formula-
tion with respect to the original Gauss and simplicity
constraints.

VI. CONCLUSION AND OUTLOOK

To better explore the spacetime geometry information
encoded in the higher-dimensional spin-network states, we
proposed a new kinematic gauge-reduction procedure for
the SO(D + 1) LQG at the classical and discrete level.
The reduction takes place with respect to the anomalous
kinematic constraint system consisting of the discrete
simplicity constraints {SI/KL ~ 0, SI/KL ~ 0} and the dis-
crete SO(D + 1) Gauss constraints G/ ~ 0, defined in the
SO(D + 1) LQG phase space associated with a given graph
for the spin network states.

Motivated by our previous work on the weak solutions of
the quantum vertex-simplicity constraints given by the
coherent intertwiners, we generalized the twisted-geometry
parametrization of the SU(2) LQG phase space, into the
angle-bivector parametrization of the constraint surface of
edge-simplicity constraints ST/KL ~ 0 in the SO(D + 1)
LQG phase space. Further, when restricted to the common
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constraint surface of the full kinematic constraints
{GY =0, SVKL ~ 0, S/KL ~ 0}, the new parametrization
endows the angle-bivector variables with the meaning of
the constrained smeared formulations of Ashtekar varia-
bles. In particular, the SO(D —1) angle variables are
identified with the smeared Ashtekar connection compo-
nents that are pure-gauge corresponding to the simplicity
constraint in the original classical and continuous theory.

Through studying the properties of the Hopf sections in
SO(D + 1) Hopf fiber bundle, we obtained the Poisson
algebra among the angle-bivector variables, and sub-
sequently the action of the constraint system on the
twisted-geometry variables. Then, the full symplectic
reduction with respect to the first-class subsystem of the
discrete constraints {G% ~ 0, ST/ ~ 0} is performed and
results to the gauge-invariant reduced phase space P?’G.
Crucially as we discovered, when again restricted to the
common constraint surface of the full system of the discrete
constraints, the first-class subsystem generates the orbits
that recover the gauge orbits generated by the original
continuous simplicity and Gauss constraints in the con-
tinuous limits. In particular, the edge-simplicity constraints
generate precisely the transformations in the SO(D — 1)
angle variables. Finally, we demonstrated that when the
remaining anomalous vertex-simplicity constraints are
imposed as additional constraints upon the gauge-invariant

reduced phase space, the selected state space PVI; c P?'G
truly describes the discrete ADM data in the form of Regge
hypersurface geometry, up to the shape matching condition.
We are thus led to the new point of view, in which the
(quantum) discrete Gauss and edge-simplicity constraints are
the true generators of the kinematic gauge symmetry for all-
dimensional LQG, while the anomalous vertex-simplicity
constraints only act as addition state-selection laws. From a
different view, this new gauge reduction has supplemented
the missing pieces in our previous prescription of the weak
solutions to the quantum vertex-simplicity constraint, where
the weak solutions are interpreted as semiclassical polytopes
used to assemble the spatial geometry. Indeed, the absent
description of the extrinsic curvature components in the
Ashtekar connection are captured by the angle variables
parametrizing the holonomies, left out from the previous
prescriptions based on only the bivectors labeling coherent
intertwiners. Remarkably, our gauge orbit reductions leave
the only angle variable &9 giving precisely the (smeared)
Regge extrinsic curvature, for the states on the vertex-
simplicity constraint surface in the reduced phase space.
Our results point to two interesting future research
directions based upon the generalized twisted-geometry
parametrization of the SO(D + 1) LQG phase space.
First, we have assumed the existence of the coherent
spin-network states sharply peaked in the angle-bivector
variables—this was based on the known explicit construc-
tion of the SU(2) coherent spin-network states sharply
peaked in the twisted-geometry variables [10]. As indicated

in this earlier study, these states are highly valuable for not
only do they recover the boundary semiclassical states for
the spinfoam models (a covariant version of LQG), but they
also serve as a special type of the Thiemann-Hall’s com-
plexifier coherent states in canonical LQG [18-20].
Through these connections, the clear intrinsic and extrinsic
geometry interpretations via the twisted-geometry variables
have illuminated many important perspectives of the classi-
cal limits for both canonical and covariant LQG in (1 + 3)
dimension. In the same manner, we expect our angle-
bivector parametrization to offer valuable insights to the
covariant and canonical LQG in higher dimensions, for
which the geometric meaning of the coherent states has
been even more elusive. In fact, it is known that the cur-
rently prevailing Thiemann-Hall’s SO(D + 1) coherent
states are too complicated for explicit computations. It is
our hope that the angle-bivector coherent states, which
could be constructed and studied based on the recent works
[21], may serve as the alternative coherent states with the
much simpler gauss distribution formulation and clear
geometric meanings, for clarifying the semiclassical behav-
ior of the SO(D + 1) LQG. The second direction is toward
the physical evolutions in canonical SO(D + 1) LQG. This
may be pursued either in the context of the Dirac theory
with the Hamiltonian operators (arbitrary combinations of
the quantum scalar and vector constraints) to be solved as
additional quantum constraints and the local observables to
be constructed, or in the context of a classically depar-
ametrized theory with one physical Hamiltonian operator
giving the evolution in a specified notion of time. In both
cases, the new crucial challenge here is to deal with the
algebra involving the quantum Hamiltonian operators. As
mentioned, although the full system of Gauss, simplicity and
Hamiltonian constraints are of first class in the continuous
classical theory, it inevitably becomes anomalous under the
loop quantization [ 12,22 ]—especially with the typical closed
loop holonomy representation for the curvature factors in the
Hamiltonian operators. Our new insights in the quantum
orbits for the simplicity constraints may provide an approach
to the problem that is closely guided by the physical and
geometric picture. For instance in the context of the depar-
ametrized theory, our results suggest quantizing the discre-
tized physical Hamiltonian associated to each graph that is
gauge invariant with respect to just the quantum gauss
constraints and edge-simplicity constraints. This would lead
to the dynamics preserving the gauge symmetry, with which
one could then study the weak stability of the vertex-
simplicity constraints under the dynamics. Indeed, the
program in this manner would be guided by the ultimate
goal for the quantum evolutions of the Regge ADM data.
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