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We numerically solve for 2þ 1 asymptotically Lifshitz universal horizon solutions in Hořava-Lifshitz
gravity for dynamical exponents z ¼ 2 through z ¼ 16. We find that for all z there is a thermodynamical
first law. Furthermore, we find that the energy-entropy relation or Smarr formula expected for a thermal
state in a two-dimensional Lifshitz field theory, E ¼ 2

zþ2
TS, is also satisfied for universal horizons,

including the correct z scaling.
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I. INTRODUCTION

If holography is to provide as much calculational utility
as possible, it is necessary to find duals to field theories
which are not subject to conformal symmetry, as such field
theories occur in numerous systems (examples in [1–5]).
One minimal deviation from conformal invariance, which
therefore has potentially valuable applications, is Lifshitz
symmetry.
The appropriate gravitational dual to a Lifshitz field

theory must admit solutions which somewhere in the bulk
obey Lifshitz symmetry. Since these type of solutions
cannot be found in vacuum general relativity, this requires
modification on the bulk side of the duality. We can
generate such solutions with a particular choice of fields
and profile in the bulk, for example in Einstein-dilaton-
Maxwell theory [6] or with a Proca field [7] but these types
of relativistic duals for Lifshitz theories are less preferred
for multiple reasons. They are asymptotically anti–de Sitter
(AdS) and so correspond to a conformal UV completion,
run counter to the notion that zero temperature field
theories are dual to vacuum spacetimes, and fail to naturally
provide duals for entanglement entropy [8,9].
Alternatively, one can generate both globally and asymp-

totically Lifshitz spacetimes as solutions to an appropri-
ately modified theory of gravity. Lifshitz solutions have
been found in massive gravity [10] and bigravity theories
[11], but in these models the Lifshitz nature is a feature of
the solutions and not built into the theory itself at a
fundamental level. If the gravitational theory is naturally
Lifshitz in the UV and admits asymptotically Lifshitz
solutions, this would resolve issues such as those with
matching of Weyl anomalies [12], and with entanglement

entropy [8]. Hořava-Lifshitz gravity is just such a theory.
It requires a preferred foliation of spacetime in order to
include the necessary higher spatial derivative terms in the
action that make it UV Lifshitz while remaining ghost-free,
but the absence of ghosts and renormalizability of the
theory provides a putative complete field theoretical model
of quantum gravity. Furthermore it generically admits
asymptotically Lifshitz solutions with a tunable parameter,
usually called the Lifshitz exponent z, which can be taken
as equivalent to the corresponding dynamic exponent on
the field theory side of the duality.
The introduction of finite temperature on the field theory

side of a duality is associated with the introduction of a
black hole to the gravitational bulk. Since it has been shown
that there exist asymptotically Lifshitz black hole solutions
to Hořava-Lifshitz gravity [13], one might reasonably
expect these to correspond to finite temperature Lifshitz
field theories on the boundary. Consequently the thermo-
dynamics of such field theories ought to be directly related
to that of the black holes in the bulk.
In this paper we derive two primary results. First, we

show that 2þ 1-dimensional, asymptotically Lifshitz uni-
versal horizon black hole solutions to Hořava-Lifshitz
gravity for z ¼ 2 through z ¼ 16 exist (and of course
for higher z as well in all probability). Second, and more
importantly, the numerical coefficient in the energy-entropy
relation varies with respect to the dynamical exponent z in
exactly the manner one expects if the boundary dual is a 2D
Lifshitz field theory. Specifically, the general thermody-
namic relation

E ¼ d
zþ d

TS; ð1Þ

where E is the energy density, T the temperature, and S the
entropy density, and d is the dimension, holds for d ¼ 2.
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This relation has previously been shown to also hold for
black holes in spacetimes generated with Einstein-
Maxwell-dilaton theory [14,15]. However, as mentioned
above, since relativistic duals to Lifshitz field theory fail for
other dynamic observables, but Hořava-Lifshitz gravity
duals do not, our result can be understood as confirmatory
evidence that Hořava-Lifshitz gravity may provide the
appropriate dual for generic z Lifshitz theories.
The structure of the paper is as follows. We briefly

review Hořava-Lifshitz gravity in Sec. II, discuss the
existence of global and asymptotically Lifshitz universal
horizon black hole solutions and describe the numerical
procedure in Sec. III, outline our findings for various z, the
corresponding first laws, and the energy-entropy relation in
Sec. IV, and conclude in Sec. V. Throughout this paper we
use metric signature ð−;þ;þÞ, and Greek indices will refer
to dþ 1-dimensional spacetime quantities, while Latin
indices will refer to d-dimensional spatial quantities.

II. HOŘAVA-LIFSHITZ GRAVITY AND
EQUATIONS OF MOTION

Hořava-Lifshitz gravity is a proposed theory of quantum
gravity [16,17] (for a review see [18]) which is power
counting renormalizable and ghost-free. It achieves this
through the addition of higher spatial derivative terms in the
propagator, which implies that it lacks Lorentz invariance
in the UV limit. The differing treatment of spatial and
temporal derivatives in the action necessarily requires a
clear decomposition of the spacetime into spatial and
temporal directions at any point, and thus the foliation
of the spacetime into leaves of simultaneity, with each leaf
labeled by some monotonic scalar function T.
The theory is required to be invariant under monotonic

transformations T̃ðTÞ which preserve this foliation and can
be made generally covariant and well behaved (the so-
called healthy extension [19]) through the promotion of T
to a dynamical field (the khronon) in the action and
corresponding incorporation of all possible kinetic terms.
Since the theory must be invariant under monotonic
transformations of T, T cannot appear directly in the
action. Instead, what appears in the action is the unit
one form ua, the æ ther, everywhere normal to the surfaces
of constant T, and defined by

uμ ¼ −N∇μT; ð2Þ

where the lapse N is given by

N ¼ ð−∇μT∇μTÞ−1=2: ð3Þ

Given the aether, the action for the covariant healthy
extension of Hořava-Lifshitz gravity in a dþ 1 decom-
position is

S ¼ 1

16πG

Z
dT

Z
ΣT

ddx̃N
ffiffiffĩ
g

p
ðR̃ − Λþ αa2

þ βKabKab − γK2 − Vðg̃ab; NÞÞ; ð4Þ

where R̃ is the d-dimensional Ricci scalar, Kμν is the
extrinsic curvature of the hypersurfaces, Kμν¼∇μuνþuμaν,
aμ is the acceleration of the aether, aμ ¼ uν∇νuμ, and
the tilde denotes evaluation purely over the spatial direc-
tions. Vðg̃ab; NÞ contains the set of higher-dimension
operators built out of fields and spatial derivatives
Da ¼ ðgba þ uaubÞ∇b.
Since we are concerned with 1þ 2-dimensional black

hole solutions with curvatures everywhere much smaller
than any high-energy Lifshitz scale, it will suffice to
consider the infrared limit of 1þ 2-dimensional Hořava-
Lifshitz gravity and to restrict the action to terms quadratic
in spatial derivatives, dropping Vðg̃ab; NÞ. With this
restriction, and as a result of the Hořava-Lifshitz action
being definable in terms of the aether, the infrared truncated
theory is closely related [20] to Einstein-aether theory [21],
which is the most general two-derivative theory for a unit
timelike vector field coupled to gravity.
To keep notation consistent with the literature [13,22–26],

we will formulate the infrared truncated healthy extension
of Hořava-Lifshitz gravity in the notation of Einstein-aether
theory. The full action of Einstein-aether theory is

S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛþLÁ
I
þ λðu2 þ 1ÞÞ; ð5Þ

where

LÁ
I
¼ −Zμν

σρð∇μuσÞð∇νuρÞ; ð6Þ

Zμν
σρ ¼ c1gμνgσρ þ c2δμσδνρ þ c3δμρδνσ − c4uμuνgσρ; ð7Þ

and λ is a Lagrange multiplier used to enforce the
normalization condition u2 ¼ −1.
The aether in Hořava-Lifshitz gravity is automatically

normalized and hypersurface orthogonal as a consequence
of its relation to T. Hence one overall combination of
kinetic terms (that of the twist) and the Lagrange multiplier
make no contribution to the equations of motion. Hořava-
Lifshitz gravity is then equivalent to the reduced action of
“T theory” [20], which in Einstein-aether notation is simply
the Hořava-Lifshitz action (4) with

α ¼ c14 ¼ c1 þ c4; ð8Þ

β ¼ 1 − c13 ¼ 1 − ðc1 þ c3Þ; ð9Þ

γ ¼ 1þ c2: ð10Þ
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Given this equivalence, the equations of motion can be
read off from Einstein-aether theory (cf. the derivation in
[22]) as

∇μðNÆ
←

μÞ ¼ 0; ð11aÞ

GμνþΛgμν
¼ c1ð∇μuγ∇νuγ −∇γuμ∇γuνÞþ c4aμaν

þ∇γXγ
μν − ðu ·ÆÞuμuν− 2ÆðμuνÞ þ

1

2
Lugμν: ð11bÞ

Here the under left arrow means to project onto the
hypersurfaces of constant T and the notation has been
shortened by use of the quantities

Æμ ¼ c4aγ∇μuγ þ∇γYγ
μ; ð12aÞ

Yμ
ν ¼ Zμγ

νδ∇γuδ; ð12bÞ

Xγ
μν ¼ uγYðμνÞ þ uðμYγ

νÞ − uðνYμÞγ: ð12cÞ

Due to the hypersurface orthogonal nature of the aether
vector, each of the terms above will upon evaluation
become proportional to c14, c13 or c2. We now turn to
the relevant solutions for Hořava-Lifshitz gravity.

III. LIFSHITZ SOLUTIONS
AND THEIR GENERATION

A. Global Lifshitz

The Lifshitz spacetime with line element

ds2 ¼ −
�
r
l

�
2z
dt2 þ

�
r
l

�
2

dx2 þ
�
l
r

�
2

dr2 ð13Þ

and aether vector parallel to d=dt everywhere is a vacuum
solution to the equations of motion and captures the
spacetime symmetries of Lifshitz-type quantum field the-
ories with dynamical exponent z in 1þ 1 dimensions [27].
l, the Lifshitz length scale, and z, the Lifshitz exponent, are
related to the parameters in the action by

l2 ¼ −
zðzþ 1Þ

2Λ
; ð14Þ

z ¼ 1

1 − c14
: ð15Þ

It is preferable that the global Lifshitz solution naturally
exist as a vacuum spacetime. If we wish the bulk state
corresponding to a boundary state in thermal equilibrium,
i.e., a black hole solution, to be smoothly connected to its
zero temperature equivalent, then it is necessary for the
desired asymptotics to exist as part of a vacuum solution on
the gravitational side. We note that most other methods of

forming Lifshitz spacetimes rely on a nonzero matter field
profile. Other evidence for Hořava-Lifshitz gravity as the
natural (finite temperature) dual includes the matching of
the anisotropic Weyl anomalies through holographic
renormalization of the theory [27]. Furthermore, holo-
graphic calculation of entanglement entropy shows that
the appropriate closure of entanglement wedges in global
Lifshitz spacetime can be achieved using Hořava-Lifshitz
gravity [8], where attempts with relativistic theories fail [9].

B. Asymptotically Lifshitz universal
horizon spacetimes

As the UV Lifshitz nature of Hořava-Lifshitz gravity
implies arbitrarily fast high-energy modes in the aether
frame, one might expect black hole solutions to be
impossible. However, there exist solutions that do indeed
possess trapping horizons for even these ultrahigh-energy
modes [28], and some of these solutions are asymptotically
Lifshitz1 [13]. These solutions are static with a timelike
Killing field χ and either planar or spherical symmetry. At
some radius in the bulk the solution is such that u · χ ¼ 0,
which implies that the Killing vector is tangent to a constant
T hypersurface. Since even ultrahigh-energy modes propa-
gate forward in T, at this radius a trapping surface occurs
where all excitations propagate toward smaller r. This
surface is called the universal horizon and can be shown to
obey a variant of the first law of black hole thermodynamics
in both the asymptotically flat and Lifshitz cases, radiate
thermally, etc.
For our purposes the asymptotically Lifshitz solutions to

Hořava-Lifshitz gravity are most relevant. Spacetimes with
z ¼ 2 asymptotics and planar universal horizons have been
found numerically, with corresponding evidence that there
exists the usual law of black hole thermodynamics [13].
Our goal is to extend the prior numerical z ¼ 2 work to
higher z.

C. Procedure for numerically generating solutions

We obtain z ≥ 2 asymptotically Lifshitz spacetimes by
following a procedure very much like that in [13], which we
briefly review here. We first assume planar symmetry and
write the metric in Eddington-Finkelstein style in terms of
functions of the radial coordinate r:

ds2 ¼ −eðrÞdv2 þ 2fðrÞdvdrþ r2dy2: ð16Þ

The Killing vector χμ ¼ ∂v is the time translation Killing
vector associated with staticity, and ∂y with translational
symmetry in the transverse coordinate, y. The metric has
two degrees of freedom, eðrÞ and fðrÞ, to be solved for.

1In fact, if a cosmological constant is present, Lifshitz
solutions are the generic solutions with planar symmetry as
asymptotically AdS solutions exist only for the special case
c14 ¼ 0 [26].
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The aether itself has one degree of freedom under this
symmetry, that of its “tilt” in the radial direction. In order to
move from the covariant equations of motion to the
coordinate representation and capture this degree of free-
dom it is useful to introduce the unit one-form sμ,
orthogonal to u and the transverse direction, such that sμ

points in the direction of radial infinity. We can then relate
χ, uμ, and sμ via the coordinate specific functions

uμ ¼ ðu · χÞdvþ fðrÞ
ðu · χÞ − ðs · χÞ dr; ð17Þ

eðrÞ ¼ ðu · χÞ2 − ðs · χÞ2; ð18Þ

XðrÞ ¼ ðs · χÞ − ðu · χÞ; ð19Þ

where the top equation is the decomposition of the aether
one-form in these coordinates, the second equation comes
from the unit norm constraint, and the last equation is a
choice of a third function XðrÞ that captures the aether tilt in
an algebraically convenient manner. Given these relations
and the three functions eðrÞ, fðrÞ, and XðrÞ one can
explicitly rewrite the covariant action and equations of
motion in terms of them, as in Eq. (12) of [13].
Furthermore, by use of XðrÞ as defined above, the equation
of motion for fðrÞ becomes algebraic, so fðrÞ can be
solved for substituted back into the equations for eðrÞ and
XðrÞ. This leaves two second-order differential equations
for e00ðrÞ, and X00ðrÞ that must be numerically solved. The
form of the equations is long and not very enlightening, so
we forgo them here and instead place them in Supplemental
Material [29].
These two equations have singularities at a particular value

of r, at which there exists a trapping surface for the additional
spin zero modewhich propagates in Hořava-Lifshitz gravity.
This spin zero mode propagates along geodesics of an

effective metric gð0Þμν ¼ gμν − ðs20 − 1Þuμuν, where s20 is the
square of the speed of the spin zero mode. Therefore a
requirement that s20 ¼ 1 will colocate the spin zero and
Killing horizons. Since the action is invariant under a
disformal redefinition of the field [30], which only modifies
the values of the ci coefficients, s20 can be adjusted without
changing the underlying solution space (other solutions,with
s20 ≠ 1, can then be found afterward by performing the
inverse disformal transform). We will implicitly make this
redefinition and set s20 ¼ 1 to simplify calculations.
Doing so fixes the coefficient c13 via

s20 ¼ 1 ¼ 4z
ð1 − c13Þðnsðz − 1Þ − 2ðz − 1ÞÞðnsðzþ 1Þ − 4Þ ;

ð20Þ

where z is the dynamical exponent and ns is an integer
which encodes the order at which s · χ for the spacetime

diverges from that for global Lifshitz [13]. Additionally,
asymptotically Lifshitz behavior with analytic falloffs is
also a solution to the Hořava-Lifshitz gravity field equa-
tions only if c2 satisfies the constraint [13]

c13 þ c2
1 − c13

¼ 4ðz − 1Þ
nsðns − 2Þðzþ 1Þ2 ð21Þ

and c14 satisfies

c14 ¼
z − 1

z
: ð22Þ

In summary, having set l ¼ 1 and s20 ¼ 1, the choice of z
and ns then fixes the coefficients c2, c13, and c14 in terms of
z and the integer ns.
Regularity at the spin-0 horizon reduces the parameter

space further beyond just fixing the ci coefficients.
Requiring that e00ðrÞ and X00ðrÞ are regular at r0, the spin
zero horizon radius once s20 ¼ 1 has been set, establishes a
further equation that relates eðr0Þ, e0ðr0Þ, Xðr0Þ, and X0ðr0Þ
to each other and to r0, z, and ns. In addition to this
constraint we have the requirement that eðr0Þ ¼ 0, since the
spin zero horizon coincides with the Killing horizon, and
freedom to set Xðr0Þ to an arbitrary value as this corre-
sponds to an overall normalization of χ that we can fix after
the solution is found. Therefore the naive four-dimensional
initial value parameter space is actually one dimensional. In
practice, we choose Xðr0Þ and ns ¼ 4, and then for each
combination of r0 and z of interest, we numerically search
the parameter space of X0ðr0Þ imposing regular spin zero
horizons to find the unique spacetime which asymptotically
approaches global Lifshitz.
In order to search this parameter space we employ an

iterative procedure, essentially the shooting method with
initial data at the spin zero horizon r0. We begin by
expanding the expressions for eðrÞ and XðrÞ around r0
out to fourth order in (r − r0). By substituting each
coefficient into the next-order terms we are able to express
all higher derivatives in terms of Xðr0Þ, X0ðr0Þ, z, r0, and
ns. With these, we are able to choose Xðr0Þ and evaluate
eðr0 þ δrÞ and Xðr0 þ δrÞ (where δr ¼ 10−5r0) analyti-
cally to generate initial data slightly away from the singular
point of the equations. We then evolve e and X numerically
outward, until the evolution breaks down (at some

rbreak > r0). We repeat this for various values of X0ðr0Þ
Xðr0Þ until

we find the value for which rbreak > 103r0. This is a
spacetime which, to an extremely high degree of precision,
is asymptotically Lifshitz [we note here that this rbreak
occurs far earlier (around 1–2 orders of magnitude larger
than r0 for our z ¼ 12 and z ¼ 16 solutions)], because as
we raise z, the sensitivity of the equations of motion to near
horizon fluctuations rises dramatically. At this point, we
use the same procedure to evolve the solution inward to the
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radial location (rUH) of the universal horizon (the outermost
point at which u · χ ¼ 0).
We then perform an overall normalization on the values

of e and X, which is done by requiring that asymptotically

lim
r→∞

eðrÞ
r2z

¼ 1; ð23Þ

lim
r→∞

fðrÞ
rz−1

¼ 1; ð24Þ

lim
r→∞

u · χ
rz

¼ −1: ð25Þ

The above procedure generates the unique asymptotically
Lifshitz universal horizon spacetime for some choice of r0.
We then vary r0 to generate a family of solutions with
different values of the universal horizon radius. These
characterize the complete behavior of the family of asymp-
totically Lifshitz universal horizon spacetimes for arbitrary
horizon radius and z.

IV. ENERGY-ENTROPY RELATION FOR
ARBITRARY z

A. Procedure

For each solution, we fit the asymptotic data with the
asymptotic power law expansion in [13] for asymptotically
Lifshitz spacetimes. We use this fit to calculate the leading-
order deviation of u · χ from its global Lifshitz behavior
near asymptotic infinity. From the deviation we can read off
a length scale analogous to the Schwarzschild radius rs,
which appears in the asymptotic expansion. rs is related to
the mass per unit transverse length (since these are planar
black hole solutions) of the black hole via [13]

M ¼ ðzþ 1Þrs
8πGl2

: ð26Þ

Since we have set l ¼ 1 we can therefore state that for our
solutions

M ¼ ðzþ 1Þrs
8πG

: ð27Þ

In [31] the temperature dependence for universal horizons
was determined as

T ¼ ða · χÞUH
4π

: ð28Þ

Finally, we will assume that the entropy of the universal
horizon (again per unit transverse length) is given by

S ¼ rUH
4G

: ð29Þ

Given these results, we can calculate the relation between
M, T, and S for all z from our solutions and determine the
energy-entropy relation.

B. Results

We first show that, as one would expect for a first law of
black hole mechanics, the relationship between rs and
rUH × a · χUH is exactly linear, i.e., there exists a Smarr
formula. Here the subscript UH means to evaluate at the
universal horizon. We plot rUH × a · χUH versus rs for five
choices of r0 and for all values of z from 2 to 8 in Fig. 1.
The z ¼ 2 relation is equivalent to that in [13] while new
results are for z > 2. For each value of z it is hence clear
that there exists a first law of the form rs ∝ ða · χÞδrUH and
that the constant of proportionality varies with z.
We now turn to the thermodynamical relationship based

on a first law. We expect a factor of (zþ 1) in this
proportionality due to the dependence of mass per length
on rs in Eq. (27). Additional z dependence thus comes from
the dynamics of Hořava-Lifshitz gravity itself. This
dependence can be determined by fitting the z dependence
of the ratio of rs and rUH × ða · χÞUH. As shown in Fig. 2,
this is extremely well approximated by 1

ðzþ1Þðzþ2Þ.
Using Eqs. (27)–(29) we therefore see that to leading

order

rs
rUHða · χÞUH

¼ 1

ðzþ 1Þðzþ 2Þ ; ð30Þ

ðzþ 1Þrs
8πG

¼ 2

ðzþ 2Þ
ða · χÞUH

4π

rUH
4G

; ð31Þ

M ¼ 2

zþ 2
TS; ð32Þ

which is the main result of this work as this matches the
energy-entropy relation found in [14] for Lifshitz field
theories.
There is a small deviation from this fit (plotted in Fig. 3).

This deviation is not random and grows as z approaches

FIG. 1. Lines show the linear fit to the obtained values of rs
plotted against the universal horizon radius multiplied by a · χ at
the universal horizon, for each of five spacetimes found at each
z ¼ 2…8 and for z ¼ 12 and z ¼ 16.
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one, which is expected as the thermodynamic interpretation
of the first law fails for z ¼ 1. It is therefore likely not an
artifact of error in the numerically generated solutions. In
principle there are subdominant contributions to the
entropy for universal horizons, just as there are logarithmic
corrections to black hole entropy in general relativity [32].

These corrections have, to our knowledge, not yet been
calculated, although theoretically they may be able to via
the Lifshitz extension of the Cardy formula [33,34] applied
to universal horizons, just as the Cardy formula can be used
to find the logarithmic corrections at Killing horizons. We
leave finding the explanation of the deviation in terms of
subdominant corrections or other physics for future work.

V. CONCLUSION

Our results establish an energy-entropy relationship for
universal horizons in 2þ 1 asymptotically Lifshitz space-
time of the form

E ¼ 2

zþ 2
TS; ð33Þ

which is in agreement with that expected for Lifshitz
quantum field theories in two dimensions. This extends
previous results for z ¼ 2, concretely indicates there exists
a thermodynamics for universal horizons with these asymp-
totics for any z, and provides evidence that the holographic
dual is a Lifshitz field theory with matching dynamical
exponent z. While similar results have been found to hold
for other relativistic gravitational theories, problems with
relativistic bulk gravitational theories as holographic duals
to Lifshitz field theories have been shown to exist
(cf. [8,27]). Our result provides further evidence that the
most natural dual of a Lifshitz field theory is Hořava-
Lifshitz gravity and that the bulk solutions appropriate for
duals to thermal states are those with universal horizons at
the corresponding temperature.
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