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We study the T-dual completion of the four-dimensional N ¼ 1 type II effective potentials in the
presence of (non)geometric fluxes. First, we invoke a cohomology version of the T-dual transformations
among the various moduli, axions, and fluxes appearing in the type IIA and type IIB effective
supergravities. This leads to some useful observations about a significant mixing of the standard
NS-NS fluxes with the (non)geometric fluxes on the mirror side. Further, using our T-duality rules,
we establish an explicit mapping among the F terms,D terms, tadpole conditions, and Bianchi identities of
the two theories. Second, we propose what we call a set of “axionic flux polynomials,” which depend on all
of the axionic moduli and the fluxes. This subsequently helps to present the two scalar potentials in a
concise and manifestly T-dual form, which can be directly utilized for various phenomenological purposes,
as we illustrate in a couple of examples.
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I. INTRODUCTION

The study of four-dimensional (4D) effective potentials
arising from type II flux compactifications has been one
of the most active research areas and it has received a
tremendous amount of attention for more than a decade,
especially in the context ofmoduli stabilization [1–7]. In this
regard, nongeometric flux compactification has emerged as
an interesting playground for model builders [8–22]. The
existence of nongeometric fluxes is rooted in a successive
application of T duality on the three-form H flux of the
type II supergravities, where a chain with geometric and
nongeometric fluxes appears in the following manner [23]:

Hijk → ωij
k → Qi

jk → Rijk: ð1:1Þ

In addition, S-duality invariance of the type IIB superstring
compactifications requires an additional flux, the so-calledP
flux, which is S dual to the nongeometric Q flux [24–29].
Generically, such fluxes can appear as parameters in the four-
dimensional effective theories, and subsequently can help in
developing a suitable scalar potential for the various moduli
and the axions. A consistent incorporation of various such
fluxes makes the compactification background richer and
more flexible for model building. In this regard, continuous
progress has beenmade regarding various phenomenological

aspects, such asmoduli stabilization [9,22,30–33], construct-
ing de Sitter vacua [10,11,16,17,19,34], and the realization
of the minimal aspects of inflationary cosmology
[18,20,35,36]. Moreover, interesting connections among
the toolkits of superstring flux compactifications, gauged
supergravities, and double field theory (DFT) via nongeo-
metric fluxes have provided a platform for approaching
phenomenology-based goals from these three directions
[8,14,15,23,30,37–48].
In the conventional approach of studying four-dimensional

type II effective theories in a nongeometric flux compacti-
fication framework, most studies have centered around
toroidal examples, in particular, with a T6=ðZ2 × Z2Þ ori-
entifold. A simple justification for this lies in the relatively
simpler structure needed to perform explicit computations,
which have led toroidal setups to serve as promising toolkits
in studying concrete examples. However, some interesting
recent studies in Refs. [20,32,34,34,36,49,50] regarding
formal developments as well as applications towards moduli
stabilization, searching de Sitter vacua, and building infla-
tionary models have increased the interest in setups beyond
toroidal examples, e.g., in compactifications using Calabi-
Yau (CY) threefolds. As the explicit form of the metric for a
CY threefold is not known, when studying the ten-
dimensional origin of the 4D effective scalar potential one
should represent it in a framework where one can bypass the
need to know the Calabi-Yau metric. In this regard, the close
connections between the symplectic geometry and effective
potentials of type II supergravities [51–53] are crucial. For
example, in the context of type IIBorientifolds in thepresence
of the standard NS-NS three-form flux (H3) and Ramond-
Ramond (RR) three-form flux (F3), the two scalar
potentials—one arising from the F-term contributions and
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the other from the dimensional reduction of the ten-
dimensional kinetic pieces—can be matched via merely
using the period matrices and without the need of knowing
the CY metric [53,54]. Similarly, an extensive study of the
effective actions in the symplectic formulation was done for
both the type IIA and type IIB flux compactifications in the
presence of standard fluxes using Calabi-Yau threefolds and
their orientifolds [55–57].
In the context of nongeometric flux compactifications,

there has been great effort in studying the 4D effective
potentials derived from the Kähler and super potentials
[9,16–19,58–61], while their ten-dimensional origin was
later explored via DFT [43,62,63] and in supergravity
theories [44–46,58,59,61,64–66]. In this regard, the sym-
plectic approach of Refs. [53,54] for the standard type IIB
flux compactification with the H3=F3 fluxes was recently
generalized by taking several iterative steps, i.e., by
including the nongeometric Q flux [67] and subsequently
providing its S-dual completion by adding the nongeo-
metric P flux [68]. In the meantime, a very robust analysis
was performed by considering the DFT reduction on the
CY threefolds, and subsequently the genericN ¼ 2 results
were used to derive the N ¼ 1 type IIB effective potential
with nongeometric fluxes [63]. An explicit connection
between this DFT reduction formulation and the direct
symplectic approaches of computing the scalar potential
using the superpotential was presented in Ref. [67] for
type IIB and in Ref. [69] for type IIA nongeometric
scenarios.
Motivation and goals—The crucial importance of the

nongeometric flux compactification scenarios can be illus-
trated by the fact that, generically speaking, one can
stabilize all moduli by the tree-level effects; for example,
this also includes the Kähler moduli in the type IIB
framework which, in conventional flux compactifications,
are protected by the so-called “no-scale structure.”
However, the complexity of introducing many flux param-
eters not only facilitates the possibility of obtaining easier
samplings to fit the values, but also backreacts on the
overall strategy itself in the sense that it creates some
inevitable challenges, which can sometimes make the
situation even worse. For example, the four-dimensional
scalar potentials realized in concrete models, such as those
obtained using the type IIA/IIB setups with T6=ðZ2 × Z2Þ
toroidal orientifolds, are very often so huge that it becomes
difficult to analytically solve the extremization conditions,
and one has to either look for a simplified ansatz by
switching off certain flux components at a time, or opt for
some highly involved numerical analysis [16,18,19,24–26].
In our opinion, this obstacle can be overcome if one can
find some concise formulation of the scalar potential.
Usually the convention is to start with a flux superpotential
with several terms, and so it is natural to anticipate that the
numerical computation will result in a complicated scalar
potential with no guaranteed hierarchy among the various

terms, and thus it would be hard to do anything analytically
at that level. Along these lines, we aim to provide a concise
and concrete formulation of the scalar potentials of the two
theories with a sense of distinctness between the axionic
and saxionic sectors, along with a manifestation of the T
duality between them.1 The details of our goals are as
follows:
(1) The T-dual completions of type II effective theories

obtainedby including the (non)geometric fluxeswere
studied in the toroidal context in Refs. [10,11,30,
71–73]; however, a concrete connection between the
(non)geometric ingredients of the two theories is still
missing in the beyond-toroidal case. Although a
couple of interesting efforts have been initiated along
these lines [57,74], albeit without a full understand-
ing of the T duality at the level of NS-NS non-
geometric flux components and the two scalar
potentials; we attempt to fill this gap.

(2) We present a cohomology version of the T-duality
rules between the type IIA and type IIB theories,
which subsequently enables us to read off the T-dual
ingredients of one theory from those of the other and
vice-versa.. This includes fluxes, moduli, axions,
F=D terms, tadpole cancellation conditions, and the
NS-NS Bianchi identities.

(3) To extend out understanding of the T-dual mapping
from the level of the flux superpotential andD terms
to the level of the total scalar potential, we invoke
some interesting flux combinations with axions,
which we call “axionic flux polynomials,” which
are useful for writing down the full scalar potential in
a few lines! Recalling the difficulty in moduli
stabilization and subsequent phenomenology given
that the toroidal model has around 2000 terms, it is
remarkable that the form of the generic scalar
potential for the two theories can be so compact.

(4) With the above step, we present the generic formu-
lation of the type IIA and type IIB scalar potentials,
which can be explicitly written for a particular
compactification by merely knowing (some of) the
topological data (such as Hodge numbers and
intersection numbers) of the compactifying (CY)
threefolds and their mirrors.

(5) We collect the T-duality rules for the fluxes, moduli,
scalar potentials, and Bianchi identities in a concise
dictionary in the form of six tables, which present a
one-to-one mapping between the various ingredients
of the type IIA and type IIB theories.

The article is organized as follows. In Sec. II we provide
the basic ingredients for the nongeometric type II flux

1In this article we consider type II compactifications using
nonrigid Calabi-Yau threefolds. The study of scalar potentials
arising in rigid Calabi-Yau compactifications can be found in
Ref. [70].
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compactifications in some detail. Section III is devoted to
invoking the cohomology version of the T-duality rules and
checking the consistency of the F=D terms, tadpoles
conditions, and Bianchi identities. In Sec. IV we present
axionic flux polynomials and a concise form of the scalar
potentials for the two theories, which are manifestly T dual
to each other. Section V presents the illustration of the
scalar potential formulation for two particular examples
using toroidal orientifolds, which subsequently also
ensures the T-duality checks. Section VI includes a
summary and outlook. In the Appendix we provide a T-
dual dictionary in the form of six tables, namely,
Tables VII–XII, which can be used to read off the relevant
T-dual details of the two type II theories.

II. NONGEOMETRIC FLUX
COMPACTIFICATIONS: PRELIMINARIES

In this section we review the relevant pieces of infor-
mation regarding the type IIA and type IIB orientifold
setups with the presence of (non)geometric fluxes, in
addition to the usual NS-NS and RR fluxes. In this regard,
we also revisit several standard techniques for setting up a
consistent notation in order to fix any possible conflicts in
conventions, signs, or factors.
Considering the bosonic sector of N ¼ 1 supergravity

theory with one gravity multiplet, a set of complex scalars
φA, and a set of vectors Aα, the effective action can be given
as [55]

Sð4Þ ¼−
Z
M4

�
−
1

2
R�1þKAB̄dφ

A ∧ �dφ̄B̄þV �1
�

þ1

2
ðRefgÞαβFα ∧ �Fβþ1

2
ðImfgÞαβFα ∧Fβ; ð2:1Þ

where � is the four-dimensional Hodge star and Fα ¼ dAα.
There are three main ingredients—namely, the Kähler
potential (K), the superpotential (W), and the holomorphic
gauge kinetic function (fg)—for determining the four-
dimensional scalar potential (V) appearing in the above
generic action. In fact, the total scalar potential can be simply
expressed as a sum of F-term and D-term contributions as

V ≡ VF þ VD; ð2:2Þ

where

VF ¼ eKðKAB̄DAWD̄B̄W̄ − 3jWj2Þ;

VD ¼ 1

2
ðRefgÞαβDαDβ:

Note that the sum in the pieceVF is over “all” of the moduli,
the covariant derivative is defined through the relation
DAW ¼ dAW þW∂AK, and Dα is the D term for the
Uð1Þ gauge group corresponding to Aα,

Dα ¼ ð∂AKÞðT αÞABφ
B þ ζα; ð2:3Þ

where T α is the generator of the gauge group and ζα denotes
the Fayet-Iliopoulos term. Now we come to the two specific
N ¼ 1 supergravities, namely, type IIA and type IIB,
including various fluxes.

A. Nongeometric type IIA setup

We consider type IIA superstring theory compactified on
an orientifold of a Calabi-Yau threefold X3. The orientifold
is constructed via modding out the CY with a discrete
symmetry O which includes the world-sheet parity Ωp

combined with the space-time fermion number in the left-
moving sector ð−1ÞFL. In addition, O can act nontrivially
on the Calabi-Yau manifold so that altogether one has

O ¼ Ωpð−1ÞFLσ; ð2:4Þ
where σ is an involutive symmetry (i.e., σ2 ¼ 1) of the
internal CY and acts trivially on the four flat dimensions.
The massless states in the four-dimensional effective theory
are in one-to-one correspondence with various involutively
even/odd harmonic forms, and hence they generate the
equivariant cohomology groups Hp;q

� ðX3Þ. To begin with,
following the conventions of [55] we consider the repre-
sentations for the various involutively even and odd
harmonic forms as given in Table I. Here the dimension-
alities of the bases μα and μ̃α are counted by the Hodge

number hð1;1Þþ ðX3Þ, while those of the bases νa and ν̃a are
counted by hð1;1Þ− ðX3Þ. Moreover, the indices k̂ and λ
involved in the even/odd three-forms are such that sum-
ming over the same gives the total number of real harmonic
three-forms, which is 2ðh2;1ðX3Þ þ 1Þ.
The various field ingredients can be expanded in

appropriate bases of the equivariant cohomologies. In order
to preserve N ¼ 1 supersymmetry, one needs the involu-
tion σ to be antiholomorphic, isometric, and acting on the
Kähler form J,

σ�ðJÞ ¼ −J; ð2:5Þ
which generically results in the presence of O6 planes.
Given that the Kähler form J and the NS-NS two-form
potential B2 are odd under the involution, the same can be
expanded in the odd two-form basis νa as

J ¼ taνa; B2 ¼ −baνa; ð2:6Þ
where ta denotes the string-frame two-cycle volume,
while ba denotes axionic moduli. This leads to the

TABLE I. Representation of various forms and their bases.

Cohomology group Hð1;1Þ
þ Hð1;1Þ

− Hð2;2Þ
þ Hð2;2Þ

− Hð3Þ
þ Hð3Þ

−

Basis μα νa ν̃a μ̃α ðαk̂; βλÞ ðαλ; βk̂Þ
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following complexified Kähler class Jc defining the chiral
coordinates Ta:

Jc ¼ B2 þ iJ ¼ −Taνa; where Ta ¼ ba − ita: ð2:7Þ
Similarly, the nowhere-vanishing holomorphic three-form
(Ω3) of the Calabi Yau threefold can be expanded in the
three-form basis using a prepotential GðqÞ of the quaternion
sector in the N ¼ 2 theory as follows:

Ω3 ¼ ZKαK − GðqÞ
K βK: ð2:8Þ

Now, the compatibility of the orientifold involution σ
with the Calabi-Yau condition ðJ ∧ J ∧ JÞ ∝ ðΩ3 ∧ Ω̄3Þ
demands the following condition:

σ�ðΩ3Þ¼e2iθΩ̄3 ⇒ Imðe−iθZKÞ¼0; Reðe−iθGðqÞ
K Þ¼0:

ð2:9Þ

In addition, note that only one of these equations is
relevant due to the scale invariance of Ω3 which is defined
only up to a complex rescaling, and here we simply set θ in
Eq. (2.9) to zero, which leads to σ�ðΩ3Þ ¼ Ω̄3 and
subsequently the following relations:

ImZk̂ ¼ 0; ReGðqÞ
k̂

¼ 0; ReZλ ¼ 0; ImGðqÞ
λ ¼ 0:

ð2:10Þ

1. Kähler potential

The Kähler potential consists of two pieces and can be
written as [55]

KIIA ≡ KðkÞ þ KðqÞ: ð2:11Þ
Let us first consider the KðkÞ part which encodes the
information about the moduli space of the Kähler moduli,
and can be computed from a prepotential of the following
type [75,76]:

GðkÞ ¼ −
κabcTaTbTc

6T0
þ 1

2
pabTaTb þ paTaT0

−
i
2
p0ðT0Þ2 þ � � � ; ð2:12Þ

where we have ignored the nonperturbative effects by
assuming the large-volume limit. Here we have introduced
T0 ¼ 1 as the parameter analogous to the complex structure
homogeneous parameter on the mirror side. In addition,
κabc denotes the classical triple intersection number deter-
mining the volume of the Calabi-Yau threefold in terms of
the two-cycle volume as V ¼ 1

6
κabctatbtc, while the pieces

with pab, pa, and p0 correspond to the curvature corrections
arising from different orders in the α0 series. Although their
origin from the ten-dimensional perspective is yet to be

understood, the mirror symmetry arguments suggest that
the three quantities pab, pa, and p0 are real numbers and
can be defined as [77,78]

pab ¼
1

2

Z
CY

D̂a ∧ D̂b ∧ D̂b;

pa ¼
1

24

Z
CY

c2ðCYÞ ∧ D̂a;

p0 ¼ −
ζð3ÞχðCYÞ

8π3
; ð2:13Þ

where D̂a, c2ðCYÞ, and χðCYÞ denote the dual to the
divisor class, the second Chern class, and the Euler
characteristic of the Calabi-Yau threefold, respectively.
Subsequently, the Kähler potential is given as

KðkÞ≡− ln½−iðT̄AGðkÞ
A −TAḠðkÞ

A Þ� ¼− lnð8Vþ 2p0Þ

¼− ln

�
−
i
6
κabcðTa− T̄aÞðTb − T̄bÞðTc− T̄cÞþ 2p0

�
:

ð2:14Þ

The second piece KðqÞ encodes the information from the
moduli space of the complex structure deformations, and to
express it we start by defining a compensator field C,

C≡ e−φe
1
2
KðcsÞ

IIA −1
2
KðkÞ ¼ e−D4de

1
2
KðcsÞ

IIA ; ð2:15Þ
where the ten-dimensional dilaton φ is related to the four-
dimensional dilaton D4d as

eD4d ≡ ffiffiffi
8

p
eφþ1

2
Kk ¼ eφffiffiffiffiffiffiffiffiffiffiffiffiffi

V þ p0

4

p : ð2:16Þ

With our normalizations, the piece KðcsÞ
IIA can be determined

from the prepotential GðqÞ as

KðcsÞ
IIA ¼ − ln

�
−
i
8

Z
X3

Ω ∧ Ω̄
�

¼ − ln

�
1

4
ðReðZk̂ÞImðGðqÞ

k̂
Þ − ImðZλÞReðGðqÞ

λ ÞÞ
�
:

ð2:17Þ
Now, using the compensator C, we consider the following
expansion of three-form:

CΩ ¼ ReðCZ k̂Þαk̂ þ iImðCZλÞαλ − iImðCGðqÞ
k̂
Þβk̂

− ReðCGðqÞ
λ Þβλ; ð2:18Þ

where we have used the compensated orientifold con-
straints given in Eq. (2.10),

ImðCZ k̂Þ¼ReðCGðqÞ
k̂
Þ¼ReðCZλÞ¼ ImðCGðqÞ

λ Þ¼0: ð2:19Þ
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Using an expansion of the RR three-form that is even under
the involution,

C3 ¼ ξk̂αk̂ − ξλβ
λ; ð2:20Þ

we define a complexified three-form Ωc as

Ωc ¼ C3 þ iReðCΩÞ
¼ ðξk̂ þ iReðCZk̂ÞÞαk̂ − ðξλ þ iReðCGλÞÞβλ

≡ Nk̂αk̂ − Uλβ
λ: ð2:21Þ

Here the lowest components of the N ¼ 1 chiral super-
fields Nk̂ and Uλ are defined as follows:

Nk̂ ≡
Z
X3

Ωc ∧ βk̂ ¼ ξk̂ þ iReðCZk̂Þ;

Uλ ≡
Z
X3

Ωc ∧ αλ ¼ ξλ þ iReðCGðqÞ
λ Þ: ð2:22Þ

Now, using these pieces of information, the second part of
the Kähler potential, namely, the KðqÞ piece, can be
written as

KðqÞ≡−2 ln
�
1

4

Z
X3

ReðCΩÞ∧ �ReðCΩÞ
�
¼ 4D4d; ð2:23Þ

where in the second step we have utilized the following
identity:

Z
X3

ReðCΩÞ ∧ �ReðCΩÞ

¼ ReðCZk̂ÞImðCGðqÞ
k̂
Þ − ImðCZλÞReðCGðqÞ

λ Þ
¼ 4e−2D4d : ð2:24Þ

The above identity can be derived using the definitions of
the four-dimensional dilatonD4d through Eq. (2.16) and the

KðcsÞ
IIA given in Eq. (2.17). Moreover, the Kähler potential

part KðqÞ can be further rewritten with explicit dependence
on a set of special coordinates defined as

ReðCZ0Þ¼y0; ReðCZkÞ¼yk; ImðCZλÞ¼yλ: ð2:25Þ

For the explicit form of the prepotential GðqÞ for the
quaternion case we consider the generic expression

GðqÞðYÞ ¼ kABCYAYBYC

6Y0
þ 1

2
p̃ABYAYB þ p̃AYAY0

þ i
2
p̃0ðY0Þ2; ð2:26Þ

which subsequently gives the following derivatives:

∂Y0GðqÞ ¼ −
kABCYAYBYC

6ðY0Þ2 þ p̃AYA þ ip0Y0;

∂YAGðqÞ ¼ 1

2

kABCYBYC

Y0
þ p̃ABYB þ p̃AY0: ð2:27Þ

Now, considering the identification of coordinates Y0 ¼ y0

and YA ¼ fyk; iyλg, the prepotential GðqÞ takes the form

GðqÞðy0; yk; iyλÞ ¼ −
i

6y0
kλρκyλyρyκ þ

i
2y0

k̂λkmyλykym

þ ip̃kλykyλ þ ip̃λyλy0 þ
i
2
p̃0ðy0Þ2;

ð2:28Þ

and along with this we have the following expressions:

ImðCGðqÞ
0 Þ ¼ 1

6ðy0Þ2 kλρκy
λyρyκ −

1

2ðy0Þ2 k̂λkmy
λykym

þ p̃λyλ þ p̃0y0;

ImðCGðqÞ
k Þ ¼ 1

y0
k̂λkmyλym þ p̃kλyλ þ p̃ky0;

ReðCGðqÞ
λ Þ ¼ −

1

2y0
kλρκyρyκ þ

1

2y0
k̂λkmykym þ p̃kλyk

þ p̃λy0: ð2:29Þ

Further, we define a new set of special nonhomogeneous
coordinates z0 ¼ ðy0Þ−1, zk ¼ yk=y0 and zλ ¼ yλ=y0, and
subsequently the prepotential in Eq. (2.28) simplifies as

GðqÞðz0; zk; zλÞ ¼ ðz0Þ−2gðqÞðzk; zλÞ; ð2:30Þ

where gðqÞðzk; zλÞ in the special coordinates is given as

gðqÞðzk; zλÞ ¼ −
i
6
kλρκzλzρzκ þ

i
2
k̂λkmzλzkzm

þ ip̃kλzkzλ þ ipλzλ þ
i
2
p̃0: ð2:31Þ

In addition, one has the useful relations

ImðCGðqÞ
0 Þ ¼ ðz0Þ−1

�
1

6
kλρκzλzρzκ −

1

2
k̂λkmzλzkzm

þ p̃λzλ þ p̃0

�
;

ImðCGðqÞ
k Þ ¼ ðz0Þ−1ðk̂λkmzλzm þ p̃kλzλÞ;

ReðCGðqÞ
λ Þ ¼ ðz0Þ−1

�
−
1

2
kλρκzρzκ þ

1

2
k̂λkmzkzm

þ p̃kλzk þ p̃λ

�
; ð2:32Þ
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which give the following explicit forms for the chiral
variables:

Ta ¼ ba − ita;

N0 ¼ ξ0 þ iðz0Þ−1;
Nk ¼ ξk þ iðz0Þ−1zk;

Uλ ¼ ξλ − iðz0Þ−1
�
1

2
kλρκzρzκ −

1

2
k̂λkmzkzm − p̃kλzk − p̃λ

�
:

ð2:33Þ

Moreover, we find that KðqÞ simplifies to the following
form:

KðqÞ≡4D4d

¼−2 ln
�
1

4
ðReðCZk̂ÞImðCGðqÞ

k̂
Þ− ImðCZλÞReðCGðqÞ

λ ÞÞ
�

¼−4 lnðz0Þ−1−2 ln

�
1

6
kλρκzλzρzκþ

p̃0

4

�
; ð2:34Þ

where the various moduli z0, zk, zλ implicitly depend on the
variables N0, Nk, and Uλ. Subsequently, the full Kähler
potential can be collected as

KIIA ¼ − ln

�
4

3
κabctatbtc þ 2p0

�
− 4 lnðz0Þ−1

− 2 ln

�
1

6
kλρκzλzρzκ þ

p̃0

4

�
; ð2:35Þ

which can be thought of as a real function of the com-
plexified moduli Ta, N0, Nk, and Uλ. For the latter purpose,
we also define U ¼ 1

6
kλρκzλzρzκ for the complex structure

side, which is an analogous quantity to the overall volume
V of the CY threefold, and subsequently the Kähler
potential can also be written as

KIIA ¼ − ln ð8V þ 2p0Þ − 4 lnðz0Þ−1

− 2 ln

�
U þ p̃0

4

�
: ð2:36Þ

Here we would like to convey to the reader that the forms
and notations are being put in place while keeping the
mirror symmetry arguments in mind, which will be
illustrated/manifested after considering the type IIB side
later on.

2. Flux superpotential

To get the generalized version of Gukov-Vafa-Witten
flux superpotential [79], we need to define the twisted
differential operator [23],

D ¼ d − H ∧ : − w ⊲ : − Q ⊳ : − R • : ð2:37Þ

The actions of the operators ⊲, ⊳, and • on a p-form
changes it into a (pþ 1)-, (p − 1)-, or (p − 3)-form,
respectively, and the various flux actions can be given as [9]

H ∧ αk̂ ¼ Hk̂Φ6; H ∧ βλ ¼ −HλΦ6; H ∧ αλ ¼ 0 ¼ H ∧ βk̂;

w ⊲ αk̂ ¼ wak̂ν̃
a; w ⊲ βλ ¼ −wa

λν̃a; w ⊲ αλ ¼ ŵαλμ̃
α; w ⊲ βk̂ ¼ −ŵα

k̂μ̃α;

Q ⊳ αk̂ ¼ Qa
k̂νa; Q ⊳ βλ ¼ −Qaλνa; Q ⊳ αλ ¼ Q̂α

λμα; Q ⊳ βk̂ ¼ −Q̂αk̂μα;

R • αk̂ ¼ Rk̂1; R • βλ ¼ −Rλ1; R • αλ ¼ 0 ¼ R • βk̂;

H ∧ 1≡ H≡ −Hλαλ − Hk̂β
k̂;

w ⊲ νa ¼ wa
λαλ þ wak̂β

k̂; w ⊲ μα ¼ ŵα
k̂αk̂ þ ŵαλβ

λ;

Q ⊳ ν̃a ¼ −Qaλαλ − Qa
k̂β

k̂; Q ⊳ μ̃α ¼ −Q̂αk̂αk̂ − Q̂α
λβ

λ;

R •Φ6 ¼ Rλαλ þ Rk̂β
k̂: ð2:38Þ

Further, we take the following expansion for the multiform
RR fluxes FRR:

FRR ≡ F0 þ F2 þ F4 þ F6

¼ m01þmaνa þ eaν̃a þ e0Φ6: ð2:39Þ
Nowwe consider the Kähler form expansion Jc ¼ −Taνa to
obtain the following multiform ΠJc , which is analogous to
the period vectors on the mirror side:

ΠJc ¼

0
BBB@

1

−Taνa

ð1
2
κabcTaTb − pabTb − paÞν̃c

−ð 1
3!
κabcTaTbTc þ paTa þ ip0ÞΦ6

1
CCCA: ð2:40Þ

Note that usually in the absence of any α0 corrections and
the prepotential quantities such as pab, pa, and p0, we
usually denote ΠJc as
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ΠJc ≡eJc ¼1þJcþ
1

2
Jc∧ Jcþ

1

3!
Jc∧ Jc∧ Jc

¼1−Taνaþ
1

2
κabcTaTbν̃c−

1

3!
κabcTaTbTcΦ6; ð2:41Þ

which gets modified after including the α0 corrections.
Now, the generalized flux superpotential with contributions
from the NS-NS and RR fluxes can be given as [9,30,
55–57,74]

WIIA ≡WR
IIA þWNS

IIA

≔ −
1ffiffiffi
2

p
Z
X3

hFRR þ DΩc;ΠJci; ð2:42Þ

where we have introduced a normalization factor of
ffiffiffi
2

p
.

Here the antisymmetric multiforms are defined through the
following Mukai pairings:

hΓ;Δieven ¼ Γ0 ∧ Δ6 − Γ2 ∧ Δ4 þ Γ4 ∧ Δ2 − Γ6 ∧ Δ0;

hΓ;Δiodd ¼ −Γ1 ∧ Δ5 þ Γ3 ∧ Δ3 − Γ5 ∧ Δ1; ð2:43Þ

where Γ and Δ denote some even/odd multiforms. Now,
utilizing the flux actions of various NS-NS and RR fluxes
on various cohomology bases as given in Eqs. (2.38) and
(2.39), the superpotential takes the form

ffiffiffi
2

p
WIIA ¼

�
ē0 þ Taēa þ

1

2
κabcTaTbmc þ 1

6
κabcTaTbTcm0 − ip0m0

�

− N0

�
H̄0 þ Taw̄a0 þ

1

2
κabcTbTcQa

0 þ
1

6
κabcTaTbTcR0 − ip0R0

�

− Nk

�
H̄k þ Taw̄ak þ

1

2
κabcTbTcQa

k þ
1

6
κabcTaTbTcRk − ip0Rk

�

− Uλ

�
H̄λ þ Taw̄a

λ þ 1

2
κabcTbTcQaλ þ 1

6
κabcTaTbTcRλ − ip0Rλ

�
; ð2:44Þ

where we have introduced a shifted version of the flux
parameters to absorb the effects from pab and pa in the
following manner:

ē0¼ e0−pama; ēa¼ ea−pabmbþpam0;

H̄0¼H0−paQa
0; w̄a0¼wa0−pabQb

0þpaR0;

H̄k ¼Hk−paQa
k; w̄ak ¼wak−pabQb

kþpaRk;

H̄λ ¼Hλ−paQaλ; w̄a
λ ¼wa

λ−pabQbλþpaRλ: ð2:45Þ

Thus, we note that considering the α0-corrected prepotential
of the form (2.12) consistent with the mirror symmetry
arguments generically results in some rational shifts via pab
and pa for some of the conventional flux components. This
was already observed for the case without nongeometric
flux [75]. Usually, one does not care about the quantities
pab and pa as it is only p0 that appears in the Kähler
potential (and not pab and pa); however, in that case, while
studying phenomenology one should be careful with
strictly considering the integral fluxes and using mirror
symmetric arguments at the same time. In addition, we also
note that the analogous prepotential for the quaternionic
sector given in Eq. (2.30) leads to a slight modification in
the variable Uλ, as does its mirror-symmetric counterpart on
the type IIB side, as we will see later.
Utilizing the generic form of the Kähler potential (2.35)

and the superpotential (2.44), the F-term contribution to the

four-dimensional scalar potential VF
IIA can be computed

using Eq. (2.2), where the sum is taken over all of the Ta,
N0, Nk, and Uλ moduli.

3. Gauge kinetic couplings and the D-term effects

Let us quickly recall theD-term contribution to the scalar
potential by mostly following the ideas proposed in
Refs. [60,63,65]. Keeping in mind that four-dimensional
vectors can generically descend from the reduction on the
three-form potential C3 while the dual four-form gauge
fields can arise from the reduction on the five-form
potential C5, let us consider the following expansions of
C3 and C5:

C3 ¼ ξk̂αk̂ − ξλβ
λ þ Aαμα; C5 ¼ Aαμ̃

α: ð2:46Þ

Now considering a pair ðγα; γαÞ to ensure the 4D gauge
transformations of the quantities ðAα; AαÞ, we have the
following transformations:

Aα → Aα þ dγα; Aα → Aα þ dγα: ð2:47Þ

Subsequently, by considering the twisted differential D
given in Eq. (2.76) we find the following transformation of
the RR forms:
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CRR ≡ C1 þ C3 þ C5

¼ ξk̂αk̂ − ξλβ
λ þ Aαμα þ Aαμ̃

α

→ CRR þ Dðγαμα þ γαμ̃
αÞ

¼ ðξk̂ − γαŵα
k̂ þ γαQ̂

αk̂Þαk̂ − ðξλ þ γαŵαλ − γαQ̂
α
λÞβλ

þ Aαμα þ Aαμ̃
α; ð2:48Þ

where we have used the flux actions given in Eq. (2.38).
Now the transformation given in Eq. (2.48) shows that
the axions ξk̂ and ξλ are not invariant under the gauge
transformation, and this leads to the following shifts in the
N ¼ 1 coordinate Nk̂ and Uλ:

δNk̂ ¼−γαŵα
k̂þ γαQ̂

αk̂; δUλ ¼ γαŵαλ− γαQ̂
α
λ: ð2:49Þ

In particular, this implies that if we define two types of
fields

Ξk̂ ¼ eiN
k̂
; Ξλ ¼ eiUλ ; ð2:50Þ

then these fields Ξk̂ and Ξλ are electrically charged under

the gauge group Uð1Þα with charges ð−ŵα
k̂Þ and ðŵαλÞ,

respectively, and they are magnetically charged with

charges ðQ̂αk̂Þ and ð−Q̂α
λÞ, respectively. Now using the

type IIA Kähler potential given in Eq. (2.35) and the
variables in Eq. (2.33), we derive the following Kähler
derivatives:

KN0 ¼ i
2ðz0Þ−1

�
1−

k̂λkmzλzkzm

2ðUþ p̃0

4
Þ þ 3p̃0

4ðUþ p̃0

4
Þ

�
;

KNk ¼ ik̂λkmzλzm

2ðz0Þ−1ðUþ p̃0

4
Þ; KUλ

¼−
izλ

2ðz0Þ−1ðUþ p̃0

4
Þ: ð2:51Þ

Subsequently, one can compute the following twoD terms:

Dα ¼ −i½ð∂Nk̂KÞŵα
k̂ − ð∂Uλ

KÞŵαλ�;
Dα ¼ i½ð∂Nk̂KÞQ̂αk̂ − ð∂Uλ

KÞQ̂α
λ�: ð2:52Þ

In addition, the gauge kinetic functions follow from the

prepotential derivatives GðkÞ
αβ for the T moduli written out by

considering the even sector, which is written as

ðfeleg Þαβ ¼ −
i
2
ðκ̂aαβTa − pαβÞ; ð2:53Þ

where we also observe the presence of parameters
pαβ which, however, will not appear in the “real” part
and hence in the gauge kinetic couplings given as
Reðfeleg Þαβ ¼ − 1

2
κ̂aαβta. This leads to the following D-term

contributions to the four-dimensional scalar potential:

VD
IIA ¼ 1

2
Dα½Reðfeleg Þαβ�−1Dβ þ

1

2
Dα½Reðfmag

g Þαβ�−1Dβ;

ð2:54Þ

where the explicit expressions of the D terms given in
Eq. (2.52) are

Dα ¼
ðz0Þ−1eKq

2

2

��
U þ p̃0 −

1

2
k̂λkmzλzkzm

�
ŵα

0

þ k̂λkmzλzmŵα
k þ zλŵαλ

�
;

Dα ¼ −
ðz0Þ−1eKq

2

2

��
U þ p̃0 −

1

2
k̂λkmzλzkzm

�
Q̂α0

þ k̂λkmzλzmQ̂
αk þ zλQ̂α

λ

�
: ð2:55Þ

Here e
KðqÞ
2 ¼ðz0Þ2=ðUþ p̃0

4
Þ, and also note that Reðfeleg Þ > 0

and Reðfeleg Þ > 0 as these are related to moduli space
metrics which are positive definite, and can be shown to
be VD

IIA ≥ 0.

4. Tadpole cancellation conditions
and Bianchi identities

Generically, there are tadpole terms present due to the
presence of O6 planes, and these can be canceled by either
imposing a set of flux constraints or adding counterterms
that can arise from the presence of local sources such as
(stacks of) D6-branes. These effects equivalently provide
the following contributions in the effective potential to
compensate the tadpole terms [30]:

V tad
IIA ¼ 1

2
eKq

Z
X3

h½ImΩc�;DFRRi; ð2:56Þ

where the three-form DFRR can be expanded as [69]

DFRR ¼ −ðHλm0 − ωa
λma þQaλea − Rλe0Þαλ

− ðHk̂m0 − ωak̂m
a þQa

k̂ea − Rk̂e0Þβk̂: ð2:57Þ

Subsequently, Eq. (2.56) simplifies to the following form:

V tad
IIA ¼ 1

2
eKq ½ðImNk̂ÞðHk̂m0−ωak̂m

aþQa
k̂ea−Rk̂e0Þ

þðImUλÞðHλm0−ωa
λmaþQaλea−Rλe0Þ�: ð2:58Þ

In the four-dimensional type IIA effective theory, the
dynamics of various moduli is determined by the total
scalar potential given as a sum of the F-term and D-term
contributions,

V tot
IIA ¼ VF

IIA þ VD
IIA; ð2:59Þ
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where the various fluxes appearing in the scalar potential
must satisfy the full set of NS-NS Bianchi identities and RR
tadpole cancellation conditions.

B. Nongeometric type IIB setup

In this subsection we present the relevant details about
the nongeometric type IIB orientifold setup. The allowed
orientifold projections can be classified by their action O
on the Kähler form J and the holomorphic three-formΩ3 of
the Calabi-Yau metric, which are given explicitly as [56]

O¼
�Ωpσ ∶σ�ðJÞ¼ J; σ�ðΩ3Þ¼Ω3;

ð−ÞFLΩpσ ∶σ�ðJÞ¼ J; σ�ðΩ3Þ¼−Ω3:
ð2:60Þ

Note thatΩp is the world-sheet parity, FL is the left-moving
space-time fermion number, and σ is a holomorphic,
isometric involution. The first choice leads to an orientifold
with O5=O9 planes, whereas the second choice leads to
O3=O7 planes.
As in the type IIA case, we denote the bases of even/odd

two-forms as ðμα; νaÞ and four-forms as ðμ̃α; ν̃aÞ where
α ∈ h1;1þ ðX3Þ, a ∈ h1;1− ðX3Þ.2 However, for the type IIB
setups we denote the bases for the even/odd cohomologies
H3

�ðX3Þ of three-forms as symplectic pairs ðaK; bJÞ and
ðAΛ;BΔÞ, respectively, where we fix their normalization as

Z
X
aK ∧ bJ ¼ δK

J;
Z
X
AΛ ∧ BΔ ¼ δΛ

Δ: ð2:61Þ

Here, for the orientifold choice with O3=O7 planes
the indices are distributed in the even/odd sector as
K ∈ f1;…; h2;1þ ðX3Þg and Λ ∈ f0;…; h2;1− ðX3Þg, while
for O5=O9 planes one has K ∈ f0;…; h2;1þ ðX3Þg and
Λ ∈ f1;…; h2;1− ðX3Þg. In this article, we only focus on
the orientifold involutions leading to the O3=O7 planes.
The various field ingredients can be expanded in

appropriate bases of the equivariant cohomologies. For
example, the Kähler form J, the two-forms B2 and C2, and
the RR four-form C4 can be expanded as

J¼ tαμα; B2¼−baνa;

C2¼−caνa; C4¼ cαμ̃αþDα
2 ∧ μαþVK ∧aK−VK ∧bK:

ð2:62Þ

Note that tα are string-frame two-cycle volume moduli,
while ba, ca, and cα are various axions. Further, (VK , VK)
forms a dual pair of space-time one-forms and Dα

2 is a
space-time two-form dual to the scalar field cα. Also, since
σ� reflects the holomorphic three-formΩ3, we have h2;1− ðXÞ

number of complex structure moduli appearing as complex
scalars.

1. Kähler potential

The generic form of the type IIB Kähler potential can be
written as a sum of two pieces motivated from their
underlying N ¼ 2 special Kähler and quaternionic struc-
ture [56],

KIIB ¼ Kðc:s:Þ þ KðQÞ; ð2:63Þ

where the Kðc:s:Þ piece depends mainly on the complex
structure moduli, while the KðQÞ part depends on the
volume of the Calabi-Yau threefold and the dilaton. To
compute the Kðc:s:Þ piece, we consider the involutively odd
holomorphic three-form Ω3 ≡ XΛAΛ − FΛBΛ which can
be written using a prepotential of the following form
[77,86]:

F ðc:s:Þ ¼ −
lijkX iX jXk

6X0
þ 1

2
p̃ijX iX j þ p̃iX iX 0

−
i
2
p̃0ðX0Þ2 þ iðX0Þ2F inst:ðUiÞ; ð2:64Þ

where the lijk’s are the classical triple intersection numbers
on the mirror (Calabi-Yau) threefold and we have defined
the inhomogeneous coordinates (Ui) as Ui ¼ X i

X0 via further
setting X0 ¼ 1. Further, the quantities p̃ij, p̃i, and p̃0 are
real numbers, and moreover p̃0 is related to the perturbative
ðα0Þ3 corrections on the mirror type IIA side (as we have
argued before) and so is proportional to the Euler character-
istic of the mirror Calabi-Yau threefold. In general, fðUiÞ
has an infinite series of nonperturbative contributions
denoted as F inst:ðUiÞ; however, assuming the large com-
plex structure limit, we will ignore such corrections in the
current work. The derivatives of the prepotential needed to
explicitly determine the Kähler and the superpotential
terms are given as

F ðc:s:Þ
0 ¼ 1

6
lijkUiUjUk þ p̃iUi − ip̃0;

F ðc:s:Þ
i ¼ −

1

2
lijkUjUk þ p̃ijUiUj þ p̃i: ð2:65Þ

Subsequently, the components of the holomorphic three-
form Ω3 can be explicitly rewritten as period vectors in
terms of complex structure moduli Ui,

ΠΩ3
¼

0
BBB@

A0

UiAi

ð1
2
lijkUjUk − p̃ijUiUj − p̃iÞBi

−ð1
6
lijkUiUjUk þ p̃iUi − ip̃0ÞB0

1
CCCA: ð2:66Þ

2For an explicit construction of type IIB toroidal/CY orienti-
fold setups with h1;1− ðX3Þ ≠ 0, see Refs. [80–85].
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Now the complex-structure-moduli-dependent part of the
Kähler potential can be simply given as

Kðc:s:Þ≡− ln

�
−i

Z
X
ΠΩ3

∧ Π̄Ω3

�

¼− ln½−iðX̄ΛF ðc:s:Þ
Λ −XΛF̄ ðc:s:Þ

Λ Þ�

¼− ln
�
4

3
lijkuiujukþ2p̃0

�

¼− ln

�
−i

lijk
6
ðUi− ŪiÞðUj− ŪjÞðUk− ŪkÞþ2p̃0

�
;

ð2:67Þ
where we have used saxions/axions of the complex
structure moduli via defining Ui as Ui ¼ vi − iui. For
the Kähler potential piece KðQÞ which arises from the
quaternion sector, we consider the Kähler form expansion
J ¼ TAμA, where μA denotes the (1,1)-form before ori-
entifolding, and subsequently one can follow a similar
approach as was taken for the mirror type IIA case by
considering a prepotential of the following form [87]:

F ðqÞ ¼ lABC
TATBTC

6T0
þ 1

2
pABTATB þ pATAT0

þ 1

2
ip0ðT0Þ2; ð2:68Þ

where by assuming the large-volume limit we neglect the
nonperturbative effects from the world-sheet instanton
correction [88]. Now we define a multiform ρ using the
periods of the prepotential in the following manner:

ρ ¼ 1þ TAμA − F ðqÞ
A μ̃A þ ð2F ðqÞ − tAF ðqÞ

A ÞΦ6: ð2:69Þ

Now, unlike the type IIA case, one can use a compensator
field C ¼ e−ϕ which does not depend on the volume, and
by using the RR potential as CRR ¼ C0 þ C2 þ C4 we
consider a complex multiform of even degree defined
as [57]

Φeven
c ≡ eB2 ∧ Cð0Þ

RR þ iReðCρÞ
≡ S1 −Gaνa þ Tαμ̃

α; ð2:70Þ

where the explicit forms for the chiral coordinates in
Eq. (2.70) are given as

S¼Cð0Þ
0 þ ie−ϕ ¼ c0þ is;

Ga ¼ caþSba;

Tα ¼ cαþ l̂αabbacbþ
1

2
c0l̂αabbabb

− is

�
1

2
lαβγtβtγ −

1

2
l̂αabbabb−pαaba−pα

�
; ð2:71Þ

where we have rewritten the dilaton as e−ϕ ¼ s and
flαβγ; l̂αabg represents the set of triple intersection num-
bers which survive under the orientifold action [67]. It is
worth noting that there is a shift in the coordinates Tα due to
the presence of pαa and pα in the prepotential F ðqÞ, while
the other variables remain the same. Now the Kähler
potential can be computed in the following steps [87]:

KðQÞ ¼−2ln
�
i
Z
CY

hCρ;Cρ̄i
�

¼−2ln½jCj2ð2ðF ðqÞ−F̄ ðqÞÞ−ðF ðqÞ
α þF̄ ðqÞ

α ÞðTα−T̄αÞÞ�

¼−4lns−2ln

�
Vþp0

4

�
; ð2:72Þ

where the overall internal volume of the CY threefold is
written as V ¼ 1

6
lαβγtαtβtγ using the string-frame two-cycle

volume moduli. Further, the string-frame V can be iden-
tified with the Einstein-frame volume VE via VE ¼ s3=2V.
Note that this α0 correction in the Kähler potential has been
used to naturally realize the LARGE volume scenarios [2].
To summarize, the full type IIB Kähler potential can be
given by

KIIB ¼ − ln

�
4

3
lijkuiujuk þ 2p̃0

�
− 4 ln s

− 2 ln

�
1

6
lαβγtαtβtγ þ

p0

4

�
: ð2:73Þ

Further, in order to compute the Kähler metric and its
inverse for the scalar potential computations, one needs to
rewrite the dilaton (s), the two-cycle volume moduli (tα),
and the complex structure saxion moduli (ui) in terms of the
correct variables S, Tα, Ga, and Ui which in the string
frame are defined as

Ui¼vi− iui;

S¼c0þis;

Ga¼ðcaþc0baÞþ isba;

Tα¼ ĉα− is

�
1

2
lαβγtβtγ−

1

2
l̂αabbabb−pαaba−pα

�
; ð2:74Þ

where ĉα represents the axionic combination ĉα ¼
cα þ l̂αabbacb þ 1

2
c0l̂αabbabb.

2. Flux superpotential

It is important to note that in a given setup, all flux
components will not be generically allowed under the full
orientifold action O ¼ Ωpð−ÞFLσ. For example, only
the geometric flux ω and nongeometric flux R remain
invariant under Ωpð−ÞFL, while the standard fluxes ðF;HÞ
and nongeometric flux (Q) are anti-invariant [32,60].
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Therefore, under the full orientifold action, we can only
have the following flux components:

F3 ≡ ðFΛ; FΛÞ; H3 ≡ ðHΛ; HΛÞ;
ω≡ ðωa

Λ;ωaΛ; ω̂α
K; ω̂αKÞ;

Q≡ ðQaK;Qa
K; Q̂

αΛ; Q̂α
ΛÞ; R≡ ðRK; RKÞ: ð2:75Þ

In order to keep the type IIB case distinct from the type IIA
case, we define a new twisted differential D involving

the actions from all of the NS-NS (non)geometric fluxes
as [60]

D ¼ d −H ∧ : − ω ⊲ : −Q ⊳ : − R • : ð2:76Þ

The action of the operator⊲,⊳, and • on a p-form changes
it into a (pþ 1)-, (p − 1)-, or (p − 3)-form, respectively,
and we have the following flux actions [60]:

H ∧ AΛ ¼ −HΛΦ6; H ∧ BΛ ¼ −HΛΦ6;

H ∧ aK ¼ 0; H ∧ bK ¼ 0; H ∧ 1 ¼ H ¼ −HΛAΛ þHΛBΛ; ð2:77Þ

ω ⊲ AΛ ¼ −ωbΛν̃
a; ω ⊲ BΛ ¼ −ωb

Λν̃a; ω ⊲ νa ¼ ωa
ΛAΛ − ωaΛBΛ;

ω ⊲ aK ¼ −ω̂βKμ̃
α; ω ⊲ bK ¼ −ω̂β

Kμ̃α; ω ⊲ μα ¼ ω̂α
KaK − ω̂αKbK;

Q ⊳ AΛ ¼ −Q̂α
Λμβ; Q ⊳ BΛ ¼ −Q̂αΛμβ; Q ⊳ μ̃α ¼ −Q̂αΛAΛ þ Q̂α

ΛBΛ;

Q ⊳ aK ¼ −Qa
Kνb; Q ⊳ bK ¼ −QaKνb; Q ⊳ ν̃a ¼ −QaKaK þQa

KbK;

R •AΛ ¼ 0; R • BΛ ¼ 0; R • aK ¼ −RK1; R • bK ¼ −RK1;

R •Φ6 ¼ RKaK − RKbK:

Using the flux actions given in Eq. (2.77) for the NS-NS fluxes and the expansion of the RR flux F3 as
FRR ¼ −FΛAΛ þ FΛBΛ, one obtains the following generic form for the flux superpotential [24,26,30,32]:

WIIB ≡WIIB
R þWIIB

NS ¼ −
1ffiffiffi
2

p
Z
X3

½FRR þDΦeven
c � ∧ ΠΩ3

¼ 1ffiffiffi
2

p ðFΛ − SHΛ − GaωaΛ − TαQ̂
α
ΛÞXΛ −

1ffiffiffi
2

p ðFΛ − SHΛ − Gaωa
Λ − TαQ̂

αΛÞFΛ: ð2:78Þ

Subsequently, using Eq. (2.65) leads to the following explicit form of the type IIB generalized flux superpotential:

ffiffiffi
2

p
WIIB ¼

�
F̄0 þUiF̄i þ

1

2
lijkUiUjFk −

1

6
lijkUiUjUkF0 − ip̃0F0

�

− S

�
H̄0 þ UiH̄i þ

1

2
lijkUiUjHk −

1

6
lijkUiUjUkH0 − ip̃0H0

�

−Ga

�
ω̄a0 þUiω̄ai þ

1

2
lijkUiUjωa

k −
1

6
lijkUiUjUkωa

0 − ip̃0ωa
0

�

− Tα

�
¯̂Qα

0 þUi ¯̂Qα
i þ

1

2
lijkUiUjQ̂αk −

1

6
lijkUiUjUkQ̂α0 − ip̃0Q̂

α0

�
; ð2:79Þ
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where because of the α0 corrections on the mirror side, the
complex structure sector is modified to induce rational
shifts in the usual flux components, given as

F̄0¼F0− p̃iFi; F̄i¼Fi− p̃ijFj− p̃iF0;

H̄0¼H0− p̃iHi; H̄i¼Hi− p̃ijHi− p̃iH0;

ω̄a0¼ωa0− p̃iωa
i; ω̄ai¼ωai− p̃ijωa

j− p̃iωa
0;

¯̂Qα
0¼ Q̂α

0− p̃iQ̂
αi; ¯̂Qα

i¼ Q̂α
i− p̃ijQ̂

αj− p̃iQ̂
α0: ð2:80Þ

3. Gauge kinetic couplings and the D-term effects

In the presence of a nontrivial sector of even (2,1)
cohomology, i.e., for h2;1þ ðXÞ ≠ 0, there are D-term con-
tributions to the four-dimensional scalar potential.
Following the strategy of Ref. [60], the same can be
determined by considering the following gauge transfor-
mations of the RR potentials CRR ¼ C0 þ C2 þ C4:

CRR → CRR þDðγKaK − γKbKÞ
⊃ ðC0 þ RKγ

K − RKγKÞ − ðca þQa
Kγ

K −QaKγKÞνa
þ ðcα þ ω̂αKγ

K − ω̂α
KγKÞμ̃α: ð2:81Þ

These lead to the following flux-dependent shifts in the
variables S, Ga, and Tα induced by the respective shifts in
the axionic components c0, ca, and cα:

δS ¼ RKγ
K − RKγK; δGa ¼ Qa

Kγ
K −QaKγK;

δTα ¼ ω̂αKγ
K − ω̂α

KγK: ð2:82Þ

This leads to the following twoD terms being generated by
the gauge transformations:

DK ¼ i½RKð∂SKÞ þQa
Kð∂aKÞ þ ω̂αKð∂αKÞ�;

DK ¼ −i½RKð∂SKÞ þQaKð∂aKÞ þ ω̂α
Kð∂αKÞ�: ð2:83Þ

Now, using the Kähler potential in Eq. (2.73) and the
variables given in Eq. (2.74), the Kähler derivatives can be
given as

KS ¼
i
2s

�
1−

l̂αabtαbabb

2ðVþ p0

4
Þ þ 3p0

4ðVþ p0

4
Þ
�
¼−KS̄;

KGa ¼ il̂αabtαbb

2sðVþ p0

4
Þ¼−KḠa; KTα

¼−
itα

2sðVþ p0

4
Þ¼−KT̄α

;

ð2:84Þ

which gives the following two explicit D terms:

DK ¼ −
se

KðQÞ
2

2

�
RK

�
V þ p0 −

1

2
l̂αabtαbabb

�

þQa
Kl̂αactαbc − tαω̂αK

�
;

DK ¼ se
KðQÞ
2

2

�
RK

�
V þ p0 −

1

2
l̂αabtαbabb

�

þQaKl̂αactαbc − tαω̂α
K

�
: ð2:85Þ

Using these results in the D-term expression given in
Eq. (2.85) leads to the following contributions in the four-
dimensional scalar potential [9]:

VD
IIB¼

1

2
DJ½ReðfJKÞ�−1DKþ

1

2
DJ½ReðfJKÞ�−1DK: ð2:86Þ

Here the gauge kinetic couplings for the electric and
magnetic components can be computed from the orientifold
even sector of the holomorphic three-form. For that we
consider the holomorphic three-form of the N ¼ 2 theory,
and after the imposition of the orientifold involution it can
be split into the even/odd sectors,

Ω3 ¼ Ωodd
3 þ Ωeven

3

¼ XΛAΛ − FΛBΛ þ XKaK − FKbK; ð2:87Þ

which leads to the following electric gauge kinetic coupling
from the even sector [56]:

fJK ¼ −
i
2
F JKj

evaluated atXK¼0
: ð2:88Þ

For the case of compactifications using rigid Calabi Yau
threefold and the cases of frozen complex structure moduli,
the gauge coupling fKJ is just a constant [9], which
otherwise can generically depend on the complex structure
moduli Ui. Moreover, using mirror arguments and the
prepotential, one can show that

fJK ¼ −
i
2
ðl̂iJKUi − p̃JKÞ: ð2:89Þ

Here we recall that the index i runs in odd (2,1) cohomol-
ogy which counts the number of complex structure moduli
Ui, while the indices J and K run in the even (2,1)
cohomology. Given that the p̃JK’s are real quantities, they
will not appear in the real gauge kinetic couplings, which is
denoted as ReðfJKÞ ¼ − 1

2
l̂iJKui ¼ − 1

2
l̂JK , and similarly

for the magnetic couplings we have ReðfJKÞ ¼ − 1
2
l̂JK .

Also note that both of the gauge couplings are positive, and
this ensures the positive definiteness of the D-term con-
tribution to the scalar potential, VD

IIB ≥ 0.
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4. Tadpole cancellation conditions
and Bianchi identities

Generically, there are tadpole terms present due to the
presence of O3=O7 planes, and these can be canceled by
either imposing a set of flux constraints or adding the
counterterms that can arise from the presence of local
sources such as (stacks of) D3=D7-branes. These effects
equivalently provide the following contributions in the
effective potential:

V tad
IIB ¼ 1

2
eK

ðQÞ
Z
X3

h½ImΦeven
c �; DFRRi; ð2:90Þ

where the multiform DFRR can be expanded using the flux
actions in the generalized twisted differential operator,
given as [30,61,63,67,68]

DFRR ¼ ðFΛHΛ − FΛHΛÞΦ6 þ ðFΛωa
Λ − FΛωaΛÞν̃a

þ ðFΛQ̂
αΛ − FΛQ̂α

ΛÞμα:

In addition, using the definition of Φeven
c given in

Eq. (2.70), the tadpole term given in Eq. (2.90) simplifies
to the following form:

V tad
IIB ¼ 1

2
eK

ðQÞ ½ðFΛHΛ − FΛHΛÞ½ImS�
þ ðFΛωa

Λ − FΛωaΛÞ½ImGa�
þ ðFΛQ̂

αΛ − FΛQ̂α
ΛÞ½ImTα��: ð2:91Þ

The moduli dynamics of the 4D effective theory is
determined by the total scalar potential given as a sum
of F- and D-term contributions,

V tot
IIB ¼ VF

IIB þ VD
IIB; ð2:92Þ

where the various fluxes appearing in the scalar potential
must satisfy the full set of NS-NS Bianchi identities and RR
tadpole cancellation conditions.

III. ACTION OF THE T-DUALITY
TRANSFORMATIONS

In this section we invoke the T-duality rules in the
cohomology formulation by taking some iterative steps. We
know that in the fluxless case, the mirror symmetry is
present and hence type IIA and type IIB ingredients can be
mapped to each other. After including the fluxes, this T
duality is destroyed or restored if appropriate fluxes are
included. So our plan is to first look for the T-duality rules
among the various moduli and axions in the fluxless case,
and then look at the superpotentials and D terms to invoke
the mapping between the various components of the type
IIA and type IIB fluxes.
Looking at the two Kähler potentials given in Eqs. (2.35)

and (2.73), we observe that they are exchanged under a
combined action of the following set of transformations:

ðz0Þ−1 ↔ s; ta ↔ ui; zλ ↔ tα;

kλρμ ↔ lαβγ; k̂λmn ↔ l̂αab; κabc ↔ lijk; κ̂aαβ ↔ l̂iJK;

pab ↔ p̃ij; pa ↔ p̃i; p0 ↔ p̃0; p̃kλ ↔ paα; p̃λ ↔ pα: ð3:1Þ

In the above mapping, the quantities on the left side of the
equivalence belong to the type IIA theorywhile the respective
ones on the right side belong to the type IIB theory.Moreover,
it is easy to observe that the complexified variables of type IIA
given in Eq. (2.33) and those of type IIB in Eq. (2.74) are
exchanged with the mapping details given in Table II.

A. F-term contributions

Let us begin by summarizing the various flux compo-
nents that contribute to the effective four-dimensional
potential via the F-term contributions.

TABLE II. T-duality transformations for various type IIA and type IIB moduli.

IIA N0 Nk Uλ Ta 1
z0

zk zλ ba ta ξ0 ξk ξλ
IIB S Ga Tα Ui s ba tα vi ui c0 ca þ c0ba cα þ l̂αabcabb þ 1

2
c0l̂αabbabb

TABLE III. T-duality transformations among the NS-NS fluxes appearing in the F-term effects.

IIA H0 Hk Hλ wa0 wak wa
λ Qa

0 Qa
k Qaλ R0 Rk Rλ

IIB H0 ωa0 Q̂α
0

Hi ωai Q̂α
i Hi ωa

i Q̂αi −H0 −ωa
0 −Q̂α0
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Type IIA∶

RR flux≡ ðF6∶e0;F4∶ea;F2∶ma;F0∶m0Þ;
NS flux≡ ðH0;Hk;Hλ; wa0; wak; wa

λ; Qa
0;Qa

i;Qaλ; R0;Ri;RλÞ:
Type IIB∶

RR flux≡ ðF3∶F0; Fi; Fi; F0Þ;
NS flux≡ ðH0; Hi; Hi; H0; ωa0;ωai;ωa

i;ωa
0; Q̂α

0; Q̂
α
i; Q̂

α0; Q̂αiÞ: ð3:2Þ

Now it is interesting thing to observe that the explicit
expressions of the type IIA and type IIB superpotentials as
given in Eqs. (2.44) and (2.79), respectively, are exchanged
under a combined action of a set of T-duality trans-
formations for the fluxes given in Tables III and IV.

B. D-term contributions

In the string frame, the D terms in both the type IIA and
type IIB theories are as follows.

IIA∶

Dα ¼
ðz0Þ−1eKðqÞ

2

2

��
U þ p̃0 −

1

2
k̂λkmzλzkzm

�
ŵα

0

þ k̂λkmzλzmŵα
k þ zλŵαλ

�
;

Dα ¼ −
ðz0Þ−1eKðqÞ

2

2

��
U þ p̃0 −

1

2
k̂λkmzλzkzm

�
Q̂α0

þ k̂λkmzλzmQ̂
αk þ zλQ̂α

λ

�
:

IIB∶

DK ¼ −
se

KðQÞ
2

2

�
RK

�
V þ p0 −

1

2
l̂αabtαbabb

�

þQa
Kl̂αactαbc − tαω̂αK

�
;

DK ¼ se
KðQÞ
2

2

�
RK

�
V þ p0 −

1

2
l̂αabtαbabb

�

þQaKl̂αactαbc − tαω̂α
K

�
: ð3:3Þ

Recalling that p̃0 ↔ p0 and V ↔ U under the mirror
symmetry, and subsequently after using the T-duality

transformation listed for the moduli and the axions given
in Table II, we find the T-duality transformation of D-term
fluxes as presented in Table V.

C. Tadpole conditions

Now we compare the various tadpole terms generated in
the type IIA and type IIB theories, which can also be
compensated by appropriately adding the local effects from
various Dp-brane and Op planes. In particular, in this work
the tadpoles on the type IIA side can be compensated by the
D6=O6 effects, while the tadpoles on the type IIB side can
be compensated by D3=O3 and D7=O7 effects. These are
given as

V tad
IIA ¼ 1

2
eK

ðqÞ ½ðImNk̂ÞðHk̂m0 − ωak̂m
a þQa

k̂ea − Rk̂e0Þ
þ ðImUλÞðHλm0 − ωa

λma þQaλea − Rλe0Þ�;

Vtad
IIB ¼ 1

2
eK

ðQÞ ½ðFΛHΛ − FΛHΛÞ½ImS�
þ ðFΛωa

Λ − FΛωaΛÞImðGaÞ
þ ðFΛQ̂

αΛ − FΛQ̂α
ΛÞImðTαÞ�: ð3:4Þ

Now, given that KðqÞ ↔ KðQÞ, N0 ↔ S, Nk ↔ Ga, and
Uλ ↔ Tα under the explicit T-duality rules, it is simple to
observe that the type IIA and type IIB tadpole terms are
exchanged under the T-dual flux transformations given in
Tables III and IV.

D. Bianchi identities

Aswe have already established the exchange symmetry of
theF andD terms, we now check how ourT-duality rules are
applied to the flux constraints in the Bianchi identities of the
two sides. This is necessary to prove the claim for the
exchange symmetry between the actual effective potentials
of the two type II theories, in the sense that if some pieces are

TABLE IV. T-duality transformations among the RR-flux
components.

IIA e0 ea ma m0

IIB F0 Fi Fi −F0

TABLE V. T-duality transformations among the NS-NS fluxes
appearing in the D-term effects.

IIA Q̂α
λ ŵαλ Q̂αk ŵα

k Q̂α0 ŵα
0

IIB ω̂α
K ω̂αK −QaK −Qa

K −RK −RK
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killed by the Bianchi identities on one side then that should
also be the case on the mirror dual side.

1. Five classes of Bianchi identities for type IIA

Using the flux actions given in Eq. (2.38), the following
five classes of NS-NS Bianchi identities are obtained by
demanding the nilpotency of the twisted differential oper-
ator D as defined in Eq. (2.37) by imposing D2 ¼ 0 on the
various harmonic forms:

ðIÞ: Hλŵαλ ¼ Hk̂ŵα
k̂:

ðIIÞ: HλQ̂α
λ ¼ Hk̂Q̂

αk̂; wa
λŵαλ ¼ wak̂ŵα

k̂:

ðIIIÞ: Q̂α
λwa

λ ¼ wak̂Q̂
αk̂; Qa

k̂ŵα
k̂ ¼ Qaλŵαλ;

ŵαλQ̂
αk̂ ¼ Q̂α

λŵα
k̂; ŵαλQ̂

α
ρ ¼ Q̂α

λŵαρ;

ŵα
k̂Q̂αk̂0 ¼ Q̂αk̂ŵα

k̂0 ;

H½k̂Rk̂0� þQa
½k̂wak̂0� ¼ 0; H½λRρ� þQa½λwa

ρ� ¼ 0;

RλHk̂ −HλRk̂ þ wa
λQa

k̂ −Qaλwak̂ ¼ 0.

ðIVÞ: Rλŵαλ ¼ Rk̂ŵα
k̂; QaλQ̂α

λ ¼ Qa
k̂Q̂

αk̂:

ðVÞ: RλQ̂α
λ ¼ Rk̂Q̂

αk̂: ð3:5Þ
These identities suggest that if one considers the antiho-
lomorphic involution such that the even (1,1) cohomology
is trivial, which is very often the case, then there will be no
D terms and the only Bianchi identities to worry about are

RλHk̂−HλRk̂þwa
λQa

k̂−Qaλwak̂ ¼ 0;

H½k̂Rk̂0� þQa
½k̂wak̂0� ¼ 0; H½λRρ� þQa½λwa

ρ� ¼ 0: ð3:6Þ
2. Five classes of Bianchi identities for type IIB

Similarly, using the flux actions given in Eq. (2.77), the
following five classes of NS-NS Bianchi identities are
obtained by imposing D2 ¼ 0 on the various harmonic
forms [60]:

ðIÞ: HΛωa
Λ ¼ HΛωΛa:

ðIIÞ: HΛQ̂Λ
α ¼ HΛQ̂

αΛ; ωa
ΛωbΛ ¼ ωb

ΛωaΛ;

ω̂α
Kω̂βK ¼ ω̂β

Kω̂αK:

ðIIIÞ: ωaΛQ̂
αΛ ¼ ωa

ΛQ̂α
Λ; QaKω̂αK ¼ Qa

Kω̂
K
α ;

HΛRK þ ωaΛQa
K þ Q̂α

Λω̂αK ¼ 0;

HΛRK þ ωa
ΛQa

K þ Q̂αΛω̂αK ¼ 0;

HΛRK þ ωaΛQaK þ Q̂α
Λω̂α

K ¼ 0;

HΛRK þ ωa
ΛQaK þ Q̂αΛω̂α

K ¼ 0.

ðIVÞ: RKω̂αK ¼ RKω̂α
K; Q̂αΛQ̂β

Λ ¼ Q̂βΛQ̂α
Λ;

QaKQb
K ¼ QbKQa

K:

ðVÞ: RKQaK − RKQa
K ¼ 0: ð3:7Þ

The above set of type IIB Bianchi identities suggests that if
one chooses the holomorphic involution such that the even
(2,1) cohomology is trivial, then only the following Bianchi
identities remain nontrivial:

HΛωa
Λ ¼ HΛωΛa; HΛQ̂Λ

α ¼ HΛQ̂
αΛ;

ωa
ΛωbΛ ¼ ωb

ΛωaΛ; ωaΛQ̂
αΛ ¼ ωa

ΛQ̂α
Λ;

Q̂αΛQ̂β
Λ ¼ Q̂βΛQ̂α

Λ: ð3:8Þ

In such a situation, there will be no D term generated as all
of the fluxes with fJ; Kg ∈ h2;1þ indices are projected out.
Moreover, if the holomorphic involution is chosen to result
in a trivial odd (1,1) cohomology, which corresponds to the
situation of the absence of odd moduli Ga and is an often
studied case, then there are only two types of Bianchi
identities to worry about:

HΛQ̂Λ
α ¼ HΛQ̂

αΛ; Q̂αΛQ̂β
Λ ¼ Q̂βΛQ̂α

Λ:

Using the T-duality transformations among the various NS-
NS fluxes as listed in Tables III and V, we find that indeed
the 14 Bianchi identities on the type IIA side are precisely
mapped onto the 14 Bianchi identities on the type IIB side,
and vice versa. However, there is a rather significant mixing
across the five classes of identities on the two sides. For
example, the identity HΛQ̂Λ

α ¼ HΛQ̂
αΛ corresponding to

class (II) on the type IIB side produces the identity
ðRλH0 − HλR0 þ wa

λQa
0 − Qaλwa0Þ ¼ 0, which corre-

sponds to class (III) on the type IIA side. To illustrate
these features, we present a one-to-one correspondence
among all of the identities in Table XI of the Appendix.

IV. EXCHANGING THE SCALAR
POTENTIALS UNDER T DUALITY

In this section our first goal is to present a new set of
axionic flux polynomials for both the type IIA and type IIB
theories which would include all of the axionic fields
appearing in those respective theories, and without having
any saxions involved. These will be subsequently used to
present the two scalar potentials completely in terms of
these axionic flux polynomials and the moduli space
metrics on the two theories.

A. Axionic flux polynomials

1. Type IIA

A careful look at the type IIA superpotential given in
Eq. (2.44) and the D terms given in Eq. (2.55) suggests
defining some axionic flux combinations—which we call
“axionic flux polynomials”—that can be useful for rewrit-
ing the generic complicated scalar potential with explicit
dependence on the saxions/axions within a few lines.
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These axionic flux polynomials can be given by the
following expressions:

f0 ¼ G0 − ξk̂Hk̂ − ξλHλ;

fa ¼ Ga − ξk̂℧ak̂ − ξλ℧a
λ;

fa ¼ Ga − ξk̂Qa
k̂ − ξλQaλ;

f0 ¼ G0 − ξk̂Rk̂ − ξλRλ; ð4:1Þ

h0 ¼ H0 þHkzk þ
1

2
k̂λmnzmznHλ;

ha ¼ ℧a0 þ ℧akzk þ
1

2
k̂λmnzmzn℧a

λ;

ha ¼ Qa
0 þQa

kzk þ
1

2
k̂λmnzmznQαλ;

h0 ¼ R0 þRkzk þ
1

2
k̂λmnzmznRλ;

hk0 ¼ Hk þ k̂λknznHλ; hak ¼ ℧ak þ k̂λknzn℧a
λ;

hak ¼ Qa
k þ k̂λknznQaλ; hk0 ¼ Rk þ k̂λknznRλ;

hλ0 ¼Hλ; haλ ¼ ℧a
λ; haλ ¼Qaλ; hλ0 ¼Rλ;

ĥαλ ¼ ℧̂αλ; ĥαλ ¼ Q̂α
λ; ĥα

0 ¼ ℧̂α
0; ĥα0 ¼ Q̂α0;

where the intermediate axionic flux polynomials appearing
in Eq. (4.1) are given as

G0 ¼ ē0 þ baēa þ
1

2
κabcbabbmc þ 1

6
κabcbabbbcm0;

Ga ¼ ēa þ κabcbbmc þ 1

2
κabcbbbcm0;

Ga ¼ ma þm0ba;

G0 ¼ m0;

Hk̂ ¼ H̄k̂ þ w̄ak̂b
a þ 1

2
κabcbbbcQa

k̂ þ
1

6
κabcbabbbcRk̂;

℧ak̂ ¼ w̄ak̂ þ κabcbbQc
k̂ þ

1

2
κabcbbbcRk̂;

Qa
k̂ ¼ Qa

k̂ þ baRk̂;

Rk̂ ¼ Rk̂; ð4:2Þ

Hλ ¼ H̄λ þ w̄a
λba þ 1

2
κabcbbbcQaλ þ 1

6
κabcbabbbcRλ;

℧a
λ ¼ w̄a

λ þ κabcbbQcλ þ 1

2
κabcbbbcRλ;

Qaλ ¼ Qaλ þ baRλ;

Rλ ¼ Rλ;

℧̂αλ ¼ ŵαλ þ k̂λkmzmŵα
k −

1

2
k̂λkmzkzmŵα

0;

℧̂α
k ¼ ŵα

k − zkŵα
0;

℧̂α
0 ¼ ŵα

0;

Q̂α
λ ¼ Q̂α

λ þ k̂λkmzmQ̂
αk −

1

2
k̂λkmzλzkzmQ̂

α0;

Q̂αk ¼ Q̂αk − zkQ̂α0;

Q̂α0 ¼ Q̂α0:

Here we have utilized the shifted fluxes as defined in
Eq. (2.45) due to the inclusion of α0 corrections in the
Kähler-moduli-dependent prepotential. The (partial)
appearance of the type IIA axionic flux polynomials in
Eq. (4.2) was seen before in Refs. [58,63,69]. In addition,
the generalized RR flux polynomials defined asG0, Ga, Ga,
G0 were used in Refs. [75,89–92] in the absence of (non)
geometric flux.

2. Type IIB

Similarly, a careful look at the type IIB superpotential
given in Eq. (2.79) and the D terms given in Eq. (2.85)
suggests defining the following axionic flux polynomials,
which are in direct one-to-one correspondence with the T-
dual fluxes on the type IIA side, as we will see in a moment:

f0 ¼ F0 þ viF i þ
1

2
lijkvjvkF i −

1

6
lijkvivjvkF0;

fi ¼ F i þ lijkvjF k −
1

2
lijkvjvkF0;

fi ¼ F i − viF0;

f0 ¼ −F0; ð4:3Þ

h0 ¼ H0 þ viHi þ
1

2
lijkvjvkHi −

1

6
lijkvivjvkH0;

hi ¼ Hi þ lijkvjHk −
1

2
lijkvjvkH0;

hi ¼ Hi − viH0;

h0 ¼ −H0;

ha0 ¼ ℧a0 þ vi℧ai þ
1

2
lijkvjvk℧a

i −
1

6
lijkvivjvk℧a

0;

hai ¼ ℧ai þ lijkvj℧a
k −

1

2
lijkvjvk℧a

0;

hai ¼ ℧a
i − vi℧a

0;

ha0 ¼ −℧a
0;
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hα0 ¼ Q̂α
0 þ viQ̂α

i þ
1

2
lijkvjvkQ̂

αi −
1

6
lijkvivjvkQ̂

α0;

hαi ¼ Q̂α
i þ lijkvjQ̂

αk −
1

2
lijkvjvkQ̂

α0;

hαi ¼ Q̂αi − viQ̂α0;

hα0 ¼ −Q̂α0;

ĥαK ¼ ℧̂αK;

ĥα
K ¼ ℧̂α

K;

ĥK
0 ¼ −RK;

ĥK0 ¼ −RK:

The intermediate flux polynomials appearing in Eq. (4.3)
are given as follows.
F-term flues:

FΛ ¼ F̄Λ − ω̄aΛca −
¯̂Qα

Λðcα þ l̂αabcabbÞ − c0HΛ;

FΛ ¼ FΛ − ωa
Λca − Q̂αΛðcα þ l̂αabcabbÞ − c0HΛ;

HΛ ¼ H̄Λ þ ω̄aΛba þ
1

2
l̂αabbabb

¯̂Qα
Λ;

℧aΛ ¼ ω̄aΛ þ ¯̂Qα
Λl̂αabbb;

Q̂α
Λ ¼ ¯̂Qα

Λ; ð4:4Þ

HΛ ¼ HΛ þ ωa
Λba þ 1

2
l̂αabbabbQ̂

αΛ;

℧a
Λ ¼ ωa

Λ þ Q̂αΛl̂αabbb;

Q̂αΛ ¼ Q̂αΛ;

D-term fluxes:

℧̂αK ¼ ω̂αK −Qa
Kl̂αabbb þ

1

2
l̂αabbabbRK;

Qa
K ¼ Qa

K þ RKba;

RK ¼ RK;

℧̂α
K ¼ ω̂α

K −QaKl̂αabbb þ
1

2
l̂αabbabbRK;

QaK ¼ QaK þ RKba;

RK ¼ RK:

Note that we have utilized the shifted fluxes with bars in
some places, which are defined in Eq. (2.80). Recall that the

axionic flux polynomials in Eq. (4.4) have been invoked as
some peculiar flux combinations called new generalized
axionic flux polynomials by considering a deep investiga-
tion of the flux superpotential and the D terms in the type
IIB setting [64,65]. Moreover, it is interesting to note that
these flux polynomials are also useful in the sense that they
collectively satisfy the generic Bianchi identities as pre-
sented in Table XII.
It isworth recalling that all of the axionic flux polynomials

given in Eqs. (4.1)–(4.2) for type IIA andEqs. (4.3)–(4.4) for
type IIB involve fluxes and all of the axions without having
any dependence on the saxionic moduli. It is a tedious but
straightforward computation to show that under the T-
duality transformations, the various axionic flux polyno-
mials are exchanged as presented in Table VI.
In order to prove that the axionic flux polynomials

transform under T duality as per the rules given in Table VI,
one can use the following type IIB to type IIA trans-
formations at the intermediate stage of computation:

H0 → H̄0 þ H̄kzk þ
1

2
k̂λmnzmznH̄λ;

℧a0 → H̄k þ H̄λk̂λknzn;

Q̂α
0 → H̄λ;

Hi → w̄a0 þ w̄akzk þ
1

2
k̂λmnzmznw̄a

λ;

℧ai → w̄ak þ w̄a
λk̂λknzn;

Q̂α
i → w̄a

λ;

Hi → Qa
0 þ Qa

kzk þ
1

2
k̂λmnzmznQaλ;

℧a
i → Qa

k þ Qaλk̂λknzn;

Q̂αi → Qaλ;

H0 → −R0 − Rkzk −
1

2
k̂λmnzmznRλ;

℧a
0 → −Rk − Rλk̂λknzn;

Q̂α0 → −Rλ;

F0 → ē0 − ðξk̂H̄k̂ þ ξλH̄λÞ;
F i → ēa − ðξk̂w̄ak̂ þ ξλw̄a

λÞ; ð4:5Þ

F i → ma − ðξk̂Qa
k̂ þ ξλQaλÞ;

F0 → −m0 þ ðξk̂Rk̂ þ ξλRλÞ:

TABLE VI. Axionic flux polynomials under T duality.

IIA f0 fa fa f0 h0 hk hk h0 hk0 hak hak hk0 hλ0 haλ haλ hλ0

IIB f0 fi fi f0 h0 hi hi h0 ha0 hai hai ha0 hα0 hαi hαi hα0
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The transformations for the D-term flux polynomials are
given as

℧̂αK → ŵαλ þ ŵα
kk̂λkmzm −

1

2
k̂λmnzmznŵα

0;

RK → −wα
0; ð4:6Þ

℧̂α
K → Q̂α

λ þ Q̂αkk̂λkmzm −
1

2
k̂λmnzmznQ̂

α0;

RK → −Q̂α
0:

Note that fluxes with a bar on top are the shifted fluxes, as
defined in Eqs. (2.45) and (2.80).

B. Scalar potentials

For the scalar potential computations we mainly need to
focus on rewriting the F-term contributions arising from the
type IIA and type IIB superpotentials as presented in
Eqs. (2.44) and (2.79), respectively. Also, for our scalar
potential computations wewill ignore the effects of all of the
p0’s which depend on the Euler characteristics of the CY
three-form and its mirror, as this creates unnecessary com-
plexities in the various expressions in the respective scalar
potentials, making it hard to enjoy the simple observations
and their possibly easy utilities.However, wewill continue to
consider the prepotential termswith coefficientspab,pa, p̃ij,
etc., which are linear and quadratic in the chiral variables
(involving the saxions of the Kähler and complex-structure
moduli), and so may remain relevant in some regime of the
moduli space even after imposing the large-volume and
large-complex-structure limit. In this limit, we can estimate
the pieces with χðCYÞ as

V ≫
p0

4
¼ −

ζ½3�χðCYÞ
32π3

∝ 10−3χðCYÞ;

U ≫
p̃0

4
¼ −

ζ½3�χðC̃YÞ
32π3

∝ 10−3χðC̃YÞ: ð4:7Þ

Therefore, for a trustworthy model building within a valid
effective field theory descriptionwhere one anywaydemands
V ≫ 1 and U ≫ 1, the above assumption we make is quite
automatically justified, and it is very likely that the correction
with p0’s will not be effective up to quite large value of the
Euler characteristics of the CYand its mirror. Moreover, p0

appears at ðα0Þ3 order in type IIA, and we keep corrections
until ðα0Þ2 throughpab andpa, and therefore our assumption
should be fairly justified. Given that all moduli should be
present in the generic nongeometric scalar potential, it is
natural to expect that all of them (at least the saxionic ones)
are dynamically fixed; otherwise, the ðα0Þ3 effects with
χðCYÞ may become relevant at some subleading order.

1. Type IIB

With some tedious but conceptually straightforward
computations using the axionic flux polynomials given
in Eqs. (4.3)–(4.4) and following the strategy of
Refs. [64,67,68], the total scalar potential generated as a
sum of the F-term and D-term contributions for the type
IIB orientifold compactifications (in the string frame) can
be written as

V toal
IIB ≡ VF

IIB þ VD
IIB ¼ VRR

IIB þ VNS
IIB þ V loc

IIB þ VD
IIB; ð4:8Þ

where the four pieces are given as follows:

VRR
IIB ¼ e4ϕ

4V2U
½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2�;

VNS
IIB ¼ e2ϕ

4V2U

�
h20 þ UhiGijhj þ UhiGijhj þ U2ðh0Þ2

þ VGab

�
ha0hb0 þ

lilj
4

haihbj þ haihbjuiuj þ U2ha0hb0 −
li
2
haihb0 −

li
2
ha0hbi − Uuiha0hbi − Uuihb0hai

�

þ VGαβ

�
hα0hβ0 þ

lilj
4

hαihβj þ uiujhαihβj þ U2hα0hβ0 −
li
2
hα0hβi −

li
2
hαihβ0 − Uuihα0hβi − Uuihαihβ0

�

þ lαlβ

4

�
UhαiGijhβj þ UhαiGijhβj þ Uuihα0hiβ þ Uuihαihβ0 − uiujhαihβj þ

li
2
hα0hβi þ

li
2
hαihβ0 −

lilj
4

hαihβj
�

− 2 ×
lα

2

�
UhiGijhαj þ UhiGijhαj þ Uuih0hαi þ Uuihihα0 − uiujhihαj þ

li
2
hihα0 þ

li
2
h0hαi −

lilj
4

hihαj
��

;

Vloc
IIB ¼ e3ϕ

2V2

�
ðf0h0 − fihi þ fihi − f0h0Þ − ðf0hα0 − fihαi þ fihαi − f0hα0Þ

lα

2

�
;

VD
IIB ¼ e2ϕ

4V2
½ðVĥJ0 − tαĥαJÞGJKðVĥK0 − tβĥβKÞ þ ðVĥJ0 − tαĥα

JÞGJKðVĥK0 − tβĥβ
KÞ�: ð4:9Þ
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Here, using V ¼ 1
6
lαβγtαtβtγ , U ¼ 1

6
lijkuiujuk, etc. as shorthand notations, we have the following form of the moduli space

metrics:

Gij ¼
lilj − 4Ulij

4U
; Gij ¼ 2uiuj − 4Ulij

4U
; GJK ¼ −l̂JK; GJK ¼ −l̂JK;

Gαβ ¼
lαlβ − 4Vlαβ

4V
; Gαβ ¼ 2tαtβ − 4Vlαβ

4V
; Gab ¼ −l̂ab; Gab ¼ −l̂ab: ð4:10Þ

2. Type IIA

Although it is equally tedious to compute the scalar potential from the flux superpotential for the type IIA case, one can
show that by using our axionic flux polynomials given in Eqs. (4.1)–(4.2) and following the strategy of Ref. [69] the total
scalar potential for the type IIA orientifold compactifications (in the string frame) can be written as

V tot
IIA ≡ VF

IIA þ VD
IIA ¼ VRR

IIA þ VNS
IIA þ V loc

IIA þ VD
IIA; ð4:11Þ

where the four pieces are given explicitly as follows:

VRR
IIA ¼ e4D4d

4V
½f20 þ VfaG̃abfb þ VfaG̃

abfb þ V2ðf0Þ2�;

VNS
IIA ¼ e2D4d

4UV

�
h20 þ VhaG̃abhb þ VhaG̃

abhb þ V2ðh0Þ2

þ UG̃ij

�
hi0hj0 þ

κaκb
4

hiahjb þ haihbjtatb þ V2hi0hj0 −
κa
2
haihj0 −

κa
2
hi0haj − Vtahi0haj − Vtahaihj0

�

þ UG̃λρ

�
hλ0hρ0 þ

κaκb
4

hλahρb þ tatbhaλhbρ þ V2hλ0hρ0 −
κa
2
hλ0hρa −

κa
2
hλahρ0 − Vtahλ0haρ − Vtahaλhρ0

�

þ kλkρ
4

�
VhaλG̃abhbρ þ VhaλG̃

abhbρ þ Vtahλ0haρ þ Vtahaλhρ0 − tatbhaλhbρ þ
κa
2
hλ0haρ þ

κa
2
haλhβ0 −

κaκb
4

haλhbρ
�

− 2×
kλ
2

�
VhaG̃abhbλ þ VhaG̃

abhbλ þ Vtah0haλ þ Vtahahλ0 − tatbhahbλ þ
κa
2
hah0λ þ

κa
2
h0haλ −

κaκb
4

hahbλ
��

;

V loc
IIA ¼ e3D4d

2
ffiffiffiffi
U

p
�
ðf0h0 − faha þ faha − f0h0Þ− ðf0hλ0 − fahλa þ fahλa − f0hλ0Þ

kλ
2

�
;

VD
IIA ¼ e2D4d

4U
½ðUĥα0 þ zλĥαλÞG̃αβðUĥβ0 þ zρĥβρÞ þ ðUĥα0 þ zλĥαλÞG̃αβðUĥβ0 þ zρĥβρÞ�; ð4:12Þ

where

G̃ab ¼
κaκb − 4Vκab

4V
; G̃ab ¼ 2tatb − 4Vκab

4V
; G̃αβ ¼ −κ̂αβ; G̃αβ ¼ −κ̂αβ;

G̃λρ ¼
kλkρ − 4Ukλρ

4U
; G̃λρ ¼ 2zλzρ − 4Ukλρ

4U
; G̃jk ¼ −k̂jk; G̃jk ¼ −k̂jk: ð4:13Þ

Note that we have V ¼ 1
6
κabctatbtc, U ¼ 1

6
kλργzλujuk for

the type IIA case, and we have also used eKq ¼ e4D4d ¼ ðz0Þ4
U2

from Eq. (2.34) to restore the popular factor of e4D4d in
the RR sector and e2D4d in the NS-NS sector and the
D-term contributions, along with a factor of e3D4d in the
local piece.

V. APPLICATIONS

In this section we illustrate the utilities of our scalar
potential formulation by considering two explicit toroidal
examples. All we need to know is the orientifold even/odd
Hodge numbers and some of the topological quantities such
as nonvanishing triple intersection numbers, etc., and the
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rest will subsequently follow from our formulation.
Therefore, it can be considered as a direct way of
computing the scalar potential with explicit dependence
on the saxionic and axionic moduli.

A. Type IIA on a T6=ðZ2 × Z2Þ orientifold
Considering the untwisted sector with the nongeometric

type IIA setup having the standard involution (e.g., see
Refs. [58,69] for details), we can begin to extract informa-
tion from our formulation for this model by starting with
the following input:

h1;1− ¼ 3; h1;1þ ¼ 0; h2;1 ¼ 3: ð5:1Þ

The Hodge numbers show that there are three Uλ moduli
and three Ta moduli along with a single N0 modulus. There
are no Nk moduli present as the even (1,1) cohomology is
trivial. Subsequently, it turns out that all of the fluxes with
index k are absent. There are four components for both
the H3 flux (namely, H0 and Hλ) and the nongeometric R
flux, which are denoted as R0 and Rλ for λ ∈ f1; 2; 3g.
In addition, there are 12 flux components for both the
geometric (w) flux and the nongeometric (Q) flux, denoted
as fwa0; wa

λg and fQa
λ;Qaλg for α ∈ f1; 2; 3g and

λ ∈ f1; 2; 3g. On the RR side, there are eight flux compo-
nents in total: one from each of the F0 and F6 fluxes
denoted asm0 and e0, and three from each of the F2 and F4

fluxes denoted as ma, ea for a ∈ f1; 2; 3g. In addition,
we also note that there will be no D terms generated in the
scalar potential as the even (1,1) cohomology is trivial,

which projects out all of the relevantD-term fluxes. Having
the above orientifold-related ingredients in hand, one can
directly read off the scalar potential pieces from our generic
formula in two steps.
(1) Step 1: Work out all of the axionic flux polynomials.
(2) Step 2: Work out the moduli-space metric.

1. Step 1

The following eight types of NS-NS axionic flux
polynomials are trivial in this model:

hk ¼ 0; hak ¼ 0; hak ¼ 0; hk0 ¼ 0;

ĥα
0 ¼ 0; ĥαλ ¼ 0; ĥα0 ¼ 0; ĥαλ ¼ 0; ð5:2Þ

where one can anticipate from the trivial cohomology
indices that such fluxes are absent. Further, using
Eq. (4.1), the eight classes of nonzero NS-NS axionic flux
polynomials can be explicitly written out in terms of the 32
flux combinations, along with eight flux polynomials
coming from the RR sector given in the following manner:

f0¼G0−ξ0H0−ξλHλ; fa ¼Ga−ξ0℧a0−ξλ℧a
λ;

fa ¼Ga−ξ0Qa
0−ξλQaλ; f0¼G0−ξ0R0−ξλRλ;

h0¼H0; ha¼℧a0; ha¼Qa
0; h0 ¼R0;

hλ0¼Hλ; haλ¼℧a
λ; haλ¼Qaλ; hλ0¼Rλ; ð5:3Þ

where the axionic flux polynomials in Eq. (5.3) are
given as

H0 ¼ H0 þ w10b1 þ w20b2 þ w30b3 þ b1b2Q3
0 þ b2b3Q1

0 þ b3b1Q2
0 þ b1b2b3R0;

℧10 ¼ w10 þ b2Q3
0 þ b3Q2

0 þ b2b3R0; Q1
0 ¼ Q1

0 þ b1R0;

℧20 ¼ w20 þ b1Q3
0 þ b3Q1

0 þ b1b3R0; Q2
0 ¼ Q2

0 þ b2R0;

℧30 ¼ w30 þ b1Q2
0 þ b2Q1

0 þ b1b2R0; Q3
0 ¼ Q3

0 þ b3R0; R0 ¼ R0;

Hλ ¼ Hλ þ w1
λb1 þ w2

λb2 þ w3
λb3 þ b1b2Q3λ þ b2b3Q1λ þ b3b1Q2λ þ b1b2b3Rλ;

℧1
λ ¼ w1

λ þ b2Q3λ þ b3Q2λ þ b2b3Rλ; Q1λ ¼ Q1λ þ b1Rλ;

℧2
λ ¼ w2

λ þ b1Q3λ þ b3Q1λ þ b1b3Rλ; Q2λ ¼ Q2λ þ b2Rλ;

℧3
λ ¼ w3

λ þ b1Q2λ þ b2Q1λ þ b1b2Rλ; Q3λ ¼ Q3λ þ b3Rλ; Rλ ¼ Rλ;

G0 ¼ e0 þ b1e1 þ b2e2 þ b3e3 þ b1b2m3 þ b2b3m1 þ b3b1m2 þ b1b2b3m0;

G1 ¼ e1 þ b2m3 þ b3m2 þ b2b3m0; G1 ¼ m1 þm0b1;

G2 ¼ e2 þ b1m3 þ b3m1 þ b1b3m0; G2 ¼ m2 þm0b2;

G3 ¼ e3 þ b1m2 þ b2m1 þ b1b2m0; G3 ¼ m3 þm0b3; G0 ¼ m0:
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In simplifying the axionic flux polynomials we have used the fact that the only nonzero intersection number that survives in
the Kähler moduli part of the prepotential is κ123 ¼ 1. The same thing happens on the complex structure moduli side:

κ123 ¼ 1; κ̂aαβ ¼ 0; k123 ¼ 1; k̂λmn ¼ 0: ð5:4Þ

2. Step 2

In order to fully know the scalar potential, we now only need to know the moduli-space metrics to supplement the axionic
flux polynomials, which are given as

κab ¼

0
B@

0 t3 t2

t3 0 t1

t2 t1 0

1
CA; −4Vκab ¼

0
B@

2ðt1Þ2 −2t1t2 −2t1t3

−2t1t2 2ðt2Þ2 −2t2t3

−2t1t3 −2t2t3 2ðt3Þ2

1
CA;

VG̃ab ¼

0
B@

ðt1Þ2 0 0

0 ðt2Þ2 0

0 0 ðt3Þ2

1
CA; UG̃λρ ¼

0
B@

ðz1Þ2 0 0

0 ðz2Þ2 0

0 0 ðz3Þ2

1
CA:

In addition, we also have the following useful shorthand notations:

V ¼ t1t2t3; κ1 ¼ 2t2t3; κ2 ¼ 2t1t3; κ3 ¼ 2t1t2;

U ¼ z1z2z3; k1 ¼ 2z2z3; k2 ¼ 2z1z3; k3 ¼ 2z1z2: ð5:5Þ

To verify our scalar potential formulation, first we compute it from the flux superpotential as given in Eq. (2.44), which
results in 2422 terms. Subsequently, we show that our collection of pieces gives the same result after using the simplified
axionic flux polynomials and the moduli-space metrics as presented above. These scalar potential pieces are given as

VRR
IIA ¼ e4D4d

4V
½f20þVfaG̃abfbþVfaG̃

abfbþV2ðf0Þ2�;

VNS1
IIA ¼ e2D4d

4UV
½h20þVhaG̃abhbþVhaG̃

abhbþV2ðh0Þ2�;

VNS2
IIA ¼ e2D4d

4UV

�
UG̃λρ

�
hλ0hρ0þ

κaκb
4

hλahρbþ tatbhaλhbρþV2hλ0hρ0−
κa
2
hλ0hρa−

κa
2
hλahρ0−Vtahλ0haρ−Vtahaλhρ0

�

þkλkρ
4

�
VhaλG̃abhbρþVhaλG̃

abhbρþVtahλ0haρþVtahaλhρ0− tatbhaλhbρþ
κa
2
hλ0haρþ

κa
2
haλhβ0−

κaκb
4

haλhbρ
��

;

VNS3
IIA ¼ e2D4d

4UV

�
−2×

kλ
2

�
VhaG̃abhbλþVhaG̃

abhbλþVtah0haλþVtahahλ0− tatbhahbλþ
κa
2
hah0λþ

κa
2
h0haλ−

κaκb
4

hahbλ
��

;

V loc
IIA ¼ e3D4d

2
ffiffiffiffi
U

p
�
ðf0h0−fahaþfaha−f0h0Þ− ðf0hλ0−fahλaþfahλa−f0hλ0Þ

kλ
2

�
: ð5:6Þ

To appreciate the numerics, we mention that the above
pieces of the scalar potential match the following splitting
of 2422 terms computed from the superpotential:

#ðVRR
IIBÞ ¼ 1630; #ðVNS1

IIB Þ ¼ 76; #ðVNS2
IIB Þ ¼ 408;

#ðVNS3
IIB Þ ¼ 180; #ðV loc

IIBÞ ¼ 128: ð5:7Þ

B. Type IIB on a T 6=ðZ2 × Z2Þ orientifold
Considering the untwisted sector with the standard

involution for the nongeometric type IIB setup (e.g., see

Refs. [58,61,67,68] for details), we can start with the
following input:

h1;1þ ¼ 3; h1;1− ¼ 0; h2;1þ ¼ 0; h2;1− ¼ 3: ð5:8Þ

The Hodge numbers show that there are three Tα moduli
and three Ui moduli along with the universal axio-dilaton S
in this setup. There are no odd-moduli Ga present in this
setup as the odd (1,1) cohomology is trivial. It turns out that
the geometric flux ω and nongeometric R flux do not
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survive the orientifold projection in this setup, and the only
allowed NS-NS fluxes are the three-form H3 flux and
nongeometric Q flux. There are eight components for the
H3 flux and 24 components for the Q flux, denoted as HΛ,
HΛ, Q̂α

Λ, Q̂αΛ for α ∈ f1; 2; 3g and Λ ∈ f0; 1; 2; 3g.
On the RR side, there are eight flux components for the
three-form F3 flux. In addition, there are no D terms
generated in the scalar potential as the even (2,1) cohomol-
ogy is trivial, which projects out all of the D-term
fluxes. Now we repeat the two steps followed for the
type IIA case.

1. Step 1

It turns out that the following eight NS-NS axionic flux
polynomials are trivial in this model:

ha ¼ 0; hai ¼ 0; hai ¼ 0; ha0 ¼ 0;

ĥαK ¼ 0; ĥα
K ¼ 0; ĥK0 ¼ 0; ĥK0 ¼ 0; ð5:9Þ

where one can anticipate from the trivial cohomology indices
that such fluxes are absent. Further, using Eq. (4.3), the eight
classes of nonzero NS-NS axionic flux polynomials can be
explicitly written out in terms of the 32 flux combinations as

h0 ¼ H0 þ v1H1 þ v2H2 þ v3H3 þ v1v2H3 þ v2v3H1 þ v3v1H2 − v1v2v3H0;

h1 ¼ H1 þ v2H3 þ v3H2 − v2v3H0; h1 ¼ H1 − v1H0;

h2 ¼ H2 þ v1H3 þ v3H1 − v1v3H0; h2 ¼ H2 − v2H0;

h3 ¼ H3 þ v1H2 þ v2H1 − v1v2H0; h3 ¼ H3 − v3H0; h0 ¼ −H0; ð5:10Þ
hα0 ¼ Q̂α

0 þ v1Q̂α
1 þ v2Q̂α

2 þ v3Q̂α
3 þ v1v2Q̂α3 þ v2v3Q̂α1 þ v3v1Q̂α2 − v1v2v3Q̂α0;

hα1 ¼ Q̂α
1 þ v2Q̂α3 þ v3Q̂α2 − v2v3Q̂α0; hα1 ¼ Q̂α1 − v1Q̂α0;

hα2 ¼ Q̂α
2 þ v1Q̂α3 þ v3Q̂α1 − v1v3Q̂α0; hα2 ¼ Q̂α2 − v2Q̂α0;

hα3 ¼ Q̂α
3 þ v2Q̂α1 þ v1Q̂α2 − v1v2Q̂α0; hα3 ¼ Q̂α3 − v3Q̂α0; hα0 ¼ −Q̂α0:

In addition, there are eight axionic flux polynomials which also involve the RR axions c0 and cα along with the complex
structure axions vi, which are given as

f0 ¼ F0 þ v1F1 þ v2F2 þ v3F3 þ v1v2F3 þ v2v3F1 þ v3v1F2 − v1v2v3F0;

f1 ¼ F1 þ v2F3 þ v3F2 − v2v3F0; f1 ¼ F1 − v1F0;

f2 ¼ F2 þ v1F3 þ v3F1 − v1v3F0; f2 ¼ F2 − v2F0;

f3 ¼ F3 þ v1F2 þ v2F1 − v1v2F0; f3 ¼ F3 − v3F0; f0 ¼ −F0; ð5:11Þ

F0 ¼ F0 − Q̂α
0cα − c0H0; F i ¼ Fi − Q̂α

icα − c0Hi

F0 ¼ F0 − Q̂α0cα − c0H0; F i ¼ Fi − Q̂αicα − c0Hi:

Here we have used the fact that the only nonzero intersection numbers are given as

l123 ¼ 1; l̂iJK ¼ 0; l123 ¼ 1; l̂αab ¼ 0; ð5:12Þ
which result in the following useful shorthand notations:

V ¼ t1t2t3; l1 ¼ 2t2t3; l2 ¼ 2t1t3; l3 ¼ 2t1t2;

U ¼ u1u2u3; l1 ¼ 2u2u3; l2 ¼ 2u1u3; l3 ¼ 2u1u2: ð5:13Þ

2. Step 2

In order to fully know the scalar potential, we now only need to know the moduli-space metrics to supplement the axionic
flux polynomials, which are given as

VGαβ ¼

0
B@

ðt1Þ2 0 0

0 ðt2Þ2 0

0 0 ðt3Þ2

1
CA; UGij ¼

0
B@

ðu1Þ2 0 0

0 ðu2Þ2 0

0 0 ðu3Þ2

1
CA:

PRAMOD SHUKLA PHYS. REV. D 103, 086009 (2021)

086009-22



To verify the scalar potential formulation, we first compute it using the flux superpotential as given in Eq. (2.79), which
results in 2422 terms, and subsequently we confirm that our following collection of pieces gives the same result after using
the simplified axionic flux polynomials and moduli-space metrics:

VRR
IIB ¼ e4ϕ

4V2U
½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2�;

VNS1
IIB ¼ e2ϕ

4V2U
½h20 þ UhiGijhj þ UhiGijhj þ U2ðh0Þ2�;

VNS2
IIB ¼ e2ϕ

4V2U

�
VGαβ

�
hα0hβ0 þ

lilj
4

hαihβj þ uiujhαihβj þ U2hα0hβ0 −
li
2
hα0hβi −

li
2
hαihβ0 − Uuihα0hβi − Uuihαihβ0

�

þ lαlβ

4

�
UhαiGijhβj þ UhαiGijhβj þ Uuihα0hiβ þ Uuihαihβ0 − uiujhαihβj þ

li
2
hα0hβi þ

li
2
hαihβ0 −

lilj
4

hαihβj
��

;

VNS3
IIB ¼ e2ϕ

4V2U

�
−2×

lα

2

�
UhiGijhαj þ UhiGijhαj þ Uuih0hαi þ Uuihihα0 − uiujhihαj þ

li
2
hihα0 þ

li
2
h0hαi −

lilj
4

hihαj
��

;

V loc
IIB ¼ e3ϕ

2V2

�
ðf0h0 − fihi þ fihi − f0h0Þ− ðf0hα0 − fihαi þ fihαi − f0hα0Þ

lα

2

�
: ð5:14Þ

These match the following splitting of 2422 terms com-
puted from the superpotential:

#ðVRR
IIBÞ ¼ 1630; #ðVNS1

IIB Þ ¼ 76; #ðVNS2
IIB Þ ¼ 408;

#ðVNS3
IIB Þ ¼ 180; #ðV loc

IIBÞ ¼ 128: ð5:15Þ
Thus,wehave explicitly verified our generic type IIApotential
in Eq. (4.12) and type IIB potential in Eq. (4.9) for the
T6=ðZ2 × Z2Þ orientifold setups, in which there are no D
termspresentwhile theF-termcontribution results inprecisely
the same number (2242) of terms in the scalar potential as it
could be found by their respective flux superpotential com-
putations! It is needless to say that there is a perfect match for
the two scalar potentials under our T-duality transformation
for this canonical T-dual pair of models.
It is quite impressive to have written thousands of terms

in just a few lines and kept the information about the
saxionic and axionic parts distinct! These generic toroidal
type IIA and IIB setups have been found to be interesting in
several numerical approaches [10,11,16,17,21], and our
formulation certainly opens up the possibilities for making
attempts towards nonsupersymmetric moduli stabilization
in an analytic approach.

VI. SUMMARY AND CONCLUSIONS

In this article we have studied the T-dual completion of
the four-dimensional type IIA and type IIB effective
supergravity theories with the presence of (non)geometric
fluxes. In order to establish a single consistent convention
and notation by fixing signs, factors, etc., we first revisited
the relevant ingredients for the type IIA and type IIB setups
in some detail.
Considering an iterative approach, we have invoked the

T-duality transformations among the various standard and

(non)geometric fluxes of the two theories. This connection
has been explicitly known for fluxes written in the non-
cohomology formulation, mostly applicable to the toroidal
examples [10,11,30,71–73] but not in the cohomology
formulation which could be directly promoted for the
beyond toroidal cases such as with using CY compactifi-
cations. Given that in the absence of fluxes mirror sym-
metry exchanges the two theories, we first considered the
Kähler potential with explicit computations including α0
corrections on the compactifying threefold and its mirror.
This helped us to rederive the T-duality rules for the
moduli, axions, and chiral variables on the two sides
[55,57,74]. Subsequently, in the second step we investi-
gated the fluxes in the superpotential where the moduli
have explicit polynomial dependence through the chiral
variables, and utilizing the T-duality rules for the chiral
variables fixed in the fluxless scenario we derived the
explicit transformations for the various fluxes on the two
sides. This leads to some very interesting and nontrivial
mixing among the (non)geometric fluxes with the standard
fluxes, as we present in Table VII. We repeated the same
step for the D-term contributions to derive the T-dual
connection among the relevant fluxes appearing in the
scalar potentials through the D-term contributions. These
are also presented in Table VII.
A genuine effective potential should be the one obtained

after taking care of the tadpole conditions and NS-NS
Bianchi identities, which generically have the potential to
nullify some terms in the respective scalar potentials and
hence can influence the effectiveness of scalar potential
pieces governing the moduli dynamics. Therefore, in order
to confirm the mapping one has to ensure that the T-duality
rules invoked for the fluxes and moduli in the earlier steps
are compatible with these constraints. We found that this is
indeed the case, we confirmed a one-to-one mapping
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among all of the Bianchi identities of the two theories. The
explicit details are presented in Tables XI and XII.
It is worth noting that there is a rather nontrivial mixing
among the flux identities in the sense that, e.g., a “HQ-
type” identity on the type IIB side gets mapped onto a
“ðHRþ wQÞ-type” identity on the type IIA side. Never-
theless, the full set of constraints do have a perfect one-to-
one correspondence under T duality.
As the superpotentials can be directly useful only for

supersymmetric stabilization, we have extended our studies
to the level of scalar potentials to deepen our understanding
of the T-dual picture in terms of explicit dependence on the
saxions/axions, where it can be directly used for non-
supersymmetric moduli stabilization and other phenomeno-
logical purposes. In this regard, we first invoked what we
call “axionic flux polynomials” from the superpotentials and
D terms of the two theories. These axionic flux polynomials
include all of the axions and fluxes but do not include any
saxions, which helps us to rewrite the scalar potential in a
concise form while (more importantly) keeping the
saxionic/axionic dependence distinct and explicit. These
relevant details are presented in Tables VIII–X. We have
demonstrated how our scalar potential formulation can be
used to read off the scalar potentials by applying the same
for two explicit toroidal orientifolds.
There are many reasons for reformulating the scalar

potential. First, it is concise in the sense that the generic
scalar potential can be written in a few lines, making it

possible to make attempts for model-independent moduli
stabilization. This step is quite nontrivial in itself as we
recall that a toroidal T6=ðZ2 × Z2Þ orientifold gives more
than 2000 terms arising from the flux superpotential in both
the type IIA and type IIB 4D theories, and it is hard even to
analytically solve the extremization conditions. The second
reason is to make the exchange of the two potentials
manifest under the T-duality transformations. As scalar
potentials are the starting point or building blocks for
moduli stabilization, there can be several possible appli-
cations of our one-to-one proposed formulation. For
example, this enables one to translate any useful findings
in one setup into its T-dual picture. In this regard, we note
that there are several well-known de Sitter no-go theorems
on the type IIA side, and subsequently there should be T-
dual counterparts on the type IIB side, which of course have
not received due attention. We have performed a detailed
study along these lines in a companion work [93], which
illustrated the direct use of the concise pieces of informa-
tion presented in this work.
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APPENDIX: T-DUAL DICTIONARY FOR TYPE II NONGEOMETRIC SETUPS
In this appendix, we present six tables representing the T-dual exchange of the various ingredients of type IIA and type

IIB theories. This should serve as what we call a useful “dictionary” for phenomenological model building using (non)
geometric fluxes.

TABLE VII. T-duality transformations among the various fluxes, moduli, and axions.

Type IIA with D6=O6 Type IIB with D3=O3 and D7=O7

F-term fluxes H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

wa0, wak, wa
λ, Hi, ωai, Q̂

α
i,

Qa
0, Qa

k, Qaλ, Hi, ωa
i, Q̂αi,

R0, Rk, Rλ, −H0, −ωa
0, −Q̂α0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.

D-term fluxes ŵα
0, ŵα

k, ŵαλ, −RK , −Qa
K , ω̂αK ,

Q̂α0, Q̂αk, Q̂α
λ. −RK , −QaK , ω̂α

K .

Complex moduli N0, Nk, Uλ, Ta. S, Ga, Tα, Ui.
Ta ¼ ba − ita, Ui ¼ vi − iui,

N0 ¼ ξ0 þ iðz0Þ−1, S ¼ c0 þ is,
Nk ¼ ξk þ iðz0Þ−1zk, Ga ¼ ðca þ c0baÞ þ isba,

Uλ ¼ − i
2z0 ðkλρκzρzκ − k̂λkmzkzmÞ þ ξλ. Tα ¼ − is

2
ðlαβγtβtγ − l̂αabbabbÞ þ ðcα þ l̂αabcabb þ 1

2
c0l̂αabbabbÞ.

Axions zk, ba, ξ0, ξk, ξλ. ba, vi, c0, ca þ c0ba, cα þ l̂αabcabb þ 1
2
c0l̂αabbabb.

Saxions ðz0Þ−1, zλ, ta, V, U, s≡ e−ϕ, tα, ui U, V,
Intersections kλρμ, k̂λmn, κabc, κ̂aαβ. lαβγ , l̂αab, lijk, l̂iJK .
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1. T-dual dictionary for type II nongeometric setups

TABLE VIII. Axionic flux polynomials for the type IIA side.

Type IIA axionic flux polynomials

f0 G0 − ξk̂Hk̂ − ξλHλ

fa Ga − ξk̂℧ak̂ − ξλ℧a
λ

fa Ga − ξk̂Qa
k̂ − ξλQaλ

f0 G0 − ξk̂Rk̂ − ξλRλ

h0 H0 þHkzk þ 1
2
k̂λmnzmznHλ

ha ℧a0 þ℧akzk þ 1
2
k̂λmnzmzn℧a

λ

ha Qa
0 þQa

kzk þ 1
2
k̂λmnzmznQαλ

h0 R0 þRkzk þ 1
2
k̂λmnzmznRλ

hk0 Hk þ k̂λknznHλ

hak ℧ak þ k̂λknzn℧a
λ

hak Qa
k þ k̂λknznQaλ

hk0 Rk þ k̂λknznRλ

hλ0 Hλ

haλ ℧a
λ

haλ Qaλ

hλ0 Rλ

F-term fluxes G0 ¼ ē0 þ baēa þ 1
2
κabcbabbmc þ 1

6
κabcbabbbcm0;

Ga ¼ ēa þ κabcbbmc þ 1
2
κabcbbbcm0;

Ga ¼ ma þm0ba;
G0 ¼ m0;

Hk̂ ¼ H̄k̂ þ w̄ak̂b
a þ 1

2
κabcbbbcQa

k̂ þ 1
6
κabcbabbbcRk̂;

Hλ ¼ H̄λ þ w̄a
λba þ 1

2
κabcbbbcQaλ þ 1

6
κabcbabbbcRλ;

℧ak̂ ¼ w̄ak̂ þ κabcbbQc
k̂ þ 1

2
κabcbbbcRk̂;

℧a
λ ¼ w̄a

λ þ κabcbbQcλ þ 1
2
κabcbbbcRλ;

Qa
k̂ ¼ Qa

k̂ þ baRk̂, Q
aλ ¼ Qaλ þ baRλ,

Rk̂ ¼ Rk̂, R
λ ¼ Rλ.

D-term fluxes ĥαλ ≡ ℧̂αλ ¼ ŵαλ þ k̂λkmzmŵα
k − 1

2
k̂λkmzkzmŵα

0

ĥα
k ≡ ℧̂α

k ¼ ŵα
k − zkŵα

0; ĥα
0 ≡ ℧̂α

0 ¼ ŵα
0;

ĥαλ ≡ Q̂α
λ ¼ Q̂α

λ þ k̂λkmzmQ̂
αk − 1

2
k̂λkmzλzkzmQ̂

α0;

ĥαk ≡ Q̂αk ¼ Q̂αk − zkQ̂α0; ĥα0 ≡ Q̂α0 ¼ Q̂α0.
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TABLE IX. Type IIB axionic flux polynomials with their dual type IIA counterparts.

Type IIB axionic flux polynomials Dual type IIA flux polynomials
f0 F0 þ viF i þ 1

2
lijkvjvkF i − 1

6
lijkvivjvkF0 f0

fi F i þ lijkvjF k − 1
2
lijkvjvkF0 fa

fi F i − viF0 fa

f0 −F0 f0

h0 H0 þ viHi þ 1
2
lijkvjvkHi − 1

6
lijkvivjvkH0 h0

hi Hi þ lijkvjHk − 1
2
lijkvjvkH0 ha

hi Hi − viH0 ha

h0 −H0 h0

ha0 ℧a0 þ vi℧ai þ 1
2
lijkvjvk℧a

i − 1
6
lijkvivjvk℧a

0 hk0
hai ℧ai þ lijkvj℧a

k − 1
2
lijkvjvk℧a

0 hak
hai ℧a

i − vi℧a
0 hak

ha0 −℧a
0 hk0

hα0 Q̂0
α þ viQ̂i

α þ 1
2
lijkvjvkQ̂

αi − 1
6
lijkvivjvkQ̂

α0 hλ0
hαi Q̂i

α þ lijkvjQ̂
αk − 1

2
lijkvjvkQ̂

α0 haλ

hαi Q̂αi − viQ̂α0 haλ

hα0 −Q̂α0 hλ0

F-term fluxes FΛ ¼ F̄Λ − ω̄aΛca −
¯̂Qα

Λðcα þ l̂αabcabbÞ − c0HΛ
FΛ ¼ FΛ − ωa

Λca − Q̂αΛðcα þ l̂αabcabbÞ − c0HΛ

HΛ ¼ H̄Λ þ ω̄aΛba þ 1
2
l̂αabbabb

¯̂Qα
Λ

HΛ ¼ HΛ þ ωa
Λba þ 1

2
l̂αabbabbQ̂

αΛ

℧aΛ ¼ ω̄aΛ þ ¯̂Qα
Λl̂αabbb

℧a
Λ ¼ ωa

Λ þ Q̂αΛl̂αabbb

Q̂α
Λ ¼ Q̂α

Λ, Q̂
αΛ ¼ Q̂αΛ

D-term fluxes ĥαK ≡ ℧̂αK ¼ ω̂αK −Qa
Kl̂αabbb þ 1

2
l̂αabbabbRK ĥαλ

ĥα
K ≡ ℧̂α

K ¼ ω̂α
K −QaKl̂αabbb þ 1

2
l̂αabbabbRK ĥαλ

haK ≡ Qa
K ¼ −Qa

K þ RKba, haK ≡QaK ¼ −QaK þ RKba ĥα
k, ĥαk

ĥK
0 ≡ −RK ¼ −RK , ĥ

K0 ≡ −RK ¼ −RK ĥα
0, ĥα0
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2. One-to-one exchange of the scalar potentials under T duality

TABLE X. Scalar potentials for type IIA and IIB theories.

IIA
V tot
IIA ¼ e4D

4V ½f20 þ VfaG̃abfb þ VfaG̃
abfb þ V2ðf0Þ2� þ e2D

4UV

�
h20 þ VhaG̃abhb

þVhaG̃
abhb þ V2ðh0Þ2 þ UG̃ij

�
hi0hj0 þ κaκb

4
hiahjb þ haihbjtatb þ V2hi0hj0

− κa
2
haihj0 −

κa
2
hi0haj − Vtahi0haj − Vtahaihj0

�
þ UG̃λρ

�
hλ0hρ0 þ κaκb

4
hλahρb

þtatbhaλhbρ þ V2hλ0hρ0 − κa
2
hλ0hρa −

κa
2
hλahρ0 − Vtahλ0haρ − Vtahaλhρ0

�

þ kλkρ
4

�
VhaλG̃abhbρ þ VhaλG̃

abhbρ þ Vtahλ0haρ þ Vtahaλhρ0 − tatbhaλhbρ

þ κa
2
hλ0haρ þ κa

2
haλhβ0 −

κaκb
4
haλhbρ

�
− 2 × kλ

2

�
VhaG̃abhbλ þ VhaG̃

abhbλ

þVtah0haλ þ Vtahahλ0 − tatbhahbλ þ κa
2
hah0λ þ κa

2
h0haλ −

κaκb
4
hahbλ

�

þ½ðUĥα0 þ zλĥαλÞVG̃αβðUĥβ0 þ zρĥβρÞ þ ðUĥα0 þ zλĥαλÞVG̃αβðUhβ0 þ zρĥβρÞ�
�

þ e3D

2
ffiffiffi
U

p
�
ðf0h0 − faha þ faha − f0h0Þ − ðf0hλ0 − fahλa þ fahλa − f0hλ0Þ kλ2

�
:

G̃ab ¼ κaκb−4Vκab
4V ; G̃ab ¼ 2tatb−4Vκab

4V ; G̃αβ ¼ −κ̂αβ; G̃αβ ¼ −κ̂αβ,
G̃λρ ¼ kλkρ−4Ukλρ

4U ; G̃λρ ¼ 2zλzρ−4Ukλρ
4U ; G̃jk ¼ −k̂jk; G̃jk ¼ −k̂jk.

IIB
V tot
IIB ¼ e4ϕ

4V2U ½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2� þ e2ϕ

4V2U

�
h20 þ UhiGijhj

þUhiGijhj þ U2ðh0Þ2 þ VGab

�
ha0hb0 þ lilj

4
haihbj þ haihbjuiuj þ U2ha0hb0

− li
2
haihb0 −

li
2
ha0hbi − Uuiha0hbi − Uuihb0hai

�
þ VGαβ

�
hα0hβ0 þ lilj

4
hαihβj

þuiujhαihβj þ U2hα0hβ0 − li
2
hα0hβ i −

li
2
hαihβ0 − Uuihα0hβ i − Uuihαihβ0

�

þ lαlβ
4

�
UhαiGijhβj þ UhαiGijhβj þ Uuihα0hiβ þ Uuihαihβ0 − uiujhαihβj

þ li
2
hα0hβ i þ li

2
hαihβ0 −

lilj
4
hαihβj

�
− 2 × lα

2

�
UhiGijhαj þ UhiGijhαj

þUuih0hαi þ Uuihihα0 − uiujhihαj þ li
2
hihα0 þ li

2
h0hαi −

lilj
4
hihαj

�

þ½ðVĥJ0 − tαĥαJÞUGJKðVĥK0 − tβĥβKÞ þ ðVĥJ0 − tαĥα
JÞUGJKðVĥK0 − tβĥβ

KÞ�
�

þ e3ϕ

2V2

�
ðf0h0 − fihi þ fihi − f0h0Þ − ðf0hα0 − fihαi þ fihαi − f0hα0Þ lα2

�
:

Gαβ ¼ lαlβ−4Vlαβ
4V ; Gαβ ¼ 2tαtβ−4Vlαβ

4V ; Gab ¼ −l̂ab; Gab ¼ −l̂ab,

Gij ¼ lilj−4Ulij
4U ; Gij ¼ 2uiuj−4Ulij

4U ; GJK ¼ −l̂JK; GJK ¼ −l̂JK .
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3. One-to-one exchange of the Bianchi identities under T duality

4. One-to-one exchange of the Bianchi identities with flux polynomials having ba axions

TABLE XI. One-to-one correspondence between the Bianchi identities (BIs) under the T-dual flux transformations. Here we consider
Λ ¼ f0; ig on the type IIB side and k̂ ¼ f0; kg on the type IIA side.

BIs Type IIB with D3=O3 and D7=O7 Type IIA with D6=O6

(1) HΛωa
Λ ¼ HΛωΛa H½0Rk� þ Qa½0wak� ¼ 0

(2) HΛQ̂Λ
α ¼ HΛQ̂

αΛ RλH0 − HλR0 þ wa
λQa

0 − Qaλwa0 ¼ 0

(3) ωa
ΛωbΛ ¼ ωb

ΛωaΛ H½kRk0 � þ Qa½kwak0 � ¼ 0

(4) ω̂α
Kω̂βK ¼ ω̂β

Kω̂αK ŵαλQ̂
α
ρ ¼ Q̂α

λŵαρ

(5) ωaΛQ̂
αΛ ¼ ωa

ΛQ̂α
Λ RλHk − HλRk þ wa

λQa
k − Qaλwak ¼ 0

(6) QaKω̂αK ¼ Qa
Kω̂

K
α ŵαλQ̂

αk ¼ Q̂α
λŵα

k

(7) H0RK þ ωa0Qa
K þ Q̂α

0ω̂αK ¼ 0 Hλŵαλ ¼ Hk̂ŵα
k̂

HiRK þ ωaiQa
K þ Q̂α

iω̂αK ¼ 0 wa
λŵαλ ¼ wak̂ŵα

k̂

(8) H0RK þ ωa
0Qa

K þ Q̂α0ω̂αK ¼ 0 Rλŵαλ ¼ Rk̂ŵα
k̂

HiRK þ ωa
iQa

K þ Q̂αiω̂αK ¼ 0 Qa
k̂ŵα

k̂ ¼ Qaλŵαλ

(9) H0RK þ ωa0QaK þ Q̂α
0ω̂α

K ¼ 0 HλQ̂α
λ ¼ Hk̂Q̂

αk̂

HiRK þ ωaiQaK þ Q̂α
iω̂α

K ¼ 0 Q̂α
λwa

λ ¼ wak̂Q̂
αk̂

(10) H0RK þ ωa
0QaK þ Q̂α0ω̂α

K ¼ 0 RλQ̂α
λ ¼ Rk̂Q̂

αk̂

HiRK þ ωa
iQaK þ Q̂αiω̂α

K ¼ 0 QaλQ̂α
λ ¼ Qa

k̂Q̂
αk̂

(11) Q̂αΛQ̂β
Λ ¼ Q̂βΛQ̂α

Λ H½λRρ� þ Qa½λwa
ρ� ¼ 0

(12) QaKQb
K ¼ QbKQa

K ŵα
kQ̂αk0 ¼ Q̂αkŵα

k0

(13) RKω̂αK ¼ RKω̂α
K ŵαλQ̂

α0 ¼ Q̂α
λŵα

0

(14) RKQaK ¼ RKQa
K ŵα

0Q̂αk ¼ Q̂α0ŵα
k

TABLE XII. One-to-one correspondence between the Bianchi identities with generalized flux polynomials having the NS-NS ba

axions as presented in Eq. (4.4) for type IIB and in Eq. (4.2) for type IIA. Here we consider Λ ¼ f0; ig on the type IIB side and
k̂ ¼ f0; kg on the type IIA side.

BIs Type IIB with D3=O3 and D7=O7 Type IIA with D6=O6

(1) HΛ℧a
Λ ¼ HΛ℧aΛ H½0Rk� þQa ½0wak� ¼ 0

(2) HΛQ̂Λ
α ¼ HΛQ̂

αΛ RλH0 −HλR0 þ ℧a
λQa

0 −Qaλ℧a0 ¼ 0

(3) ℧a
Λ℧bΛ ¼ ℧b

Λ℧aΛ H½kRk0 � þQa½k℧ak0 � ¼ 0

(4) ℧̂α
K℧̂βK ¼ ℧̂β

K℧̂αK ℧̂αλQ̂
α
ρ ¼ Q̂α

λ℧̂αρ

(5) ℧aΛQ̂
αΛ ¼ ℧a

ΛQ̂α
Λ RλHk −HλRk þ℧a

λQa
k −Qaλ℧ak ¼ 0

(6) QaK℧̂αK ¼ Qa
K℧̂

K
α ℧̂αλQ̂

αk ¼ Q̂α
λ℧̂α

k

(7) H0RK þ ℧a0Qa
K þ Q̂α

0℧̂αK ¼ 0 Hλ℧̂αλ ¼ Hk̂℧̂α
k̂

HiRK þ℧aiQa
K þ Q̂α

i℧̂αK ¼ 0 ℧a
λ℧̂αλ ¼ ℧ak̂℧̂α

k̂

(8) H0RK þ ℧a
0Qa

K þ Q̂α0℧̂αK ¼ 0 Rλ℧̂αλ ¼ Rk̂℧̂α
k̂

HiRK þ℧a
iQa

K þ Q̂αi℧̂αK ¼ 0 Qa
k̂℧̂α

k̂ ¼ Qaλ℧̂αλ

(9) H0RK þ ℧a0QaK þ Q̂α
0℧̂α

K ¼ 0 HλQ̂α
λ ¼ Hk̂Q̂

αk̂

HiRK þ℧aiQaK þ Q̂α
i℧̂α

K ¼ 0 Q̂α
λ℧a

λ ¼ ℧ak̂Q̂
αk̂

(10) H0RK þ ℧a
0QaK þ Q̂α0℧̂α

K ¼ 0 RλQ̂α
λ ¼ Rk̂Q̂

αk̂

HiRK þ℧a
iQaK þ Q̂αi℧̂α

K ¼ 0 QaλQ̂α
λ ¼ Qa

k̂Q̂
αk̂

(11) Q̂αΛQ̂β
Λ ¼ Q̂βΛQ̂α

Λ H½λRρ� þQa½λ℧a
ρ� ¼ 0

(12) QaKQb
K ¼ QbKQa

K ℧̂α
kQ̂αk0 ¼ Q̂αk℧̂α

k0

(13) RK℧̂αK ¼ RK℧̂α
K ℧̂αλQ̂

α0 ¼ Q̂α
λ℧̂α

0

(14) RKQaK ¼ RKQa
K ℧̂α

0Q̂αk ¼ Q̂α0℧̂α
k
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