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S-folds are a nonperturbative generalization of orientifold 3-planes which figure prominently in the
construction of four-dimensional (4D) N ¼ 3 superconformal field theories (SCFTs) and have also
recently been used to realize examples of 4DN ¼ 2 SCFTs. In this paper, we develop a general procedure
for reading off the flavor symmetry experienced by D3-branes probing 7-branes in the presence of an S-
fold. We develop an S-fold generalization of orientifold projection which applies to nonperturbative string
junctions. This procedure leads to a different 4D flavor symmetry algebra depending on whether the S-fold
supports discrete torsion. We also show that this same procedure allows us to read off admissible
representations of the flavor symmetry in the associated 4D N ¼ 2 SCFTs. Furthermore, this provides a
prescription for how to define F-theory in the presence of S-folds with discrete torsion.
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I. INTRODUCTION

One of the important ingredients in many string theory
realizations of quantum field theories is the use of singular
geometries in the presence of various configurations of
branes. For example, in perturbative type II string theory,
all of the classical gauge groups can be realized by open
strings ending on D-branes, possibly in the presence of
orientifold planes. It is also possible to realize exceptional
groups via the heterotic string, and with singular geom-
etries in type II/M-/F-theory compactifications. This point
of view has led to the prediction of entirely new sorts of
quantum field theories in diverse dimensions.
As a striking example, stringy considerations led to the

discovery of four-dimensional (4D)N ¼ 3 superconformal
field theories (SCFTs) [1]. These N ¼ 3 theories are
inherently strongly coupled, and many of them have a
realization in string theory as a stack of D3-branes on top of
an S-fold plane.1 The S-fold is a generalization of the usual
orientifold plane where the Z2 reflection symmetry is

replaced by a Zk symmetry; however, this only leads to
a consistent supersymmetric field theory when the axiodi-
laton of type IIB string theory is locally fixed to specific k-
dependent values. For additional work on N ¼ 3 SCFTs,
see, for example, Refs. [1–27].
Of course, rather than resorting to the full machinery of

string theory, one might instead ask whether general
principles of self-consistency can be used to chart the
landscape of possible quantum field theories. A notable
example of this sort of reasoning was carried out in a
series of papers [28–34], which established a complete
classification of possible 4D N ¼ 2 SCFTs with a one-
dimensional Coulomb branch (see also Refs. [35,36]). A
particularly interesting feature of these results is that, at the
time they were found, only some of these theories had
known string theory realizations. A key feature of this
analysis is the appearance of specific flavor symmetry
algebras, as dictated by how the Casimir invariants of the
flavor symmetry translate to deformations of the associated
Seiberg-Witten curve.
Some of these 4D N ¼ 2 SCFTs now have known

stringy realizations, both in terms of compactifications of
six-dimensional (6D) SCFTs [37,38], as well as in terms of
D3-brane probes of S-folded 7-branes [39]. That being said,
there are still some theories predicted in Refs. [28–34]
which have yet to be constructed.
Our aim in this paper will be to develop a general

framework for understanding the impact of S-folds on the
flavor symmetries experienced by probe D3-branes in the
presence of an ambient stack of 7-branes. To this end, we
develop a prescription which generalizes the standard
orientifold projection construction for open strings, but
now for more general S-folds acting on string junctions.
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1There areN ¼ 3 theories that come fromN ¼ 4 super Yang-
Mills with an exceptional gauge algebra that do not have a
D3-brane realization[2].
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Doing so, we show that the structure of the resulting flavor
symmetry algebra is closely tied to the appearance of
discrete torsion in the S-fold. This is quite analogous to
what happens for O3-planes, where there are four distinct
choices depending on whether a Z2 discrete torsion has
been activated in either the Ramond-Ramond (RR) or
Neveu-Schwarz (NS) sector. We show that the presence
of discrete torsion, in tandem with the geometric Zk action
on the local geometry, leads to a well-defined set of rules
which act on the end points of the string junction states.
This in turn leads to a general quotienting procedure for the
resulting flavor symmetry algebras. In fact, the string
junction provides more, since we can also deduce which
representations of a given flavor symmetry algebra are
actually present. For earlier work on the use of string
junctions and its relation to symmetries realized on a 7-
brane, see, e.g., Refs. [40–44]. For earlier work on string
junctions in N ¼ 3 SCFTs, see Ref. [7].
The 4D N ¼ 2 theories that we consider will be the

following. We will start with the rank-N generalizations
of the Argyres-Douglas H0, H1, and H2 theories [45]; the
theory of SUð2Þ with four fundamentals; and the Minahan-
Nemeschansky E6, E7, and E8 theories [46,47]. These
theories will be labeled as the “parent” theories, and they
are related to each other via mass deformations from the E8

Minahan-Nemeschansky theory. Furthermore, each of
these parent theories has a realization as a world volume
theory on a stack of D3-branes in a 7-brane background
(see, e.g., Refs. [48,49]). We will consider the “S-fold
descendant theories,” or simply “descendants,” as the
theories obtained by further inclusion of an S-fold
plane on top of the D3-brane stack, either with or without
discrete torsion.
One of the main results of our analysis is that the

resulting flavor symmetry depends on the discrete torsion
of the S-fold. In particular, we find that when no torsion is
switched on there is a simple geometric picture available
which matches to a quotient of the associated F-theory
geometry for the 7-branes. When a discrete torsion is
present on the S-fold, we find that the resulting flavor
symmetry of a probe D3-brane is also different. In these
cases, the standard F-theory geometry is not valid, but we
can instead deduce its structure from the corresponding
Seiberg-Witten curve of the 4D N ¼ 2 SCFT.
Indeed, using this procedure, we show how to match

each possible S-fold quotient of 7-branes to a correspond-
ing theory appearing in the list of rank-1 4DN ¼ 2 SCFTs
appearing in Refs. [28–34], where the rank-1 theories are
classified by the associated Kodaira fiber type obtained
from the Seiberg-Witten curve. In matching to our 7-brane
realization, we can visualize this process in terms of an
overall quotienting/smoothing deformation. See Table I for
a summary of this correspondence, and Fig. 1 for a
summary of how these different theories are related by
mass deformations and discrete quotients. Implicit in our

considerations is that if we remove all the 7-branes then we
realize N ¼ 3 theories and discrete quotients thereof. An
additional comment here is that there are a few theories
from Refs. [28–34] which do not appear to have a simple
7-brane realization. We take this to mean that the resulting
quotients used to construct these additional theories may
not arise from purely geometric ingredients present in the
ultraviolet but may instead involve structures which only
emerge in the infrared.
The theories we construct include some notably subtle

cases such as theories with F4 flavor symmetry. Indeed, an
important point in this case is that there are some putative
4DN ¼ 2 SCFTs with F4 global symmetry which are now
known to be inconsistent [50,51]. These inconsistent cases
are those in which the Higgs branch of the 4D theory would
have coincided with the instanton moduli space of F4

gauge theory. Our brane realization makes clear that we are
dealing with a different theory since in our case we have a
bulk E6 7-brane in the presence of a codimension-4S-fold
with no discrete torsion. A D3-brane sitting on top of the
S-fold sees an F4 flavor symmetry, while moving it inside
the 7-brane but off the S-fold results in an E6 flavor
symmetry. This is also in line with the fact that the
anomalies of Ref. [32] are different from the ones of the
putative (and sick) F4 theory ruled out in Ref. [51]. As an
additional comment, in F-theory, there are no 7-branes with
eight-dimensional (8D) gauge group F4, in line with the
feature that such an object does not exist either from the
standpoint of F-theory, nor from that of generalized Green-
Schwarz anomalies [52].
Turning the discussion around, we can also see how the

emergent Seiberg-Witten geometry for these N ¼ 2 theo-
ries provides an operational definition of F-theory in S-fold
backgrounds with discrete torsion. As a point of clarifica-
tion, we note that in the single D3-brane case there can

TABLE I. For each possible discrete quotient of an F-theory
Kodaira fiber as associated with a probe D3-brane in the presence
of a 7-brane and an S-fold with or without discrete torsion, we
find a corresponding interacting rank-1 theory as given in Table 1
of Ref. [32].

Quotient Rank-1 4D N ¼ 2 SCFTs

IV�=Z2 ½II�; F4�
I�0=Z2 ½III�; B3�
IV=Z2 ½IV�; A2�
I�0=Z3 ½II�; G2�
III=Z3 ½III�; A1�
IV=Z4 ½II�; B1�
IV�=Ẑ2

½II�; C5�
I�0=Ẑ2

½III�; C3C1�
IV=Ẑ2

½IV�; C2U1�
I�0=Ẑ3

½II�; A3 ⋊ Z2�
III=Ẑ3

½III�; A1U1 ⋊ Z2�
IV=Ẑ4

½II�; A2 ⋊ Z2�
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be additional enhancements in the flavor symmetry.
The F-theory geometry is then obtained by performing a
mass deformation to the generic flavor symmetry and
performing a further rescaling in the local coordinates.
The rest of this paper is organized as follows. First, in

Sec. II, we present a brief review of S-folds. In Sec. III, we
discuss the specific case of S-folds without discrete torsion
and their realization in F-theory compactifications. In
Sec. IV, we present a general prescription for reading
off the flavor symmetry of D3-branes probing an S-folded

7-brane. We then use this to provide a geometric proposal
for F-theory geometry in the presence of discrete torsion in
Sec. V. As a further check on our proposal, we also
compute the leading-order contributions to the conformal
anomalies a and c in the limit of a large number of probe
D3-branes in Sec. VI. Section VII presents our conclusions.
Some additional details on brane motions in the presence of
S-folds are presented in the Appendix A, and an explicit
example of string junction projections is worked out in
Appendix B.

FIG. 1. Realization of the different rank-1 4DN ¼ 2 SCFTs starting from the E8 Minahan-Nemeschansky theory, written as ½II�; E8�.
We can perform mass deformations (as indicated by downward blue arrows), or we can act by a discrete twist by an outer automorphism
of an algebra, possibly composed with an inner automorphism. All of the different choices can be realized by a suitable choice of S-fold
projection with (diagonal red arrows and Ẑk) or without (diagonal green arrows andZk) discrete torsion. Here, we use the conventions of
Refs. [28–34], which labels a given theory by its Kodaira fiber type as well as the associated flavor symmetry algebra. We note that,
while this notation does not necessarily uniquely specify a particular 4D SCFT, it does so for the theories listed here. The notation χa
refers to the fact that the theory has a chiral deformation parameter which has scaling dimension a. The theories connected to the ½II�; E8�
theory by blue arrows will be referred to as parent theories, and the theories determined via the red/green arrows from a given parent will
be referred to as the descendants of that parent.
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II. S-FOLDS

In this section, we present a brief review of S-folds. In
particular, we emphasize that these objects can sometimes
carry a discrete torsion. S-fold planes are a generalization of
orientifold planes introduced in Ref. [1] and further studied
in Ref. [5]. Initially, they were used to build four-dimen-
sional N ¼ 3 supersymmetric field theories on the world
volume of D3-branes in the proximity of an S-fold. This
was generalized in Ref. [39] by adding 7-branes on top of
the S-fold, thus producing N ¼ 2 theories. In this section,
we will review the construction of Ref. [1] and discuss
various properties of S-folds that we shall need in the
following. We will discuss the inclusion of 7-branes in
Sec. III.

A. S-fold quotients

S-folds arise from particular terminal singularities in
F-theory backgrounds [1]. The singularity is produced by
an orbifold action that acts simultaneously on the base and
elliptic fiber. This implies that the geometric quotient on
the base is accompanied by an SLð2;ZÞ action on the
elliptic curve, thus explaining the name of these objects.
More concretely, we consider an F-theory solution on
C3
ðz1;z2;z3Þ × T2

w quotiented by a Zk action with generator

σk acting on the coordinates as

σk∶ ðz1; z2; z3; wÞ → ðζkz1; ζ−1k z2; ζkz3; ζ−1k wÞ: ð2:1Þ

Here, ζk is a kth primitive root of unity. The singularity
produced is terminal as it does not admit any crepant
resolution [53,54]. One important observation is that in
order to have a well-defined action on the torus the only
allowed values of k are k ¼ 2, 3, 4, 6. Compatibility with
the quotient fixes the value of the complex structure τ of the
torus when k > 2, while leaving it a free parameter for
k ¼ 2. The allowed values of τ as well as the SLð2;ZÞ
action ρ on the elliptic fiber are collected in Table II. This
background preserves 12 supercharges for all values of
k > 2, and adding D3-branes probing the singularity
does not further break any additional supersymmetry

(see, e.g., Ref. [55]). The k ¼ 2 case preserves 16 super-
charges and therefore produces an N ¼ 4 supersymmetric
theory, and the S-fold in this case simply corresponds to
the usual O3−-plane. Let us note that for k ¼ 3 we have
chosen to use the value τ ¼ expð2πi=3Þ, which is, under
a T-transformation of SLð2;ZÞ, equivalent to taking
expð2πi=6Þ, the “standard” value in the fundamental
domain. This has no material effect on any statements
we make about the flavor symmetry algebra since we can
always conjugate all SLð2;ZÞ generators by this T-trans-
formation anyway. The reason for this choice is to make the
Zk action of the S-fold more manifest.

B. Discrete torsion

As in the case of orientifold 3-planes, it is possible to
construct different variants of S-folds by considering
trapped 3-form fluxes at the singularity, i.e., discrete
torsion. To understand the different allowed possibilities
for discrete torsion, it is helpful to consider the asymptotic
profile of the spacetime far from the singularity, as captured
by a quotient of S5. As in Refs. [5,56], it suffices to
consider N D3-branes probing a Zk S-fold plane. The
holographic dual in the large N limit is given by type IIB
string theory on AdS5 × S5=Zk. To understand which
fluxes can be introduced, it is necessary to study the
cohomology of S5=Zk, in particular the third cohomology
group which corresponds to the introduction of 3-form
fluxes. In type IIB, we have two possible choices of 3-form
fluxes, and in the following, the first component will be the
Neveu-Schwarz-Neveu-Schwarz flux, and the second one
will be the RR flux. Usually, we would simply need to
compute the cohomology with coefficients in Z ⊕ Z;
however, due to the fact that the S-fold action is nontrivial
on the fluxes, it is necessary to take cohomology with
coefficients in ðZ ⊕ ZÞρ where ρ is the SLð2;ZÞ element
listed for every S-fold in Table II. This computation was
done in Ref. [5] where it was shown that H3ðS5=Zk; ðZ ⊕
ZÞρÞ is the cokernel of the map ðid − ρÞ∶Z2 → Z2. The
resulting cohomology groups are

H3ðS5=Z2; ðZ ⊕ ZÞρÞ ¼ Z2 ⊕ Z2; ð2:2Þ

H3ðS5=Z3; ðZ ⊕ ZÞρÞ ¼ Z3; ð2:3Þ

H3ðS5=Z4; ðZ ⊕ ZÞρÞ ¼ Z2; ð2:4Þ

H3ðS5=Z6; ðZ ⊕ ZÞρÞ ¼ I: ð2:5Þ
The k ¼ 2 case reproduces the well-known example of the
four different O3-planes [56]. We list here all the inequi-
valent choices of discrete torsion for the various S-fold
planes:

k ¼ 2; fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg; ð2:6Þ

TABLE II. Allowed values of the type IIB axiodilaton τ and
SLð2;ZÞ monodromies for various S-folds when no 7-branes are
present.

τ ρ

k ¼ 2 Free �−1 0

0 −1
�

k ¼ 3 e
2πi
3

�−1 −1
1 0

�
k ¼ 4 i �

0 −1
1 0

�
k ¼ 6 e

2πi
6

�
0 −1
1 1

�
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k ¼ 3; fð0; 0Þ; ð1; 0Þ; ð2; 0Þg; ð2:7Þ

k ¼ 4; fð0; 0Þ; ð1; 0Þg; ð2:8Þ

k ¼ 6; fð0; 0Þg: ð2:9Þ

One final piece of information that will be useful in the
following is the D3-brane charge carried by the S-fold
plane. The charge of the Zk S-fold plane is [5]

εD3 ¼ � 1 − k
2k

; ð2:10Þ

where the plus sign refers to the case without discrete
torsion and the minus sign refers to the case with discrete
torsion.

III. F-THEORY AND S-FOLDS
WITHOUT TORSION

Having reviewed some basic features of S-folds, we now
turn to the structure of local F-theory models in the
presence of an S-fold. Here, we study how this is detected
by the world volume theory of a spacetime filling D3-
brane. Recall that in F-theory the appearance of 7-branes is
encoded in the local profile of the type IIB axiodilaton.
Strictly speaking, this geometric correspondence between
the Coulomb branch of the D3-brane moduli space and the
F-theory geometry is only valid in the purely geometric
phase of F-theory, where no discrete torsion is present.
Indeed, in Sec. V, we will later turn the discussion around
and argue that the associated Seiberg-Witten curve provides
an operational definition of F-theory in such backgrounds.
The rest of this section is organized as follows. First,

we discuss the action of S-folds on a local Weierstrass
model. These local Weierstrass models are chosen such that
they correspond to an F-theory background for the parent
theories, to wit, the rank-N generalizations of the Argyres-
Douglas, SUð2Þ with four flavors, and Minahan-
Nemeschansky theories. After this, we turn to an explicit
analysis of the various possible S-fold quotients of such
geometries, organizing our discussion by the corresponding
Z2, Z3, and Z4 group action. In the case of Z6, the
admissible minimal Kodaira fibers are trivial, and we get an
N ¼ 3 theory from D3-branes probing such a singularity.
Following this procedure, we show how to recover some
examples of the Seiberg-Witten geometries, and thus
physical data like the flavor symmetry algebras, for 4D
N ¼ 2 SCFTs of the sort predicted in Refs. [28–34]. As a
point of clarification, the flavor symmetry which is really
detected in this way is the generic one present for multiple
D3-branes probing the S-fold. There is also an SUð2Þ flavor
symmetry as associated with the rotational group in the
world volume of the 7-brane (but transverse to the
D3-brane), and in the special case of a single D3-brane,

there can be an “accidental” enhancement in the infrared. In
the world volume theory of the D3-brane, z will refer to the
Coulomb branch coordinate in the covering space, and u
will refer to the Coulomb branch coordinate in the quotient
geometry. The Mi will refer to a degree i Casimir invariant
built from the mass deformations of the 7-brane flavor
symmetry algebra.

A. Weierstrass models

To understand which kinds of 7-brane configurations are
allowed in the presence of an S-fold plane, it is convenient
to understand the F-theory Weierstrass model on the
orbifolded base. Specifically, we consider F-theory on
the base B ¼ C3

ðz1;z2;z3Þ=Zk where the generator of Zk acts

on the coordinates of the base as in (2.1). For additional
details on the procedure, see, for example, Ref. [57]. The
Weierstrass model on such a base is given as usual by the
polynomial

y2 ¼ x3 þ fðz1; z2; z3Þxþ gðz1; z2; z3Þ: ð3:1Þ

However, due to the orbifold action on the base coordi-
nates, f and g become Zk-equivariant polynomials. By the
condition that the elliptic fibration be a Calabi-Yau variety,
the cofficients of the Weierstrass model, f and g, are
required to be sections of Oð−4KBÞ and Oð−6KBÞ,
respectively. Homogeneity fixes x to be a section of
Oð−2KBÞ and y to be a section of Oð−3KBÞ. For an
orbifold, a section ofOð−lKBÞmust transform with a factor
detðγÞl where γ is the matrix representation of any orbifold
group element acting on the coordinates. To write down
possible Weierstrass models, it is convenient to expand f
and g as polynomials in the variables zi,

f ¼
X

a;b;c≥0
fabcza1z

b
2z

c
3; ð3:2Þ

g ¼
X

a;b;c≥0
gabcza1z

b
2z

c
3: ð3:3Þ

Requiring f and g to transform appropriately under the
orbifold action puts restrictions on the allowed polynomial
coefficients fabc and gabc. We list in the following the
possible choices for the different S-fold planes:

(i) k ¼ 2.—In this case, both f and g are invariant
under the orbifold action. This fixes fabc ¼ gabc ¼ 0
for a − bþ c ≠ 0 mod 2. The lowest-order terms
are the constant ones giving generically a smooth
elliptic curve with constant complex structure
over C3.2

2Note that this does not mean that the orbifold action is trivial
on the elliptic curve. Indeed, the coordinate y changes sign under
the action of the generator of Z2.
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(ii) k ¼ 3.—In this case the orbifold action implies
that g is invariant and f → e2πi=3f. This fixes
fabc ¼ 0 for a − bþ c ≠ 1 mod 3 and gabc ¼ 0
for a − bþ c ≠ 0 mod 3.

(iii) k ¼ 4.—In this case, the orbifold action implies
that f is invariant and g → −g. This fixes fabc ¼ 0
for a − bþ c ≠ 0 mod 4 and gabc ¼ 0 for
a − bþ c ≠ 2 mod 4.

(iv) k ¼ 6.—In this case, the orbifold action implies that
g is invariant and f → e4πi=3f. This fixes fabc ¼ 0
for a − bþ c ≠ 4 mod 6 and gabc ¼ 0 for
a − bþ c ≠ 0 mod 6.

In the following, wewill be interested in a restricted class
of Weierstrass models that preserveN ¼ 2 supersymmetry.
This can be achieved by taking all 7-branes to wrap the
ðz1; z2Þ-plane, implying that f and g will only depend on
z3. Moreover, to simplify the notation, we shall denote by z
the coordinate z3 in the covering space.
We exclusively focus on Weierstrass models where

the axiodilaton is constant so that we can realize a
SCFT on the world volume of the D3-brane. F-theory
constructions with constant coupling were discussed in
Ref. [58]. Additionally, we require that the singularity type
remains minimal, which imposes the further condition that
the degrees of f and g as polynomials in z are degðfÞ < 4
and degðgÞ < 6. For each possible S-fold quotient, we list
the covering space theory prior to the quotient in Table III.
Note that the k ¼ 6 quotient does not allow any dependence
on z in the Weierstrass model without incurring non-
minimal Kodaira fibers, and thus there can be no 7-branes
present. This implies that the theory will have enhanced
N ≥ 3 supersymmetry.
A careful comparison of Tables II and III also reveals that

the correlation of values of k with τ are different in the
presence or absence of 7-branes. This is to be expected
because the presence of 7-branes impacts the profile of the
axiodilaton.
The relevance of the Weierstrass model is that it will

allow us to read off the Seiberg-Witten curve of the
resulting N ¼ 2 theory for the case of a single D3-brane
probe. Indeed, in this case, the Seiberg-Witten curve can be
identified with the elliptic fiber of the F-theory model, and
the coordinate z becomes the Coulomb branch parameter of
the theory. In the following, we will discuss each possible
case leading to a rank-1 SCFT writing down the Seiberg-
Witten curve and match the results to the ones known in the
literature. We would like to stress that the procedure works
only in the casewithout discrete torsion, and in the presence
of discrete torsion, we do not have a procedure to read off
the Seiberg-Witten curve from the geometry. We will
confirm the various identifications via a string junction
analysis in Sec. IV, in which we will also be able to identify
the theories on the probe D3-branes in the presence of
discrete torsion. Before turning to the discussion of each
case separately, we would like to point out that in the above

we have been using the covering space coordinates. It is
also helpful to work directly in terms of a local coordinate
in the quotient geometry. In general, for a Zk quotient, we
would need to use u ¼ zk, which is invariant under the
quotient. To find the appropriate invariant combinations
for x and y, we can use the fact that under the general
rescaling [32,39,59]

x ↦ λ2x; y ↦ λ3y; ð3:4Þ

which modifies f and g as

f ↦ λ−4f; g ↦ λ−6g; ð3:5Þ

and the elliptic fibration is left invariant. By choosing
λ ¼ z1−k, the rescaled x and y variables will be invariant
under the Zk quotient.
Using this information, we will be able to write down the

Seiberg-Witten curves for the various rank-1 theories.
Before going into the specifics of each example, we

would like to point out that in Refs. [32,60] aZ5 quotient of
type II fiber was considered. This kind of quotient is
different from the others we considered so far in that it is
not possible to remove the 7-branes off the singularity
produced by the orbifold and therefore does not admit a
limit to anN ¼ 3 theory. Indeed, the Seiberg-Witten curve
for the theory is

y2 ¼ x3 þ z; ð3:6Þ

with no mass deformation allowed by compatibility with
the orbifold action. The resulting theory on probe D3-
branes has no flavor symmetry either before or after the
quotient, and therefore it is not amenable to being studied
using string junctions. Because of this, we will not consider
this theory further in the rest of the paper.

B. Z2 quotients

In this subsection, we turn to Z2 quotients of an F-theory
model. This sort of quotient can be taken for parent theories

TABLE III. Allowed values of S-fold projection compatible
with a specified minimal Kodaira fiber type. Here, we drop all
higher-order singularities and focus on the specific situation
where the axiodilaton is constant.

Quotient Weierstrass model Kodaira fiber type τ

k ¼ 2 y2 ¼ x3 þ z4 IV� e
2πi
3

k ¼ 2 y2 ¼ x3 þ z2x I�0 i
k ¼ 2 y2 ¼ x3 þ z2 IV e

2πi
6

k ¼ 3 y2 ¼ x3 þ z3 I�0 e
2πi
6

k ¼ 3 y2 ¼ x3 þ zx III i
k ¼ 4 y2 ¼ x3 þ z2 IV e

2πi
6

k ¼ 6 y2 ¼ x3 þ g0 ∅ e
2πi
6
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with an E6 7-brane, as realized by a type IV� fiber; a D4

7-brane, as realized by a type I�0 fiber; and anH2 7-brane, as
realized by a type IV fiber.

1. Quotient of E6

The Weierstrass model for an E6 singularity can be
written as

y2 ¼ x3 þ z4: ð3:7Þ

Homogeneity fixes the scaling dimension of z to be
ΔðzÞ ¼ 3. The maximal deformation of the singularity
compatible with the Z2 quotient involves introducing the
following Mi:

y2 ¼ x3 þ xðM8 þM2z2Þ þ z4 þM6z2 þM12: ð3:8Þ

Here, we chose the convention to label the mass deforma-
tions of the 4DN ¼ 2 SCFT as degree i Casimir invariants
Mi where the scaling dimension is ΔðMiÞ ¼ i. We can now
move to the quotient space by performing the aforemen-
tioned rescaling. Let us be explicit in this first case. The
scaling is

x → z−2x; y → z−3y; ð3:9Þ

which leads to an overall factor on the y2 and x3 terms in the
Weierstrass equation of z−6. Removing this denominator is
equivalent to the rescaling

f → z4f; g → z6g; ð3:10Þ

as described in the general case in Ref. [59]. After this
rescaling, we perform the replacement with the quotiented
coordinate, u, via u ¼ z2. The resulting model becomes

y2 ¼ x3 þ xðM8u2 þM2u3Þ þ u5 þM6u4 þM12u3;

ð3:11Þ

where we have used the same notation x and y for before
and after the rescaling. In this case, turning off all mass
deformations, we obtain a II� singular fiber at the origin.
Comparing with Ref. [29], we see that this Weierstrass
model matches the Seiberg-Witten curve of the ½II�; F4�
theory.

2. Quotient of D4

The D4 singularity admits two different minimal
Weierstrass presentations, one of which is compatible with
the Z2 quotient and the other which is compatible with the
Z3 quotient. For the Z2 quotient, we have the Weierstrass
model

y2 ¼ x3 þ xz2: ð3:12Þ

Homogeneity fixes the scaling dimension of z to be
ΔðzÞ ¼ 2, and the deformation of the singularity compat-
ible with the Z2 quotient is given by the introduction of the
Casimirs M2, M4, and M6:

y2 ¼ x3 þ xðM4 þ z2Þ þM2z2 þM6: ð3:13Þ

Again, we move to the quotient space by performing the
rescaling, as described above. After rescaling, the model
becomes

y2 ¼ x3 þ xðM4u2 þ u3Þ þM2u4 þM6u3: ð3:14Þ

In this case, turning off all mass deformations, we obtain a
III� singular fiber at the origin, and if we compare with
Ref. [29], we see that this Weierstrass model matches the
Seiberg-Witten curve of the ½III�; B3� theory listed therein.

3. Quotient of H2

The Weierstrass model for anH2 singularity, also known
as a type IV fiber, is

y2 ¼ x3 þ z2: ð3:15Þ

As usual, the scaling dimension of z is fixed by homo-
geneity of the Weierstrass equation. We have ΔðzÞ ¼ 3=2.
The singularity can be deformed in such a way that is
compatible with a Z2 quotient by introducing M2 and M3

as follows:

y2 ¼ x3 þ xM2 þ z2 þM3: ð3:16Þ

The resulting model in the quotient space is obtained by
performing the now-familiar rescaling:

y2 ¼ x3 þ xM2u2 þ u4 þM3u3: ð3:17Þ

We can see that, turning off all mass deformations, we
obtain a IV� singular fiber at the origin. Comparing with
Ref. [29], we see that this Weierstrass model is precisely
giving the Seiberg-Witten curve of the ½IV�; A2� theory.

C. Z3 quotients

We next turn to Z3 quotients of a local F-theory
geometry. This can be carried out for a D4 7-brane, as
realized by a type I�0 fiber, and anH1 7-brane, as realized by
a type III fiber.

1. Quotient of D4

The other Weierstrass model for the I�0 singularity, the
one compatible with the Z3 symmetry, is

y2 ¼ x3 þ z3; ð3:18Þ
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and homogeneity fixes the scaling dimension of z to be
ΔðzÞ ¼ 2. The deformation of the singularity compatible
with the Z3 quotient is

y2 ¼ x3 þM2xzþM6 þ z3: ð3:19Þ

We can now move to the quotient space by performing the
aforementioned rescaling. The resulting model becomes

y2 ¼ x3 þ xM2u3 þ u5 þM6u4: ð3:20Þ

In this case, turning off all mass deformations, we obtain a
II� singular fiber at the origin. Comparing with Ref. [29],
we see that this Weierstrass model matches the Seiberg-
Witten curve of the ½II�; G2� theory.

2. Quotient of H1

The Weierstrass model for an H1 singularity, or type III
fiber, compatible with the Z3 symmetry is

y2 ¼ x3 þ xz: ð3:21Þ

Homogeneity fixes the scaling dimension of z to be
ΔðzÞ ¼ 4=3. The deformation of the singularity compatible
with the Z3 quotient is

y2 ¼ x3 þ xzþM2: ð3:22Þ

As usual, we can move to the quotient space by performing
the rescaling described above. The resulting model
becomes

y2 ¼ x3 þ xu3 þM2u4: ð3:23Þ

In this case, turning off all mass deformations, we obtain a
III� singular fiber at the origin, and a comparison with
Ref. [29] shows that this Weierstrass model reproduces the
Seiberg-Witten curve of the ½III�; A1� theory.

D. Z4 quotient of H2

Finally, we turn to the case of Z4 quotients. In this case,
there is only a single choice available, as given by an H2

7-brane, namely, a type IV fiber. Recall that the Weierstrass
model for an H2 singularity is

y2 ¼ x3 þ z2 ð3:24Þ

and that homogeneity of the polynomial fixes the
scaling dimension of z to be ΔðzÞ ¼ 3=2. The deformation
of the singularity compatible with the Z4 quotient
allows the introduction of only a single Casimir
invariant M2:

y2 ¼ x3 þM2xþ z2: ð3:25Þ

We can pass to the quotient space geometry by performing
the aforementioned rescaling. The resulting Weierstrass
model is

y2 ¼ x3 þM2xu3 þ u5: ð3:26Þ

Turning off all mass deformations, we obtain a II� singular
fiber at the origin. Comparing with Ref. [29], we see that
this Weierstrass model matches the Seiberg-Witten curve of
the ½II�; B1� theory.

IV. STRING JUNCTIONS

In the previous section, we presented a general analysis
of how to read off the Seiberg-Witten curve for the world
volume theory of a probe D3-brane in the presence of a
7-brane and an S-fold without discrete torsion.
Geometrically, this provides a satisfying picture for how
to realize a subset of possible 4DN ¼ 2 SCFTs, but it also
leaves open the question as to whether we can also
understand quotients with discrete torsion. An additional
issue is that in all cases the information of the flavor
symmetry is encoded indirectly in the Seiberg-Witten curve
via the unfolding of the singularity.
To provide a systematic analysis of cases with and

without discrete torsion, we now analyze the spectrum of
string junctions in the presence of an S-fold. The rules we
develop lead to a different quotienting procedure for the
flavor symmetry algebra, and the available options are
all contained in the options predicted in Refs. [28–34].
Again, we must add the caveat that our analysis really
leads to a derivation of the generic flavor symmetry,
namely, the one which is present for multiple probe
D3-branes.
To better understand how S-fold projection works, we

first review the standard case of orientifold projection for
oriented perturbative strings; we follow this with the rules
for S-fold projection in the case of Z2, Z3, and Z4

quotients. We then turn to the explicit S-fold projections
for string junctions attached to 7-branes.
In what follows, we will find it useful to arrange the

bound states of ½p; q� 7-branes so that the group action
amounts to a simple rearrangement operation on these
stacks. We refer to these branes according to the resulting
SLð2;ZÞ monodromy on the axiodilaton, writing the
monodromy as

M½p;q� ¼
�
1þ pq −p2

q2 1 − pq

�
; ð4:1Þ

for a ½p; q� 7-brane. We will frequently refer to the branes:
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A ¼ M½1;0� ¼
�
1 −1
0 1

�
; B ¼ M½1;−1� ¼

�
0 −1
1 2

�
;

C ¼ M½1;1� ¼
�
2 −1
1 0

�
; D ¼ M½0;1� ¼

�
1 0

1 1

�
;

X ¼ M½2;−1� ¼
�−1 −4

1 3

�
; Y ¼ M½2;1� ¼

�
3 −4
1 −1

�
:

ð4:2Þ

We will also need to rearrange our branes to make the
S-fold quotient more manifest. We accomplish this with
different brane arrangements (see Appendix A). This
includes

E6∶ A5BC2 ∼ A6XC ∼ AAACAAAC ð4:3Þ

D4∶ A4BC ∼ AACAAC ∼ AABBDD ð4:4Þ

H2∶ A3C ∼ ACAC ∼ AYAY ∼DADA ð4:5Þ

H1∶ A2C ∼ ABD: ð4:6Þ

These 7-branes correspond to the F-theory backgrounds
that give rise to the parent theories on the probe D3-branes,
when there is no S-fold. We again stress that the symmetry
algebra obtained when we include the S-fold is the one
enjoyed by the probe D3-branes.
The utility in introducing these different brane systems is

that we can then read off the corresponding root system as
well as representations from string junctions stretched
between these different constituent branes. As a point of
notation, we write ai to denote weights associated with
A-branes, with similar conventions for the B, C, and D
branes, and where the presence of a minus sign indicates
the orientation of the string. For example, the roots of
SUðNÞ for a stack AN would then be represented as
ðai − ajÞ for i; j ¼ 1;…; N and i ≠ j. A junction with
end points on different types of branes is represented
similarly by an oriented graph with weights. Elements of
the Cartan subalgebra correspond to string junctions which
begin and end on the same branes.

A. Orientifold projection

Before delving into how the S-fold planes act on the
string junctions stretching between 7-branes, we first
review how the usual orientifold planes that appear in
perturbative string theory act on string states. Recall that in
the presence of a stack of 2N D-branes, open string states
containing a vector are labeled by Chan-Paton factors λij
for i; j ¼ 1;…; 2N. Each λij state is an open string
stretching between the ith and the jth brane. When the
stack of D-branes sits on top of an orientifold plane, it is
necessary to specify the action of world sheet orientation
reversal on these states. The general action is

Ω∶ λ ↦ −MλTM−1: ð4:7Þ

The minus sign appears because of the effect of world sheet
parity on the open string oscillators, and transposition
appears because the end points of an open string are
interchanged. M is an additional conjugation on the end
points, and consistency fixes it to be either symmetric or
antisymmetric. When M is chosen to be symmetric, the
resulting Lie algebra on the stack of D-branes will be DN ,
and when M is antisymmetric, the Lie algebra will be CN .
Given this, we will label the symmetric choiceMSO and the
antisymmetric one MSp. In the following, we will choose3

MSO ¼
�

0 JN
JN 0

�
; ð4:8Þ

MSp ¼
�

0 iJN
−iJN 0

�
: ð4:9Þ

Here, JN ¼ δiþj;Nþ1 with i; j ¼ 1;…; N, namely, the anti-
diagonal matrix in which nonzero entries are all equal to 1.
We can therefore explicitly write the action of Ω on the
various string states, which we label as jiji for a string
stretching between the ith and jth branes. We will find it
convenient to use the notation i0 ¼ 2N þ 1 − i. The map is

Ωjiji ¼ γΩjj0i0i: ð4:10Þ

Here, the choice of phase factor is specified via (see Fig. 2):

Sp projection → γΩ ¼ 1 ð4:11Þ

SO projection →

8<
:

γΩ ¼ −1; string crosses orientifold

γΩ ¼ −1; i ¼ j

γΩ ¼ 1; otherwise:

ð4:12Þ

Finally, it is important to understand which projection
corresponds to which orientifold plane. The system that
more closely resembles the ones we will study in the
following is a stack of D7-branes on top of an orientifold
3-plane. Recall that there exist four different orientifold
planes usually called O3−, fO3−, O3þ, and fO3þ. In terms of
the discrete torsion introduced in Sec. II B, they have
torsion (0,0), (0,1), (1,0), and (1,1), respectively. The first
two give a D-type algebra on a stack of D3-branes and
a C-type algebra on a stack of D7-branes; the last two give
a C-type algebra on a stack of D3-branes and a D-type
algebra on a stack of D7-branes. The action on other kinds

3Note that it is customary in the literature to choose MSO to be
the identity matrix. Our choice will give isomorphic algebras after
projection and leads to a simpler geometric picture in terms of
branes probing the orientifold plane.
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of 7-branes can be obtained via SLð2;ZÞ conjugation
knowing that the O3−-plane is invariant under SLð2;ZÞ
and that the action of SLð2;ZÞ for the other planes can be
inferred by looking at the action on the plane’s discrete
torsion. For example, an O3þ-plane will give a C-type
algebra on a stack of [0, 1] 7-branes. With this information,
we can easily infer that when a string junction of charge
½p; q� crosses an orientifold 3-plane of discrete torsion
ða; bÞ world sheet parity will produce a sign ð−1Þap−bq on
the string state. In the following, we will generalize this to
other S-folds. As a final comment, we note that when
mutually nonlocal 7-branes are present we find that all that
matters is whether discrete torsion is switched on or not;
this is different from the situation with all 7-branes
mutually local. In particular, when all 7-branes are mutually
local, then the spectrum is “blind” to some sector of
discrete torsion; for example, when all 7-branes are
mutually local D7-branes, then the Ramond-Ramond
component of the discrete torsion cannot be detected by
the 7-branes.

B. S-fold projection

In the following, we will consider different Zk projec-
tions on the set of string junctions. To get invariant states,
we will call Πk the generator of the Zk action on the string
state, and we will sum over the Zk images to get the states
after projection, meaning that we shall consider the
combination

1

k

�
I þ

Xk−1
l¼1

Πl
k

�
: ð4:13Þ

This action is considered over the generators of the
complexified Lie algebra, not on the root vectors. In
particular, Lie algebra generators that are mapped to
themselves may be projected out due to some phases in
Πk. Indeed, since the only requirement for Πk is that its kth
power is the identity, it is possible to twist it by some Zk
phases corresponding to different choices of discrete

torsion; these choices were reviewed in Sec. II B. What
needs to be fixed is the phase that is acquired by the various
junctions in the presence of discrete torsion. Note that this
information is relevant only for junctions whose root
vectors are invariant under the S-fold projection as the
addition of these phases may project them out. We will
write down the phase for a ½p; q�-string crossing the S-fold
with torsion ða; bÞ. The phase is fixed by requiring
invariance under the torsion equivalence relations described
in Sec. II B. The various cases are

k ¼ 2; ð−1Þap−bq; ð4:14Þ

k ¼ 3; e
2πi
3
ðap−bp−aqþbqÞ; ð4:15Þ

k ¼ 4; ð−1Þap−bp−aqþbq; ð4:16Þ

where we omit the case k ¼ 6 since no discrete torsion is
available for this value. See Fig. 3 for a depiction of S-fold
projection on string junction states.
In the above discussion, we have made reference to a

specific duality frame. Given that we are working at strong
coupling, it is natural to ask about the behavior of our
S-fold projection under SLð2;ZÞ duality transformations.
Note that, while the expression for the phase is invariant
under global SLð2;ZÞ transformations for k ¼ 2, for k > 2,
it is necessary to conjugate the pairing between junction
charges and discrete torsion under global SLð2;ZÞ trans-
formations in order to ensure that the phase is unchanged.4

This should not come as a surprise as for k > 2 we are
implicitly referring to a specific choice of an SLð2;ZÞ
frame when discussing the torsional fluxes; indeed, the
equivalence relations among discrete torsion discussed in
Sec. II B refers to a matrix ρ that is not invariant under
global SLð2;ZÞ transformations. Given that the product
appearing in the phase is fixed by requiring compatibility
with these equivalence relations, it will necessarily be

FIG. 2. Illustration of orientifold projection acting on perturbative open strings. We denote the orientifold image branes by open
shapes and image strings by dashed blue lines.

4In practice, we will conjugate the pairing for all values of k.
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different when going to a new SLð2;ZÞ frame in order to
ensure that the new equivalence relations are respected.
To proceed further, we now examine the different choices

of S-fold projections on different stacks of 7-branes.

C. Z2 quotients of E6

We now turn to an analysis of Z2 quotients of E6;
namely, we consider the action of O3-planes on string
junctions attached to an E6 7-brane. We start by writing E6

in a Z2-symmetric fashion. The usual brane configuration
A6XC [41] can be permuted to a configuration A3CA3C,
see Fig. 4. We discuss the permutations in Appendix A. The
set of 72 junctions giving the roots of E6 is

�ðai−ajÞ; 1≤ j< i≤6;

�
�X3

i¼1

ai−
X6
j¼4

aj−akþalþc1−c2

�
; 1≤k≤3;4≤ l≤6;

�ðai−ajþc1−c2Þ; 1≤k≤3;4≤ l≤6;

�
�X3

i¼1

ai−
X6
j¼4

ajþc1−c2

�
;

�
�X3

i¼1

ai−
X6
j¼4

ajþ2c1−2c2

�
;

�ðc1−c2Þ: ð4:17Þ

A set of simple roots is given by

fa1 − a2; a2 − a3; a3 − a4; a4 − a5; a5 − a6; c1 − c2g:
ð4:18Þ

We will now turn to studying the effects of the S-fold
projection, both without and with discrete torsion (for all
possible choices) turned on.

1. Z2 quotient without discrete torsion

Consider first the case without any discrete torsion. After
the projection, 48 string junctions survive (see Appendix B
for a fully worked example of which string junctions are
projected out for the quotients of E6). Given the symmetry
of the system, we can write all junctions, specifying only
the charges on half the set of branes for the sake of
convenience. The remaining junctions after projection are

� 1

2
ðai − ajÞ; 1 ≤ j < i ≤ 3;

� 1

2
ðai þ ajÞ; 1 ≤ j < i ≤ 3;

� ai; 1 ≤ i ≤ 3;

� ðai þ c1Þ; 1 ≤ i ≤ 3;

�
�X3

i¼1

ai − aj þ c1

�
; 1 ≤ j ≤ 3;

� 1

2

�X3
i¼1

ai − aj þ 2c1

�
; 1 ≤ j ≤ 3;

� 1

2

�X3
i¼1

ai þ aj þ 2c1

�
; 1 ≤ j ≤ 3;

� c1;

�
�X3

i¼1

ai þ c1

�
;

�
�X3

i¼1

ai þ 2c1

�
: ð4:19Þ

This gives in total 48 junctions, as expected for F4. One
choice of simple roots is�

1

2
ða1 − a2Þ;

1

2
ða2 − a3Þ; a3; c1

	
: ð4:20Þ

It is possible to check that, using the intersection matrix of
the brane system of E6, one obtains the Cartan matrix of F4,
thus indicating that the resulting algebra is F4. The simple
roots after the quotient are depicted in Fig. 5.
From the above considerations, we conclude that

D3-branes probing this S-folded 7-brane configuration will
enjoy an F4 global symmetry. At first glance, this would
appear to be at odds with Ref. [51], which demonstrated
that for 4D N ¼ 2 SCFTs with Higgs branch given by the
single instanton moduli space of F4 gauge theory there is a
global inconsistency in the anomalies of the associated
theory. An important point to emphasize here, however, is

FIG. 3. Projection rules for S-fold planes acting on string
junctions. We denote the orientifold image branes by open shapes
and image strings by dashed blue lines.
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that the same class of assumptions also allows one to
extract the values of various anomalies including κF ¼ 5,
a ¼ 4=3 and c ¼ 5=3, which is rather different from the
values of Refs. [28–34], which have κF ¼ 6, a ¼ 41=24,
and c ¼ 13=6. Our analysis is compatible with these
considerations and indicate that the structure of the
Higgs branch is more subtle. Indeed, this is in line with
the fact that, moving the D3-brane off the S-fold but still
inside the E6 7-brane, the local spectrum of string junction
states is actually E6. The brane picture indicates that it is
more appropriate, then, to view the Higgs branch moduli
space for the D3-brane as an instanton in an E6 gauge
theory but in the presence of a codimension-4S-fold defect.

2. Z2 quotient with discrete torsion

Consider next the case of an orientifold projection
with discrete torsion for string junctions attached to an
E6 7-brane. The Z2 symmetric configuration for the E6 7-
brane is depicted in Fig. 4. We find that in all cases the
junctions that are not invariant under the Z2 action are not
affected by the torsion. These are the ones with 1=2 factors
in the formulas written in (4.19). For all choices of

nontrivial discrete torsion, we find that 16 additional
junctions are projected out, though which ones in particular
depends on the choice of the discrete torsion. This gives in
all cases a set of 32 junctions after projection. We illustrate
the different string junction configurations which survive
the S-fold projection in Fig. 6. This shows that, although
different string junctions survive for each choice of discrete
torsion, the actual flavor symmetry algebra realized in all
these cases is the same. Moreover, this analysis establishes
that in all cases the root system is the one of C4.

D. Z2 quotients of D4

Consider next Z2 quotients of D4. Recall that in F-theory
this is associatedwith a type I�0 fiber. In this case, it is helpful to
use the fact that the E6 stack can be written as AAACAAAC,
so removing an A-brane from each grouping, we arrive at
AACAAC, theZ2 symmetric grouping forD4. Therefore, one
obtains the roots ofD4 by selecting the E6 junctions without
a3 and a6. Moreover, for notational simplicity, we shall
rename aiþ3 as aiþ2 for i ¼ 1, 2. There are 24 remaining
junctions (as expected), and we list them here:

� ðai − ajÞ; 1 ≤ j < i ≤ 4;

� ða1 þ a2 − a3 − a4 þ c1 − c2Þ;
� ðai − aj þ c1 − c2Þ; 1 ≤ i ≤ 2; 3 ≤ j ≤ 4;

� ðc1 − c2Þ: ð4:21Þ
A set of simple roots is given by

fa1 − a2; a2 − a3; a3 − a4; c1 − c2g: ð4:22Þ

Let us now turn to the different S-fold (really orientifold)
projections in this case.

1. Z2 quotient without discrete torsion

Consider first the S-fold projection of D4 without
discrete torsion. In this case, we find 18 junctions which
survive, and this is the dimension of the root system of both
B3 and C3. As before, after the quotient, we can write the

FIG. 5. String junctions for the S-fold projection of E6 to F4.
We denote the orientifold image branes by open shapes and
image strings by dashed blue lines.

FIG. 4. Z2 symmetric configuration for E6 theory.
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junction specifying the charges on only half the set of
branes. The junctions after the projection are

� 1

2
ða1 − a2Þ;

� 1

2
ða1 þ a2Þ;

� ai; 1 ≤ i ≤ 2;

� ðai þ c1Þ; 1 ≤ i ≤ 2;

� ða1 þ a2 þ c1Þ;

� 1

2
ða1 þ a2 þ 2c1Þ;

� c1: ð4:23Þ

Computing the Cartan matrix, we find it corresponds to the
Lie algebra B3. One choice of simple roots is

�
1

2
ða1 − a2Þ; a2; c1

	
: ð4:24Þ

For an additional comment, we observe that the above
brane construction can be viewed as specifying a mass
deformation from a theory with F4 global symmetry to one
with B3 symmetry. This is indeed precisely the sort of
deformation observed from purely bottom up considera-
tions in Ref. [29]. One can see this mass deformation as a
blue arrow between the ½II�; F4� and the ½III�; B3� theories
in Fig. 1.

2. Z2 quotient with discrete torsion

Consider next the case of D4 7-branes in the presence of
an orientifold (i.e., Z2 S-fold) with discrete torsion. The
result is that after the projection ten string junctions survive
for all different choices of discrete torsion other than the
trivial one. In all cases, the resulting algebra is C2 ⊕ A1.

FIG. 6. Depiction of the different S-fold projections for an E6 stack of 7-branes. Applying this projection results in two physically
distinct configurations, the one without discrete torsion (a) and the ones with discrete torsion (b,c,d). We denote the orientifold image
branes by open shapes and image strings by dashed blue lines.
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E. Z2 quotients of H2

The final case allowed with the Z2 S-fold is an H2

7-brane, namely, a type IV fiber at the origin. We can obtain
it by starting from the AACAAC realization of the D4 case
and dropping an A-brane from both stacks, resulting in the
configuration ACAC. The junctions can thus be obtained
from the D4 ones, and this yields

� ða1 − a2Þ;
� ða1 − a2 þ c1 − c2Þ;
� ðc1 − c2Þ: ð4:25Þ

A set of simple roots is given by

fa1 − a2; c1 − c2g: ð4:26Þ

So, we get six junctions as expected for H2, giving an A2

algebra. Let us now turn to S-fold projections of this flavor
symmetry.

1. Z2 quotient without discrete torsion

Consider first the Z2 quotient without discrete torsion of
an H2 flavor 7-brane. In this case, it is interesting to note
that all string junctions are invariant under the Z2 action
when there is no discrete torsion. Consequently, we retain
the same flavor symmetry algebra. In the context of 4D
N ¼ 2 SCFTs [29], we observe that we can also consider
the associated flow, via mass deformation, from ½III�; B3� to
½IV�; A2�, as in Fig. 1, which is compatible with our brane
picture.

2. Z2 quotients with discrete torsion

We next consider the Z2 projection with discrete
torsion of the H2 theory. The result is that after the
projection two string junctions survive for all different
choices of discrete torsion other than the trivial one. In all
cases, the resulting algebra is A1 ⊕ Uð1Þ. Here, we
observe the appearance of a Uð1Þ factor in the symmetry
algebra. We see this since there are string junctions
stretched to just the C brane of the configuration A3C
realizing H2 and its subsequent Z2 quotient. This is also
in accord with the quotient group action on the symmetry
algebra of the parent theory.

F. Z3 quotients of D4

As we already saw in Sec. III, the D4 configuration of
7-branes also admits a Z3 S-fold quotient. Here, we study
the resulting algebras both in the absence and in the
presence of discrete torsion. To proceed, we observe that
the Z3 symmetric choice of branes is AABBDD whereD is
a [0, 1]-brane. In this presentation, the junctions giving the
root system of D4 are

� ða1 − a2Þ; �ðb1 − b2Þ; �ðd1 − d2Þ;
� ðai − bj − dkÞ; i ¼ 1; 2; j ¼ 1; 2; k ¼ 1; 2;

� ða1 þ a2 − b1 − b2 − d1 − d2Þ: ð4:27Þ

One choice of simple roots is

f−a1 þ a2; a1 − b1 − d1; d1 − d2; b1 − b2g: ð4:28Þ

1. Z3 quotient without discrete torsion

With this in place, we are ready to discuss Z3 S-fold
projections ofD4 7-branes. Consider first the case of S-fold
projections without discrete torsion. The Z3 action maps
the branes as follows:

ai → −bi; bi → di; di → −ai: ð4:29Þ

After the projection, the remaining junctions are

� ðai − bi − diÞ; i ¼ 1; 2;

� 1

3
ð−a1 þ a2 þ b1 − b2 þ d1 − d2Þ;

� ða1 þ a2 − b1 − b2 − d1 − d2Þ;

� 1

3
ð2a1 þ a2 − 2b1 − b2 − 2d1 − d2Þ;

� 1

3
ða1 þ 2a2 − b1 − 2b2 − d1 − 2d2Þ: ð4:30Þ

The simple roots after projection can be chosen to be�
1

3
ð−a1 þ a2 þ b1 − b2 þ d1 − d2Þ; a1 − b1 − d1

	
;

ð4:31Þ

whose intersection gives the Cartan matrix of G2, which
matches to the ½II�; G2� theory of Ref. [29].

2. Z3 quotients with discrete torsion

We next consider the Z3 projection with discrete torsion
of the D4 theory. In this case, the reason why some
junctions may be projected out is that after summing over
theΠ3 images they get a factor 1þ ζ þ ζ2 ¼ 0, where ζ is a
primitive third root of unity. One can check that for both
choices of discrete torsion the junctions�ðai − bi − diÞ for
i ¼ 1, 2 and �ða1 þ a2 − b1 − b2 − d1 − d2Þ are projected
out. This leaves in total six junctions giving the A2 algebra.

5

5Going from G2 to A2 follows because the root system of G2 is
nothing but the root system of A2 with the addition of the weights
of the 3 and 3̄ representations. Including discrete torsion projects
out these vectors, leaving only A2 behind.
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G. Z3 quotients of H1

Let us now turn to Z3 quotients of the H1 stack of
7-branes. We can use our analysis of the D4 stack of
7-branes to aid in this analysis. To this end, we begin with
the realization of the D4 algebra using the Z3 symmetric
stack AABBDD. We get to theH1 stack by removing one A
brane, one B brane, and one D brane. The remaining
junctions are

�ða − b − dÞ; ð4:32Þ

thus giving an A1 algebra.

1. Z3 quotient without discrete torsion

Consider first the Z3 S-fold projection in the absence
of discrete torsion. This junction is already invariant
under the Z3 quotient, suggesting that the theory can
be identified with the ½III�; A1� of Ref. [29]. Indeed, there
is a flow ½II�; G2� → ½III�; A1� for the corresponding 4D
N ¼ 2 SCFTs.

2. Z3 quotients with discrete torsion

Next, consider the Z3 S-fold projection with discrete
torsion. In both cases of Z3 discrete torsion, there are no
junctions surviving, leaving only one single Cartan gen-
erator behind. The flavor symmetry is therefore sim-
ply Uð1Þ.

H. Z4 quotients of H2

We next turn to the Z4 S-fold projection of the H2 stack
of 7-branes. The brane system can be conjugated to a
DADA system where again D is a [0, 1]-brane. The
junctions giving the roots are

�ða1 − a2Þ; �ðd1 − d2Þ; �ða1 − a2 þ d1 − d2Þ:
ð4:33Þ

1. Z4 quotient without discrete torsion

Consider first the Z4 S-fold projection without discrete
torsion on the H2 stack of 7-branes. The Z4 projection
maps

a1→d1; d1→−a2; a2→d2; d2→−a1: ð4:34Þ

After projection, one finds only the junctions

�ða1 þ d1 − a2 − d2Þ: ð4:35Þ

The algebra is therefore A1, thus giving the ½II�; B1� theory.6

2. Z4 quotient with discrete torsion

In the case of the Z4 S-fold projection with discrete
torsion of the H2 stack of 7-branes, we find by a similar
analysis that the algebra is A1, i.e., there is no distinction in
the flavor symmetry algebras for the cases with and without
discrete torsion.

I. Collection of flavor symmetry algebras

In this section, we collect our results on the resulting
flavor symmetry algebras. First, we remind the reader that
the particular nonzero values of the discrete torsion are
irrelevant; the spectrum of physical states, as determined
from the string junctions, is identical for all cases with
nonzero discrete torsion. We then summarize the different
algebras and a choice of root system in Tables IV, V,
and VI. In Table VII, we summarize the relevant patterns,
indicating quotients without discrete torsion as Zk and
those with discrete torsion as Ẑk.
The aforementioned flavor algebras are always realized

on the world volume of the 7-branes and for all ranks of the
SCFT. However, it is expected that in the case of rank-1
theories a quotient with discrete torsion can result in an
enhancement of the geometric flavor symmetry and that
realized by a 7-brane. This geometric symmetry is SUð2Þ
for Ẑ2 quotients and Uð1Þ for the other Ẑk quotients.
We can determine that there is likely an enhancement when

TABLE IV. Simple roots of Z2 S-folds (i.e., orientifold projection) with all possible choices of discrete torsion.

S-fold E6=Z2 D4=Z2 H2=Z2

O3− F4∶ B3∶ A2∶
fa1−a2

2
; a2−a3

2
; a3; c1g fa1−a2

2
; a2; c1g fa1; c1gfO3− C4∶ C2 ⊕ A1∶ A1 ⊕ Uð1Þ∶

fa2þa3
2

þ c1;
a1−a2

2
; a2−a3

2
; a3g fa1−a2

2
; a2g ⊕ fa1þa2

2
þ c1g fa1g

O3þ C4∶ C2 ⊕ A1∶ A1 ⊕ Uð1Þ∶
fa2þa3

2
; a1−a2

2
; a2−a3

2
; a3 þ c1g fa1−a2

2
; c1 þ a2g ⊕ fa1þa2

2
g fa1 þ c1gfO3þ C4∶ C2 ⊕ A1∶ A1 ⊕ Uð1Þ∶

fa2−a3
2

; a1−a2
2

; a2þa3
2

; c1g fa1−a2
2

;−a1 − a2 − c1g ⊕ fa1−a2
2

g fc1g

6Note that at the level of Lie algebras we have A1 ≃ B1.
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the level of the SUð2Þ and the level of the 7-brane flavor
symmetry (both of which we can calculate) match. The
expected enhancements [32] are

(i) For the Ẑ2 quotient of E6, the rank-1 theory is
expected to have C5 flavor symmetry.

(ii) For the Ẑ2 quotient of D4, the rank-1 theory is
expected to have C3 ⊕ A1 flavor symmetry.

(iii) For the Ẑ2 quotient of H2, the rank-1 theory is
expected to have C2 ⊕ U1 flavor symmetry.

(iv) For the Ẑ3 quotient of D4, the rank-1 theory
is expected to have A3 ⋊ Z2 flavor symmetry.

(v) For the Ẑ3 quotient of H1, the rank-1 theory is
expected to have A1 ⊕ U1 ⋊ Z2 flavor symmetry.

(vi) For the Ẑ4 quotient of H2, the rank-1 theory is
expected to have A2 ⋊ Z2 flavor symmetry.

J. Admissible representations

So far, we have focused on the structure of the Lie
algebra of the flavor symmetry. The string junction picture
also allows us to access the admissible representations. We
will discuss only the cases where the center of the simply
connected group of a given Lie algebra is nontrivial.
We begin by first discussing S-fold projections without

discrete torsion and then turn to the case of examples with
discrete torsion. If there happen to be other sources of
flavor symmetries, this can lead to additional global
structure. For example, E8 has an E6 × SUð3Þ=Z3 sub-
group but also has representations in the ð27; 3Þ. If we
ignore the SUð3Þ factor, then we would loosely refer to this
as realizing an E6 group. In the probe D3-brane theories,
we also know that there is an SUð2Þ flavor symmetry
associated with symmetries internal to the 7-brane but
transverse to the D3-brane, so determining the full structure
of the 4D flavor symmetry must reference this feature as
well. We leave this determination for future work. What we
can assert from the string junction picture is whether we see
evidence for a given type of representation, and so to
indicate this information, we will mildly abuse terminology
and refer toGrep as specifying the “the flavor group” and its
admissible representations.

1. S-fold projections without discrete torsion

We now turn to S-fold projections without discrete
torsion in which, for a given Lie algebra, the associated
simply connected Lie group has a nontrivial center. This
limits us to the following cases:

(i) The Z2 quotient of a D4 stack of 7-branes without
discrete torsion yields a B3 algebra, which means
that the flavor group is either Spinð7Þ or
Spinð7Þ=Z2 ≃ SOð7Þ. One quick way to check
which representations are allowed is to use the fact
that the B3 theory descends from the F4 theory.
Decomposing the adjoint of F4, one finds

F4 → Spinð7Þ ⊗ SOð2Þ ð4:36Þ

52 → 10 ⊕ 72 ⊕ 7−2 ⊕ 210 ⊕ 81 ⊕ 8−1: ð4:37Þ

Note that the 8 is the spinor representation of
Spinð7Þ, so indeed the flavor group is Spinð7Þ.

(ii) The Z2 quotient of a H2 stack of 7-branes without
discrete torsion yields an A2 algebra, which means
that the flavor group is either SUð3Þ or SUð3Þ=Z3≃
PSUð3Þ. Similarly to the previous case, we can use
the fact that the A2 theory descends from the B3

theory. Decomposing the adjoint of Spinð7Þ, one
finds

Spinð7Þ → SUð3Þ ⊗ Uð1Þ ð4:38Þ

TABLE VI. Simple roots ofZ4 S-folds with all possible choices
of discrete torsion. Here, having nontrivial torsion does not affect
the gauge algebra or the simple root system.

S-fold H2=Z4

Trivial torsion A1∶fa1 þ d1 − a2 − d2g
Nontrivial torsion A1∶fa1 þ d1 − a2 − d2g

TABLE VII. Summary of symmetry algebras obtained from an
S-fold projection of a parent stack of 7-branes. We find that there
are two qualitative quotients, based onZk without discrete torsion
and based on Ẑk with discrete torsion.

Parent Z2 Ẑ2
Z3 Ẑ3

Z4 Ẑ4

E8

E7

E6 F4 C4

D4 B3 C2 ⊕ A1 G2 A2

H2 A2 A1 ⊕ Uð1Þ A1 A1

H1 A1 U1

H0

TABLE V. Simple roots of Z3 S-folds with all possible choices of discrete torsion.

S-fold D4=Z3 H1=Z3

Trivial torsion G2∶f13 ð−a1 þ a2 þ b1 − b2 þ d1 − d2Þ; a1 − b1 − d1g A1∶fa − b − dg
Nontrivial torsion A2∶f13 ð−a1 þ a2 þ b1 − b2 þ d1 − d2Þ; 13 ð2a1 þ a2 − 2b1 − b2 − 2d1 − d2Þg Uð1Þ
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21 → 10 ⊕ 80 ⊕ 34 ⊕ 3̄−4 ⊕ 32 ⊕ 3̄−2: ð4:39Þ

Since the 3 representation of A2 is present, this fixes
the flavor symmetry group to be SUð3Þ.

(iii) The Z3 quotient of an H1 theory without discrete
torsion gives the flavor algebra A1, which means
that the flavor group could be either SUð2Þ or
SUð2Þ=Z2 ≃ SOð3Þ. We can follow the logic out-
lined before, noting that this theory comes from the
G2 theory. Decomposing the adjoint of G2, we find

G2 → SUð2Þ ⊗ SUð2Þ; ð4:40Þ

14 → ð3; 1Þ ⊕ ð1; 3Þ ⊕ ð4; 2Þ: ð4:41Þ

It is possible to check by computing the charges of
the junctions that after breaking G2 the junctions lie
in the 4 representation of the unbroken group,
implying that this group is SUð2Þ rather than
SOð3Þ, given that the 4 is charged under the center.

2. S-fold projections with discrete torsion

Let us now turn to the related case of S-fold projections
with discrete torsion. Again, we confine our analysis to those
Lie algebras which have a simply connected Lie group with
nontrivial center. The relevant cases are as follows:

(i) TheZ2 quotient of the E6 theory with discrete torsion
gives the flavor algebra C4, which means that the
flavor group can be either USpð8Þ orUSpð8Þ=Z2. In
this case, we note that all junctions must descend
from junctions of the parent E6 theory and its weight
lattice is generated by the junctions giving the 27
representation. Decomposing it, we find

E6 → USpð8Þ; ð4:42Þ

27 → 27: ð4:43Þ

The 27 of USpð8Þ is the two-index antisymmetric
representation which is not charged under the center.
This implies that no junctions charged under the
center can be generated, implying that the flavor
group is USpð8Þ=Z2.

(ii) The Z2 quotient of the D4 theory with discrete
torsion gives the flavor algebra C2 ⊕ A1. Here, there
are various possibilities for the global structure
of the gauge group. Knowing that this theory
descends from the C4 theory, we can decompose
the adjoint of C4,

USpð8Þ→USpð4Þ⊗SUð2Þ⊗Uð1Þ;
36→ ð4;2Þ1⊕ ð4;2Þ−1⊕ ð1;3Þ0⊕ ð1;3Þ2

⊕ ð1;3Þ−2⊕ ð1;1Þ0⊕ ð10;1Þ0: ð4:44Þ

We see that the only representations charged under
the center of USpð4Þ and SUð2Þ appear together,
which suggests that the group is ðUSpð4Þ ⊗
SUð2ÞÞ=Z2. Note that other quotients like, for
instance, USpð4Þ=Z2 ⊗ SUð2Þ=Z2 are not compat-
ible with the representations appearing, given that
the fundamental representations of USpð4Þ and
SUð2Þ appear in the previous decomposition.
Following a similar logic starting from the 27
representation of USpð8Þ, which is the smallest
representation available, confirms this result.

(iii) The Z2 quotient of the H2 theory with discrete
torsion gives the flavor algebra A1 ⊕ U1. In this
case, we can decompose the adjoint of C2 ⊕ A1 as

USpð4Þ ⊗ SUð2Þ → SUð2Þ ⊗ Uð1Þa ⊗ Uð1Þb;
ð4:45Þ

ð10;1Þ⊕ ð1;3Þ→1ð0;0Þ⊕1ð0;0Þ⊕3ð0;0Þ
⊕ ð2ð1;1Þ⊕1ð2;2Þ⊕1ð2;−2Þ⊕H:c:Þ:

ð4:46Þ

The broken generator is Uð1Þb, leaving SUð2Þ ⊗
Uð1Þa. Therefore, the flavor symmetry group seems
to be ðSUð2Þ ⊗ Uð1ÞÞ=Z2. The conclusion does
not change when looking at other representations
of ðUSpð4Þ ⊗ SUð2ÞÞ=Z2.

(iv) The Z3 quotient of the D4 theory with discrete
torsion gives the flavor algebra A2, which means
that the flavor group can be either SUð3Þ or
SUð3Þ=Z3 ≃ PSUð3Þ. In this case, we note that
all junctions must descend from junctions of the
parent E6 theory and its weight lattice is generated
by the junctions giving the 8s, the 8c, and the 8v
representations. Decomposing them, we find

Spinð8Þ → SUð3Þ; ð4:47Þ

8s → 8; ð4:48Þ

8c → 8; ð4:49Þ

8v → 8: ð4:50Þ

The 8 representation of A2 is of course the adjoint
which is uncharged under the center. This means that
no representation charged under the center is
present, giving the flavor symmetry PSUð3Þ.

(v) The Z4 quotient of the H2 theory with discrete
torsion gives the flavor algebra A1, which means that
the flavor group can be either SUð2Þ or SUð2Þ=Z2≃
SOð3Þ. In this case, we note that all junctions must
descend from junctions of the parent H2 theory
and its weight lattice is generated by the junctions
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giving the 3 representation. Decomposing them,
we find

SUð3Þ → SUð2Þ; ð4:51Þ

3 → 3: ð4:52Þ

The 3 representation of A1 is of course the adjoint
which is uncharged under the center. This means that
no representation charged under the center is
present, giving the flavor symmetry SOð3Þ.

V. F-THEORY AND S-FOLDS
WITH DISCRETE TORSION

One useful application of the F-theory construction is
that it allows one to read off the Seiberg-Witten curve
from the geometry for the rank-1 theories. However, as
we stressed before, this procedure works only in the
absence of discrete torsion. Given this identification
between geometry and the low-energy field theory data,
it is tempting to push this identification beyond the case
without discrete torsion. We propose that the F-theory
geometry in the presence of discrete torsion is the
Seiberg-Witten curve of the theory on a single probe
D3-brane. In this section, we will list all the maximally
mass deformed Seiberg-Witten curves from Ref. [29] for
the various theories we obtained in the presence of
discrete torsion. One subtle point is that in the case of
a single D3-brane there can be additional enhancements
in the flavor symmetry relative to the case of multiple
D3-branes. In these cases, we interpret the F-theory
geometry as the one obtained by taking a mass deforma-
tion of the enhanced symmetry algebra, which takes us to
the generic flavor symmetry, and then taking a further
scaling limit so that the terms with the mass deformation
are scaled out. In all cases, this is associated with the
degree-2 Casimir invariants of the flavor symmetry
algebra. In what follows, we leave this operation implicit
in our discussion. With notation as earlier, we use the
Coulomb branch parameter u to indicate the directions
transverse to the 7-brane in the quotiented geometry:

(i) The Seiberg-Witten curve for the Z2 quotient with
discrete torsion of the E6 theory is

y2¼x3þ3x½2u3M2þu2ðM2
4−2M8Þ

þ2uM4M10−M2
10�

þ2½u5þu4M6þu3ð2M3
4−3M4M8−3M2M10Þ

þ3u2M8M10−3uM4M2
10þM3

10�: ð5:1Þ

(ii) The Seiberg-Witten curve for the Z2 quotient with
discrete torsion of the D4 theory is

y2¼x3þx½12u3−u2ðM4þ4M2
2Þþ12uM2M6−3M2

6�
−12u4ð2M2þ3M̃2Þþ2u3ðM2M4þ6M6Þ
−u2ð16M2

2þM4ÞM6þ12uM2M2
6−2M3

6:

ð5:2Þ

Note the presence of two independent degree-2
Casimirs, M2 and M̃2. This occurs whenever the
flavor symmetry is semisimple; in this case, it
is C3 ⊕ A1.

(iii) The Seiberg-Witten curve for the Z2 quotient with
discrete torsion of the H2 theory is

y2 ¼ x3 − x½3u2ðM2 þM2
1Þ þ 12uM1M4 þ 3M2

4�
− 864u4 þ 2u3M1ðM2

1 − 3M2Þ
− 3u2ð5M2

1 þM2ÞM4 − 12uM1M2
4 − 2M3

4:

ð5:3Þ

(iv) The Seiberg-Witten curve for the Z3 quotient with
discrete torsion of the D4 theory is

y2 ¼ x3 þ 3xu2ð2uM2 −M2
4Þ

þ 2u3ðu2 þM3
4 þ uM6Þ: ð5:4Þ

This was identified in Ref. [30] and reproduces the
curve already found in Ref. [61].

(v) The Seiberg-Witten curve for the Z3 quotient with
discrete torsion of the H1 theory is

y2 ¼ x3 þ 3xðu3 − u2M̃2
2Þ þ 2ðu4M2 þ u3M̃3

2Þ:
ð5:5Þ

(vi) The Seiberg-Witten curve for the Z4 quotient with
discrete torsion of the H2 theory is

y2 ¼ x3 −
1

8
xð2u −M6Þ3M2

−
1

8
ð2u −M6Þ4ðuþ 2M6Þ: ð5:6Þ

For an additional comment, we note that here we have
mainly focused on the situation where we treat the Mi as
mass parameters. Of course, since the S-fold introduces a
codimension-4 defect in the world volume of the 7-brane,
we can also include additional position dependence in these
mass parameters. Doing so would produce F-theory back-
grounds which we can characterize as elliptically fibered
Calabi-Yau threefolds in the presence of discrete torsion.

VI. ANOMALIES

For a further check on our proposal, in this section, we
study the scaling of the conformal anomalies a and c in the
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limit of large N, that is, when we have a large number of
probe D3-branes. We shall also determine the flavor
symmetry anomaly κG associated with two flavor currents
and an R-symmetry current, namely, TrðRGGÞ, where R
denotes the current for the Uð1ÞR factor of the
R-symmetry SUð2Þ ×Uð1ÞR of a 4D N ¼ 2 SCFT and
G refers to a flavor symmetry current associated with
a 7-brane. Since we are dealing with topological features
of the theory, we will extrapolate our results back to small
values of N, much as in Ref. [62]. From our analysis, we
can read off both the order-N2 and order-N contributions
to the conformal anomalies; however, we will not be able
to access theOðN0Þ contributions via these methods. This
will allow us to compare with the results of Ref. [38],
which studies certain 4D SCFTs from T2 compactifica-
tions of six-dimensional (6D) N ¼ ð1; 0Þ SCFTs, as well
as with Ref. [39], which studies some examples of
D3-brane probes of S-folds with discrete torsion. In
the rank-1 case, N ¼ 1, we will find consistency with
the rank-1 theories of Ref. [32], though in those cases, we
will have to subtract a free hypermultiplet to match with
the interacting SCFT.
The computation is done using holography as in

Ref. [62]. The large N dual of the background we are
considering is type IIB on AdS5 × S5=Zk with 7-branes.
We will separate the various terms appearing in the central
charges according to their N scaling, with leading order
being N2:

(i) OðN2Þ.—This term comes from the total D3-brane
charge induced by the background. The general
formula is

ajOðN2Þ ¼ cjOðN2Þ ¼
M2π3

4V5

; ð6:1Þ

where M is the D3-brane charge and V5 is the
volume of the internal 5-manifold. In our case,
M ¼ N þ ε, where ε ¼ �ð1 − kÞ=2k is the charge
of the S-fold plane7 and V5 ¼ π3=kΔ. The reason for
the last identification is that the volume of the
5-sphere is reduced by a factor of k by the S-fold
quotient [5,39] and by a factor of Δ due to the deficit
angle of the 7-branes [62].8

(ii) OðNÞ.—This term comes from the Chern-Simons
terms on the 7-branes. The general formula is

ajOðNÞ ¼
MðΔ − 1Þ

2
; ð6:2Þ

cjOðNÞ ¼
3MðΔ − 1Þ

4
: ð6:3Þ

As before, M ¼ N þ ε. Notice that there is no
dependence on k. This is because both the volume
wrapped by the 7-branes and the volume of the
sphere are both affected in the same way by the
quotient (the Chern-Simons action is proportional to
the ratio of these volumes). Moreover, these terms
disappear whenever Δ ¼ 1, that is, in the case when
there are no 7-branes.9

While we have, in principle, been determining the terms
at quadratic and linear orders in N, we in fact have
determined contributions at Oð1Þ from the ε terms in M.
We will disregard these terms, as we cannot determine the
Oð1Þ terms anyway, and we are in fact required to subtract
these terms if the central charges are to match those
occurring for the N ≥ 3 theories [5]. Adding the quadratic
and linear terms together, we get

a ¼ kΔ
4

N2 þ ðkΔεþ Δ − 1Þ
2

N; ð6:4Þ

c ¼ kΔ
4

N2 þ ð2kΔεþ 3Δ − 3Þ
4

N: ð6:5Þ

Recall that ε ¼ �ð1 − kÞ=2k. We can use these formulas
and can check that they agree with the known results for
rank-1 4D SCFTs [32], although in these cases, we need
to subtract a center of mass hypermultiplet. In addition,
we are able to compute κG, the anomaly associated with
TrðRGGÞ, with G the flavor symmetry generated by the
7-branes in the presence of the S-fold. The results for the
cases with discrete torsion are in Refs. [38,39], and here we
focus on the cases without discrete torsion. In general,
following Ref. [62], one finds that the central charge for the
flavor symmetry G on the 7-branes and the geometric
SUð2Þ flavor symmetry are

κG ¼ 2NΔ; κSUð2Þ ¼ kN2Δ − NðΔ − 1 − 2kΔεÞ:
ð6:6Þ

Let us note that in the special case where N ¼ 1 we always
find that either κSUð2Þ ¼ 0 or that there is an accidental
enhancement in the infrared where the SUð2Þ merges with
the 7-brane flavor symmetry. We tabulate the values that we
get for all cases without discrete torsion writing both the
rank-N and rank-1 values, indicating as well the Kodaira
fiber type prior to the quotient. As expected, these are the
same values displayed in Ref. [32] (for the rank-N case, the

7Recall that the plus sign corresponds to the case without
discrete torsion, and the minus sign corresponds to that with
discrete torsion, regardless of the particular choice of the discrete
torsion.

8Δ is both the deficit angle and the dimension of the Coulomb
branch operator. The values of Δ are Δ ¼ 6 for the E8 theory,
Δ ¼ 4 for the E7 theory, Δ ¼ 3 for the E6 theory, Δ ¼ 2 for the
D4 theory,Δ ¼ 3=2 for theH2 theory,Δ ¼ 4=3 for theH1 theory,
and Δ ¼ 6=5 for the H0 theory. 9The number of 7-branes is n7 ¼ 12ðΔ − 1Þ=Δ.
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results here match with Ref. [38], worked out from
compactifications of a 6D SCFT):

S-fold Quotient 24a 12c κG ð24a; 12c; κGÞjN¼1

IV�=Z2 36N2 þ 6N 18N2 þ 9N 6N (42,27,6)
I�0=Z2 24N2 12N2 þ 3N 4N (24,15,4)
IV=Z2 18N2 − 3N 9N2 3N (15,9,3)
I�0=Z3 36N2 − 12N18N2 − 3N 4N (24,15,4)
III=Z3 24N2 − 12N12N2 − 5N8N=3 (12,7,8/3)
IV=Z4 36N2 − 21N18N2 − 9N 3N (15,9,3)

Here, we denoted the theories using the fiber type before
taking the quotient and the type of quotient applied. All the
values obtained match with Ref. [32]. Note that the

formulas for a and c match the N ¼ 3 case (obtained
whenΔ ¼ 1), provided that theOð1Þ term coming from the
center of mass of the system of D3-branes is added back.
For completeness, we can also list the same information in
the cases with discrete torsion, again focusing on the rank-1
case. As expected, these are the same values displayed in
Ref. [32] (see also Refs. [38,39]). We can determine these
values in the following manner. We use the formulas in
(6.4) to determine the leading and subleading contributions
in N. The Oð1Þ terms were determined in Ref. [39], in
which it was argued that the parent theory should include
kðΔ − 1Þ additional free hypermultiplets before the quo-
tient, and we include them here verbatim.

S-fold Quotient 24a 12c κG ð24a; 12c; κGÞjN¼1

IV�=Ẑ2 36N2 þ 42N þ 4 18N2 þ 27N þ 4 6N þ 1 (82,49,7)

I�0=Ẑ2 24N2 þ 24N þ 2 12N2 þ 15N þ 2 ð4N þ 1; 8NÞ (50,29,(5,8))

IV=Ẑ2 18N2 þ 15þ 1 9N2 þ 9N þ 1 3N þ 1 (34,19,(4,-))

I�0=Ẑ3 36N2 þ 36N þ 3 18N2 þ 21N þ 3 12N þ 2 (75,42,14)

III=Ẑ3 24N2 þ 20N þ 1 12N2 þ 11N þ 1 - (45,24,-)

IV=Ẑ4 36N2 þ 33N þ 2 18N2 þ 18N þ 2 12N þ 2 (71,38,14)

In the above, we have included a “−” in some entries to
reflect the fact that our present methods do not fix the level
of the Uð1Þ flavor current.

VII. CONCLUSIONS

S-folds are a nonperturbative generalization of O3-
planes which figure in the stringy construction of novel
4D quantum field theories. In this paper, we have proposed
a procedure for how S-fold projection acts on the spectrum
of string junctions attached to a stack of 7-branes and probe
D3-branes. We have developed a general prescription for
reading off the resulting flavor symmetry algebra under
S-fold projection. This procedure leads to new realizations
of many of the rank-1 4D N ¼ 2 SCFTs which arise from
mass deformations and/or discrete gaugings of the rank-1
E8 Minahan-Nemeschansky theory. We have also argued
that the Seiberg-Witten curves associated with some of
these theories provide an operational definition of F-theory
in the presence of an S-fold background with discrete
torsion. In the remainder of this section, we discuss some
avenues for future investigation.
An interesting feature of our analysis is that there is a

close correspondence between possible S-fold quotients of
7-branes, and admissible rank-1 4D N ¼ 2 SCFTs. That
being said, there are a few examples which appear in
Ref. [32], which seem to involve some additional ingre-
dients. The Kodaira fiber types and flavor symmetries for

these cases are ½II�; C2�, ½III�; C1�, ½IV�
1;∅�, and ½II�; C1�. In

some cases, we can understand the origin of these theories
as arising from a mass deformation of another theory,
followed by an additional discrete quotient. That being
said, it remains to be understood whether these operations
can be fully realized purely in geometric terms.
There are in principle other ways to generate the same

class of rank-1 4D N ¼ 2 SCFTs. In particular, compacti-
fications of 6D SCFTs with suitable discrete twists provide
an alternative way to realize many such examples (see, e.g.,
Ref. [38]). Since there is now a classification of possible
F-theory backgrounds which can generate 6D SCFTs (see,
e.g., Refs. [63–65] for a review), it would be interesting to
systematically classify all possible ways of incorporating
such discrete effects, thus providing a complementary
viewpoint on many of the same questions.
In this paper, we have mainly focused on structures

associated with 4D N ¼ 2 SCFTs. It would be quite
natural to investigate the structure of related systems with
only 4DN ¼ 1 supersymmetry. For example, starting from
a 4D N ¼ 2 SCFT, deformations by nilpotent mass
deformations often trigger flows to such theories [66–68].
O3-planes often play an important role in the construc-

tion of consistent type IIB string vacua. Having analyzed
the effect of S-fold projection on the flavor symmetries of
probe D3-branes in the vicinity of 7-branes, it is also natural
to consider possible ways in which such ingredients might
be used in compact F-theory models.
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APPENDIX A: BRANE MOTIONS

In this Appendix, we present an illustrative example for
how to rearrange various ½p; q� 7-branes so that S-fold
projection acts geometrically on the associated string
junction states. This is best illustrated via pictures, so
we mainly display the relevant figures here. Our starting
point is an E6 stack written as A5BC2 ∼ A6XC ∼
AAACAAAC (see Fig. 7), a D4 stack written as A4BC ∼
AACAAC (see Fig. 8), and an H2 stack written as A3C ∼
ACY2 ∼ ACAC ∼DADA (see Fig. 9).

APPENDIX B: EXPLICIT Z2 QUOTIENT OF E6
WITHOUT TORSION

In this Appendix, we give the explicit root system of e6
and show how only 48 roots survive the Z2 quotient
(without torsion), corresponding exactly to the roots of an
f4 algebra. The roots of E6, which are given in line (4.17),
can be written as

� fð−1; 1; 0; 0; 0; 0; 0; 0Þ; ð0; 0; 0;−1; 0; 0; 0; 1Þ; ð0;−1; 1; 0; 0; 0; 0; 0Þ; ð0; 0;−1; 0; 1; 0; 0; 0Þ;
ð0; 0; 0; 0;−1; 1; 0; 0Þ; ð0; 0; 0; 0; 0;−1; 1; 0Þ; ð−1; 0; 1; 0; 0; 0; 0; 0Þ; ð0; 0;−1;−1; 1; 0; 0; 1Þ;
ð0;−1; 0; 0; 1; 0; 0; 0Þ; ð0; 0;−1; 0; 0; 1; 0; 0Þ; ð0; 0; 0; 0;−1; 0; 1; 0Þ; ð−1; 0; 0; 0; 1; 0; 0; 0Þ;
ð0;−1; 0;−1; 1; 0; 0; 1Þ; ð0; 0;−1;−1; 0; 1; 0; 1Þ; ð0;−1; 0; 0; 0; 1; 0; 0Þ; ð0; 0;−1; 0; 0; 0; 1; 0Þ;
ð−1; 0; 0;−1; 1; 0; 0; 1Þ; ð−1; 0; 0; 0; 0; 1; 0; 0Þ; ð0;−1; 0;−1; 0; 1; 0; 1Þ; ð0; 0;−1;−1; 0; 0; 1; 1Þ;
ð0;−1; 0; 0; 0; 0; 1; 0Þ; ð−1; 0; 0;−1; 0; 1; 0; 1Þ; ð−1; 0; 0; 0; 0; 0; 1; 0Þ; ð0;−1;−1;−1; 1; 1; 0; 1Þ;
ð0;−1; 0;−1; 0; 0; 1; 1Þ; ð−1; 0;−1;−1; 1; 1; 0; 1Þ; ð−1; 0; 0;−1; 0; 0; 1; 1Þ; ð0;−1;−1;−1; 1; 0; 1; 1Þ;
ð−1;−1; 0;−1; 1; 1; 0; 1Þ; ð−1; 0;−1;−1; 1; 0; 1; 1Þ; ð0;−1;−1;−1; 0; 1; 1; 1Þ;
ð−1;−1; 0;−1; 1; 0; 1; 1Þ; ð−1; 0;−1;−1; 0; 1; 1; 1Þ; ð−1;−1; 0;−1; 0; 1; 1; 1Þ;
ð−1;−1;−1;−1; 1; 1; 1; 1Þ; ð−1;−1;−1;−2; 1; 1; 1; 2Þg; ðB1Þ

where the vectors follow the order of the branes of Fig. 4. Namely, for instance, the highest root ð1; 1; 1; 2;−1;−1;−1;−2Þ
corresponds to the string junction ða1 þ a2 þ a3 þ 2c1 − a4 − a5 − a6 − 2c2Þ. For the projection, we define the matrix

Z ¼ −

0
BBBBBBBBBBBBB@

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1
CCCCCCCCCCCCCA
: ðB2Þ

FIG. 7. Brane motion for E6 7-branes to a configuration which
is Z2 symmetric and thus amenable to a Z2 S-fold projection, i.e.,
an orientifold projection. In the figure, we also indicate how the
X-brane is moved to accomplish this rearrangement to the Z2

symmetric configuration AAACAAAC.
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We then map every root r in (B1) to 1
2
ðrþ Z · rÞ. This results in the following 48 roots:

�
�
ð0; 0; 0;−1; 0; 0; 0; 1Þ; ð0; 0;−1; 0; 0; 0; 1; 0Þ;

�
0;−

1

2
;
1

2
; 0; 0;

1

2
;−

1

2
; 0

�
;�

−
1

2
;
1

2
; 0; 0;

1

2
;−

1

2
; 0; 0

�
; ð0; 0;−1;−1; 0; 0; 1; 1Þ;

�
0;−

1

2
;−

1

2
; 0; 0;

1

2
;
1

2
; 0

�
;�

−
1

2
; 0;

1

2
; 0;

1

2
; 0;−

1

2
; 0

�
; ð0;−1; 0; 0; 0; 1; 0; 0Þ;

�
0;−

1

2
;−

1

2
;−1; 0;

1

2
;
1

2
; 1

�
;�

−
1

2
; 0;−

1

2
; 0;

1

2
; 0;

1

2
; 0

�
; ð0;−1; 0;−1; 0; 1; 0; 1Þ;

�
−
1

2
; 0;−

1

2
;−1;

1

2
; 0;

1

2
; 1

�
;�

−
1

2
;−

1

2
; 0; 0;

1

2
;
1

2
; 0; 0

�
; ð−1; 0; 0; 0; 1; 0; 0; 0Þ; ð0;−1;−1;−1; 0; 1; 1; 1Þ;

FIG. 9. Brane motion for H2 7-branes to the configuration
DADA which is Z4 symmetric and thus amenable to an S-fold
projection. In the last step of rearrangement, we apply an
SLð2;ZÞ transformation as indicated by Y, with notation as
in Eq. (4.1).

FIG. 8. Brane motion for D4 7-branes to a configuration which
is Z3 symmetric and thus amenable to a Z3 S-fold projection. In
the figure, we start with the presentation of this brane system as
the bound state A4BC, which we then split up into three stacks of
branes which are permuted under the Z3 group action.
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�
−
1

2
;−

1

2
; 0;−1;

1

2
;
1

2
; 0; 1

�
; ð−1; 0; 0;−1; 1; 0; 0; 1Þ;

�
−
1

2
;−

1

2
;−1;−1;

1

2
;
1

2
; 1; 1

�
;

ð−1; 0;−1;−1; 1; 0; 1; 1Þ;
�
−
1

2
;−1;−

1

2
;−1;

1

2
; 1;

1

2
; 1

�
;

�
−1;−

1

2
;−

1

2
;−1; 1;

1

2
;
1

2
; 1

�
;

ð−1;−1; 0;−1; 1; 1; 0; 1Þ; ð−1;−1;−1;−1; 1; 1; 1; 1Þ; ð−1;−1;−1;−2; 1; 1; 1; 2Þ
	
: ðB3Þ

From there, we can extract the four simple roots of F4,��
1

2
;−

1

2
; 0; 0;−

1

2
;
1

2
; 0; 0

�
;

�
0;
1

2
;−

1

2
; 0; 0;−

1

2
;
1

2
; 0

�
; ð0; 0; 1; 0; 0; 0;−1; 0Þ; ð0; 0; 0; 1; 0; 0; 0;−1Þ

	
; ðB4Þ

corresponding exactly to the simple roots chosen in Eq. (4.20).
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