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We study the T-dual completion of the four-dimensional N" = 1 type II effective potentials in the
presence of (non)geometric fluxes. First, we invoke a cohomology version of the 7-dual transformations
among the various moduli, axions, and fluxes appearing in the type IIA and type IIB effective
supergravities. This leads to some useful observations about a significant mixing of the standard
NS-NS fluxes with the (non)geometric fluxes on the mirror side. Further, using our 7-duality rules,
we establish an explicit mapping among the F terms, D terms, tadpole conditions, and Bianchi identities of
the two theories. Second, we propose what we call a set of “axionic flux polynomials,” which depend on all
of the axionic moduli and the fluxes. This subsequently helps to present the two scalar potentials in a
concise and manifestly 7-dual form, which can be directly utilized for various phenomenological purposes,

as we illustrate in a couple of examples.
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I. INTRODUCTION

The study of four-dimensional (4D) effective potentials
arising from type II flux compactifications has been one
of the most active research areas and it has received a
tremendous amount of attention for more than a decade,
especially in the context of moduli stabilization [1-7]. In this
regard, nongeometric flux compactification has emerged as
an interesting playground for model builders [§-22]. The
existence of nongeometric fluxes is rooted in a successive
application of 7' duality on the three-form H flux of the
type II supergravities, where a chain with geometric and
nongeometric fluxes appears in the following manner [23]:

Hj — a),-jk — Q% — R, (1.1)
In addition, S-duality invariance of the type IIB superstring
compactifications requires an additional flux, the so-called P
flux, which is S dual to the nongeometric Q flux [24-29].
Generically, such fluxes can appear as parameters in the four-
dimensional effective theories, and subsequently can help in
developing a suitable scalar potential for the various moduli
and the axions. A consistent incorporation of various such
fluxes makes the compactification background richer and
more flexible for model building. In this regard, continuous
progress has been made regarding various phenomenological
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aspects, such as moduli stabilization [9,22,30-33], construct-
ing de Sitter vacua [10,11,16,17,19,34], and the realization
of the minimal aspects of inflationary cosmology
[18,20,35,36]. Moreover, interesting connections among
the toolkits of superstring flux compactifications, gauged
supergravities, and double field theory (DFT) via nongeo-
metric fluxes have provided a platform for approaching
phenomenology-based goals from these three directions
[8,14,15,23,30,37-48].

In the conventional approach of studying four-dimensional
type II effective theories in a nongeometric flux compacti-
fication framework, most studies have centered around
toroidal examples, in particular, with a T°/(Z, x Z,) ori-
entifold. A simple justification for this lies in the relatively
simpler structure needed to perform explicit computations,
which have led toroidal setups to serve as promising toolkits
in studying concrete examples. However, some interesting
recent studies in Refs. [20,32,34,34,36,49,50] regarding
formal developments as well as applications towards moduli
stabilization, searching de Sitter vacua, and building infla-
tionary models have increased the interest in setups beyond
toroidal examples, e.g., in compactifications using Calabi-
Yau (CY) threefolds. As the explicit form of the metric for a
CY threefold is not known, when studying the ten-
dimensional origin of the 4D effective scalar potential one
should represent it in a framework where one can bypass the
need to know the Calabi-Yau metric. In this regard, the close
connections between the symplectic geometry and effective
potentials of type II supergravities [51-53] are crucial. For
example, in the context of type IIB orientifolds in the presence
of the standard NS-NS three-form flux (H3z) and Ramond-
Ramond (RR) three-form flux (F3), the two scalar
potentials—one arising from the F-term contributions and
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the other from the dimensional reduction of the ten-
dimensional kinetic pieces—can be matched via merely
using the period matrices and without the need of knowing
the CY metric [53,54]. Similarly, an extensive study of the
effective actions in the symplectic formulation was done for
both the type IIA and type IIB flux compactifications in the
presence of standard fluxes using Calabi-Yau threefolds and
their orientifolds [55-57].

In the context of nongeometric flux compactifications,
there has been great effort in studying the 4D effective
potentials derived from the Ké&hler and super potentials
[9,16-19,58-61], while their ten-dimensional origin was
later explored via DFT [43,62,63] and in supergravity
theories [44-46,58,59,61,64—66]. In this regard, the sym-
plectic approach of Refs. [53,54] for the standard type 1IB
flux compactification with the H5/F5 fluxes was recently
generalized by taking several iterative steps, i.e., by
including the nongeometric Q flux [67] and subsequently
providing its S-dual completion by adding the nongeo-
metric P flux [68]. In the meantime, a very robust analysis
was performed by considering the DFT reduction on the
CY threefolds, and subsequently the generic N = 2 results
were used to derive the N' = 1 type 1IB effective potential
with nongeometric fluxes [63]. An explicit connection
between this DFT reduction formulation and the direct
symplectic approaches of computing the scalar potential
using the superpotential was presented in Ref. [67] for
type IIB and in Ref. [69] for type IIA nongeometric
scenarios.

Motivation and goals—The crucial importance of the
nongeometric flux compactification scenarios can be illus-
trated by the fact that, generically speaking, one can
stabilize all moduli by the tree-level effects; for example,
this also includes the Kihler moduli in the type IIB
framework which, in conventional flux compactifications,
are protected by the so-called “no-scale structure.”
However, the complexity of introducing many flux param-
eters not only facilitates the possibility of obtaining easier
samplings to fit the values, but also backreacts on the
overall strategy itself in the sense that it creates some
inevitable challenges, which can sometimes make the
situation even worse. For example, the four-dimensional
scalar potentials realized in concrete models, such as those
obtained using the type IIA/IIB setups with T®/(Z, x Z,)
toroidal orientifolds, are very often so huge that it becomes
difficult to analytically solve the extremization conditions,
and one has to either look for a simplified ansatz by
switching off certain flux components at a time, or opt for
some highly involved numerical analysis [16,18,19,24-26].
In our opinion, this obstacle can be overcome if one can
find some concise formulation of the scalar potential.
Usually the convention is to start with a flux superpotential
with several terms, and so it is natural to anticipate that the
numerical computation will result in a complicated scalar
potential with no guaranteed hierarchy among the various

terms, and thus it would be hard to do anything analytically
at that level. Along these lines, we aim to provide a concise
and concrete formulation of the scalar potentials of the two
theories with a sense of distinctness between the axionic
and saxionic sectors, along with a manifestation of the T
duality between them.' The details of our goals are as
follows:

(1) The T-dual completions of type II effective theories
obtained by including the (non)geometric fluxes were
studied in the toroidal context in Refs. [10,11,30,
71-73]; however, a concrete connection between the
(non)geometric ingredients of the two theories is still
missing in the beyond-toroidal case. Although a
couple of interesting efforts have been initiated along
these lines [57,74], albeit without a full understand-
ing of the T duality at the level of NS-NS non-
geometric flux components and the two scalar
potentials; we attempt to fill this gap.

(2) We present a cohomology version of the T-duality
rules between the type IIA and type IIB theories,
which subsequently enables us to read off the 7-dual
ingredients of one theory from those of the other and
vice-versa.. This includes fluxes, moduli, axions,
F/D terms, tadpole cancellation conditions, and the
NS-NS Bianchi identities.

(3) To extend out understanding of the 7-dual mapping
from the level of the flux superpotential and D terms
to the level of the total scalar potential, we invoke
some interesting flux combinations with axions,
which we call “axionic flux polynomials,” which
are useful for writing down the full scalar potential in
a few lines! Recalling the difficulty in moduli
stabilization and subsequent phenomenology given
that the toroidal model has around 2000 terms, it is
remarkable that the form of the generic scalar
potential for the two theories can be so compact.

(4) With the above step, we present the generic formu-
lation of the type IIA and type IIB scalar potentials,
which can be explicitly written for a particular
compactification by merely knowing (some of) the
topological data (such as Hodge numbers and
intersection numbers) of the compactifying (CY)
threefolds and their mirrors.

(5) We collect the T-duality rules for the fluxes, moduli,
scalar potentials, and Bianchi identities in a concise
dictionary in the form of six tables, which present a
one-to-one mapping between the various ingredients
of the type IIA and type IIB theories.

The article is organized as follows. In Sec. II we provide
the basic ingredients for the nongeometric type II flux

'In this article we consider type II compactifications using
nonrigid Calabi-Yau threefolds. The study of scalar potentials
arising in rigid Calabi-Yau compactifications can be found in
Ref. [70].
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compactifications in some detail. Section III is devoted to
invoking the cohomology version of the 7-duality rules and
checking the consistency of the F/D terms, tadpoles
conditions, and Bianchi identities. In Sec. IV we present
axionic flux polynomials and a concise form of the scalar
potentials for the two theories, which are manifestly 7" dual
to each other. Section V presents the illustration of the
scalar potential formulation for two particular examples
using toroidal orientifolds, which subsequently also
ensures the 7-duality checks. Section VI includes a
summary and outlook. In the Appendix we provide a T-
dual dictionary in the form of six tables, namely,
Tables VII-XII, which can be used to read off the relevant
T-dual details of the two type II theories.

II. NONGEOMETRIC FLUX
COMPACTIFICATIONS: PRELIMINARIES

In this section we review the relevant pieces of infor-
mation regarding the type IIA and type IIB orientifold
setups with the presence of (non)geometric fluxes, in
addition to the usual NS-NS and RR fluxes. In this regard,
we also revisit several standard techniques for setting up a
consistent notation in order to fix any possible conflicts in
conventions, signs, or factors.

Considering the bosonic sector of N' = 1 supergravity
theory with one gravity multiplet, a set of complex scalars
goA, and a set of vectors A%, the effective action can be given
as [55]

1 —
5(4):_/ (——R*1+KABd¢AA*d¢B+V*1>
M\ 2
1 1
3 Ref,),p " A4+ Imf,) A F (2

where * is the four-dimensional Hodge star and F* = dA®.
There are three main ingredients—namely, the Kihler
potential (K), the superpotential (W), and the holomorphic
gauge kinetic function (f,)—for determining the four-
dimensional scalar potential (V) appearing in the above
generic action. In fact, the total scalar potential can be simply
expressed as a sum of F-term and D-term contributions as

V=Vp+Vp, (2.2)
where
Ve = eX(KABD ,WDEW — 3|W|?),
V) = %(Re )9 DD,

Note that the sum in the piece V. is over “all” of the moduli,
the covariant derivative is defined through the relation
D W =d W+ WO K, and D, is the D term for the
U(1) gauge group corresponding to A%,

Dy = (04K)(T )" 50" + Lo (2.3)
where 7, is the generator of the gauge group and ¢, denotes
the Fayet-Iliopoulos term. Now we come to the two specific
N =1 supergravities, namely, type IIA and type IIB,
including various fluxes.

A. Nongeometric type ITA setup

We consider type IIA superstring theory compactified on
an orientifold of a Calabi-Yau threefold X5. The orientifold
is constructed via modding out the CY with a discrete
symmetry O which includes the world-sheet parity Q,
combined with the space-time fermion number in the left-
moving sector (—1)7z. In addition, O can act nontrivially
on the Calabi-Yau manifold so that altogether one has

O =Q,(-1)fte, (2.4)
where ¢ is an involutive symmetry (i.e., 6> = 1) of the
internal CY and acts trivially on the four flat dimensions.
The massless states in the four-dimensional effective theory
are in one-to-one correspondence with various involutively
even/odd harmonic forms, and hence they generate the
equivariant cohomology groups H?(X3). To begin with,
following the conventions of [55] we consider the repre-
sentations for the various involutively even and odd
harmonic forms as given in Table I. Here the dimension-
alities of the bases yu, and ji* are counted by the Hodge
number hgrl’l)(X3), while those of the bases v, and 7 are
counted by hU-D(X;). Moreover, the indices k and A
involved in the even/odd three-forms are such that sum-
ming over the same gives the total number of real harmonic
three-forms, which is 2(h*!(X3) + 1).

The various field ingredients can be expanded in
appropriate bases of the equivariant cohomologies. In order
to preserve N' = 1 supersymmetry, one needs the involu-
tion o to be antiholomorphic, isometric, and acting on the
Kahler form J,

(2.5)

which generically results in the presence of O6 planes.
Given that the Kéhler form J and the NS-NS two-form
potential B, are odd under the involution, the same can be
expanded in the odd two-form basis v, as

=1, B, = by, (2.6)
where * denotes the string-frame two-cycle volume,
while 5% denotes axionic moduli. This leads to the

TABLE I. Representation of various forms and their bases.

(2.2)

Cohomology group Hil"l) Y g R H(f) HO)

B (@) (. 8Y)

Dll

Basis He v,
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following complexified Kéhler class J,. defining the chiral
coordinates T“:

J, =B, +il =-T%,, whereT¢=0b"—ir". (2.7)

Similarly, the nowhere-vanishing holomorphic three-form
(€3) of the Calabi Yau threefold can be expanded in the
three-form basis using a prepotential G¢) of the quaternion
sector in the A/ = 2 theory as follows:

Q; = ZKay — G pK. (2.8)

Now, the compatibility of the orientifold involution o
with the Calabi-Yau condition (J A J A J) & (Q3 A Q3)
demands the following condition:

0" (Q3) =200y = Im(e7¥ZK)=0, Re(e?Gy)=0.

(2.9)

In addition, note that only one of these equations is
relevant due to the scale invariance of 23 which is defined
only up to a complex rescaling, and here we simply set 6 in
Eq. (2.9) to zero, which leads to ¢*(Q3;) = Q; and
subsequently the following relations:

Imz* =0,

ReZ=0, ImG\¥ =o.

(2.10)

Regl@ =0,

1. Kdihler potential

The Kéhler potential consists of two pieces and can be
written as [55]

Kya =K% + K@), (2.11)

Let us first consider the K®) part which encodes the
information about the moduli space of the Kéhler moduli,
and can be computed from a prepotential of the following
type [75,76]:

Kape TOTPTC 1 , .
_“CT + EpahTaT + p,T¢T

i
——pn (T2 4 ...
2Po( )2

gk =
(2.12)

where we have ignored the nonperturbative effects by
assuming the large-volume limit. Here we have introduced
T® = 1 as the parameter analogous to the complex structure
homogeneous parameter on the mirror side. In addition,
Kape denotes the classical triple intersection number deter-
mining the volume of the Calabi-Yau threefold in terms of
the two-cycle volume as V = £k, 1”1, while the pieces
with p,;,, p,» and pg correspond to the curvature corrections
arising from different orders in the o' series. Although their
origin from the ten-dimensional perspective is yet to be

understood, the mirror symmetry arguments suggest that
the three quantities p,,, p,, and p, are real numbers and
can be defined as [77,78]

1 A N N
pab:_/ D, A Dy A Dy,
2 Jey
1
=— CY)AD,,
Pa 24/CY CZ( ) A Dy
£B3)x(CY)

where D,, ¢,(CY), and y(CY) denote the dual to the
divisor class, the second Chern class, and the Euler
characteristic of the Calabi-Yau threefold, respectively.
Subsequently, the Kéhler potential is given as

KW = —In[—i(TAGY¥ = T4GW)] = —In(8V +2p,)
=—In <_éKabC(Ta — Ta><Tb — Tb)(TC - TC) + 2p0> .
(2.14)

The second piece K@ encodes the information from the
moduli space of the complex structure deformations, and to
express it we start by defining a compensator field C,

C = evetin =K — e‘D“de%KI(ILX), (2.15)
where the ten-dimensional dilaton ¢ is related to the four-
dimensional dilaton D4 as

(2.16)

)

With our normalizations, the piece Kﬁ; can be determined

from the prepotential G19) as

K = _1n <_i/ Q/\Q)
8 Jx,

- - [} Re(Zm(G{?) - Im(ZRe(c{")]
(2.17)

Now, using the compensator C, we consider the following
expansion of three-form:

CQ = Re(C2May + ilm(C2H)a; — ilm(CGD)ph
—Re(CG\ ), (2.18)

where we have used the compensated orientifold con-
straints given in Eq. (2.10),

Im(C2F) =Re(CG") =Re(CZ*) =Im(CGy) =0. (2.19)
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Using an expansion of the RR three-form that is even under
the involution,

Cy = oy — &, (2:20)
we define a complexified three-form Q. as
Q. =C;3 + iRe(CQ)
= (& + iRe(CZF))a; — (& + iRe(CG,))p*
= N"a;{ -U,p. (2.21)

Here the lowest components of the ' = 1 chiral super-
fields N¥ and U, are defined as follows:

Nk = / . A BF = 4 iRe(CZF),
X3

U, = / Q. Aa; =& + iRe(CGY). (2.22)
X3

Now, using these pieces of information, the second part of

the Kihler potential, namely, the K9 piece, can be
written as

1
K@ =-21n |:4/ Re(CQ) AxRe(CQ)| =4Dyy, (2.23)
X3

where in the second step we have utilized the following
identity:

/ Re(CQ) A xRe(CQ)

= Re(CZH)Im(CGY") — Im(C2*)Re(CG,")
— 4e~2Dua (2.24)
The above identity can be derived using the definitions of

the four-dimensional dilaton D44 through Eq. (2.16) and the

K\ given in Eq. (2.17). Moreover, the Kihler potential

part K@) can be further rewritten with explicit dependence
on a set of special coordinates defined as

Re(CZ%) =y", Re(CZF)=yk, Im(CZ*)=y'. (2.25)

For the explicit form of the prepotential G for the
quaternion case we consider the generic expression

kABCyAyByC
60
+ %f’o(yo)zv

gu(y) = +3 pAByAyB+p N
(2.26)

which subsequently gives the following derivatives:

k AYV)BY,C
DyoG) = — % + Pad? + iped”,
Dy G ! kapc )" + Pasd® + pad’. (2.27)

27y

Now, considering the identification of coordinates J° = y°
and Y* = {y*,iy*}, the prepotential G\?) takes the form

0 k ;.4\ m
GOy, yk, iyt) = & oka,my ¥y~ +72y s kY'Y
. . i
+ Py Yyt + Pty + Epo(y°)2,
(2.28)

and along with this we have the following expressions:

1 .
m(CGy") = 300 Kamy*yEy™

1
——5 kap YV —
0)2 r 2(y

6(y
+ Pyt + Po)’,

1. . N
m(Cg,({Q)) = 30 Ky Y™ + Piay* + iy’

1 1 . N
Re(Cgﬁq)) == 2_y° Koy’ y< + 2_y° Kagmy*y™ + Pray*

+ piy’. (2.29)
Further, we define a new set of special nonhomogeneous
coordinates z° = (y°)7!, zF = y¥/y% and 7* = y*/y°, and
subsequently the prepotential in Eq. (2.28) simplifies as

(2)2g'D(*, 2,

GO(L, 2k, ) = (2.30)

where ¢\@) (¥, z%) in the special coordinates is given as

gk, ) = —éklpxz*z”z" + %I%,lkmziz"zm
VPt gt sp (231)
In addition, one has the useful relations
m(Cgéq)) = ZO)—l <é kﬂ/mzﬂ P — %j%km Zhzkgm
+ Pzt + f’o) :
m(CG") = () Runz'2" + Praz’).
Re(Cgff’)) = (9! (— % k2’2 + %I%,lkmzkz’”
+ Pzt + 13,1), (2.32)
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which give the following explicit forms for the chiral
variables:

T = b — i1,
N0 =& +i(z)™,
NE = &k 4 i(20)~12h,
=& —i( ( k7’7" k,lka "= Pzt - 134)
(2.33)

Moreover, we find that K9 simplifies to the following
form:

K9 =4D,,

——2In E (Re(CZH)Im(CG) - Im(czi)Re(cggﬂ))}
=—4In(z")~' = 2In (ék,lp,(z‘z”z" +%> : (2.34)

where the various moduli z°, z, z* implicitly depend on the
variables N°, N¥, and U,. Subsequently, the full Kihler
potential can be collected as

4
Kjya = —In <§Kabct“tbtc + 2p0) —41In(z%)!

—21In <é k2225 + %) , (2.35)
|
HAa=H®s,  HA B = —Hdy,
w<Qap =w,i", w < pt=—w, e,
Q> a; = Q%v,, Qo f' = -Qy,,
Rea; =R;l, Rep=—RM,
H A 1=H = —H'a, - H)p,;

w <y, =wita, + wa,;ﬂk,
Q > 4 = —QM(XA _ Qal}ﬂi{’
R * @, = Ria; + R .

Q" =

Further, we take the following expansion for the multiform
RR fluxes Fgg:

FRREF0+F2+F4+F6

=m1 + my, + e, " + eg®s.  (2.39)

Now we consider the Kéhler form expansion J. = —T¢y, to
obtain the following multiform I1; , which is analogous to
the period vectors on the mirror side:

w < a; = Wi,

Q> a; =
Rea, =0=Rep;

which can be thought of as a real function of the com-
plexified moduli T¢ N°, N*, and U,. For the latter purpose,
we also define U = }k;,,z*z’z" for the complex structure

side, which is an analogous quantity to the overall volume
V of the CY threefold, and subsequently the Kihler
potential can also be written as

Kya = —1In(8V +2pg) — 41n(z")!
Po
—-21 —.
n (U + 4)

Here we would like to convey to the reader that the forms
and notations are being put in place while keeping the
mirror symmetry arguments in mind, which will be
illustrated/manifested after considering the type IIB side
later on.

(2.36)

2. Flux superpotential

To get the generalized version of Gukov-Vafa-Witten
flux superpotential [79], we need to define the twisted
differential operator [23],

D=d-HA.-w<.-Q>.—-Re. (2.37)

The actions of the operators <1, >, and * on a p-form
changes it into a (p+1)-, (p —1)-, or (p — 3)-form,
respectively, and the various flux actions can be given as [9]

HAa =0=HAp

w < pk = —w ke

Qalﬂa’ Q > ﬁk = _Qakﬂa;

_ ok A pl.
w <],ua = Wy af{+wmlﬁ ’

Auh A )
—Q%a — Q"p4

(2.38)
1
T,
I; = 2.40
e (% KabcTaTh - pabTb - pzl)f/v ( )

_(% KabcTaTbTC + paTa + ip0)®6

Note that usually in the absence of any o' corrections and
the prepotential quantities such as p,,, p,, and py, we
usually denote ITj_ as
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1 1
I =el=1+1J. +5JC A, +§JC A AT,

1 1
=1-T%, +§Kab(?T“T”z7“ _akabcTaTbTC®67 (2.41)
which gets modified after including the o corrections.
Now, the generalized flux superpotential with contributions
from the NS-NS and RR fluxes can be given as [9,30,
55-57,74]

— wR NS
WIIA = WIIA + WIIA

1
= ——= [ (Fgrg +DQTI; ),

7 (2.42)

where we have introduced a normalization factor of \/§
Here the antisymmetric multiforms are defined through the
following Mukai pairings:

<F’ A>e\'en
(ToA)gaa = —T1 AAs+T3 A A3 =T's A A,

:FoAA6—F2/\A4+F4/\A2—F6/\A0,
(2.43)

where I" and A denote some even/odd multiforms. Now,
utilizing the flux actions of various NS-NS and RR fluxes
on various cohomology bases as given in Egs. (2.38) and
(2.39), the superpotential takes the form

1 1
\/EWIIA = |:E‘() + Taéa + Elca,,L.T“Tbm“ + gKathaTchmo - ip0m0:|

where we have introduced a shifted version of the flux
parameters to absorb the effects from p,, and p, in the
following manner:

S 5 b 0
eO_eO_pama’ €g=¢€4— PapMm +pam s

HOZHO_paQam "_VaOZWaO_pathO—l_paRO’
Hk:Hk_quuk’ wak:Wak_pabek+paRk’

Hi:Hﬁ_paQaAa 1’_‘}(1}L :Wai_pahQML‘I»puRﬂ' (245)
Thus, we note that considering the ' -corrected prepotential
of the form (2.12) consistent with the mirror symmetry
arguments generically results in some rational shifts via p
and p, for some of the conventional flux components. This
was already observed for the case without nongeometric
flux [75]. Usually, one does not care about the quantities
pay and p, as it is only p, that appears in the Kihler
potential (and not p,;, and p,); however, in that case, while
studying phenomenology one should be careful with
strictly considering the integral fluxes and using mirror
symmetric arguments at the same time. In addition, we also
note that the analogous prepotential for the quaternionic
sector given in Eq. (2.30) leads to a slight modification in
the variable U, as does its mirror-symmetric counterpart on
the type IIB side, as we will see later.

Utilizing the generic form of the Kihler potential (2.35)
and the superpotential (2.44), the F-term contribution to the

_ 1 1
— N Hy + T4, + EKabchTCQGO + gKabcTaTchRo - iPoRo}
k| ., 1 brreMya 1 arrbTc .
— N Hy + T +§Kath T°Q% +6KabcT TTRy —ipoRy

[ 1 1
= Uy [+ T, o+ 5k T TQY + ki TT' TR ipORﬂ] , (2.44)

[

four-dimensional scalar potential V¥, can be computed
using Eq. (2.2), where the sum is taken over all of the T,
N°, N*, and U, moduli.

3. Gauge kinetic couplings and the D-term effects

Let us quickly recall the D-term contribution to the scalar
potential by mostly following the ideas proposed in
Refs. [60,63,65]. Keeping in mind that four-dimensional
vectors can generically descend from the reduction on the
three-form potential C; while the dual four-form gauge
fields can arise from the reduction on the five-form
potential Cs, let us consider the following expansions of
C; and Cs:

Cy = oy — £ + A%, Cs =A% (2.46)

Now considering a pair (y%,7,) to ensure the 4D gauge
transformations of the quantities (A% A,), we have the
following transformations:

A% —> A% + dy°, Ay = Ay +dy,.  (2.47)

Subsequently, by considering the twisted differential D
given in Eq. (2.76) we find the following transformation of
the RR forms:
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Crr=C +C3+Cs
= g = &'+ A%y + AJ
— Crr + D(ruq + 7o)
= (& =yt + 7,0 — (& + 1 e — 7.Q7)F
+ A+ AR, (2.48)

where we have used the flux actions given in Eq. (2.38).
Now the transformation given in Eq. (2.48) shows that
the axions & and &, are not invariant under the gauge

transformation, and this leads to the following shifts in the
N =1 coordinate N* and U,:
SN = —yoiF 47,Q%, 65U, —7,0%.

= yawaﬂ (249)

In particular, this implies that if we define two types of
fields

iNF =l _ iU
A ZF = e'™ti,

(2.50)

=p =€

then these fields Z; and E* are electrically charged under
the gauge group U(1), with charges (—Ww, ) and (W),
respectively, and they are magnetically charged with

charges (Q%) and (—Q%,), respectively. Now using the
type ITA Kihler potential given in Eq. (2.35) and the
variables in Eq. (2.33), we derive the following Kihler

derivatives:
i lzgkaiZkZm 3ﬁ0
Ky=r—5=1- _ — ],
2() 2UFE) AU
ikjm 2’2" iz
2(20) U+ U+

KNk:

Ky, = 3 (2.51)

Subsequently, one can compute the following two D terms:
D, =
D* = i[(0

In addition, the gauge kinetic functions follow from the

[(aNk K) Wa
Nl? K) Qak _

(8U; )Waﬂ s

(8y, K)Q3)- (2.52)

prepotential derivatives gfj,? for the 7 moduli written out by
considering the even sector, which is written as
PR

(fgle)aﬂ - _E (KaaﬁTa - paﬁ)’ (253)
where we also observe the presence of parameters
Pqp Which, however, will not appear in the “real” part
and hence in the gauge kinetic couplings given as
Re(f5) 5 = — 3 Raapt. This leads to the following D-term
contributions to the four-dimensional scalar potential:

1
DA[Re(f5)5) Dy + 5 DRe(f3%)) DF,

1
VﬁA )

(2.54)

where the explicit expressions of the D terms given in
Eq. (2.52) are

Kq

ez 1A
==/’ " Ku + po— 5 klkmzﬂzkz’"> W0

+ kg2 7™M A+ z’l%g} ,
Ky

0y— 2
Da:_@)Teli<u+p0_§k,lka m)QaO

+ k2’2" Q™ + Q% ] (2.55)

Here ¢ = (2)2/(U+E2), and also note that Re(fS¢) > 0
and Re(f%°) > 0 as these are related to moduli space

metrics which are positive definite, and can be shown to
be VR, >0.

4. Tadpole cancellation conditions
and Bianchi identities

Generically, there are tadpole terms present due to the
presence of 06 planes, and these can be canceled by either
imposing a set of flux constraints or adding counterterms
that can arise from the presence of local sources such as
(stacks of) D6-branes. These effects equivalently provide
the following contributions in the effective potential to
compensate the tadpole terms [30]:

1
Vi = 1ot A (ImQ,].DFgg).  (2.56)

where the three-form DFyy can be expanded as [69]

DFgr = —(H*my — w,*m® + Q%e, — R*ey)a,

— (Hgmg — wzm® + Q%e, — Riceo)ﬁi‘- (2.57)

Subsequently, Eq. (2.56) simplifies to the following form:

1 )
yiad :Eekq [(ImN*) (Hymg — w ;m® 4+ Q% e, — Rie)

+ (ImU,) (H*my — o, m® + Q%e, — R*ey)].  (2.58)
In the four-dimensional type IIA effective theory, the
dynamics of various moduli is determined by the total
scalar potential given as a sum of the F-term and D-term
contributions,

V}(I),tA - VﬁA + VﬁA’ (2-59)
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where the various fluxes appearing in the scalar potential
must satisfy the full set of NS-NS Bianchi identities and RR
tadpole cancellation conditions.

B. Nongeometric type IIB setup

In this subsection we present the relevant details about
the nongeometric type IIB orientifold setup. The allowed
orientifold projections can be classified by their action O
on the Kéahler form J and the holomorphic three-form €253 of
the Calabi-Yau metric, which are given explicitly as [56]

[0 2.60
_{(—)FLQPG ot () =J, 65(Q3)=-Q;. (2.60)

Note that Q,, is the world-sheet parity, F; is the left-moving
space-time fermion number, and ¢ is a holomorphic,
isometric involution. The first choice leads to an orientifold
with 05/09 planes, whereas the second choice leads to
03/07 planes.

As in the type IIA case, we denote the bases of even/odd
two-forms as (u,,v,) and four-forms as (fi,,7,) where
a e h'(X;), a € hl'(X5).> However, for the type IIB
setups we denote the bases for the even/odd cohomologies
H3 (X3) of three-forms as symplectic pairs (ag, b’) and
(.AA, BA), respectively, where we fix their normalization as

/aK /\bJ :6[(1,
X

Here, for the orientifold choice with O3/07 planes
the indices are distributed in the even/odd sector as
Ke{l,...h7'(X3)} and A €{0,...,h>'(X;3)}, while
for 05/09 planes one has K € {0,...,h%'(X5)} and
A€ {1,...,h*'(X3)}. In this article, we only focus on
the orientifold involutions leading to the O3/07 planes.

The various field ingredients can be expanded in
appropriate bases of the equivariant cohomologies. For
example, the Kihler form J, the two-forms B, and C,, and
the RR four-form C, can be expanded as

/AA ABA =52 (2.61)
X

J:t(l:u(zv B2:_bayav
Cy=Cofi® + DS Apg+ VE Nag — Vi AbK.
(2.62)

Cy=-cv,,

Note that * are string-frame two-cycle volume moduli,
while b, ¢, and c, are various axions. Further, (VX, V)
forms a dual pair of space-time one-forms and D is a
space-time two-form dual to the scalar field c,. Also, since
o* reflects the holomorphic three-form Q3, we have h%!(X)

*For an explicit construction of type IIB toroidal/CY orienti-
fold setups with 2L1(X5) # 0, see Refs. [80-85].

number of complex structure moduli appearing as complex
scalars.

1. Kihler potential

The generic form of the type IIB Kihler potential can be
written as a sum of two pieces motivated from their
underlying N = 2 special Kihler and quaternionic struc-
ture [56],

Ky = K©%) + K@), (2.63)
where the K¢%) piece depends mainly on the complex
structure moduli, while the K(@) part depends on the
volume of the Calabi-Yau threefold and the dilaton. To
compute the K(*) piece, we consider the involutively odd
holomorphic three-form Q3 = A* A, — F,B" which can
be written using a prepotential of the following form
[77,86]:

LpXiXixe 1
6X0° ‘+§Pin'X"+PiX’X

i . ,
—EPO(XO)2 + (X2 Fise (UY),

f(c's') — _
(2.64)

where the /;;;’s are the classical triple intersection numbers
on the mirror (Calabi-Yau) threefold and we have defined

the inhomogeneous coordinates (U’) as U’ = % via further

setting X0 = 1. Further, the quantities Pij» Di» and P are
real numbers, and moreover p,, is related to the perturbative
(a')? corrections on the mirror type IIA side (as we have
argued before) and so is proportional to the Euler character-
istic of the mirror Calabi-Yau threefold. In general, f(U")
has an infinite series of nonperturbative contributions
denoted as Fi, (U'); however, assuming the large com-
plex structure limit, we will ignore such corrections in the
current work. The derivatives of the prepotential needed to
explicitly determine the Kihler and the superpotential
terms are given as

ey 1o
]-"(()' 1= gliij’U’Uk + p:U' = ipo,
f(c.s.) o 1

i ——EliijjUk‘f‘ﬁijUin‘Fpi.

(2.65)

Subsequently, the components of the holomorphic three-
form Q3 can be explicitly rewritten as period vectors in
terms of complex structure moduli Ui,

Ao
U'A;
| GLpUU* = pyU'U = p)B!
~(glLixU'U'U* + p;U" — ipy) B

Mg (2.66)
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Now the complex-structure-moduli-dependent part of the
Kihler potential can be simply given as

K(©s) = —1In (—i / I, /\1=[92>
e :

= —In[—i(XAF) - A F )
4
_—ln<§l,~jkulu/uk+2]~?o)
:—ln{—ilék(U’—U’)(U-’—U-’)(Uk—U")+2i70 ,
(2.67)

where we have used saxions/axions of the complex
structure moduli via defining U’ as U’ = v/ — iu’. For
the Kihler potential piece K@) which arises from the
quaternion sector, we consider the Kihler form expansion
J = TAu,, where u, denotes the (1,1)-form before ori-
entifolding, and subsequently one can follow a similar
approach as was taken for the mirror type IIA case by
considering a prepotential of the following form [87]:

TATBTC | .
F9 = fABCW + EPABTATB + paTAT
1
T3 ipo(T°)* (2.68)

where by assuming the large-volume limit we neglect the
nonperturbative effects from the world-sheet instanton
correction [88]. Now we define a multiform p using the
periods of the prepotential in the following manner:
p=1+T, - FOu + 2F D - AF\d;.  (2.69)
Now, unlike the type IIA case, one can use a compensator
field C = e~ which does not depend on the volume, and
by using the RR potential as Crg = Cy + C, + C4 we
consider a complex multiform of even degree defined
as [57]

e = B2 A CY) 4 iRe(Cp)

=851 - G, + T,ji% (2.70)

where the explicit forms for the chiral coordinates in
Eq. (2.70) are given as

S=CY tie=t =cy+is,
G*=c"+Sb?,

A PR B b
Ta:Ca—FfaabbaC +§C0faabbab

1 1.
—is Efaﬂytﬂﬁ_ifaahbabb_paaba_pa s (271)

where we have rewritten the dilaton as e =s and
{Capy- Z4ap) Tepresents the set of triple intersection num-
bers which survive under the orientifold action [67]. It is
worth noting that there is a shift in the coordinates 7', due to
the presence of p,, and p, in the prepotential F(4), while
the other variables remain the same. Now the Kihler
potential can be computed in the following steps [87]:

K<Q>:—2ln{i / (Cp,Cﬁ)]
CY
:_21H[|c|2(2(j:<q) —_F@)

=—4Ins—2In <V—|—@) ,

)= (F + FO) (1= T))]

4 (2.72)

where the overall internal volume of the CY threefold is
written as V) = § £, 1%’ 17 using the string-frame two-cycle
volume moduli. Further, the string-frame ) can be iden-
tified with the Einstein-frame volume Vg via Vi = s3/2V.
Note that this o« correction in the Kihler potential has been
used to naturally realize the LARGE volume scenarios [2].
To summarize, the full type IIB Kihler potential can be
given by

4 L
KHB = —In (glijkulufuk + 2ﬁ0) —41ns

1
—2In <8 Z/ﬂaﬂyt{lt/}ty + %) . (273)

Further, in order to compute the Kéhler metric and its
inverse for the scalar potential computations, one needs to
rewrite the dilaton (s), the two-cycle volume moduli (%),
and the complex structure saxion moduli (') in terms of the
correct variables S, T,, G% and U' which in the string
frame are defined as

Ul=v—iu,
S=cy+is,
G =(c"+cob)+isb?,

1
—is|l=¢
is|5

1,
aﬁ}’tﬁﬁ_il’ﬁaabbabb_paaba_pa ) (274)

T,=¢,
where ¢, represents the axionic combination ¢, =
Cy + Coapb?c” +%cofaabb”bb.

2. Flux superpotential

It is important to note that in a given setup, all flux
components will not be generically allowed under the full
orientifold action O =Q,(—)to. For example, only
the geometric flux @ and nongeometric flux R remain
invariant under Q,(—)ft, while the standard fluxes (F, H)
and nongeometric flux (Q) are anti-invariant [32,60].
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the actions from all of the NS-NS (non)geometric fluxes

Therefore, under the full orientifold action, we can only
as [60]

have the following flux components:

F3E(FA,FA), H3E(HA,HA),
w = (waA’wa/\ié)aK’d)aK),

0 =(0 0% 0™ 0%), R=(Rk.RX). (275)

D=d-HA.—-w<.—-Q>.—R-e. (2.76)

The action of the operator <, >, and ® on a p-form changes
itinto a (p + 1)-, (p — 1)-, or (p — 3)-form, respectively,

In order to keep the type IIB case distinct from the type IIA
and we have the following flux actions [60]:

case, we define a new twisted differential D involving
|

H VAN AA - —HA(D(), H AN BA - —HA¢6,

HAag =0, HAbK =0, HA1=H=-HMA, + H\B", (2.77)
o <A\ = —wppT°, o <1 BN = —w, M4, o <A, = 0, Ay — 0B,
o < ag = —wgxp”, o <1 bK = —é)ﬂKﬁ“, ® < p, = OKag — dbX,

Q> Ay =-0%us. Q> B=-0"u

> it = ~0" Ay + 07\
Q > ag = —Q?(l/b, Q > bK = —QaKIJb, v

a _QaKaK + QaKbK,

ReAy=0, ReB =0, Reagx=-Rgl. Re+bK=—RFKI,
Rq)6 RClK RKbK.

Using the flux actions given in Eq. (2.77) for the NS-NS fluxes and the expansion of the RR flux F; as
Frr = —FMA, + F,B", one obtains the following generic form for the flux superpotential [24,26,30,32]:

WIIB = WIIB + WIIB \/’ } [ FRR + D(Devcn] A H93
3

1 A .
== (FA - SHA - GawaA - TaQaA) \/— (FA SHA - GawaA - TaQaA)]:A

V2

Subsequently, using Eq. (2.65) leads to the following explicit form of the type IIB generalized flux superpotential:

(2.78)

_ . 1 . 1 -
V2Wyg = |Fo 4+ U'F; + =1, U UIF* = 1, U'UIUFO — ipy F°
2 6"
_ N T LA
—S H0+U1Hi+§liijlU]H —gliijlUjUH —lpoH
a |~ i~ 1 ir7) 9y k 1 irrjirrk,, O ;= 0
—G wa0+Uwai+§liijUwa —gl”kUU U O)a —lpoa)a

2 zq 1 A 1 o o A
T, [Q 0+ U0 +3 LU0 0™ =21 U'LIUFQ™ — i Q 0}, (2.79)
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where because of the o corrections on the mirror side, the
complex structure sector is modified to induce rational
shifts in the usual flux components, given as

3. Gauge kinetic couplings and the D-term effects

In the presence of a nontrivial sector of even (2,1)
cohomology, i.e., for hi’l(X) # 0, there are D-term con-
tributions to the four-dimensional scalar potential.
Following the strategy of Ref. [60], the same can be
determined by considering the following gauge transfor-
mations of the RR potentials Crgr = Cy + C, + Cy:

Crr = Cgrr + D(y¥ax — yxb®)
D (Co + Rxy® = R¥yx) — (¢ 4+ Q“ky™ — 0yk)v,
+ (C(x + é)aKyK - &)aKYK)ﬂa' (281)

These lead to the following flux-dependent shifts in the
variables S, G¢, and T, induced by the respective shifts in
the axionic components ¢, ¢, and c,:

oS = RKJ/K - RK}'K’ oG = QukJ’K - QaKYK’

6Ta = &)(zKyK - &)(leK' (282)

This leads to the following two D terms being generated by
the gauge transformations:

DK == Z{R[((asl{) + Qak(aaK) + &)aK(aaK)],

DX = —i[RK(94K) + QK (9,K) + @,X(0°K)].  (2.83)

Now, using the Kéhler potential in Eq. (2.73) and the
variables given in Eq. (2.74), the Kihler derivatives can be
given as

KS:

i Laapt®bD 30\ _ g
2s 2V+D) T4y )
I8 1°b? it

aZiZ_K_a, K :_—:_K )
25 (V) “ T ™ 2s(V 4+ B) Ta

which gives the following two explicit D terms:

k(@)
k9 1.
DK = —se : l:RK<V+p() —Efaabtababb>
+ Qal(gaactabc - t(lé)al(:| s
se@ 1
DX = [RK (V + po— Eiﬂaabﬂbabb>

+ QK7 17b° — raa),,K] . (2.85)

Using these results in the D-term expression given in
Eq. (2.85) leads to the following contributions in the four-
dimensional scalar potential [9]:

Vi =5 Dy Relf )| D+ D [Re( /%) D, (2.86)
Here the gauge kinetic couplings for the electric and
magnetic components can be computed from the orientifold
even sector of the holomorphic three-form. For that we
consider the holomorphic three-form of the N = 2 theory,
and after the imposition of the orientifold involution it can
be split into the even/odd sectors,

Q3 — did + ngen

= XAAA_.}—ABA+XKQK —FKbK, (287)
which leads to the following electric gauge kinetic coupling
from the even sector [56]:

i
fix = _EFJK| (2.88)

evaluated at YK =0

For the case of compactifications using rigid Calabi Yau
threefold and the cases of frozen complex structure moduli,
the gauge coupling fg; is just a constant [9], which
otherwise can generically depend on the complex structure
moduli U’. Moreover, using mirror arguments and the
prepotential, one can show that

fixk = _%(ZUKUI = Pk)- (2.89)
Here we recall that the index i runs in odd (2,1) cohomol-
ogy which counts the number of complex structure moduli
U', while the indices J and K run in the even (2,1)
cohomology. Given that the p;x’s are real quantities, they
will not appear in the real gauge kinetic couplings, which is
denoted as Re(f,x) = —11,xu’ = =11, and similarly
for the magnetic couplings we have Re(f’K) = —17%.
Also note that both of the gauge couplings are positive, and
this ensures the positive definiteness of the D-term con-

tribution to the scalar potential, VE; > 0.
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4. Tadpole cancellation conditions
and Bianchi identities

Generically, there are tadpole terms present due to the
presence of O3/07 planes, and these can be canceled by
either imposing a set of flux constraints or adding the
counterterms that can arise from the presence of local
sources such as (stacks of) D3/D7-branes. These effects
equivalently provide the following contributions in the
effective potential:

a 1 ( cven
Vig = EEK Q)/X (Im®E"], DFgg),  (2.90)
3

where the multiform D Fry can be expanded using the flux
actions in the generalized twisted differential operator,
given as [30,61,63,67,68]

DFgg = (FAH® — FAH ) )®g + (Faw,™ — Frag p)0"
+ (FAQaA - FAQaA)ﬂa-

In addition, using the definition of ®¢°" given in
Eq. (2.70), the tadpole term given in Eq. (2.90) simplifies
to the following form:

1
Vilg = 3 KV [(F\H" — FMH ) [ImS]

+ (FAwaA - FAwa/\)[ImGa}

The moduli dynamics of the 4D effective theory is
determined by the total scalar potential given as a sum
of F- and D-term contributions,

Vits = Vi + Vite- (2.92)

where the various fluxes appearing in the scalar potential
must satisfy the full set of NS-NS Bianchi identities and RR
tadpole cancellation conditions.

III. ACTION OF THE T-DUALITY
TRANSFORMATIONS

In this section we invoke the 7-duality rules in the
cohomology formulation by taking some iterative steps. We
know that in the fluxless case, the mirror symmetry is
present and hence type IIA and type IIB ingredients can be
mapped to each other. After including the fluxes, this T
duality is destroyed or restored if appropriate fluxes are
included. So our plan is to first look for the 7T-duality rules
among the various moduli and axions in the fluxless case,
and then look at the superpotentials and D terms to invoke
the mapping between the various components of the type
ITA and type 1IB fluxes.

Looking at the two Kihler potentials given in Egs. (2.35)
and (2.73), we observe that they are exchanged under a

A A "
+ (FAQ™ = FRQ))[ImT,]]. (2.91) combined action of the following set of transformations:
|
(297! < s, 1 < ul, <19,
kﬁpﬂ <~ faﬂyv lzimn <~ 2otalﬁ Kabe <> lijk’ kaaﬂ <~ ?iJK’
Pab <_)[~7[ja Pa epi? P0<—>1~?0» ﬁklepaa! ]Nj/l < Pa- (31)

In the above mapping, the quantities on the left side of the
equivalence belong to the type IIA theory while the respective
ones on the right side belong to the type IIB theory. Moreover,
itis easy to observe that the complexified variables of type IIA
given in Eq. (2.33) and those of type IIB in Eq. (2.74) are
exchanged with the mapping details given in Table II.

A. F-term contributions

Let us begin by summarizing the various flux compo-
nents that contribute to the effective four-dimensional
potential via the F-term contributions.

TABLE II. T-duality transformations for various type IIA and type IIB moduli.

A NO Nk UA T« % Zk Z/l 19 ggo fk 5/1

IIB S G* T, U s be * u' co ¢+ cob? Ca+ Caanc®” + 1ol gupbb”
TABLE III. T-duality transformations among the NS-NS fluxes appearing in the F-term effects.

A H, H, H Wao Wk w Q% Q% Q¥ R, R, R*
IIB HO o an Hi o Hi wui Qai _HO _waO _QaO
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Type ITA:

RR flux = (Fg:eq, Fy:e,, Fy:m® Fy:mg),

NS flux = (Hy, Hy, H,
Type IIB:

RR flux = (F3: F,, F;, F', F°),

NS flux = (H,, H;, H', H°,

Now it is interesting thing to observe that the explicit
expressions of the type IIA and type IIB superpotentials as
given in Egs. (2.44) and (2.79), respectively, are exchanged
under a combined action of a set of 7T-duality trans-
formations for the fluxes given in Tables III and IV.

B. D-term contributions

In the string frame, the D terms in both the type IIA and
type 1IB theories are as follows.

ITA:

() F

D =
“ 2

1,
Ku +ho—5 kikmz’lzkz'”> W

+ k/lkmzﬁzmwak + Z}L‘A’V(z/{:| ’

0)—1
z)ez I N A
D* = - )2 [(U + Po — Ekzk;nZleZm>Qa0
+ I%lkalZmQak + ZiQa,{| .
I1IB
se%@ 1
DK = - |:RK <V + Po — Egaablababb>
+ QaKl?aactabC - ta&)aK:| ’
x(©
se 2
DK =

1.
{RK <v +po—3 faabt“b“bb>
+ QK7 19b° — za@ak] . (3.3)

Recalling that py <> py and V <> U under the mirror
symmetry, and subsequently after using the T7-duality

TABLE IV. T-duality transformations among the RR-flux
components.

A
Wa0s Wak>Wa'™»

j 0
D405 Dy a)al7 Dy

an’ Qai? Qaia RO?Rth)‘

QaO’ Qah an’ Qai)‘ (32)

|
transformation listed for the moduli and the axions given
in Table II, we find the 7T-duality transformation of D-term
fluxes as presented in Table V.

C. Tadpole conditions

Now we compare the various tadpole terms generated in
the type IIA and type IIB theories, which can also be
compensated by appropriately adding the local effects from
various D ,-brane and O, planes. In particular, in this work
the tadpoles on the type IIA side can be compensated by the
D6/ 06 effects, while the tadpoles on the type IIB side can
be compensated by D3/03 and D7/07 effects. These are
given as

) 1 P
V}i‘,‘i = EeK(q) [(Ime)(Hizmo —w,m* + Q%e, — Rje)
+ (ImUl)(HlmO - waima + Qalea - RieO)L
1
Vit = 5V [(FAHN = FMH ) [Ims|
+ (Fprw,* = Fro,,)Im(GY)

+ (FAQ™ = FAQ%\)Im(T,)). (3.4)
Now, given that K9 < K@ N° « S, N*¥ < G%, and
U, <> T, under the explicit T-duality rules, it is simple to
observe that the type ITA and type IIB tadpole terms are
exchanged under the 7-dual flux transformations given in
Tables III and IV.

D. Bianchi identities

As we have already established the exchange symmetry of
the F'and D terms, we now check how our 7-duality rules are
applied to the flux constraints in the Bianchi identities of the
two sides. This is necessary to prove the claim for the
exchange symmetry between the actual effective potentials
of the two type Il theories, in the sense that if some pieces are

TABLE V. T-duality transformations among the NS-NS fluxes
appearing in the D-term effects.

IIA )
1B Fy F; Fi —FO

i

EQ
3

(=]

A Qoz}L wa/l Qak w(zk QaO W(IO
1B &)aK é)aK _Qak _QaK _RK _RK
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killed by the Bianchi identities on one side then that should
also be the case on the mirror dual side.

1. Five classes of Bianchi identities for type IIA

Using the flux actions given in Eq. (2.38), the following
five classes of NS-NS Bianchi identities are obtained by
demanding the nilpotency of the twisted differential oper-
ator D as defined in Eq. (2.37) by imposing D> = 0 on the
various harmonic forms:

(I). HYgy = Hpok
(IT1). H*Q*, = H

Aak A, Nk
[}Q s Wi Wap = WaiiWa -

(III) Q”,{wa’l = Wacha s Qakw(z Qa Wais
N A 1’% A A T N A
WallQa = Q(l Wak, WaAQa/) - Qaﬂwapa
Q= @t

HiRp) + Q7w =0, HIR + Qw1 =0,
R*H; — H'R; +w,"Q% — Q“w,; = 0.
(IV) Rl{W{M = R]Acwai{’ Q(MQaﬂ = Qa]A(Qak-
(V). RQ% = RiQ™.

These identities suggest that if one considers the antiho-
lomorphic involution such that the even (1,1) cohomology
is trivial, which is very often the case, then there will be no
D terms and the only Bianchi identities to worry about are

(3.5)

R*H; —H'R; 4+ w,*Q*; = Q¥w,; =0
HiRg +Qpw,p =0, HUR 1+Qa w1 =0. (3.6)
2. Five classes of Bianchi identities for type 1IB

Similarly, using the flux actions given in Eq. (2.77), the
following five classes of NS-NS Bianchi identities are
obtained by imposing D?> =0 on the various harmonic
forms [60]:

— gA
=H WDpg-

HA Qa/\

(I). Hyo,
(I1). HMNO,\* =
&),,K&)/”( = @ﬁKc?)aK.
(I11). C')aAQaA = a)aAQaA» 0% = Qk Y,
H\Rg + 0,0 Q% + Q%A = 0.
H Rk + 0,2 Q% + 0™ éyx = 0,
H\RK + 0,0 + 0 \&,* =0,
HARK 4 0,2 0K 4+ 0% K — 0,
(IV). R e = Rid,™, Q™0 = 0" 0%,
0k Qb = Q"X Q%.
(V). R Q™ = R¥Qx =0

A _ A
Wy Wy = Dp Wy,

(3.7)

The above set of type IIB Bianchi identities suggests that if
one chooses the holomorphic involution such that the even
(2,1) cohomology is trivial, then only the following Bianchi
identities remain nontrivial:

HA QA(I _ HA QaA’

PN ~
waAQa :waAQaA’

A _ gA
HAa)a =H WDpAgs

A _ A
Wy Wpp = Wy Wy,

QNP = 0PN 0%y (3:8)

In such a situation, there will be no D term generated as all
of the fluxes with {J, K} € h%' indices are projected out.
Moreover, if the holomorphic involution is chosen to result
in a trivial odd (1,1) cohomology, which corresponds to the
situation of the absence of odd moduli G* and is an often
studied case, then there are only two types of Bianchi
identities to worry about:
HAQA(I _ HAQ(IAv QaAQ/iA — Q/}AQHA-

Using the T-duality transformations among the various NS-
NS fluxes as listed in Tables III and V, we find that indeed
the 14 Bianchi identities on the type IIA side are precisely
mapped onto the 14 Bianchi identities on the type IIB side,
and vice versa. However, there is a rather significant mixing
across the five classes of identities on the two sides. For
example, the identity H*Q,% = HA Q™ corresponding to
class (II) on the type IIB side produces the identity
(R*H, — H'R( + w,*Q% — Q™w,) = 0, which corre-
sponds to class (IITI) on the type IIA side. To illustrate
these features, we present a one-to-one correspondence
among all of the identities in Table XI of the Appendix.

IV. EXCHANGING THE SCALAR
POTENTIALS UNDER 7 DUALITY

In this section our first goal is to present a new set of
axionic flux polynomials for both the type IIA and type IIB
theories which would include all of the axionic fields
appearing in those respective theories, and without having
any saxions involved. These will be subsequently used to
present the two scalar potentials completely in terms of
these axionic flux polynomials and the moduli space
metrics on the two theories.

A. Axionic flux polynomials

1. Type TIA

A careful look at the type IIA superpotential given in
Eq. (2.44) and the D terms given in Eq. (2.55) suggests
defining some axionic flux combinations—which we call
“axionic flux polynomials”—that can be useful for rewrit-
ing the generic complicated scalar potential with explicit
dependence on the saxions/axions within a few lines.
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These axionic flux polynomials can be given by the
following expressions:

fo =6y —EHy &M,
fa=G6,—E&0,; - &0,
fe=6" -0 - 504,
f' =6 - &Ry~ &R

ho = Ho + Hpzk + %fqmnz’"z”Hi,
hy = Oy + Oy + %l%,lmnz’”z”ﬁaﬂ,
B = Qg+ Q7 Sk 20,
" =Ry + Rzt + %fqmnz’”z”Ri,

hak = Uak + ]Aclknzntjal’
nO = Ry + ky 2 R,

hio = Hy + kyn 2" HA,

hak — Quk + ]Af,lan” Qaﬂ’
hllo — H/l’
ila/l = 60:27

A A
hy" =0,",
Ta o
hﬂ:Qﬂv

haA:Qai
7 0_¢0
ha _6a7

h/lO — Rll
]’/‘laO — QaO
where the intermediate axionic flux polynomials appearing

in Eq. (4.1) are given as

1 1
GJO = EO + buéa + EK'abcbabhmc + 8KahcbubhbcmO,

1
Ga = Ea + Kabcbbm” + EK'abebbcmo,

G* = m®* + myb®,

_ 1 1
Hi{ = Hi{ + Wa]}ba + EKabcbbbCQa]} + gKabcbabbbcR]},

1 i
UalAc = Wai{ + KabcbeC]A( + EKathbbchAc’
Q% = Q% + bRy,

R; = R;, (4.2)

_ 1 1
H/l = H + v—va/lba + 5K.abcbbchM + gKabcbabbbcRi’
1
tjal1 = "_Va}L + Kabcbec}L + Ekabcbbbch’

Qa/l — Qa/l + baR/l
RA = R4

N A 1.
D, =W ~ k k. mn 0
ar = Waa k/lkmzmwa - Ekllkmz mea s

G, = et = 2wy,

6,0 =w,0,

Q% = Q% + kymz"Q™ - %/AﬁkaAZkZm 0",
O — Gk _ Q.

O — (0,

Here we have utilized the shifted fluxes as defined in
Eq. (2.45) due to the inclusion of & corrections in the
Kihler-moduli-dependent  prepotential. The (partial)
appearance of the type IIA axionic flux polynomials in
Eq. (4.2) was seen before in Refs. [58,63,69]. In addition,
the generalized RR flux polynomials defined as G, G,, G¢,
G were used in Refs. [75,89-92] in the absence of (non)
geometric flux.

2. Type IIB

Similarly, a careful look at the type IIB superpotential
given in Eq. (2.79) and the D terms given in Eq. (2.85)
suggests defining the following axionic flux polynomials,
which are in direct one-to-one correspondence with the 7-
dual fluxes on the type IIA side, as we will see in a moment:

) 1 | .
fO = IF() + Ulﬂ:i + El,-jkv/ka - glijk’UlUJUk[Fo,
. 1 .
fi = l]:i + l,-jkv/ﬂ:k - Elijkﬂji}kﬂ:o,

fi — [Fi _ ’Ui[FO,

0=, (43)

) 1 . o1 o
]’lo = HO + Ulﬂ'ﬂi + ilijkl)]’l)kﬂ'ul - glijk’l)lﬂjl)kﬂ'ﬂo,

) 1 .
I’li = lH]i + lijkv/ﬂ-l]k - Elijk’li']vku'ﬂo,
hi = H! — v'H°
h() — —HO

. 1 . o1 o
ha() = UaO + leai + ElijkvakUa’ - glijk’l)llﬂvkﬁao,

. 1 .
hai = Ogi + L0/ O,F = Eliij]kaaov
hai — Ua[ _ Dizjao’
haO — _6(10’
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R U U B

h%y = Q% +0'Q% + Elijkvjvk@m - glijkvlv'lvk@ao’
N A 1 A

Hty = O 4 10 — 2 Lo 0@,

. A i Aal
hal — Q(ll _ Ul@(l ,

ho0 — _@ao
ilaK = 6(1[(1
l’,\laK _ z"jaK’
il](o - —RK,
,';IKO — _RK

The intermediate flux polynomials appearing in Eq. (4.3)
are given as follows.
F-term flues:

~

[FA = FA - @aAca - Q{IA(Ca + 2aabcabb) - COHA’
FA = FA — M e — Q%N ey + Laapc®D?) — cgHA,
] 1, .
Hyo = Hp + 6Da/\bd +§faabbabe( As
Oyp = @gp + QaAgaabbb’

Qa/\ — éa/\, (44)

1. N
[H]A — HA +waAba +§LﬂaabbabeaA»

A A AN b
Ua = Wy + Q faahb ’
AaA AaA.

Q" = 0"

D-term fluxes:

~ . ~ 1A
ZjotK = Wgk — QaKfaabbb + EfaabbabbRKv
Q% = Q% + Rgb“,
RK = RK?
A 1A
UaK = CbatK - QaKfaabbb =+ EfaabbabbRKv

Note that we have utilized the shifted fluxes with bars in
some places, which are defined in Eq. (2.80). Recall that the

TABLE VI. Axionic flux polynomials under 7" duality.

axionic flux polynomials in Eq. (4.4) have been invoked as
some peculiar flux combinations called new generalized
axionic flux polynomials by considering a deep investiga-
tion of the flux superpotential and the D terms in the type
IIB setting [64,65]. Moreover, it is interesting to note that
these flux polynomials are also useful in the sense that they
collectively satisfy the generic Bianchi identities as pre-
sented in Table XII.

Itis worth recalling that all of the axionic flux polynomials
given in Egs. (4.1)—(4.2) for type IIA and Eqgs. (4.3)—(4.4) for
type IIB involve fluxes and all of the axions without having
any dependence on the saxionic moduli. It is a tedious but
straightforward computation to show that under the T-
duality transformations, the various axionic flux polyno-
mials are exchanged as presented in Table VI.

In order to prove that the axionic flux polynomials
transform under 7 duality as per the rules given in Table VI,
one can use the following type IIB to type IIA trans-
formations at the intermediate stage of computation:

_ _ 1. _
Hy = Hy + szk + Eklmnsz”Hiv
B = Hy + B2,
@(10 N Hl’

_ _ I, _
[H]i - Wy + Wakzk =+ Ekﬂmnzmznwaﬂ’
_ - A7
Uai = Wk + Wq kﬂknzn’
A - A
Qai —> W4,
. 1.
Hi — an + Qaka + Ek/lngmZnQaﬂv
Uai - Qak + Qal{kﬂknznv
Qai N Qu/i
1.
|]_|]0 N _RO _ szk _ EklngmZanv
0,0 = —Ry — Rikyp,.2",

Qa() N _R/l’

Fo — 2o — (&H; + &),

Fi — 2, — (& + &w,b). (4.5)

Fi = m® — (&Q% + £,Q%),
FO — =m0 + (&R, + ERY).

IIA fo fa Se 10 hy e h* no
1B fo fi f 1o hy h; hi n°

hk() hak ]’lak hkO hﬂO haﬂ hllﬂ hiO
haO hai hai hao hao hai hai haO
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The transformations for the D-term flux polynomials are
given as

N o 1.
N ~ K ~ 0
tsarK = Wy + Wa k/lkmzm - Ekimnzmznw(l ’
Rx = —wg0, (4.6)
("5 K A A ak]’% m 1 ]% m ,n a0
a _)Q1+Q Akm< _E Amn< ZQ ’

_an.

Note that fluxes with a bar on top are the shifted fluxes, as
defined in Eqgs. (2.45) and (2.80).

B. Scalar potentials

For the scalar potential computations we mainly need to
focus on rewriting the F-term contributions arising from the
type IIA and type IIB superpotentials as presented in
Eqgs. (2.44) and (2.79), respectively. Also, for our scalar
potential computations we will ignore the effects of all of the
po’s which depend on the Euler characteristics of the CY
three-form and its mirror, as this creates unnecessary com-
plexities in the various expressions in the respective scalar
potentials, making it hard to enjoy the simple observations
and their possibly easy utilities. However, we will continue to
consider the prepotential terms with coefficients p,p, py» Pijs
etc., which are linear and quadratic in the chiral variables
(involving the saxions of the Kihler and complex-structure
moduli), and so may remain relevant in some regime of the
moduli space even after imposing the large-volume and
large-complex-structure limit. In this limit, we can estimate
the pieces with y(CY) as

Pal4

VFIE VZL{ [f() +ufl l]fj +ufzg”f/+u2(f0) ]
e o y

Vi = T [h + UGl + UG h; + U (h°)?

+Vg“b(h h +ﬂh "hyy + hgihpju'u! +UPh Y — = h by — =
a0/tp0 + =4 a1y ailly) a Bb T o Ra b0

Lt . o
+Vgaﬁ </’l“0hﬂ0+Z‘-Jhmhﬂj+l/tlu1hai/’l/}j+u2hao/’l/}0—

po _ _¢BI(CY)

V> 1 o 1073¢(CY),
3)(CY )
U % % x 107%(CY).  (4.7)

Therefore, for a trustworthy model building within a valid
effective field theory description where one anyway demands
V> 1 and U > 1, the above assumption we make is quite
automatically justified, and it is very likely that the correction
with py’s will not be effective up to quite large value of the
Euler characteristics of the CY and its mirror. Moreover, p,
appears at (o)? order in type IIA, and we keep corrections
until («)? through p,;, and p,,, and therefore our assumption
should be fairly justified. Given that all moduli should be
present in the generic nongeometric scalar potential, it is
natural to expect that all of them (at least the saxionic ones)
are dynamically fixed; otherwise, the (&')® effects with

x(CY) may become relevant at some subleading order.

1. Type 1IB

With some tedious but conceptually straightforward
computations using the axionic flux polynomials given
in Egs. (4.3)-(4.4) and following the strategy of
Refs. [64,67,68], the total scalar potential generated as a
sum of the F-term and D-term contributions for the type
IIB orientifold compactifications (in the string frame) can
be written as

Vi(l)ﬁl = VﬁB + VIIB = VIIB + VIIB + V%(I)]% + VIIB’ (4.8)

where the four pieces are given as follows:

Lo
2

l; L ) )
Elhaoh/}z _ Elhazh/io _ uuzhuohﬁi _ uuzhaih[)’0>

haohbi - Uuihaohbi - Uuihbohai>

Col'p ; ; 11
+= (uhmg 1+ UR G + U h O + Unh® WP — ulw b P+ 2 5 Lo hPt 42 5 Lpaiph — T’h‘“hﬁ/)

ol ) . . . I Lo L
—2x <Z/{h’gijh“f + UGN+ U hOR®, + U hih™ — i 45 W + 2 o T’h’h‘”ﬂ :

2

’%45 ) ) ) ) fa
Vit = [(foho Fibs+ il = Foh) = (£Oh = fih + fih = foh®) 22|,
e R N N N N N N
Vitg = sy [(th fahaj)gJK(VhKO - fﬁhﬂK) + (th - tahaj)gJK(VhKO - fﬂhﬂK)]~ (4.9)
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Here, using V = %f P U = % l; jkuiu/ u*, etc. as shorthand notations, we have the following form of the moduli space

: apy
metrics:
lil' —41/{1, .. 2ui1,{j —41/[1” ~ R
gij — J 0 ] , gl] — vy , gJK — _lJK’ gJK — —ZJK,
f(lf - 4Vfa 2tatﬂ - 4Vf(1ﬁ ~ N
Gop = #’ G =—(y—— 9= 2" Guy =L (4.10)

2. Type 1IA
Although it is equally tedious to compute the scalar potential from the flux superpotential for the type IIA case, one can
show that by using our axionic flux polynomials given in Egs. (4.1)—(4.2) and following the strategy of Ref. [69] the total
scalar potential for the type IIA orientifold compactifications (in the string frame) can be written as

Vith = Viia + VA = ViR + Vi + Vi + Vi, (4.11)

where the four pieces are given explicitly as follows:

e4D4d ~ -
ViR = e [f2 + VFGupf? + V.G f, + V2(£9)2,
¢2Did ~ -
VNS — h2 + VhaGh? + Vi, G hy + V2 (H0)?
AUy
T UG hghg+ b pap b 4 py gatb V2R OR 0 —Sapa g Kay pa_papop _pap po
i07j0 T i 't ai’'bj + ity _3 i jO_? ot j— i aj— ai'tj

+UG, (hiohﬂo + SR 1y VRO = S g SR = ViR Vt“h/h/’o>
k;k ~ -
4 % <Vhaﬁgabhbp + Vhaigabhbp + Vt"hmha/’ 4 Vtahaﬁhpo —a tbhaihbp =+ %hﬁoha/) + %halhﬁo _ K'ZK'b hg,lhbp>

k i _
~2x 2 (waguhh“ VRGP hy + VRO + Vith i — 190 h by + % ey + ’% hoh® — % h"h“)] :

3Dud k
Vloc — Oh _ aha+ aha_ hO _ Ohﬂ _ ahﬂa+ ahxlu_ hﬂO *a ,
1A 2\/5[(][ o—Jf f foh®) = (f°h*o = f f fo )2
e2D4d ~ ~ ~ ~ ~ ~ ~ - ~ A
Via = g7 (U + Zha)) G Uy + 2hy,) + UK + W) Gop UR + 21 ), (4.12)
where
5 KK — 4Vk 4 ~ab 2P — )b Baf _ sap
gab — 4V ) g — 4V ) g — K gaﬂ — Kaﬂ9
~ k,{k - 4(/”(}L ~1p ZZAZ/) - 41/{](’1/) ~ A ~ ~
gﬁp :W’ gﬂ/ :T’ g]k — _kjk’ g]k — _kjk (413)
|
Note that we have V = Lk, 11°1°, U = ¢ ky,, 2 ulut for V. APPLICATIONS

K, _ 4Dy _ (! . . . s
the type ITA case, and we have also used e« = ¢*P4 = (17 In this section we illustrate the utilities of our scalar

from Eq. (2.34) to restore the popular factor of e in  potential formulation by considering two explicit toroidal
the RR sector and e?P+ in the NS-NS sector and the  examples. All we need to know is the orientifold even/odd

D-term contributions, along with a factor of e¢*’# in the =~ Hodge numbers and some of the topological quantities such
local piece. as nonvanishing triple intersection numbers, etc., and the

4D,
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rest will subsequently follow from our formulation.
Therefore, it can be considered as a direct way of
computing the scalar potential with explicit dependence
on the saxionic and axionic moduli.

A. Type IIA on a T%/(Z, x Z,) orientifold

Considering the untwisted sector with the nongeometric
type IIA setup having the standard involution (e.g., see
Refs. [58,69] for details), we can begin to extract informa-
tion from our formulation for this model by starting with
the following input:

Rt =3, nl=o0,  R'=3 (51)
The Hodge numbers show that there are three U, moduli
and three T¢ moduli along with a single N° modulus. There
are no N¥ moduli present as the even (1,1) cohomology is
trivial. Subsequently, it turns out that all of the fluxes with
index k are absent. There are four components for both
the H; flux (namely, H, and H*) and the nongeometric R
flux, which are denoted as R, and R* for 1 € {1,2,3}.
In addition, there are 12 flux components for both the
geometric (w) flux and the nongeometric (Q) flux, denoted
as {wg,w, 't and {Q%,Q%} for a€{1,2,3} and
A€ {1,2,3}. On the RR side, there are eight flux compo-
nents in total: one from each of the Fy and Fy fluxes
denoted as mg and e, and three from each of the F, and F,
fluxes denoted as m“, e, for a € {1,2,3}. In addition,
we also note that there will be no D terms generated in the
scalar potential as the even (1,1) cohomology is trivial,
|

which projects out all of the relevant D-term fluxes. Having
the above orientifold-related ingredients in hand, one can
directly read off the scalar potential pieces from our generic
formula in two steps.
(1) Step 1: Work out all of the axionic flux polynomials.
(2) Step 2: Work out the moduli-space metric.

1. Step 1

The following eight types of NS-NS axionic flux
polynomials are trivial in this model:

hk =0,
ilao =0, ilall =Y, ]/:laO =0,

hko - O,

h% =0, (5.2)
where one can anticipate from the trivial cohomology
indices that such fluxes are absent. Further, using
Eq. (4.1), the eight classes of nonzero NS-NS axionic flux
polynomials can be explicitly written out in terms of the 32
flux combinations, along with eight flux polynomials
coming from the RR sector given in the following manner:

fO = G:-'\"O _507_{0 _é/lH/{7 fa = Ga _éozjao _5/1611/1’
fi=6"-£Q~£Q%,  fP=6"-Ry-&RY,
ho - Ho, ha :Uao, ]’la - an, hO = Ro,

h/loz"_{/l7 hal:tjai’ haA: Qai’ h/l():R/l’ (53)

where the axionic flux polynomials in Eq. (5.3) are
given as

Hy =Hy + wigh' + wygb® + wigh® + b'b>Q%) + b*b*Q' + b*b' Q%) + b'b?bR,,

U9 = wio + b*Q% + b*Q% + b?b°R,,
Uy = wa + b'Q% + b°Q'y + b'b R,
U39 = w3o + b'Q% + b?Q'y + b'b?R,,

Qly =Qly+b'Ry,

Q% = Q% + b’Ry,

Q3 = Q% + b°Ry, Ro =Ry,

HY = H 4wt + wy'b? + with? + b'b*Q + b?b*Q' + bPb' Q¥ + b'b? DR,

Ul/l — Wlll + b2Q3/1 + b3Q2/1 + beSR/l’
62/1 — W2'1 + b1Q3/1 + b3Q1/1 + bleRll’
63/1 — W3'1 + leZi + bZQM + blbzR'l,

Qu — Qlll + blR/l’
Q2/1 — QZA + bZR/l’
QM — Q3/1 + b3R’1,

R* = R4

Gy = ey + bley + b%e, + bies + b'b?m?® + b*b>m' + b3b'm? + b'b*b3my,

G, = e, + b*m® + b’m? + b*b>m,,
G, = e, + b'm® + b3m! + b'b3my,
G; = e3 + b'm? + b*m' + b'b*my,

G!' = m' + myb',
G? = m?* + myb?,

G = m’ + myb?, G’ = my.
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In simplifying the axionic flux polynomials we have used the fact that the only nonzero intersection number that survives in
the Kéhler moduli part of the prepotential is k3 = 1. The same thing happens on the complex structure moduli side:
kis=1,  kjpn=0. (5.4)

K23 = 1, Ka(z/f:o’

2. Step 2

In order to fully know the scalar potential, we now only need to know the moduli-space metrics to supplement the axionic
flux polynomials, which are given as

0 £ 7 2(e"? =2t =247
kp= |2 0 [, —4Vkb = | =212 2(2)? =278 |,
20 =268 =218 2(P)?
("2 0 0 "2 0 0
VGab _ 0 (t2)2 0 , ugip _ 0 (ZZ)Z 0
0 0 (A)? 0 0 ()2
In addition, we also have the following useful shorthand notations:
VY =t'8, Ky = 2028, Ky = 21183, Ky = 21112,
U =773, ky = 27273 ky = 2723 ky = 2772, (5.5)

To verify our scalar potential formulation, first we compute it from the flux superpotential as given in Eq. (2.44), which
results in 2422 terms. Subsequently, we show that our collection of pieces gives the same result after using the simplified
axionic flux polynomials and the moduli-space metrics as presented above. These scalar potential pieces are given as

4Dyq

VER =S 3+ VI G+ VIS o+ V().

€2D .
VIR' = 2 118+ VI Gush + VG iy +- V2 (1))
NS2 2D ~ 2 aKb Aa10b b1 A 210100 Ka,; Ka 10 0
VIR = 7y |UGa | ol o+ =2 WR? 100y + VIO =2l == g = Vit WOy = Vi I

k k,
/14 <Vha/1gabhbp+Vh Agahhbp_i_vtahﬁoh p—l—Vl‘”/’l ﬁhpO_tatbh ﬁhbp_i_ 5 h/lohap+ 5 hg/lhﬂ a4Kb haﬁhbp):| ,

VS = K (g, b VG Vi KO 4+ Vi = 10y +- 5 gt 452 ot K
A ayy 2 “ “ “ “ “ 2 2 4

3

Vi =3 \/—[(foho Foha+ foh® = foh®) = (fOlrg = FUH ,+ f i = foh'®) 2

kil
2

(5.6)

Refs. [58,61,67,68] for details), we can start with the
following input:

To appreciate the numerics, we mention that the above
pieces of the scalar potential match the following splitting
of 2422 terms computed from the superpotential:

ALt =3, hbl =0, h:t =0, h*'=3.  (5.8)

#(VRR) = 1630, #(VASH) = 76,
#(VISS) =180,  #(Vis) = 128.

#(VNS?) = 408,

(5.7) The Hodge numbers show that there are three 7, moduli

and three U’ moduli along with the universal axio-dilaton S

B. Type IIB on a T%/(Z, x Z,) orientifold

Considering the untwisted sector with the standard
involution for the nongeometric type IIB setup (e.g., see

in this setup. There are no odd-moduli G* present in this
setup as the odd (1,1) cohomology is trivial. It turns out that
the geometric flux @ and nongeometric R flux do not

086009-21



PRAMOD SHUKLA

PHYS. REV. D 103, 086009 (2021)

survive the orientifold projection in this setup, and the only
allowed NS-NS fluxes are the three-form H; flux and
nongeometric Q flux. There are eight components for the
H; flux and 24 components for the Q flux, denoted as H,,
HY, 0%, O for ae€{1,2,3} and A €{0,1,2,3}.
On the RR side, there are eight flux components for the
three-form F3 flux. In addition, there are no D terms
generated in the scalar potential as the even (2,1) cohomol-
ogy 1is trivial, which projects out all of the D-term
fluxes. Now we repeat the two steps followed for the
type ITA case.

|

1. Step 1

It turns out that the following eight NS-NS axionic flux
polynomials are trivial in this model:

h, =0, h, =0, h,' =0, h,' =0,

/Alal( =0, }AlaK =0, il[(o =0, WK = 0, (5.9)

where one can anticipate from the trivial cohomology indices
that such fluxes are absent. Further, using Eq. (4.3), the eight
classes of nonzero NS-NS axionic flux polynomials can be
explicitly written out in terms of the 32 flux combinations as

hy=Hy+v'H, + v*H, + v’ Hy + v' 0’ H? + v*0*H' + v30'H? — 0" 0?0’ HO,

hy = H, + v*H> + v’ H?> = v>0’HO,
hy=H, +v'H> + v’H' —0v'v3H°,
hy = Hy +v'H?> + v*H' — v'v?H°,

hl — Hl _ v‘HO,
h2 — H2 _ ’IJZHO,
h3 — H3 _ ’1]3H0,

ho = —HC, (5.10)

hao _ an + leal + U2Q(12 + U3Qa3 + UIUZQaS + U2U3Qal + U3U1Q(12 _ 1)17}2’1)3an,

h(ll — Qul 4 v2Qa3 4 U}QaZ _ 1)21)3@(107
ha2 _ Qaz 4 ,UIQDl3 + 1}3Qa1 _ 1)11)3an,
ha3 _ Qa3 + DZQal + leaZ _ U]UZQGO,

hel — Qal _ ’UIQ“O,
ha2 — Qa2 _ ,UZQaO’

hed — Qa?a — 3 QaO o0 — _QaO
s .

In addition, there are eight axionic flux polynomials which also involve the RR axions ¢, and ¢, along with the complex

structure axions v‘, which are given as

fo=Fo + v'F; + v°F, + v’F;3 + v'0?F + v*0°F' 4+ 030'F? — 0" 9203,

fi=F + 0P +0F - 0*F, 1 =F -2'F,
f2 :ﬂ:2+vlﬂ:3—|—v3ﬂ:l —1}]1)3[F0, f2 ZU:Z—UZ[FO,
fr=F+ 0P+ 0F =0, P =F-0F,  f=-F, (5.11)
Fo = Fo— anca —¢coH, Fi=F; - Qaica —¢oH;
FO=F'—Q%,—cH’, F =F -Q%,—cyH.
Here we have used the fact that the only nonzero intersection numbers are given as
los =1, ?iJK =0, iz =1, 2%17 =0, (5.12)
which result in the following useful shorthand notations:
V=11, £y =211, £y =211, ty =211,
U= u'vili’, I, = 2u%u’, I, = 2u'u’, Iy = 2u'u?. (5.13)
2. Step 2

In order to fully know the scalar potential, we now only need to know the moduli-space metrics to supplement the axionic

flux polynomials, which are given as

(t)? 0 0
ver=| o 2> o [,
0 0 (£)?

@) 0
ugi=| o @? o
0 (u3)2
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To verify the scalar potential formulation, we first compute it using the flux superpotential as given in Eq. (2.79), which
results in 2422 terms, and subsequently we confirm that our following collection of pieces gives the same result after using
the simplified axionic flux polynomials and moduli-space metrics:

4¢ ) ) B
Vi = N 5+ USGifT +UFGIf+ U ()2,
e o y
ESI = U [h% +UR'G;ih + UG h; —|—Z/{2(h0)2],
NS2 €2¢ lllj . . .o 272018 li 3i li i1 10018 . 50
VHB = ISy, Vgaﬁ haohﬁo +—halhﬁ] + ulufh“ihﬁj +Z/[ h* h/() —_haol’l/l —_halh/o —Uu’ha h/l —Uu’h"ih/
4v-U 4 2 2
fafﬁ . . - a0 . 0 . l; oL ll-lj .
+ T Mhalgijhﬁ/ —l—Z/{haig”hﬂj +Z/{Mlha hlﬂ —I—Z/{u’haihﬁ - ulujhaihﬂj + Ehaohﬂl + Ehalhﬁo - Thalhﬂ‘/ .
NS3 e Ca io paj i i10pa iy a0 i e o bigiva o b g lil; aj
VHB :4]}_22,[ —2X7 Uhg,]h —l—Uh,g h]—i—Uuhh,—H/{uh,h —Muhlh]+§hh0+§h0h —Thh s
| [ ' i 0 0 j ' o) La
Vit =2 {(f ho = f'hi + fih' = foh®) = (f°h% = f'h; + fih® = foh® )7 . (5.14)

These match the following splitting of 2422 terms com-
puted from the superpotential:

#(VRR) = 1630,
#(VNS3) = 180,

#(Vii') = 76,
#(Vioe) = 128.

#(VS2) = 408,
(5.15)

Thus, we have explicitly verified our generic type IIA potential
in Eq. (4.12) and type IIB potential in Eq. (4.9) for the
T°/(Z, x Z,) orientifold setups, in which there are no D
terms present while the F-term contribution results in precisely
the same number (2242) of terms in the scalar potential as it
could be found by their respective flux superpotential com-
putations! It is needless to say that there is a perfect match for
the two scalar potentials under our 7-duality transformation
for this canonical 7T-dual pair of models.

It is quite impressive to have written thousands of terms
in just a few lines and kept the information about the
saxionic and axionic parts distinct! These generic toroidal
type IIA and IIB setups have been found to be interesting in
several numerical approaches [10,11,16,17,21], and our
formulation certainly opens up the possibilities for making
attempts towards nonsupersymmetric moduli stabilization
in an analytic approach.

VI. SUMMARY AND CONCLUSIONS

In this article we have studied the 7-dual completion of
the four-dimensional type IIA and type IIB effective
supergravity theories with the presence of (non)geometric
fluxes. In order to establish a single consistent convention
and notation by fixing signs, factors, etc., we first revisited
the relevant ingredients for the type IIA and type 1IB setups
in some detail.

Considering an iterative approach, we have invoked the
T-duality transformations among the various standard and

|

(non)geometric fluxes of the two theories. This connection
has been explicitly known for fluxes written in the non-
cohomology formulation, mostly applicable to the toroidal
examples [10,11,30,71-73] but not in the cohomology
formulation which could be directly promoted for the
beyond toroidal cases such as with using CY compactifi-
cations. Given that in the absence of fluxes mirror sym-
metry exchanges the two theories, we first considered the
Kéhler potential with explicit computations including o
corrections on the compactifying threefold and its mirror.
This helped us to rederive the T-duality rules for the
moduli, axions, and chiral variables on the two sides
[55,57,74]. Subsequently, in the second step we investi-
gated the fluxes in the superpotential where the moduli
have explicit polynomial dependence through the chiral
variables, and utilizing the T-duality rules for the chiral
variables fixed in the fluxless scenario we derived the
explicit transformations for the various fluxes on the two
sides. This leads to some very interesting and nontrivial
mixing among the (non)geometric fluxes with the standard
fluxes, as we present in Table VII. We repeated the same
step for the D-term contributions to derive the 7-dual
connection among the relevant fluxes appearing in the
scalar potentials through the D-term contributions. These
are also presented in Table VII.

A genuine effective potential should be the one obtained
after taking care of the tadpole conditions and NS-NS
Bianchi identities, which generically have the potential to
nullify some terms in the respective scalar potentials and
hence can influence the effectiveness of scalar potential
pieces governing the moduli dynamics. Therefore, in order
to confirm the mapping one has to ensure that the 7-duality
rules invoked for the fluxes and moduli in the earlier steps
are compatible with these constraints. We found that this is
indeed the case, we confirmed a one-to-one mapping
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among all of the Bianchi identities of the two theories. The
explicit details are presented in Tables XI and XIIL.
It is worth noting that there is a rather nontrivial mixing
among the flux identities in the sense that, e.g., a “HQ-
type” identity on the type IIB side gets mapped onto a
“(HR + wQ)-type” identity on the type ITA side. Never-
theless, the full set of constraints do have a perfect one-to-
one correspondence under 7' duality.

As the superpotentials can be directly useful only for
supersymmetric stabilization, we have extended our studies
to the level of scalar potentials to deepen our understanding
of the T-dual picture in terms of explicit dependence on the
saxions/axions, where it can be directly used for non-
supersymmetric moduli stabilization and other phenomeno-
logical purposes. In this regard, we first invoked what we
call “axionic flux polynomials” from the superpotentials and
D terms of the two theories. These axionic flux polynomials
include all of the axions and fluxes but do not include any
saxions, which helps us to rewrite the scalar potential in a
concise form while (more importantly) keeping the
saxionic/axionic dependence distinct and explicit. These
relevant details are presented in Tables VIII-X. We have
demonstrated how our scalar potential formulation can be
used to read off the scalar potentials by applying the same
for two explicit toroidal orientifolds.

There are many reasons for reformulating the scalar
potential. First, it is concise in the sense that the generic
scalar potential can be written in a few lines, making it

possible to make attempts for model-independent moduli
stabilization. This step is quite nontrivial in itself as we
recall that a toroidal T®/(Z, x Z,) orientifold gives more
than 2000 terms arising from the flux superpotential in both
the type IIA and type IIB 4D theories, and it is hard even to
analytically solve the extremization conditions. The second
reason is to make the exchange of the two potentials
manifest under the 7-duality transformations. As scalar
potentials are the starting point or building blocks for
moduli stabilization, there can be several possible appli-
cations of our one-to-one proposed formulation. For
example, this enables one to translate any useful findings
in one setup into its 7-dual picture. In this regard, we note
that there are several well-known de Sitter no-go theorems
on the type IIA side, and subsequently there should be 7-
dual counterparts on the type IIB side, which of course have
not received due attention. We have performed a detailed
study along these lines in a companion work [93], which
illustrated the direct use of the concise pieces of informa-
tion presented in this work.
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APPENDIX: T-DUAL DICTIONARY FOR TYPE II NONGEOMETRIC SETUPS
In this appendix, we present six tables representing the T-dual exchange of the various ingredients of type IIA and type
IIB theories. This should serve as what we call a useful “dictionary” for phenomenological model building using (non)

geometric fluxes.

TABLE VIIL.

T-duality transformations among the various fluxes, moduli, and axions.

Type TIA with D6/06

Type IIB with D3/03 and D7/07

F-term fluxes H,, H,, H*,
Wa0s Waks Walv
QEO’ Qak’ Qaﬂ’
Ry, Ry, R%,
ep, e, me, my.
D-term fluxes Wel, Wk, W,
Q™. Q*, Q%
NO, N*, U,, T¢.
T4 = b% — it?,
NO — 50 + i(ZO)_l,
NF = &k 4 i(z0) 712K,
- 2%0 (kxlpkzpzk - ]}/lkmzkzm) + g/l'

Complex moduli

UA:

Axions 7k, be, &0, & &
Saxions ()71 2 v U,
Intersections

klp;u klmn’ Kabes Kauﬂ'

HO’ WDy an,

Hi’ Wyjs Qai’

Hi, a)ui’ Qai,
—HO, _a)aO’ _QaO,
Fo, F;, F', =F°.
_RKs _QaK? C?)azl(’
—RK, _QaK, é\)aK.

S, G4, T, U'.
Ul =o' —iu,
S =co+is,

G = (¢ + cob”) + isb?,
T‘l = _% (f‘lﬁytﬁﬂl - ?aubbabh) + (Cu + 2uabcabb + %("Oguabbabh)'

b, v, co, ¢+ cob®, o+ Coupch” +%cofaabb”bb.
s=e W U, VY,

faﬂy’ faubi lijk’ liJK'

086009-24



DICTIONARY FOR THE TYPE II NONGEOMETRIC FLUX ...

PHYS. REV. D 103, 086009 (2021)

1. T-dual dictionary for type II nongeometric setups

TABLE VIII. Axionic flux polynomials for the type IIA side.
Type IIA axionic flux polynomials
fo Gy — EH; — & HA
fu Ga - é:kzja]} - fﬂzjaﬂ
fﬂ G* — gkAQui( _ élQal
f G - &Ry — &R
ho Ho + Hi + L k2" 2 H
ha Uao + Uukzk + %kim,,ZmanjaA
he¢ an + Qakzk + %klmnzmzn Q(z/l
h° Ro + szk + %kjngmZnRﬂ
o Hy + /Aqan"H'{
hak Uuk + k};knzntjaﬂL
hak Qak + ]f,umzn Qa/1
hko Rk + k/lk,,Z",R,}L
hl() H/I
h,* o,
hal Qai
B0 RA

F-term fluxes

D-term fluxes

GO = é() + baéa + %K.abcbabbmc + ékdbcb”bbbcmo,
G, = e, + K,pb’m¢ + %Ka,,cbbb”mo,
G* = m* 4+ myb*,
GO = my,

k k
HE =B+ W, b + 1k b6 QY + Lk, DO BRA,
Oy =wyu+ Kab(,beC;( + %KubcbthR]}v
Ua}‘ = "T}a/1 + KabcbeC/1 + %KabcbbbUR/l’
Quf( — Qa]; + baRlz’ Qa/l — Qui + baRﬂ,
R; =R;, RY =R

=7y 0 7 mp, k _ 17 komp, O
h(xi=t5al *Wal+klkmz Wa _Eklkmz Wy
7ok 95k A~ A 0_750 A
he" =0 =Wk — 7,0, 2 =0"=w,0,

h
pa A 2 Adk 17 a0
h = Q% = Q% + kyuz" Q™ — S k' 2™ Q%
h(lk = Qak _ Qak _ ZkQaO, h
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TABLE IX. Type IIB axionic flux polynomials with their dual type IIA counterparts.

Type 1IB axionic flux polynomials Dual type IIA flux polynomials
fo Fo + v'F; 4+ 5 v/ o' F' = L v 0l v*FO fo
ft [Fi + ll'jkl}jl]:k —%lijkvjlikl]:o fa
fi Fi —[Fgf[FO fe
/ - ,
ho Ho + v'H; + 3 v/ v*H = L0/ v/ oFHO ho
h,‘ Hi—.—liijij—%liijjUkHo ha
h H — »'H° h¢
hO _|]_|]0 hO
hao Va0 + /04 + 5 10/ 0F0, 1 = ¢ L'/ 0400 hio
hai, Um— + lijkvjcak — %li.ik’l}jﬂkﬁao hak
hal Gal _ vzt;ao hak
haO _UaO hko
h*, Q% + v'Q,* +%l,-jkvak@"i - %Zijkviv/ka“o h,
hai Q,‘a + ll'jkl]j@ak - %lijkl)j’l)k@ao haj'
h @ai _ Ui@a() ez
ha0 —Q®o B0
F-term fluxes Fo = Fp = @ = O%A(Co + Crapc?d?) — coHy

I]:A — FA _ waAca _ Q(IA(Ca + 2aabcabh) _ CO[H]A
Hy = Hp + @00 + %?aabbabeaA
HA = gA + wa/\ba + %%{mbbubeu/\
UaA = (DaA + QaAgaabbb
UaA = waA + Qa/\;ﬂaabbb
@a/\ _ @A’ @a/\ _ QaA

D-term fluxes ilaK = 60,1( = CbaK - QaKgaabbb =+ %2aabbabbRK ilal
i/\laK = 6(11( = ED(ZK - QaKgaabbb + %2aabbabbRK ilai

ha[( = @aK — _QaK + RKba, heK = QaK — _QaK + RK pa ilak, ilak

/’/\lKO = _RK _ _RKa l’:lKO =_RK — _RK ilao’ ]’:1(10
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2. One-to-one exchange of the scalar potentials under 7' duality

TABLE X. Scalar potentials for type IIA and IIB theories.
A

VI = 013+ V7 Gt + VEG o+ VAP + G |1+ VGt
FVRG ™y + VA(HO)? + UG ( hiohjo + 54

o @b gyt + V2 hOR,O

—O—Iatbha’lhbp + VZh/l()hpO _ %hiohpa _ %hiahpo _ Vtahwhap _ Vtahalhpo

+ % Vha/lgub hhﬂ + Vha’@“bhbf’ + Vtuhi()ha/) + Vtuhaih/)() _ tathha/lhbp

+5 htoh + 5 hei P — %h“‘hbﬂ) —2x% (Vh“@abhb‘ + Vh, G hy*

+Vtah0ha/1 + V[ahuh/w _ tathhahbi + %ahaholl + %’hoha’{ _ %hahbﬂ

£ | FOho = fohg + fah® = foh®) = (fOWY = Wy + f ™ = foh™) %}
Qab — KnK/;Z]‘;VKab ’ Gab — 2t"[”;{}n}x“” . C

g _ kik,—4Uk;, G/lp _ 22 2P —AUk*
p au ’ - au
1IB

(U + Zha)VG? (U + 2 hy,) + (U™ + 240 VG s (URP + Zﬂl’;lﬁp)]:|

Gap = —Raps GP = kb,
) ij = _IA‘_/kv G = -k,

VIRL = S PR A UFGyf! + UFGIf; + U ()] + 50 [hg + UK Gh
FURGIR; + U (h0)? + VGeb (haohbo 5 h by 4 Byt UPR R,
L

3 ha'hyy —

b haohy — Ui h,Ohy; — uu"hhohm> + VG (h"ohf’o s pei b

Fu W h WP+ VPRI — 5 o kPt =5 e Py — U h*OhP; — Uu'h? i

5 (URSG T+ URGUTRE | + U bR P + U b hPO — ulud kP

+ L nonPt L hin — %haihﬁf) -2x% (uhfg,.jha/ + UG h?,

+uuih0h11i + uuihihao _ uiujhihrzj + %hil’lao + %hohai _ %hihaj)

+[(Vh)® = t*ho UG'E (Vig" = P hgg) + (V' — 20, UG 1k (VRO - r”%“)ﬂ

(foho = f'hi + fih' = foh®) = (fOh% = f'h%; + fih = foh™) %} -

ga/ = fﬂfﬂ;\i]}bpaﬂa g(l/f = 2t“t/}Z§Vf"/’ ) gab = _%ab» gab = _2&17’
i1, =4Ul;;

Gy ="

gij — 2u’uiu—/[41/[/” , g]K — _lJK7

gJK _ —in.
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3. One-to-one exchange of the Bianchi identities under 7' duality

TABLE XI. One-to-one correspondence between the Bianchi identities (BIs) under the T-dual flux transformations. Here we consider
A = {0.i} on the type IIB side and k = {0,k} on the type IIA side.

Bls Type 1IB with D3/03 and D7/07 Type IIA with D6/06
(1) Hyo, = H w,, HoRy + Q%owary = 0
2 HM)\® = H Q™ R*Hy — H'R + w, Q% — Q¥wyy =0
3) 0 opn = 0y o0 HyRpp + Quwar) = 0
) oS g = g e Wi Q%) = Qv
®) 0\ 0™ = 0, 0%\ R*H; — H'R; + w, Q% — Q*w, = 0
©) QK oy = Q" x0f Wi Q™ = Qivg*
7 HoRg + 0,00k + Q% @ux =0 H'y; = Hypiok
HiRg + 0,0 + Q%@ =0 W Wy = wa;jvai‘
(8) HRy + 0,°0%% + 0®d ., = 0 Rigy = Ry, k
H'Rg +w,/ Q% + Q% = Qg Q‘”1
©) HoR® + 0,00 + 0%&,* =0 Q) = H;(Q”k
H R + w, QaK + Qa (’f) K _ =0 Qaiwai — Walealz
(10) HORK 4+ 0,00 + 0®¢ K =0 RA)?, = R,;Q“’}
HiRK + o, iQiK 4 Q(ll ~ K -0 QMQ(ZA _ QaicQai(
(1) QP = 00"y HR? + Qw1 =0
(12) QaKQbK _ QbKQaK wakéak’ Qak Ak
(13) RKd)uK = Ry X Wz Q™ = Q%0
(14) QaK RK Qa W OQak QaO ~ k

4. One-to-one exchange of the Bianchi identities with flux polynomials having b* axions

TABLE XII. One-to-one correspondence between the Bianchi identities with generalized flux polynomials having the NS-NS /¢
axions as presented in Eq. (4.4) for type IIB and in Eq. (4.2) for type IIA. Here we consider A = {0, i} on the type IIB side and

k= {0.k} on the type IIA side.

BIs Type IIB with D3/03 and D7/07 Type IIA with D6/06
(1 HAO,A = HAG A H[()Rk] + Qa[owak] =0
() HAQ,\* = H, Q™ R*Hy — H* Ry + 0,2 Q% — Q%00 =0
A3) U, 0,0 = U,A0,, Hu Ry + QU =0
“) 0, Cpx = 00 0,9%, = 0%0,,
&) U, Q% =0,A0%, RYH, — H' R, + zs QY — QYD =
(6) QG = QO 0,0 = 098,*
™) HoRg + UyoQ%% + Q% = 0 HO,, = H,;ZAJ,,’A‘
HRg +0,Q% + Q%0 =0 0,06, = Ga,;fialz
(®) HOR + 0,0Q% + Q084 = 0 RIG,, = RO
HR + U, /Q% + Q"Cg = 06,F = 0B,
©) HoRX + 0,00 + Q%8,X =0 0", = H 0%
HRX +,Q% + Q45,5 =0 Q%04 = (O o
(10) HORK + 0,00 + 0%8,K = 0 RAO", = R Q%
HRK + Uai@al( 4 @ati‘;(ll( -0 QMQOJ/I _ Q%Qak
(11) QY = @47, HPRA + Q5,7 = 0
(12) @”K@bK — @bK@aK 6gk@ak’ _ Qak@ak’
(13) RES,x = RgO,K 5,9 =Q"5,°
(14) R, QK = RKQY, 8,00% — 570G,k
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