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We do not observe quantum effects on cosmological scales. Thus, if loop quantum cosmology (LQC) is
to provide an accurate depiction of the real world, it must allow for quantum states of spacetime geometry
which are semiclassical in two respects: they must be sharply peaked around a single, classical geometry,
and they must have small quantum fluctuations. It is generally assumed that Gaussian states exhibit both of
these properties. After all, they do in ordinary quantum mechanics. In this paper, we derive exact closed-
form expressions for the fluctuations of Gaussian states in LQC and their lower bound given by the
Robertson-Schrödinger inequality. We demonstrate that, contrary to ordinary quantum mechanics,
fluctuations for Gaussian states in spatially flat, homogeneous, and isotropic LQC diverge as the state
variance increases (as well as in related cosmological models with the same kinematic Hilbert space and
canonical observables). However, when the holonomy length is made to scale with a volume regularization
parameter, these fluctuations may be arbitrarily suppressed by taking the fiducial volume to be large,
providing analytic control over their divergence. Finally, we show that, despite this, Gaussian states in LQC
generally do not minimize uncertainty. Moreover, it is conjectured that no such minimal-uncertainty states
exist. Throughout this work, it becomes clear how important the often-assumed condition of holonomy
length volume scaling is; we show that when this condition is violated, the resulting theory exhibits
operator closure pathologies and other exotic algebraic features.

DOI: 10.1103/PhysRevD.103.086014

I. INTRODUCTION

In loop quantum cosmology (LQC), spacetime exists in a
quantum state which may be regarded as a superposition of
geometries. However, the observable universe appears to be
sharp; one does not observe coherent quantum effects on
cosmological scales. Thus, the actual universe, as repre-
sented by LQC, must be described by a state which is
sharply peaked around a single geometry. Moreover, such
quantum geometries exhibit the same sort of quantum
fluctuations as are present in ordinary quantum mechanics.
Classical general relativity does not exhibit these fluctua-
tions so the semiclassical states of LQC are expected to be
states for which these fluctuations are very small, ideally
vanishingly so.
These two properties—sharpness and minimal fluc-

tuation—may be taken to be constitutive features of
semiclassical states (see, for instance, [1–3]). In ordinary
quantum mechanics, such states are easy to find: Gaussian
states—and coherent states more generally—satisfy both
of these conditions. However, the Hilbert space structure of
ordinary quantum mechanics is much different from that of
LQC. Therefore, we cannot hastily assume that the same

intuitions which hold for such “nice” states in ordinary
quantum mechanics also hold for the analogous states
in LQC.
In Sec. II we introduce the basic theory of LQC. We then

discuss general features of uncertainty relations in Sec. III. In
Sec. IV, we define Gaussian states in the volume representa-
tion of LQC and explicitly compute the fluctuations of the
canonical LQC observables for these Gaussian states in
Sec. V. We show that there are two important cases to
consider: that in which the shift operator is closed on the
superselection sector (whence the holonomy length scales
with a fiducial volume V0) and otherwise. We show that the
fluctuations of Gaussian states may diverge as their variance
increases in either case for a fixedV0, but that this divergence
may be suppressed by taking V0 → ∞ in the case where the
holonomy length scales with V0. In Sec. VI, we show that
Gaussian states do not saturate uncertainty, and so this
measure of semiclassicality fails for Gaussian states in
general (though it is asymptotically satisfiedwhenV0 scaling
is introduced). Finally, in Sec. VII we sketch a further
argument that there are in fact no physical squeezed states
which minimize uncertainty.

II. LOOP QUANTUM COSMOLOGY

LQC describes superpositions of classical spacetime
geometries resulting in a theory of cosmology with several
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nice features [4,5], such as a bouncing evolution with
no spacetime singularities [6–9]. As a simplifying
assumption, we shall restrict ourselves to Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetimes. That is,
we assume spacetime is a superposition of geometries
which each have a line element of the form

ds2 ¼ −dt2 þ aðtÞ2½dx2 þ dy2 þ dz2�:
Such classical spacetimes may be foliated into timelike

slices which each carry a fiducial 3-metric q
∘
ab (whose

determinant is denoted q
∘
). For classical FLRW spacetimes,

we may encode this fiducial metric using Ashtekar vari-
ables given by

Ai
a ¼ _aðtÞðdxiÞa; Ea

i ¼ aðtÞ2
ffiffiffi
q
∘

q
ð∂iÞa:

Defining c ≔ _aðtÞ and p ≔ aðtÞ2, these become

Ai
a ¼ cðdxiÞa; Ea

i ¼ p
ffiffiffi
q
∘

q
ð∂iÞa:

The action which describes the dynamics of such space-
times under the Einstein field equations is the Holst action,
which has a symplectic term [10,11] of the form

1

8πGγ

Z
_Ai
aEa

i d
3x ¼ 1

8πGγ

Z
_cp

ffiffiffi
q
∘

q
d3x:

Unless the spacetime in question is compact, this term
is divergent and must be regularized. Thus, one considers
a spacetime region V with a finite fiducial volume

V0 ¼
R
V

ffiffiffi
q
∘q
. Since FLRW spacetimes are homogeneous,

the location of this region is arbitrary. It is common (in both
the classical and the quantum theories) to scale the
canonical coordinates with V0 such that its dependency
is transformed away [5,7,12]. However, when we switch to
the quantum theory, it has been shown that V0 is not a
gauge quantity [2] (indeed, even after transforming it away
from the canonical variables, the symplectic form still
depends on it [5]), and so we leave it for now. It shall play
an interesting role in the analysis to come.
With this regularization, the Poisson bracket of c and p is

given by

fc; pg ¼ 8πGγ
V0

;

where γ is the Barbero-Immirzi parameter. While this
bracket is invariant under rescaling, it still depends on
V0 [2]. It is common now to make a canonical coordinate
transformation, taking V ¼ p3=2 ¼ aðtÞ3 to be the spatial
volume of a timelike slice of the foliation at t, and taking
β ¼ c=

ffiffiffiffi
p

p ¼ _aðtÞ=aðtÞ to be the Hubble parameter (which
is the conjugate momentum to the volume coordinate).

The canonical variables V and β may then be readily used
to study the cosmological behavior of FLRW -spacetimes
under classical Hamiltonian general relativity. These are the
variables which are quantized to yield a quantum theory of
cosmology.
In Wheeler–de Witt theory, one quantizes V and β using

the usual Dirac quantization procedure. In LQC, we instead
quantize the canonical variables using the quantization
procedure of loop quantum gravity (LQG)—which makes
use of an alternative representation of the Weyl algebra—to
obtain a different quantum cosmological model. In this
sense, LQC is essentially a symmetry reduced model of
LQG with only a single degree of freedom [the scale factor
aðtÞ on each time slice].
Taking volume to be the coordinate observable of the

resulting quantum theory of spatially flat, homogeneous,
and isotropic cosmology, the kinematic volume Hilbert
space (in the so-called polymer representation [13]) is the
nonseparable Hilbert space containing all countable com-
plex linear combinations of the basis fjVijV ∈ Rg (whose
coefficients ci satisfy

P
i jcij2 < ∞). The inner product is

defined by hVxjVyi ¼ δxy, the Kronecker-δ. The sign of V
indicates manifold orientation. Thus, for any positive
volume V, the value −V here indicates the same volume
with the opposite orientation, not a negative volume
as such; there is no new physics introduced with negative
values of V. (That said, it has been proposed by
Christodoulou et al. [14] that fermionic phases could be
used to detect this orientation.)
There are two natural operators to consider on this space:

the volume operator V̂, and the holonomy operator ĥλ (also
called the shift), which generates translations in the volume
coordinate. Following the loop quantization procedure,
these two operators are defined on the polymer Hilbert
space in the following way:

V̂jVi ¼ VjVi; ĥλjVi ¼
����V þ αλ

V0

�
; ð1Þ

where α ¼ 4πGγℏ is a constant and λ is the holonomy
length. We see that ĥλ depends on V0. This will be
important in what follows, for it ensures that the ĥλ operator
is never closed on superselection sectors unless λ is made to
scale with V0.
While a coordinate translation arises from exponentiat-

ing the conjugate momentum in ordinary quantum mechan-
ics, complications arise when one tries to extract a
conjugate momentum observable β̂ from ĥλ (i.e., a hol-
onomy flux operator), where periodicity and other issues
become apparent (see, for instance, [12]). Specifically, on
the polymer Hilbert space, ĥλ is not strongly continuous in
λ, and therefore the Stone–von Neumann theorem which
usually ensures a unique representation of quantum
mechanics fails. Thus, there does not exist a unique
operator β̂ for which ĥλ ¼ expf−iλβ̂g. A different choice
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of conjugate momentum may therefore be made, and it is
here that the representation of LQG is different from that of
ordinary quantum mechanics.
The canonical observables of LQC are V̂ and 1

λ Ŝλ where

Ŝλ ≔ i
2
ðĥλ − ĥ�λÞ. We may also define Ĉλ ≔ 1

2
ðĥλ þ ĥ�λÞ.

These operators are both self-adjoint, and if there did exist a
unique β̂ such that ĥλ were its exponentiation, then Ŝλ and
Ĉλ would look like its sine and cosine and in small λ, 1λ Ŝλ
would approximate β̂, whence it resembles the conjugate
momentum of V̂.
These are the observables which enable one to make use

of the Hamiltonian formalism to study the dynamics of
quantum models of a spatially flat, homogeneous and
isotropic spacetime. However, the analysis to come occurs
solely in the kinematic Hilbert space in which one defines
quantum states for spatial geometries in terms of their
volume. That is, the dynamics are irrelevant for our con-
siderations. As such, the following discussion is in principle
applicable to a broader class of quantum cosmological
models. Spatial homogeneity is needed for volume regu-
larization to be well-motivated. Otherwise, any spacetime
geometries whose quantization yields the above kinematic
Hilbert space and which takes V̂ and 1

λ Ŝλ to be the canonical
observables may be subjected to this analysis.
The most comprehensive summary of LQC beyond the

spatially flat, homogeneous, and isotropic case is found in
[5]. Here, we see that, while the Hamiltonian constraint
which generates the dynamics of LQC is different for
different models, the kinematic Hilbert space and canonical
observables are unchanged in the positive-curvature
(k ¼ þ1) FLRW spacetimes as well as those models with
a nonzero cosmological constant, so much of our analysis
survives in these settings as well. The Λ > 0 case yields
challenges in ensuring that the phase space may be
extended over the entire dynamics, but this does not impact
the kinematics at a fixed time. Negative-curvature models
(k ¼ −1) require different operators and so demonstrating
analogous results in that setting is nontrivial.
There is an important caveat when considering different

cosmological models: the arbitrary scaling of the fiducial
volume V0 which plays an important role in gaining
analytic control over divergent fluctuations is only possible
in spatially noncompact spacetimes. In compact spacetimes
(such as k ¼ þ1), one may only take V0 to be the actual
finite volume of spacetime and no larger. In such cases, the
“taming” procedure described is of limited use.
With these basic notions from LQC established, we now

discuss the fluctuations of these observables.

III. UNCERTAINTY

Let Â and B̂ be two symmetric operators on some Hilbert
space H. Then the Robertson-Schrödinger uncertainty
relation is given by

Δ2
AΔ2

B ≥
���� 12 hfÂ; B̂gi − hÂihB̂i

����
2

þ
���� 12i h½Â; B̂�i

����
2

; ð2Þ

where f·; ·g is the anticommutator [15,16]. The Robertson-
Schrödinger relation is simply a stricter bound on the usual
Heisenberg uncertainty relation. Indeed, the Heisenberg
relation is obtained from Eq. (2) by truncating the first term
(which is always non-negative) yielding

Δ2
AΔ2

B ≥
���� 12i h½Â; B̂�i

����
2

: ð3Þ

It is not a priori obvious that there exist states which
saturate either (2) or (3) for a given pair of observables, but
saturation of the latter implies saturation of the former. The
inequality (2) is well-defined provided it is evaluated for
states jψi for which Âjψi is in the domain of B̂ and vice
versa [17,18]. We see that V̂ and ĥλ satisfy this condition
for all LQC states.
Rovelli and Wilson-Ewing [10] provided a detailed

analysis of the influence of fluctuations on cosmological
effects by describing the large-scale phenomenology of
LQC under the assumption that the lower bound of the
Heisenberg relation is saturated. However, these results
offer limited clarity without having on hand any states
which saturate (3). The typical choice for such states from
ordinary quantum mechanics are Gaussian states. We shall
see, however, that these states do not minimize fluctuation
generically in the LQC setting.
Let us now calculate the Robertson-Schrödinger

fluctuations for these observables in the polymer repre-
sentation. The commutator and anticommutator of V̂ with
ĥλ and ĥ�λ are

½V̂; ĥλ� ¼
αλ

V0

ĥλ; fV̂; ĥλg ¼ ĥλ

�
2V̂ þ αλ

V0

Î

�
; ð4Þ

½V̂; ĥ�λ � ¼ −
αλ

V0

ĥ�λ ; fV̂; ĥ�λg ¼ ĥ�λ

�
2V̂ −

αλ

V0

Î

�
; ð5Þ

where Î is the identity operator. Substituting (4) and (5) into
(2) yields

Δ2
VΔ2

1
λSλ

≥
���� i
4λ

�
αλ

V0

ðĥλ − ĥ�λÞ
�
þ i
2λ

hðĥλ − ĥ�λÞV̂i

− hV̂i
�

i
2λ

ðĥλ − ĥ�λÞ
�����

2

þ
���� α

4V0

hĥλ þ ĥ�λi
����
2

: ð6Þ

But we may readily compute that hðĥλ − ĥ�λÞV̂i ¼
hV̂ihĥλ − ĥ�λi. Thus, we have
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Δ2
VΔ2

1
λSλ

≥
���� iα
4V0

hðĥλ − ĥ�λÞi
����
2

þ
���� α

4V0

hĥλ þ ĥ�λi
����
2

: ð7Þ

This may be rewritten as

Δ2
VΔ2

1
λSλ

≥
�

α

2V0

�
2

ðjhŜλij2 þ jhĈλij2Þ: ð8Þ

When does this expression reduce to the Heisenberg
uncertainty relation (3), i.e., when does hŜλi ¼ 0? Without
determining a solution in general, we note that any state jψi
satisfying ψðVÞ ¼ ψð−VÞ will do this. Since spacetime is
symmetric under a parity transformation (i.e., a change of
orientation taking V ↦ −V), this holds in general for
physically meaningful LQC states.
Rovelli and Wilson-Ewing [10] discuss the behavior of

LQC states which are sharply peaked by analyzing the
lower bound of the Heisenberg relation (3) and supposing it
is saturated by some such state. However, they do not
explicitly construct any such states to show that this bound
is saturated. It is this gap which we now fill in. It will be
shown that, contrary to popular intuition, Gaussian states
do not saturate this lower bound. Nevertheless, under the
right conditions, their fluctuations do approach the lower
bound asymptotically in the limit considered by Rovelli
and Wilson-Ewing.

IV. GAUSSIAN STATES

In ordinary quantum mechanics, Gaussian states play a
special role, for they are sharply peaked. Their probability
amplitudes are centered on a particular point and decay
exponentially away from that point at a rate over which we
may have analytic control (by manipulating the variance σ).
Additionally, they minimize the Heisenberg uncertainty
relation (3) between position and momentum observables.
These two facts offer Gaussian states as a natural choice for
semiclassical states: classical systems have no quantum
fluctuations, and have definite locations; Gaussian states
approximate both of these features to maximal precision.
Sharpness is an obvious feature of Gaussian states.
However, the fact that they minimize fluctuations is not
trivial.
It has been argued [1] that the constancy of fluctuations

of Gaussian states is also a crucial ingredient of their
semiclassicality. Time independence ensures that their
fluctuations do not spread out under dynamical evolution,
and thus remain minimal. While this is certainly important,
the discussion to follow shall show that even the condition
of instantaneous minimization is often too much to ask in
the LQC setting (i.e., on a single time slice of the foliation).
We therefore leave the study of the time evolution of these
fluctuations open for future investigation.
In the volume representation of LQC, following Willis [

[19], Eq. (2.4.11)], Gaussian states centered at V ¼ 0 take
the form

jψi ¼ c
X
n∈Z

e−ðnlÞ2=2σ2 jnli; ð9Þ

where l is a chosen lattice spacing and σ > 0 is the
Gaussian variance. The value c is a normalization constant.
An analogous definition for more general coherent states
may be found in [ [12], p. 257]. In LQC, we choose l to
be minimal by taking it to be the Planck length lP. The
normalization is given by

jcj2 ¼ 1P
n∈Ze

−ðnlÞ2=σ2 : ð10Þ

(We here normalize to 1.) If we wish to consider
Gaussian states not centered at V ¼ 0, we must make a
small modification. Spacetime is thought to have a parity
symmetry under changes in manifold orientation. While
field theories within spacetimes may violate parity sym-
metries (e.g., the weak interaction in the Standard Model
[20]), the underlying spacetime itself does not. Hence, we
require that quantum states exhibit this parity symmetry as
well, and thus satisfy ψðVÞ ¼ ψð−VÞ [5,21]. However,
Gaussian states as defined in (9) violate this symmetry if
one simply shifts the given state by a certain number of
lattice sites μ ∈ Z. To account for this, if we wish to
consider a Gaussian state in the present framework with a
nonzero “mean,” we must include symmetric positive and
negative orientation modes. (This value μ is not the mean of
V̂ but rather of jV̂j; see Appendix A for details.) Therefore,
a generic Gaussian state “centered” around a point μ ∈ Z
will be of the form

jψi ¼ cffiffiffi
2

p
X
n∈Z

½e−ðnl−μlÞ2=2σ2 þ e−ðnlþμlÞ2=2σ2 �jnli: ð11Þ

This may equivalently be written as

jψi ¼ cffiffiffi
2

p
X
n∈Z

e−ðnlÞ2=2σ2ðjnlþ μli þ jnl − μliÞ: ð12Þ

The normalization in this case is then given by

jcj2 ¼ 1P
n∈Z½e−ðnl−μlÞ2=2σ2 þ e−ðnlþμlÞ2=2σ2 �2 ; ð13Þ

which reduces to (10) when μ ¼ 0. Since a choice of units
is irrelevant to the physics of the theory, we shall henceforth
set l ¼ lP ¼ 1. Expanding in u ≔ expf−1=σ2g, one sees
that

jcj2 ¼ 1

2ð1þ e−ðμ=σÞ2Þϑ3ðuÞ
; ð14Þ

where ϑ3ðuÞ ¼ ϑ3ð0; uÞ is the third Jacobi theta function
defined by
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ϑ3ðz; qÞ ≔
X
n∈Z

qn
2

e2niz:

This function is well-defined for all u ∈ ½0; 1� and so for
all values of σ ≠ 0. One may readily evaluate the following
limits:

lim
σ→0

jcj2 ¼ 0; lim
σ→∞

jcj2 ¼ 1

2
: ð15Þ

Monotonicity ensures that 0 < jcj2 < 1=2 for all values
of σ > 0 and μ. We could just as well define Gaussian states
in the dual β-representation [i.e., holonomy-flux coordi-
nates in L2ðRBohr; dμÞ] as done in [2,22,23]; however, the
volume representation is easier to calculate in.

V. EXACT GAUSSIAN FLUCTUATIONS

We now compute the exact solutions for the fluctuations
of V̂ and 1

λ Ŝλ for Gaussian states in the volume represen-
tation. For a given l, the superselection sector of the
nonseparable polymer Hilbert space is the subspace gen-
erated by the lattice of volume eigenstates of the form jnli
for n ∈ Z. Fixing l ¼ 1 as we have done makes this space
unique. Such a sector is isomorphic to the usual separable
Hilbert space l2, and so if all of the relevant operators of
the theory are closed on such a sector, we may simply
discuss that particular sector, whence the theory reduces to
a quantum theory on a separable Hilbert space.
If one transforms away the factors of V0 in the canonical

variables of the theory before quantization (e.g., [12]), there
is no such factor in the holonomy operator, and so one may
choose the value of λ to be a scaled integer multiple of l,
reducing LQC to a separable Hilbert space. However, if one
keeps the original coordinates, as we have done, the
holonomy operator is not closed on the superselection
sector unless λ is made V0-dependent. This detail will be
important in the following analysis.

It is easy to show, due to parity symmetry, that hV̂i ¼ 0
for Gaussian states. Following Willis [19], we may com-
pute hV̂2i for Gaussian states using the Poisson summation
formula. Given a function gðyÞ, this formula states that

X
n∈Z

gðxþ nÞ ¼
X
n∈Z

ei2πxn
Z

∞

−∞
gðyÞe−i2πyndy:

For Gaussian states, we then have

hV̂2i ¼
X
n∈Z

gð0þ nÞ;

gðyÞ ≔ jcj2
2

y2ðe−ðy−μÞ2=σ2 þ e−ðyþμÞ2=σ2 þ 2e−ðy2þμ2Þ=σ2Þ:

We may evaluate this expression (noting that μ ∈ Z,
whence the complex phase which arises from integration
vanishes) to obtain

hV̂2i ¼
X
n∈Z

Z
∞

−∞
y2ðe−ðy−μÞ2=σ2 þ e−ðyþμÞ2=σ2 þ 2e−ðy2þμ2Þ=σ2Þe−i2πyndy

¼ jcj2 ffiffiffi
π

p
2

σ
X
n∈Z

e−ðπσnÞ2 ½2μ2 þ σ2ð1þ e−μ
2=σ2Þð1 − 2π2n2Þ�

¼ jcj2 ffiffiffi
π

p
2

σ

�
½2μ2 þ σ2ð1þ e−μ

2=σ2Þ�ϑ3ðvÞ − 2π2σ4e−π
2σ2ð1þ e−μ

2=σ2Þ
�
d
dv

ϑ3ðvÞ
�	

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
− ln v

p

4
ffiffiffi
π

p ð1þ eμ
2π2= ln vÞϑ3ðv1=π2σ4Þ

�

2μ2 −

ln v
π2

ð1þ eμ
2π2= ln vÞ

�
ϑ3ðvÞ − ð1þ eμ

2π2= ln vÞ
�
2vðln vÞ2

π2

��
d
dv

ϑ3ðvÞ
�	

;

ð16Þ

where v ≔ expf−π2σ2g ¼ uπ
2σ4 . Note that this is independent of λ and V0. Since hV̂i ¼ 0, we see that Δ2

V̂
¼ hV̂2i. These

volume fluctuations are computed numerically and plotted against σ in Fig. 1.

FIG. 1. The magnitude of the fluctuations hV̂2i for Gaussian
states with variance σ about αλ=V0 ¼ 1 with μ ¼ 0, 1, 2 (with
minima increasing with μ).
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We may now look at the fluctuations in the conjugate operator 1
λ Ŝλ. First, it is known that parity transformations take

Ŝλ ↦ −Ŝλ (cf. the Appendix in [24]). Thus, for the states in question, we readily see that h1λ Ŝλi ¼ 0. Finally, we have

��
1

λ
Ŝλ

�
2
�

¼
��

−
ĥλ − ĥ�λ
2iλ

�2�

¼ 1

4λ2
h2Î − ĥ2λ − ĥ�2λ i

¼ 1

4λ2
h2Î − ĥ2λ − ĥ−2λi: ð17Þ

For the Gaussian state about μ, we have

hĥ�2λi ¼
jcj2
2

X
m;n∈Z

e−m
2=2σ2e−n

2=2σ2ðhmþ μj þ hm − μjÞ
�����nþ μ� 2αλ

V0

�
þ
����n − μ� 2αλ

V0

��

¼ jcj2
2

X
m;n∈Z

e−m
2=2σ2e−n

2=2σ2


2δ

�
m − n ∓ 2αλ

V0

�
þ δ

�
m − nþ 2μ ∓ 2αλ

V0

�
þ δ

�
m − n − 2μ ∓ 2αλ

V0

��

¼

8>>>>><
>>>>>:

jcj2
2

h
2u2ð�αλ=V0Þ2

�P
n∈Z

un
2

u�2nαλ=V0



þ u2ð�αλ=V0−μÞ2

�P
n∈Z

un
2

u2nð�αλ=V0−μÞ


; 2αλ

V0
∈ Z

þu2ð�αλ=V0þμÞ2
�P
n∈Z

un
2

u2nð�αλ=V0þμÞ

i

0 otherwise;

ð18Þ

where u ¼ expf−1=σ2g. The last line is obtained by noting
from Cauchy’s criterion that the series converges for all
values of the relevant parameters. Thus, we may expand the
sum and evaluate each Kronecker-δ term independently.
We see the dichotomy in cases here because, when 2αλ

V0
∉ Z,

the action of ĥ2λ shifts every term of the Gaussian state off
of the permitted lattice sites; it is not closed on a super-
selection sector. In terms of operator-algebraic consider-
ations, this dichotomy is related to rotation algebras; see
Appendix B. The inner product is unforgiving here; since
none of the offset terms line up with any of the other
points on the lattice, the state overlap vanishes everywhere.

We may prevent this from happening by choosing λ to be an
integer multiple of V0=2α. Let us proceed by considering
both cases.

A. The noninteger case

Suppose that 2αλ
V0

∉ Z. Then we may readily compute
from (17) that ��

1

λ
Ŝλ

�
2
�

¼ 1

2λ2
:

Thus, since hV̂i ¼ h1λ Ŝλi ¼ 0, we see that

Δ2
VΔ2

1
λSλ

¼ hV̂2i
��

1

λ
Ŝλ

�
2
�

¼
ffiffiffiffiffiffiffiffiffiffiffi
− lnv

p

8λ2
ffiffiffi
π

p ð1þ eμ
2π2= lnvÞϑ3ðv1=π2σ4Þ

�

2μ2−

lnv
π2

ð1þ eμ
2π2= lnvÞ

�
ϑ3ðvÞ− ð1þ eμ

2π2= lnvÞ
�
2vðlnvÞ2

π2

��
d
dv

ϑ3ðvÞ
�	

ð19Þ

with v ¼ expf−π2σ2g. Overall, the fluctuations here behave just as hV̂2i in Fig. 1 with an overall suppression by a
factor 2λ2. If we allow λ to be an arbitrary independent parameter of the theory, this case is generic. Let us now consider the
integer case.

B. The integer case

Suppose 2αλ
V0

∈ Z. From (18), taking q ¼ u ¼ expf−1=σ2g and making a perspicuous choice of z for each term as the
arguments for the Jacobi ϑ-function ϑ3ðz; qÞ, we obtain
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hĥ�2λi ¼
jcj2
2



2u2ð�αλ=V0Þ2ϑ3

�∓ αλ=V0

iσ2
; u

�
þ u2ð�αλ=V0−μÞ2ϑ3

�∓ αλ=V0 þ μ

iσ2
; u

�
þ u2ð�αλ=V0þμÞ2ϑ3

�∓ αλ=V0 − μ

iσ2
; u

��
:

ð20Þ

This calculation may be substituted into (17) to obtain an
expression for the expected variance in 1

λ Ŝλ. This expect-
ation value is plotted against σ in Fig. 2. One can see readily
that, for large σ, these fluctuations become essentially
constant at 1=4.
We may also check the behavior of these fluctuations

as μ varies. This is illustrated in Fig. 3. Note that this
quantity rapidly converges as μ gets large for any fixed
value of σ with an asymptotic minimum at 1=4 as σ → ∞
and μ → ∞.

In the integer case, the sine fluctuations also vary asαλ=V0

changes. We plot these fluctuations as a function of σ for
several integer values of 2αλ=V0 in Fig. 4. We see that the
rapid convergence to 1=4 persists, but larger integer values of
αλ=V0 result in a slower initial rate of convergence.
We may now analyze the overall fluctuations

Δ2
VΔ2

1
λSλ
. By supposing 2αλ

V0
∈ Z, we assume that there exists

some integer k such that λ ¼ kV0=2α. Thus, substituting
this value, from (16) and (17), the overall expression for the
fluctuations in the integer case is

Δ2
VΔ2

1
λSλ

¼ hV̂2i
��

1

λ
Ŝλ

�
2
�

¼ α2
ffiffiffi
π

p
σ

4k2V2
0ð1þ e−μ

2=σ2Þϑ3ðe−1=σ2Þ

�
½2μ2 þ σ2ð1þ e−μ

2=σ2Þ�ϑ3ðe−π2σ2Þ − 2π2σ4e−π
2σ2ð1þ e−μ

2=σ2Þ
�
d
dv

ϑ3ðvÞ
�	

×

�
2 −

1

4ð1þ e−μ
2=σ2Þϑ3ðe−1=σ2Þ

�
2e−2ðαλ=V0Þ2=σ2



ϑ3

�
−αλ=V0

iσ2
; e−1=σ

2

�
þ ϑ3

�
αλ=V0

iσ2
; e−1=σ

2

��

þ e−2ðαλ=V0−μÞ2=σ2


ϑ3

�
−αλ=V0 þ μ

iσ2
; e−1=σ

2

�
þ ϑ3

�
αλ=V0 − μ

iσ2
; e−1=σ

2

��

þ e−2ðαλ=V0þμÞ2=σ2


ϑ3

�
−αλ=V0 − μ

iσ2
; e−1=σ

2

�
þ ϑ3

�
αλ=V0 þ μ

iσ2
; e−1=σ

2

��	�
ð21Þ

with v ¼ expf−π2σ2g in the d
dvϑ3ðvÞ term for brevity

(where all other v and u terms have been expanded in σ).
We may now state the two main results of this section.

First, if we analyze the numerically generated plots for the

integer case in Figs. 1–4, we see that these fluctuations
diverge as σ gets large, effectively scaling as hV̂2i=4. This
is very different from what is observed in ordinary quantum
mechanics where the fluctuations of Gaussian states in their

FIG. 3. The magnitude of the fluctuations hð1λ ŜλÞ2i for Gaus-
sian states with variance σ and mean μ.

FIG. 2. The magnitude of the fluctuations hð1λ ŜλÞ2i for Gaus-
sian states with variance σ and volume mean μ ¼ 0.
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canonical coordinates are not only bounded but constant for
all values of σ.
The other important realization from this discussion is

that from (21), we observe

lim
V0→∞

Δ2
VΔ2

1
λSλ

¼ 0: ð22Þ

This was the claim posited by Rovelli and Wilson-Ewing
in [10]. This result was, for them, somewhat unexpected
since V0 is just a regularization parameter and thus should
not be physically significant. However, their original
analysis was nonconstructive; they examined the lower
bound of (3) but did not construct explicit semiclassical
states for which the fluctuations saturate this bound in the
appropriate limits. Here, we have provided such explicit
states and derived this result exactly. The benefit to this is
that it allows us to see where this surprising result
comes from.
This scaling of fluctuations with V0 arises only when one

introduces a V0-dependence to λ. One cannot take such a

transformation to just be a scaling of the theory variables
because, if λ is fixed, the shift operator ĥλ will discontin-
uously jump between being closed on the superselection
sector and not being closed. Hence, this dependency is
connected to the basic Hilbert space structure of the theory,
and so it is unsurprising that it should impact the resulting
phenomenology. Interestingly, however, while scaling V0

allows one to reduce the fluctuations of these Gaussian
states, it does not ensure that fluctuations are minimal for
any fixed value of V0. We shall show this in the next section
by comparing the results presented here with the lower
bound of the Robertson-Schrödinger inequality.
It should be noted that if one generalizes this analysis to

the context of spatially compact spacetimes with volume
VMax, then the regularization parameter V0 makes sense
only when V0 ≤ VMax. Indeed, it is most natural to simply
fix V0 ¼ VMax. As such, the V0 → ∞ limit is no longer
possible in this context; one may only scale the fiducial
volume so far. This means that there is a limit to how far
one may suppress the fluctuations of Gaussian states using
this procedure, and so there will still generally be many
Gaussian states with extremely large fluctuations.

VI. SATURATING UNCERTAINTY

We now examine the lower bound of the uncertainty
inequality (8) [which reduces to (3)] for the fluctuations of
Gaussian states. Generically, the lower bound is given by

�
α

2V0

�
2

jhĈλij2 ¼
�

α

4V0

�
2

jhĥλ þ h−λij2:

Using an identical sector closure argument as above,
hĥ�λi ¼ 0 if αλ=V0 ∉ Z, whence the lower bound is zero.
That is, we now have a split between the cases when k ¼
2αλ=V0 is an even integer or not. In the case where k is not
an even integer, this lower bound is zero. Otherwise,
substituting this value for λ, the lower bound may be
computed to be

�
α

2V0

�
2

jhĈλij2 ¼
�

α

8V0ð1þ e−ðμ=σÞ2Þϑ3ðe−1=σ2Þ

�
2

×

����2e−k2=8σ2ϑ3
�

−k
i4σ2

; e−1=σ
2

�
þ e−2ðk=4−μÞ2=σ2ϑ3

�
−k=4þ μ

iσ2
; e−1=σ

2

�

þ e−2ðk=4þμÞ2=σ2ϑ3

�
−k=4 − μ

iσ2
; e−1=σ

2

�
þ 2e−k

2=8σ2ϑ3

�
k

i4σ2
; e−1=σ

2

�

þ e−2ð−k=4−μÞ2=σ2ϑ3

�
k=4þ μ

iσ2
; e−1=σ

2

�
þ e−2ð−k=4þμÞ2=σ2ϑ3

�
k=4 − μ

iσ2
; e−1=σ

2

�����
2

: ð23Þ

FIG. 4. The magnitude of the fluctuations hð1λ ŜλÞ2i for Gaus-
sian states with variance σ at different fixed integer values of
αλ=V0 (with μ ¼ 0).
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The degree to which this bound is saturated by the actual
fluctuations is given by the difference between (21) and
(23). There are three cases to consider: the noninteger case
where αλ=V0 ∉ Z, whence both sides of the inequality are
simplified; the odd-k case where 2αλ=V0 ∈ Z but
αλ=V0 ∉ Z, whence the exact value is complicated but

the lower bound vanishes; and the even-k case where
αλ=V0 ∈ Z, whence both sides have a complicated form.

A. Noninteger case

When 2αλ=V0 ∉ Z, the Roberson-Schrödinger inequal-
ity becomes

0 ≤
ffiffiffi
π

p
σ

8λ2ð1þ e−μ
2=σ2Þϑ3ðe−1=σ2Þ

�
½2μ2 þ σ2ð1þ e−μ

2=σ2Þ�ϑ3ðvÞ − 2π2σ4e−π
2σ2ð1þ e−μ

2=σ2Þ
�
d
dv

ϑ3ðvÞ
�	

: ð24Þ

Any roots of this expression correspond to all of the
instances in which the Robertson-Schrödinger inequality is
saturated. However, by inspecting the behavior of hV̂2i in
Fig. 1, we see that it has no roots. The next problem, then, is
to determine under what circumstances these fluctuations
are minimal, if nonzero. But the right-hand side of the
inequality is monotonically increasing, so we may conclude
that it always decreases as σ → 0 and is thus never minimal.
Every Gaussian state in this case always violates the
Robertson-Schrödinger inequality and is made optimal
only by taking σ to be as small as possible.

B. Odd-k case

When k ¼ 2αλ=V0 is an odd integer, the exact fluctua-
tions are given by (21), while the lower bound is zero. Thus,
the analysis is identical to the above so we exclude it for
brevity, noting that the uncertainty inequality is never
saturated, and the fluctuations asymptotically diverge from
the lower bound.

C. Even-k case

Now suppose that αλ=V0 ∈ Z so that k is an even integer.
In this case, the uncertainty relation is given by (21) being

greater than or equal to (23). One can readily check that,
since e−1=σ

2

< 1 and e−π
2σ2 < 1 for all values of σ > 0, all

of the ϑ-terms in (21) and (23) are suppressed by their
exponential prefactors exponentially quickly as k gets
large. Thus, in the large k regime, the fluctuations in the
even-k case reduce to the noninteger case. We therefore see
that, for large holonomy lengths λ, that is the generic case.
We plot the difference between the exact fluctuations and
the lower bound for several values of k in Fig. 5. Again,
these fluctuations do not saturate the uncertainty relation.
The important fact from this section is that, contrary to

the case in ordinary quantummechanics, Gaussian states do
not saturate uncertainty relations in LQC.

VII. SQUEEZED STATES

We have seen that Gaussian states do not minimize
the uncertainty relation exactly, though they may do so
asymptotically in the V0 → ∞ limit. This naturally raises
the question: are there any well-defined states on the
superselection sector which minimize uncertainty? In
this section, I sketch an argument that, barring the trivial
zero-volume state j0i, the answer is likely no. This argu-
ment is not a formal proof but rather that of a rough
motivation.
For any symmetric operators Â and B̂, it is known [ [18],

p. 244] that (3) is saturated by a pure state jψi if and only if
jψi is an eigenstate of Â or B̂, or if jψi is an eigenstate of
Âþ iξB̂ for some ξ ∈ R. The last cases are the so-called ξ-
squeezed coherent states of Â and B̂.
As a simplifying assumption, let us suppose that

αλ=V0 ¼ 1 so that ĥλjVi ¼ jV þ 1i. Taking more general
integer values will in principle yield a similar result, but the
necessary analysis becomes too unwieldy to be presented
here. Let us suppose for reduction that jψi is a state on the
superselection lattice which is an eigenstate of V̂ þ iξ

λ Ŝλ
and thus minimizes the uncertainty relation for the oper-
ators V̂ and 1

λ Ŝλ. Then jψi may be written as

jψi ¼
X
n∈Z

ψðnÞjni; ð25Þ
FIG. 5. The difference between the exact fluctuations Δ2

V̂
Δ2

1
λŜλand the lower bound given by the Robertson-Schrödinger

inequality for a Gaussian state with variance σ and mean μ ¼
0 in the integer case αλ=V0 ∈ Z (where λ ¼ kV0

2λ for k ∈ Z).
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where ψðnÞ∶Z → C obeys
P

n jψðnÞj2 < ∞. Then we have for some eigenvalue A

Ajψi ¼
�
V̂ þ iξ

λ
Ŝλ

�
jψi ¼

X
n∈Z

nψðnÞjni − ψðnÞ ξ

2λ
ðjn − 1i − jnþ 1iÞ

¼
X
n∈Z

�
nψðnÞ − ξ

2λ
ψðnþ 1Þ þ ξ

2λ
ψðn − 1Þ

�
jni ¼

X
n∈Z

AψðnÞjni: ð26Þ

The coefficients ψðnÞ satisfy this condition only if they
obey the difference equation

2ðA − nÞψðnÞ ¼ ξ

λ
½ψðn − 1Þ − ψðnþ 1Þ� ð27Þ

for all n ∈ Z. This difference equation may be solved to
yield

ψðnÞ ¼ c1In−A

�
−ξ
λ

�
þ c2Kn−A

�
ξ

λ

�
ð28Þ

for arbitrary constants c1 and c2 where I and K are the
modified Bessel functions of the first and second kinds,
respectively. In order for a state with coefficients ψðnÞ to be
an element of the Hilbert space, we require that

X
n∈Z

����c1In−A
�
ξ

λ

�
þ c2Kn−A

�
−ξ
λ

�����
2

< ∞: ð29Þ

However, for any fixed ξ, as n → þ∞, Kn−AðξλÞ diverges,
yet In−Að−ξλ Þ converges to zero (and so cannot be scaled to
counteract this divergence); so for this condition to be
satisfied, we must set c2 ¼ 0. Thus, the only viable states
are those of the form

ψðnÞ ¼ c1In−A

�
−ξ
λ

�
: ð30Þ

However, as n → −∞, one may check that jIn−Að−ξλ Þj2
likewise diverges. Thus, the boundedness condition further
requires that c1 ¼ 0 as well. Hence, there are no nonzero
vectors in this Hilbert space which are ξ-squeezed states for
any value of ξ. Thus, there are no ξ-squeeze states.
The only alternatives, then, for minimizing uncertainty

are eigenstates of V̂ or 1
λ Ŝλ. The only eigenstate of V̂ which

respects the requisite parity symmetry ψðVÞ ¼ ψð−VÞ is
the zero-volume state jψi ¼ j0i. Thus, this is the trivial
unique volume eigenstate which minimizes uncertainty. It
is nontrivial to compute eigenstates of 1

λ Ŝλ, but it is
conjectured that any such states will likewise be unphys-
ical, or at least fail to be sharply peaked, and so fail to be
semiclassical.

VIII. CONCLUSION

Volume-regularized loop quantum cosmology is not a
single theory, but rather a large class of different theories
differentiated from one another by their associated choice
of fiducial volume V0 and their chosen holonomy length λ.
We have here constructed generic families of Gaussian
states on superselection sectors in these theories and
computed their fluctuations with respect to the canonical
observables of these theories, namely, volume, and the
sine of holonomy. These fluctuations were then compared
with their fundamental lower bound given by the
Robertson-Schrödinger inequality, a generalization of
the uncertainty principle. Three salient results were
shown.
(1) For a Gaussian state with a fixed width σ and a fixed

parity-symmetric mean μ, one can always choose a
theory of LQC with a sufficiently large fiducial
volume V0 such that the fluctuations of this state
become negligible. This fails to be true for spatially
compact spacetimes.

(2) Within a fixed theory of LQC (with a given finite
V0), one can always find a Gaussian state with
sufficiently large σ such that its fluctuations become
arbitrarily large.

(3) The relation between λ and V0 plays an important
role in determining the phenomenology of a theory
of LQC, namely, they determine whether the hol-
onomy operator ĥλ is closed on the relevant super-
selection sector.

These results indicate that Gaussian states are not
universally semiclassical in theories of LQC and that the
semiclassical sector of a theory of LQC depends sensitively
upon its basic constitutive parameters.
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APPENDIX A: THE jV̂j OPERATOR

The “physical” volume of spacetime is independent of its
orientation. Thus, the operator which corresponds to the
physical volume of a quantum spacetime is not V̂, but
rather jV̂j, defined on the polymer Hilbert space by

jV̂jjVi ¼
�
VjVi; V ≥ 0

−VjVi; V < 0
: ðA1Þ

In this view, the definition of a Gaussian state given
in (11) more closely resembles the traditional notion
of a Gaussian state, for in this case, we see that
hjV̂ji ∝ μ, and so μ is properly the mean. To see this,
we may compute

jV̂jjψi ¼ cffiffiffi
2

p
X
n>0

nðe−ðn−μÞ2=2σ2 þ e−ðnþμÞ2=2σ2Þðjni þ j− niÞ:

ðA2Þ

From which it follows that

hjV̂ji ¼ 2jcj2
X
n>0

nðe−ðn−μÞ2=σ2 þ e−ðnþμÞ2=σ2Þ2: ðA3Þ

This is hard to solve analytically; however, largen termsget
exponentially suppressed, and so we may approximate this
series for smallμandnonsmallσwithacutoff.Plotting thefirst
50 terms against μwith σ ¼ 1, 2, 3 in Fig. 6, we see that this is
nicely fit by μ=

ffiffiffi
2

p
(the extra factor arises from the state

normalization). We may readily note that V̂2 ¼ jV̂j2, and so
the rest of the above analysis of oriented volume fluctuations
persists when orientation is dispensed with.

APPENDIX B: ĥλ CLOSURE AND ROTATION
ALGEBRAS

In C�-algebra theory, the rotation algebra Aθ is charac-
terized by the universal property of containing two unitary
elements U1 and U2 which satisfy

U1U2 ¼ ei2πθU2U1: ðB1Þ
There are three cases of this algebra to consider: (i) the

trivial commutative casewhere θ ∈ Z, (ii) the casewhere θ ∈
Q (called a rational rotation algebra), and (iii) the case where
θ ∉ Q (called an irrational rotation algebra). The three cases
are radically different, and the spectral theory of the latter two
(especially irrational rotation algebras) is notoriously rich.
In the present context, fixing λ, we see that the C�-algebra

generated by V̂ and ĥλ carries a representation of Aθ for
θ ¼ 2αλ

V0
. Specifically, defining the unitary operator Û ¼ ei2πV̂

generated by a series expansion in V̂, we readily see that

Ûĥλ ¼ ei2πθĥλÛ: ðB2Þ

In the instance when 2αλ
V0

∈ Z (whence ĥλ is closed on the
superselection sector), we see that Aθ is commutative. In
the case where ĥλ is not closed on the relevant super-
selection sector, one finds that Aθ becomes a nontrivial
rotation algebra and has much richer features.
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