
 

Effective field theory on a finite boundary of the Bruhat-Tits tree
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Based on bulk reconstruction from the finite boundary of the Bruhat-Tits tree, the boundary effective
theory is obtained after integrating out fields outside this boundary. According to the p-adic version of
anti–de Sitter/conformal field theory duality, two-point functions of dual theory living on the finite
boundary are read out from the effective action. They can be regarded as two-point functions of a deformed
conformal field theory over p-adic numbers.
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I. INTRODUCTION

It is proposed that physics should be invariant under the
change of number fields [1]. For example, we should be able
touseeither real numbers (R) orp-adic numbers (Qp) [2–4] to
set up spacetime coordinates and write down the same
physical laws. Such number fields should include the set
of rational numbers (Q) since all measurement results in
physics are rational numbers. Considering thatQp and R are
the only two candidates satisfying certain restrictions such as
including Q, it is necessary to study physics over Qp as
investigations to the above proposal. Another motivation to
study physics over Qp comes from the possibility that
spacetime is non-Archimidean at small scales [1,5,6], and
it is very convenient to construct such spacetime using Qp.
String theories overQp (p-adic string) beginwith [5,7,8], and
theBruhat-Tits tree (Tp) is regarded as thep-adic stringworld
sheet in [9]. Spinors, gravity, andblackholes onTp are studied
in [10–15]. Relations between Tp and tensor network are
studied in [16–18]. The p-adic version of the anti–de Sitter/
conformal field theory duality (p-adic AdS=CFT) [19–21] is
proposed in [10,22],which are followedby lots ofworks, such
as [23–33].
Among all these references, [9,22] are the most impor-

tant to this paper. Besides identifying Tp as the p-adic
string world sheet, Ref. [9] also calculates the effective field
theory on the infinite boundary of Tp which is obtained by
integrating out fields in the bulk. “Effective” comes from
the integration of fields. One key technique is the use of
bulk-boundary propagators. But propagators seem useless

when one wants to calculate the effective field theory on the
finite (cutoff) boundary, where bulk reconstruction from the
finite boundary is required. “Cutoff” usually means ignor-
ing one side of the boundary. “Finite boundary” is preferred
to “cutoff boundary” in this paper because both sides of the
boundary are handled carefully, and none of them is
dropped directly.
One motivation of this paper is to extend the work of

Ref. [9], which is to calculate the effective field theory on a
finite boundary. Bulk reconstruction from the finite boun-
dary is solved in Sec. III, and the effective field theory is
calculated in Sec. IV. Another motivation is to find some
results of p-adic AdS=CFT which are parallel to those
of AdS=CFT over R with a cutoff AdS boundary, such as
[34–38]. Identifying Tp as the p-adic version of AdS
spacetime [22], two-point functions of a deformed CFT
over Qp are calculated in Sec. V, where the deformation
comes from the “cutoff” of Tp, or in other words, comes
from the finite boundary. Section II provides some basic
knowledge of Tp and points out the field space used in this
paper. The last section is summary and discussion. In this
paper, the measure μ, dx, the p-adic absolute value j·jp, and
the edge length L have the dimension of length while
p-adic numbers are dimensionless.

II. THE BRUHAT-TITS TREE AND FIELD SPACES

Referring to Fig. 1, Tp is an infinite tree with pþ 1
edges incident on each vertex, where p is a prime number.
The distance dð·; ·Þ between vertices can be defined as the
number of edges between them. Letting zð·Þ denote the
vertical coordinate of a vertex, there is a particular one-to-
one correspondence between the upper boundary of Tp and
Qp such that jx − yjp ¼ jzðaxyÞjp, where axy is the lowest
vertex on the line connecting x and y on the upper boundary
(x; y ∈ Qp). jx − yjp also defines the distance between x
and y, and it is actually the regularization of dða; bÞ when
a → x and b → y. Referring to Fig. 1, a; b → x; y can be
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achieved by x0 → x and y0 → y. According to [22], we can
write

p−dða;bÞ ¼
���� ðx − x0Þðy − y0Þ
ðx − yÞðx0 − y0Þ

����
p

∼x0ðy0Þ→xðyÞ 1

jx − yj2p
; ð1Þ

where the right-hand side of “∼” is the regularization of the
left-hand side. There is only one single point on the lower
boundary of Tp, which is noted as ∞. Each vertex can be
regarded as a subset (ball) of Qp containing points on the
upper boundary which are connected to this vertex from
above. There is an additive measure μ of vertex a which
equals jzðaÞjp. Several examples are provided in Fig. 1,
such as

dða; cÞ ¼ dðb; cÞ ¼ dðe; cÞ ¼ 1; ð2Þ

dða; eÞ ¼ dðb; eÞ ¼ dða; bÞ ¼ 2; ð3Þ

jx − yjp ¼ jzðaxyÞjp ¼ jzðcÞjp ¼ jpnjp ¼ p−n; ð4Þ

jx − ujp ¼ jy − ujp ¼ jzðeÞjp ¼ jpn−1jp ¼ p1−n; ð5Þ

x ∈ a; y ∈ b; u ∈ e; a ∪ b ¼ c ⊂ e; ð6Þ

p2μðaÞ¼p2μðbÞ¼pμðcÞ¼μðeÞ¼ jzðeÞjp¼p1−n: ð7Þ

Be aware that u ∉ c since edge ec is attached to c from
below but not from above.
Consider the action and equation of motion of a real-

valued massless scalar field on Tp:

S ¼ 1

2

X
habi

ðϕa − ϕbÞ2
L2

; ð8Þ

□ϕa ¼ 0; □fa ≔
X
b∈∂a

ðfa − fbÞ; ð9Þ

where habi is the edge connecting the neighboring vertices
a and b. The constant L is the length of edges. b ∈ ∂a
means b is a neighboring vertex of a and the sum

P
b∈∂a is

over all the neighboring vertices of a. This action can be
rewritten as a sum over vertices, which is

4L2S ¼
X
a

X
b∈∂a

ðϕa − ϕbÞ2

¼ 2
X

zðaÞ≤pN

ϕa□ϕa þ FNðϕ;ϕÞ þ RNðϕ;ϕÞ; ð10Þ

FNðf; gÞ ≔
X

zðaÞ¼pN

X
b∈∂a

zðbÞ¼pNþ1

ðfa þ fbÞðgb − gaÞ; ð11Þ

RNðf; gÞ ≔
X

zðaÞ>pN

X
b∈∂a

ðfa − fbÞðga − gbÞ: ð12Þ

RN comes from the separation

X
a

¼
X

zðaÞ≤pN

þ
X

zðaÞ>pN

ð13Þ

and FN comes from the identity

X
zðaÞ≤pN

X
b∈∂a

ðfa − fbÞðga − gbÞ

¼ 2
X

zðaÞ≤pN

fa□ga þ FNðf; gÞ

¼ 2
X

zðaÞ≤pN

ga□fa þ FNðg; fÞ: ð14Þ

It is convenient to consider a field space where RN and FN
vanish. For the field spaceH in this paper, we demand that

∀f;g∈H; lim
N→∞

FNðf;gÞ¼ lim
N→∞

RNðf;gÞ¼0: ð15Þ

Hence, we can always write

S ¼ 1

2

X
habi

ðϕa − ϕbÞ2
L2

¼ 1

2L2

X
a

ϕa□ϕa; ð16Þ

where no boundary term appears.

III. BULK RECONSTRUCTION
FROM THE FINITE BOUNDARY

With the help of on-shell conditions in the bulk, fields
there can be reconstructed from those on the boundary. In
Fig. 2, there are four subgraphs of Tp¼2. From left to right
their bulks and boundaries (bdy) are

bulk∶f1g; bdy∶f01; 02; 2g; ð17Þ

bulk∶f1; 2;…g; bdy∶f01; 02; 03; 04; 3g; ð18Þ

bulk∶f1; 2; 3;…g; bdy∶f01; 02;…; 07; 08; 4g; ð19Þ

bulk∶f1;…; n;…g; bdy∶f01;…; 0pn ; nþ 1g: ð20ÞFIG. 1. Tp¼2 and its vertical coordinate z.
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Refer to the first subgraph on the right. ϕn, whose location
is one edge above the lower boundary fnþ 1g, can be
reconstructed from ϕnþ1 (the field on the lower boundary)
and ϕ0’s (fields on the upper boundary). After solving the
cases of n ¼ 1, 2, 3 (three subgraphs on the left), the
following ansatz can be proposed:

anþ1ϕn ¼ anϕnþ1 þ a1
X
n

ϕ0; n ≥ 1; ð21Þ

an ≔ pn − 1;
X
n

ϕ0 ≔
Xpn

i¼1

ϕ0i
: ð22Þ

It can be proved by mathematical induction.
What is useful in this paper is the reconstruction of ϕ1,

whose location is one edge below the upper boundary.
Letting n ¼ 1, 2, 3 in (21), we have

a2ϕ1 ¼ a1ϕ2 þ a1
P
1

ϕ0

a3ϕ2 ¼ a2ϕ3 þ a1
P
2

ϕ0

a4ϕ3 ¼ a3ϕ4 þ a1
P
3

ϕ0

9>>>=
>>>;

⇒ ð23Þ

ϕ1 ¼
a21
a1a2

X
1

ϕ0 þ
a21
a2a3

X
2

ϕ0 þ
a21
a3a4

X
3

ϕ0 þ
a21
a1a4

ϕ4:

ð24Þ

Referring to the third subgraph on the left in Fig. 2, Eq. (24)
is the reconstruction of ϕ1 from ϕ4 and ϕ0’s. Therefore, the
ansatz for the reconstruction of ϕ1 from ϕnþ1 and ϕ0’s can
be proposed as

1

a21
ϕ1 ¼

Xn
i¼1

1

aiaiþ1

X
i

ϕ0 þ
1

a1anþ1

ϕnþ1; ð25Þ

which can also be proved by mathematical induction.
Let us consider a simple case of the boundary condition

on the lower boundary, which is ϕa→∞ ¼ 0. Remember that
∞ is the lower boundary of Tp (Fig. 1). Letting ϕnþ1 ¼ 0

and n → ∞, the reconstruction of ϕ1 writes

1

a21
ϕ1 ¼

X∞
i¼1

1

aiaiþ1

X
i

ϕ0: ð26Þ

It can be rearranged into a more useful form. Taking the
third subgraph on the left in Fig. 2 as an example, we can
write

X
3

ϕ0 ¼
X23
i¼1

ϕ0i
¼

X21
i¼1

ϕ0i
þ

X22
i¼21þ1

ϕ0i
þ

X23
i¼22þ1

ϕ0i

≡X
1

ϕ0 þ
X
2n1

ϕ0 þ
X
3n2

ϕ0; ð27Þ

where “≡” means that we introduce new symbols on the
right-hand side to denote the left-hand side. Remembering
that each vertex is a ball in Qp,

P
ðiþ1Þni means the sum is

over all vertices 0’s (vertices on the upper boundary)
included in vertex iþ 1 but not included in vertex i. It
can be found that there are p terms in

P
1 and piþ1 − pi

(i ≥ 1) terms in
P

ðiþ1Þni. Now the reconstruction of ϕ1 (26)
can be rewritten as

1

a21
ϕ1 ¼

1

a1a2

X
1

ϕ0 þ
1

a2a3

X
2

ϕ0 þ � � �

¼ 1

a1a2

X
1

ϕ0 þ
1

a2a3

�X
1

ϕ0 þ
X
2n1

ϕ0

�
þ � � �

¼ A1

X
1

ϕ0 þ A2

X
2n1

ϕ0 þ A3

X
3n2

ϕ0 þ � � � ; ð28Þ

Ak ¼
X∞
i¼k

1

aiaiþ1

; k ≥ 1: ð29Þ

The distance between any vertex 0j ⊂ ðiþ 1Þni and vertex
1 is a constant that only depends on i. Taking the third
subgraph on the left in Fig. 2 as an example, we have

01 ∪ 02 ¼ 1; dð01;1Þ ¼ dð02;1Þ ¼ 1¼ 2 � 1− 1; ð30Þ

03 ∪ 04 ¼ 2n1; dð03;1Þ¼ dð04;1Þ¼ 3¼ 2�2−1; ð31Þ

05 ∪ 06 ∪ 07 ∪ 08 ¼ 3n2; ð32Þ

dð05;1Þ¼dð06;1Þ¼dð07;1Þ¼dð08;1Þ¼5¼2�3−1: ð33Þ

Therefore, under the boundary condition ϕa→∞ ¼ 0, the
reconstruction of ϕ1 from ϕ0’s (28) also writes

1

a21
ϕ1 ¼

X∞
n¼1

An

X∞
dð1;0Þ¼2n−1

ϕ0 ≡
X
0∈bdy

A1þdð1;0Þ
2

ϕ0; ð34Þ

where
P

dð1;0Þ¼2n−1 means the sum is over vertices on the
upper boundary that are 2n − 1 edges away from vertex 1.

FIG. 2. Four subgraphs of Tp¼2. Vertices on the upper boundary
are noted as 0i’s. The lower boundary of each subgraph contains
only one vertex.
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P
n

P
dð1;0Þ≡P

0∈bdy is the sum over all vertices on the
upper boundary. The weight coefficient Að1þdÞ=2 only
depends on the distance between ϕ0’s location and vertex 1.

IV. THE EFFECTIVE FIELD THEORY
ON THE FINITE BOUNDARY

Consider the partition function with sources only living
on a finite boundary EM. We can write

ZM½J� ¼
R
Tp
Dϕe

−Sþ
P

a∈EM
ϕaJa

R
Tp
Dϕe−S

; ð35Þ

S ¼ 1

2

X
habi

ðϕa − ϕbÞ2
L2

¼ 1

2L2

X
a

ϕa□ϕa; ð36Þ

EM ≔ fajzðaÞ ¼ pMg; Ja∉EM
¼ 0; ð37Þ

where
R
Tp
Dϕ means ϕ fluctuates on the entire Tp.

Decompose ϕ into Φ and ϕ0 which satisfy

ϕa ¼ Φa þ ϕ0
a; □Φa∉EM

¼ 0; ϕa∈EM
0 ¼ 0: ð38Þ

Φ is on-shell outside EM and ϕ0 vanishes on EM. It can be
found that Φ and ϕ0 are decoupled in our free field theory,
and only Φ will contribute to the final result. Rewriting the
action using Φ and ϕ0, we have

2L2S ¼
X
a∈EM

Φa□Φa þ S0

¼
X
a∈EM

ΦaðΦa −Φa−Þ þ
X
a∈EM

Φa

�
pΦa −

X
b∈∂a

zðbÞ>zðaÞ

Φb

�

þ S0;

S0 ¼
X
a

ϕ0
a□ϕ0

a; ð39Þ

where (14) and (38) are used. Among pþ 1 neighboring
vertices of a, there is only one satisfying zðbÞ < zðaÞ
(noted as a−) and the rest satisfying zðbÞ > zðaÞ. When
choosing a particular on-shell configuration of Φa above
EM (zðaÞ > pM), the second term in the action vanishes,
and it makes the calculation easier. Referring to Fig. 3, we
have

pΦa −
X
b∈∂a

zðbÞ>zðaÞ

Φb ¼ pΦa −
X
b∈∂a

zðbÞ>zðaÞ

Φa ¼ 0: ð40Þ

Other on-shell configurations which are not considered in
this paper, such as Φb ¼ p−1Φa in (40), can introduce a
nonzero mass term. According to the reconstruction of ϕ1

from ϕ0’s (34), Φa− can be reconstructed from Φ’s on EM.
And the action can be written as

2L2S ¼
X
a∈EM

ΦaðΦa −Φa−Þ þ S0

¼
X
a∈EM

ΦaðΦa − a21
X
b∈EM

A1þdða− ;bÞ
2

ΦbÞ þ S0: ð41Þ

Considering that there are p vertices (b’s) satisfying
dða−; bÞ ¼ 1 and pn − pn−1 vertices satisfying dða−; bÞ ¼
2n − 1 when n ≥ 2, it can be proved that

a21
X
b∈EM

A1þdða− ;bÞ
2

¼ a21ðA1pþ A2ðp2 − pÞ þ A3ðp3 − p2Þ þ � � �Þ
¼ a21ðpðA1 − A2Þ þ p2ðA2 − A3Þ þ p3ðA3 − A4Þ þ � � �Þ

¼ a1

�
a2 − a1
a1a2

þ a3 − a2
a2a3

þ a4 − a3
a3a4

þ � � �
�

¼ 1: ð42Þ

Hence the action also writes

2L2S ¼ a21
X
a∈EM

Φa

�X
b∈EM

A1þdða− ;bÞ
2

ðΦa −ΦbÞ
�
þ S0

¼ a21
X
a∈EM

Φa

�X
b∈EM
b≠a

Adða;bÞ
2

ðΦa −ΦbÞ
�
þ S0: ð43Þ

Substituting it into the partition function, terms related to ϕ0
cancel out. And it turns out to be a partition function of a
field theory on EM, which is

ZM½J� ¼
R
EM

DΦe
−SMþ

P
a∈EM

ΦaJaR
EM

DΦe−SM
; ð44Þ

SM ¼ ðp − 1Þ2
2L2

X
a∈EM

Φa

�X
b∈EM
b≠a

Adða;bÞ
2

ðΦa −ΦbÞ
�
: ð45Þ

R
EM

DΦmeansΦ only fluctuates on EM, which comes from
the separation

FIG. 3. The configuration of Φa when zðaÞ > pM. Take a ∈
EM as an example. b1 ≡ a−; b2, and b3 are pþ 1 ¼ 3 neighbor-
ing vertices of a, which satisfy zðb1Þ ¼ zða−Þ < zðaÞ and
zðb2Þ ¼ zðb3Þ > zðaÞ. Φ’s on vertices included in a (vertices
of the red subgraph) equal to Φa. Φ’s on vertices of the blue
subgraph equal to Φa0 , and so on.
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Z
Tp

Dϕ ¼
Z
EM

Dϕ

Z
TpnEM

Dϕ: ð46Þ

Equation (44) is the effective field theory on the
finite boundary EM. Taking the limit M → ∞ leads to that
on the infinite boundary. Refer to Fig. 4. Given vertices
a; b ∈ EM, select two points x and y on the upper boundary
of Tp satisfying x ∈ a, y ∈ b. We can write

jx − yjp ¼ jzðaxyÞjp ¼ jpM−dða;bÞ
2 jp ¼ p

dða;bÞ
2 jpMjp: ð47Þ

The action SM can be rewritten as

2L2

ðp−1Þ2SM

¼
X
a∈EM

jpMjpΦa

�X
b∈EM
b≠a

jpMjp
Adða;bÞ

2

jpMj2p
ðΦa−ΦbÞ

�

¼
X
a∈EM

jpMjpΦa

�X
b∈EM
b≠a

jpMjpAdða;bÞ
2

pdða;bÞΦa−Φb

jx−yj2p

�
; ð48Þ

where x ∈ a, y ∈ b. jpMjp is the measure of each vertex on
the finite boundary EM, which tends to dx in the limit
M → ∞. Supposing that a → x and b → y when M → ∞,
we can write Φa → Φx and Φb → Φy where Φx or Φy

represents a field on the upper boundary (infinite boundary)
of Tp. As for the Ad=2pd term, considering that M → ∞ ⇔
dða; bÞ → ∞ according to (47) when fixing x and y, we can
write

Adða;bÞ
2

pdða;bÞ ¼ pd
X∞
i¼d=2

1

ðpi − 1Þðpiþ1 − 1Þ

→
M→∞

pd
X∞
i¼d=2

1

pipiþ1
¼ p

p2 − 1
: ð49Þ

Finally, in the limitM → ∞, the action SM can be written as

SM→∞ ¼ pðp− 1Þ
2ðpþ 1ÞL2

Z
x∈Qp

dxΦx

Z
y∈Qp
y≠x

dy
Φx−Φy

jx− yj2p
: ð50Þ

This effective field theory on the infinite boundary of Tp
is consistent with [9]. But different dx (or μ) and j·jp are
used in that paper. The relation between dx and μ isR
x∈a dx ¼ μðaÞ. Refer to Fig. 5. In the left figure, we
already know that

jx − yjp ¼ μðaxyÞ ¼ jzðaxyÞjp ¼ p−n−1; ð51Þ

ju − vjp ¼ μðauvÞ ¼ μðcÞ ¼ jzðcÞjp ¼ p−n: ð52Þ

The right figure is another layout for the same graph. There
is a radial coordinate zc of vertices depending on the
distance between this vertex and the reference one c. For
example, we can write

zcðaxyÞ¼pdðaxy;cÞ ¼p1; zcðauvÞ¼pdðauv;cÞ ¼p2; ð53Þ

zcðcÞ ¼ pdðc;cÞ ¼ 1: ð54Þ

Each vertex (noted as a) in the right figure is a ball in
Qp ∪ f∞g containing boundary points which are on the
“half-line” ca’s (half-lines which start from c, pass through
a, and go to the boundary). The reference vertex c contains
all the boundary points, namely c ¼ Qp ∪ f∞g. Measure
μc of vertices and distance j · jcp of boundary points can be
introduced according to the right figure, which satisfy

jx − yjcp ¼ μcðaxyÞ ¼ jzcðaxyÞjp ¼ p−1; ð55Þ

ju − vjcp ¼ μcðauvÞ ¼ jzcðauvÞjp ¼ p−2: ð56Þ

They are different from μ and j·jp in the left figure or which
are used in this paper. For example, it can be found that

μðaxyÞ < μðauvÞ; μcðaxyÞ > μcðauvÞ; ð57Þ

FIG. 4. The relation between dða; bÞ and jx − yjp ¼ jzðaxyÞjp
where x ∈ a, y ∈ b. dða; bÞ is the number of edges between a and
b. axy is the lowest vertex on the line connecting x and y. It can be
found that logp pM − logp zðaxyÞ ¼ 1

2
dða; bÞ, which also writes

zðaxyÞ ¼ pM−dða;bÞ=2. In this figure, we have dða; bÞ ¼
4; zðaxyÞ ¼ pM−2.

FIG. 5. Two different layouts for the same graph Tp¼2. Differ-
ent μ’s and j · jp’s can be introduced according to different
layouts.
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jx − yjp < ju − vjp; jx − yjcp > ju − vjcp: ð58Þ

μc and j·jcp are the measure and distance used in [9].

V. RELATIONS TO p-ADIC AdS=CFT

Consider the equation

ZM½J� ¼
R
Tp
Dϕe

−Sþ
P

a∈EM
ϕaJa

R
Tp
Dϕe−S

¼
R
EM

Dϕ
R
TpnEM

Dϕe
−Sþ

P
a∈EM

ϕaJa

R
EM

Dϕ
R
TpnEM

Dϕe−S

¼
R
EM

DΦe
−SMþ

P
a∈EM

ΦaJaR
EM

DΦe−SM
: ð59Þ

Ignoring denominators and setting J ¼ 0, we can write

Z
TpnEM

Dϕe−S ∼ e−SM →
M→∞

Z
Tp

Dϕe−S ∼ e−SM→∞ : ð60Þ

Therefore, SM (SM→∞) can be regarded as the effective
action after integrating out fields on TpnEM (Tp). Now let
us identify Tp as a p-adic version of AdS spacetime [22].
According to the spirit of AdS=CFT,

he
R

dxOϕ0iCFT ¼
Z
AdS

Dϕe−S
����
ϕ∂AdS¼ϕ0

; ð61Þ

where ∂AdS is the boundary of AdS and the fluctuation of
gravity has been ignored, e−SM→∞ should be directly
proportional to the generating functional of some CFT
over Qp, whose two-point function reads

δ2e−SM→∞

δΦxδΦy≠x

����
Φ¼0

¼ pðp − 1Þ
ðpþ 1ÞL2

1

jx − yj2p
: ð62Þ

It is consistent with [22] if setting ηp ¼ 1;Δ ¼ n ¼ 1 there
and L ¼ 1 in (62). On the other hand, if not taking the limit
M → ∞, the following calculation should give a two-point
function of some deformed CFT over (coarse-grained) Qp:

δ2e−SM

δΦaδΦb≠a

����
Φ¼0

¼ðp−1Þ2
L2

Adða;bÞ
2

¼ðp−1Þ2
L2

X∞
n¼dða;bÞ

2

1

ðpn−1Þðpnþ1−1Þ ; ð63Þ

where dða; bÞ ¼ 2; 4; 6; 8;… is a positive even number and
EM ¼ fa; b;…g is a coarse-grained Qp. Remember that
each element in EM is a ball in Qp. Equation (63) can be
regarded as a counterpart to the two-point function of a
deformed CFT living on the cutoff boundary of AdS
over R.

VI. SUMMARY AND DISCUSSION

In this paper, we manage to reconstruct fields in the bulk
from those on the finite boundary of Tp (34). Then with the
help of calculating techniques in [9], the effective field
theory is calculated by integrating out fields on the entire
Tp except those on the finite boundary (44). According to
the spirit of AdS=CFT, two-point functions of dual theories
are read out: (62) on the infinite boundary and (45) on the
finite boundary. The former is a two-point function of a
CFT over Qp which is consistent with [22], and the latter is
a two-point function of a deformed CFT which should be
compared with that in AdS=CFT over R with a cutoff AdS
boundary.
Some problems still need to be explored. For example,

(i) relations between field spaces discussed in Sec. II and
those in [13,30] are still unclear. Different field spaces or
boundary conditions sometimes lead to different results; (ii)
it may be a hard problem to find out what “deformed CFT”
is which gives a two-point function such as (63). It is
known that the counterpart overR can be regarded as a TT̄-
deformed CFT [36]; (iii) the same calculation on pAdS is
interesting. pAdS [22,25] is another p-adic version of AdS
spacetime whose finite boundary is exactly Qp but not the
coarse-grained one.
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