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S-wave states of charmonium and bottomonium are described using bottom-up AdS/QCD.We propose a
holographic model that unifies the description of masses and decay constants, leading to a precise match
with experimental data on heavy quarkonia. Finite temperature effects are considered by calculating the
current-current spectral functions of heavy vector mesons. The identification of quasiparticle states as
Breit-Wigner resonances in the holographic spectral function was made. We develop a prescription to
subtract background contributions from the spectral function to isolate the Breit-Wigner peak. The quasi-
particle holographic thermal evolution is described, allowing us to estimate the melting temperature for
vector charmonia and bottomonia. Our holographic model predicts that J=Ψ melts at 415 MeV ð∼2.92TcÞ
and ϒ melts at 465 MeV ð∼3.27TcÞ.
DOI: 10.1103/PhysRevD.103.086008

I. INTRODUCTION

Heavy quarkonia work as a probe of quark-gluon plasma
formation in heavy-ion collisions, where charmonium
suppression seemed to play the fundamental role [1]. It
happens that J=Ψ track is hard to reconstruct due to
physical effects such as nuclear absorption and recombi-
nation [2–4]. This difficulty in tracking back the charmo-
nium trajectories made unfavorable J=Ψ as a precise probe
of QGP. On the other hand, bottomonium production by
recombination and regeneration effects is small [5–7].
Bottomonium then emerges as a promising candidate to
probe QGP properties, but not invalidating the importance
of charmonium in this context. See [8,9].
Charmonium and bottomoniummesons were experimen-

tally discovered, latter a than its light cousins (ρ,ϕ), due to its
considerable threshold energies imposed by the heavy c, b
quark masses. Curiously, current experimental data about
the spectrum of radial excitations is more extensive and
complete for the heavy vector than the light ones. The decay

constants for the excited S-wave states are entirely deter-
mined from experiments for the heavy vector quarkonium
[10]. Decay constants of charmonium and bottomonium are
observed to be decreasing with excitation levels. For the ϕ
meson, the decay constants of excited states are estimated
from experimental data. These estimations predict they are
also decreasing with excitation level [11,12].
Meson spectroscopy is a static low energy phenomenon.

In this case, the color interaction is strongly coupled and
a non-perturbative approach for strong interactions is
required [13–15]. One important nonperturbative approach
is the holographic dual of QCD, referred as AdS/QCD
[16–19]. AdS/QCD models are inspired in the exact duality
between the conformal and supersymmetric field theory
N ¼ 4 SYM in four space-time dimensions, and the type
IIB string theory in AdS5 × S5 [20,21]. In top-down AdS/
QCD models, the energy scales are fixed by probe branes
located in the bulk geometry. The presence of these probe
branes in the AdS bulk breaks conformal symmetry and set
the energy scales in the boundary theory [22–24]. On the
other hand, bottom-up AdS/QCD models implement defor-
mations in the bulk geometry directly associated with
observed phenomena in hadronic physics. The most popu-
lar bottom-up AdS/QCD models are the hard wall
[16,17,25] and the soft wall [26]. The soft wall model is
particularly interesting for investigating the radial excita-
tions of mesons since it predicts a linear Regge trajectory
for the hadron masses. Bottom-up AdS/QCD models have
been systematically applied in the description of the
spectrum of mesons [26–31] and in particular for heavy
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quarkonia [32–35]. Heavy quark potential has been
analyzed for different bottom-up AdS/QCD models, find-
ing in all cases the linear behaviour for large separation
[36–42].
The observed decay constants of quarkonia S-wave

states increase the difficulty in obtaining an accurate
description of their spectrum. The challenge comes from
the fact that decay constants decrease in a monotonic and
nonlinear way with excitation level. The hard-wall model
predicts decay constants increasing with excitation level,
while the soft-wall model (quadratic dilaton) predicts
completely degenerate decay constants. This poor descrip-
tion of decay constants at zero temperature leads to bad
results at finite temperature, such as the disappearance of
the spectral peaks of the fundamental state at low temper-
atures [43–45]. A good description of decay constants in
the vacuum is needed to get a consistent spectral analysis at
finite temperature. Decay constant defines the strength of
the resonances fixing the zero-temperature limit of the
spectral function.
In Ref. [33] it is proposed a holographic description of cc̄

considering modifications in the holographic potential.
These modifications lead to an improvement in the
description of masses and decay constants of J=Ψ, Ψ0.
However, the holographic potential of [33] does not capture
the decrease in decay constants. An alternative proposal is
to set up an ultraviolet scale by calculating correlation
functions in an AdS slice at finite zuv [46–49]. This
ultraviolet cutoff results in decay constants that decrease
with excitation level. However, this model predicts a small
decrease in the excitation level than experimental data that
shows a fast decrease. So, it captures the decrease in decay
constants but not the correct slope. The problem of the
slope in decay constants was circumvented in a different
holographic model proposed in Ref. [50] and refined in
Ref. [51]. The holographic model of Ref. [51] captures the
correct observed spectrum of decay constants of either
charmonium and bottomonium with good precision. This
success in describing the decay constants does not extend to
the mass spectrum. An accurate description of the radial
excitations of heavy quarkonia involves either the masses
and the decay constants. Here we propose a holographic
model that simultaneously describes the masses and decay
constants of the radial excitations of charmonium and
bottomonium. The predictions of our model agree with
experimental data within an RMS error near to 6% for
charmonium and 7.2% for bottomonium, providing a
precise description of quarkonia spectroscopy at zero
temperature. We consider the effects of hot plasma on
quarkonia states and use our model to compute in-medium
spectral functions. We propose a prescription for back-
ground subtraction, isolating the contribution of the quasi-
particle states in the spectral function from the medium
effects. The melting temperatures of J=Ψ, Ψ0, ϒ, ϒ0 are
estimated and their thermal masses analyzed.

The paper is organized as follows: in Sec. II, we motivate
and present the dilaton that defines our holographic model.
In Sec. III, we describe precisely the spectrum of masses
and decay constants of charmonium and bottomonium. In
Sec. IV we consider our model at finite temperature: we
discuss the confinement/deconfinement phase transition,
compute finite temperature spectral functions of cc̄ and bb̄
and analyze the quasiparticle states associated with the
resonance peaks. In Sec. V we perform the Breit-Wigner
analysis to the holographic spectral densities calculated for
heavy quarkonia. Finally, we elaborate in Sec. VI the main
conclusions of this work.

II. HOLOGRAPHIC MODEL

In the context of the AdS/QCD bottom-up models, heavy
vector quarkonium is described as an Abelian massless
bulk gauge field. This affirmation follows from the standard
field/operator duality [21]. Recall the scaling dimension of
the source operators creating mesons at the conformal
boundary defines the dual bulk field mass, according to the
relation:

M2
5R

2 ¼ ðΔ − SÞðΔþ S − 4Þ; ð1Þ

where S is the meson spin, and R is the AdS radius. This
relation defines a primitive notion of hadronic identity
since their corresponding bulk mass will categorize the dual
hadronic states defined by the boundary source operator. In
the case of any qq̄ vector meson state, it is generated by
structures with Δ ¼ 3, implying M2

5R
2 ¼ 0. Thus, the

action in the bulk space is given by

IVectorQQ̄ ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞgmpgnrFmnFpr; ð2Þ

where g5 is a constant that fixes units in the action given
above and Fmn is the field strength. This coupling is
calculated from the large q2 behavior of the holographic
vector two-point functions [18]. The geometrical back-
ground is either AdS5 or AdS5 BH, depending on whether
we are at zero or finite temperature. We will postpone this
discussion to the next section. Independent of the geometry,
the equations of motion for the bulk gauge fields are

1ffiffiffiffiffiffi−gp ∂n½
ffiffiffiffiffiffi
−g

p
e−ΦðzÞgnpgmrFpr� ¼ 0: ð3Þ

Confinement in this model is induced via the static
dilaton field ΦðzÞ. In the standard AdS/QCD softwall
model, characterized by the static quadratic dilaton, large
z behavior guaranteed the emergence of linear radial Regge
trajectories. However, it does not properly describe the
meson decay constants since they are expected to decrease
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with the radial excitation number n. The softwall model
calculation brings degenerate decay constants for n.
A lesson learned from [52] was that decay constants

depend on the low z limit behavior of the AdS/QCD model
at hand. We can modify this behavior by two possible
forms: by deforming the background [35,49] or by intro-
ducing terms in the dilaton that becomes relevant at low z
[50,51]. The resulting Regge trajectories are still linear, and
the decay constant behavior is corrected.
On the experimental side, these sorts of linear Regge

trajectories describe better the light sector. Nevertheless, in
the heavy one, the linear approximation does not seem to fit
the available experimental data. By looking closely at the
heavy quarkonium radial trajectories, we observed linearity
in the highly excited states. On the other side, the linear
spectrum deviate due to the heavy constituent quark mass
effect in the meson. This picture can be seen from the
angular quantization of the string [53] or the Bethe-Salpeter
analysis [54] by writing the radial trajectory as

ðMn −mQ1
−mQ2

Þ2 ¼ aðnþ bÞ; ð4Þ

where a is a universal slope and b is related to the mesonic
quantum numbers. Therefore, nonlinearities emerge when
the constituent quark mass comes to play. The nonlinear
trajectories can be written in general as

M2 ¼ aðnþ bÞν: ð5Þ

In a recent work [55], these nonlinear Regge trajectories
were described in the context of bottom-up holographic
QCD. The main idea behind this model is that the inclusion
of quark constituent masses implies deviation from the
quadratic behavior imposed on the static dilaton. This
model successfully described vector mesons in the light
unflavored, strange, heavy-light, and heavy sectors.
This nonquadratic and the softwall model dilaton share

the same low z behavior. Therefore, in the nonquadratic
context, the decay constants do not behave following the
phenomenological constraints. An attempt to circumvent
this drawback is by adding the proper low z behavior that
captures the expected decay constants phenomenology.
Therefore we propose the following nonquadratic dilaton

ΦðzÞ ¼ ðκzÞ2−α þMzþ tanh

�
1

Mz
−

κffiffiffi
Γ

p
�
; ð6Þ

where the low z contributions written above were read from
[51]. The parameters κ, M and

ffiffiffi
Γ

p
are energy scales

controlling the slope and the intercept, whereas α is
dimensionless and measures the constituent quark mass
effect in the heavy meson, as it was introduced in [55].
In the later sections, we will discuss the application of

this dilaton for charmonium and bottomonium systems at
zero and finite temperature.

III. ZERO TEMPERATURE

In the case of zero temperature, the geometrical back-
ground is given by the Poincaré patch

dS2 ¼ gmndxmdxn ¼
R2

z2
½dz2 þ ημνdxμdxν�; ð7Þ

with the signature ημν ¼ diagð−1; 1; 1; 1Þ and z ∈ ð0;∞Þ.
Following the AdS/CFT methodology, we will write the

Fourier transformed bulk vector field in terms of the bulk
modes ψðz; qÞ and the boundary sources as

Aμðz; qÞ ¼ AμðqÞψðz; qÞ; ð8Þ

where we have implicitly imposed the gauge fixing Az ¼ 0.
We use the z component of the equations of motion,
∂zð∂μAμÞ ¼ 0, and the Lorentz gauge in the boundary to
set ∂μAμ ¼ 0 everywhere. These definitions yield the
following equations for the eigenmodes

∂z½e−BðzÞ∂zψnðz; qÞ� þ ð−q2Þe−BðzÞψnðz; qÞ ¼ 0: ð9Þ

where we have defined the background information BðzÞ
function as

BðzÞ ¼ ΦðzÞ − log

�
R
z

�
: ð10Þ

Confinement emerges in this model by the effect of
the dilaton field that induces a holographic confining
potential. We apply the Bogoliubov transformation ψðzÞ ¼
eBðzÞ=2ϕðzÞ to the expression (9) obtaining a Schrodinger-
like equation defined as

−ϕ00
nðzÞ þ UðzÞϕnðzÞ ¼ M2

nϕnðzÞ; ð11Þ

where M2
n ¼ −q2 defines the meson spectrum, and the

holographic potential is constructed in terms of the deriv-
atives of the ΦðzÞ dilaton field in Eq. (6) as follows

UðzÞ ¼ 3

4z2
þΦ0ðzÞ

2z
þ 1

4
Φ0ðzÞ2 − 1

2
Φ00ðzÞ: ð12Þ

By solving the Schrodinger-like equation numerically,
we obtain the associated bulk modes and the holographic
mass spectrum. The results for charmonium and bottomo-
nium, with the corresponding parameter fixing, are sum-
marized in Tables I and II.
In the case of electromagnetic decay constants fn, they

arise as the residues of the expansion in poles −q2 ¼ M2
n of

the two-point function, defined from the correlator of two
electromagnetic currents:
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Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jT fjμðxÞjνð0Þgj0i

¼ ðqμqν − q2ημνÞΠð−q2Þ

¼ ðqμqν − q2ημνÞ
X
n

f2n
−q2 −M2

n þ iε
: ð13Þ

The tensor structure written in parentheses is nothing
else than the transverse projector, coming from the fulfill-
ment of the Ward-Takahashi identities.
The importance of the two-point function relies on the

description of the intermediate hadronic states that appear
in scattering processes involving hadrons. Decay constants
measure the probability of finding such states in the
collision final products.
In the case of heavy quarks, the electromagnetic quark

currents ec̄γμc and eb̄γμb creates the J=ψ and ϒ mesons
respectively. At the physical level, these mesonic vector
states appear as observed resonances in the eþe− annihi-
lation process when the center of mass energy is around the
mass of the corresponding mesonic states. Therefore, these
states are expected to be also poles in the two-point
function.

Experimentally, decay constants are measured from the
vector meson decaying process V → eþe−, according to
the expression:

f2n ¼
3MnΓV→eþe−

4πα2emC2
V

; ð14Þ

where ΓV→eþe− is the heavy vector decay width, and CV
stands for the heavy quark electromagnetic charge con-
tribution to the meson, i.e., CJ=ψ ¼ 2=3 and Cϒ ¼ 1=3.
The holographic dual of the two-point function is

determined from the on-shell boundary action [26].
Following the field/operator duality, the holographic
two-point is written as

Πð−q2Þ ¼ −
e−BðzÞ

g25ð−q2Þ
∂zVðz; qÞj

z→0

; ð15Þ

where Vðz; qÞ is the bulk-to-boundary propagator. It is
straightforward to prove that this object can be written in
terms of the normalizable modes ψðz; qÞ by using the
Green’s function associated with the equations of motion
(9). In work [52], authors follow this path deriving a

TABLE I. Summary of results for charmonium states. MTh and fTh are calculated with the parameters mentioned on header, and
corresponding errors appear in columns%M and%f. Experimental results are read from PDG [10] and total error is δRMS ¼ 6.0%. The
Regge trajectories are also presented.

Charmonium States IGðJPCÞ ¼ 0þð1−−Þ
Parameters: κ ¼ 1.8 GeV, M ¼ 1.7 GeV,

ffiffiffi
Γ

p ¼ 0.53 GeV and α ¼ 0.54

n State MExp (MeV) MTh (MeV) %M fExp (MeV) fTh (MeV) %f

1 J=ψ 3096.916� 0.011 3140.1 1.42 416.16� 5.25 412.4 1.4
2 ψð2SÞ 3686.109� 0.012 3656.9 0.9 296.08� 2.51 272.7 8.0
3 ψð4040Þ 4039� 1 4055.7 0.4 187.13� 7.61 201.8 7.8
4 ψð4415Þ 4421� 4 4376 0.9 160.78� 9.70 164.1 2.0

Nonlinear Regge Trajectory: M2
n ¼ 8.097ð0.39þ nÞ0.58 GeV2 with R2 ¼ 0.999

TABLE II. Summary of results for bottomonium states. MTh and fTh are calculated with the parameters mentioned on header, and
corresponding errors appear in columns%M and%f. Experimental results are read from PDG [10] and total error is δRMS ¼ 7.2%. The
Regge trajectories are also presented.

Bottomonium States IGðJPCÞ ¼ 0þð1−−Þ
Parameters: κ ¼ 9.9 GeV, M ¼ 2.74 GeV,

ffiffiffi
Γ

p ¼ 1.92 GeV and α ¼ 0.863

n State MExp (MeV) MTh (MeV) %M fExp (MeV) fTh (MeV) %f

1 ϒð1SÞ 9460.3� 0.26 9506.5 0.5 714.99� 2.40 718.8 0.5
2 ϒð2SÞ 10023.26� 0.32 9892.9 1.0 497.37� 2.23 575.7 16
3 ϒð3SÞ 10355.2� 0.5 10227.2 1.2 430.11� 1.94 413.0 4.0
4 ϒð4SÞ 10579.4� 1.2 10497.5 0.8 340.65� 9.08 324.3 4.8
5 ϒð10860Þ 10889.9þ3.2

−2.6 10721.5 1.5 – – –
6 ϒð11020Þ 10992.9þ10.0

−3.1 10912.7 0.7 – – –

Nonlinear Regge Trajectory: M2
n ¼ 7.376ð1.31þ nÞ0.24 GeV2 with R2 ¼ 0.999
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general expression for the decay constants calculated for
any general AdS/QCD model depending only on the value
of the quotient ψðz; qÞ=z2 and the dilaton at the conformal
boundary

f2n ¼
1

M2
ng25

lim
z→0

e−2ΦðzÞ
���� 2ψnðz; qÞ

z2

����2: ð16Þ

Let us stop here and see how the decay constants are
calculated in the soft wall model, i.e., static and quadratic
dilaton. Following [26], we see that the mass spectrum has
the linear structure M2

n ¼ 4k2ðnþ 1Þ, with k being the
dilaton slope. The eigenfunctions are defined in terms of
Laguerre associated polynomials

ψnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k4n!

ðnþ 1Þ!

s
z2L1

nðk2z2Þ; ð17Þ

therefore, the decay constants follow from Eq. (16) yielding

f2n ¼
F2
n

M2
n
¼ 1

4g25k
2ðnþ 1Þ ×

8k4ðnþ 1Þ!
n!

¼ 2k2

g25
; ð18Þ

where we have used the asymptotic form of the Laguerre
associated polynomials when z → 0. Therefore, we can
conclude that decay constants are degenerate in the softwall
model. If we do similar computations in the hardwall model
context [17], they will lead to increasing decays fn with the
excitation number n. This drawback can be avoided by
deforming the low z limit in the static dilaton, as it was first
noticed by Braga et al. [56]. We will extend this idea in the
context of nonquadratic dilatons.
The numerical results for the charmonium and bottomo-

nium decay constants, calculated in the deformed nonqua-
dratic dilaton context, are summarized in Tables I and II.
The deviations presented in the caption of Tables I and II
represent the difference between the theoretical prediction
and themost probablevalue of a given experimentalmeasure.
The total deviation δRMS is defined as

δRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − Np

XN
i

�
δOi

Oi

�
2

vuut ; ð19Þ

whereOi is a given experimental measure with δOi defining
the deviation of the theoretical value from the experimental
one, Np is the number of model parameters, and N the total
number of available observables.

IV. FINITE TEMPERATURE

For the finite-temperature extension, we will consider the
heavy quarkonium system living in a thermal bath,
addressed by a colored plasma. Holographically, we will
deal with vector bulk field living in an AdS-Schwarzschild
black hole background, described by the metric

dS2AdS-Schw ¼ R2

z2

�
dz2

fðzÞ − fðzÞdt2 þ dx⃗ · dx⃗

�
; ð20Þ

with the blackening factor defined as

fðzÞ ¼ 1 −
z4

z4h
: ð21Þ

where zh is the event horizon locus.
The description of heavy quarkonium at finite temper-

ature in the context of the softwall model was developed in
[44]. However, as it was discussed in [57–59], by analyzing
the holographic potential in the context of Bogoliubov
transformations and tortoise coordinates, the mesonic
melting temperature appears to be too low as the ones
expected from lattice QCD. This bad behavior is attached to
the holographic decay constant description in the softwall
model, where these objects are degenerate. This affirmation
is sustained by the thermal analysis of the hadronic part of
the two-point function [60,61]. For instance, the hadronic
spectral density calculated from thermal sum rules

1

π
ImΠðs; TÞj

hadron
¼ f2nMnðTÞ3ΓnðTÞ

½s −M2
nðTÞ�2 þM2

nðTÞΓnðTÞ2
; ð22Þ

establishes the formal dependence of the melting process
with the decay constant.
This softwall model issue was circumvented by intro-

ducing low zmodifications into the model, as it was done in
[62]. Therefore, it is natural to suppose that this hybrid
dilaton should exhibit the expected raising in the melting
temperatures in agreement with phenomenology.
Let us focus on reviewing the holographic description of

the heavy quarkonium. Our starting point is the calculation
of the hadronic spectral density. To do so, we will follow
the Minkowskian prescription given by [63]. Let us
perform the variable change z ¼ zhu in the metric (20)
in order to fix the horizon locus at u ¼ 1. We will also fix
−q2 ¼ ω2 in our analysis.

A. Confinement/deconfinement phase transition

In the boundary gauge theory, the formation of a decon-
fined plasma is holographically described via the Hawking-
Page phase transition in the dual geometry [64,65]. On the
gauge theory side, above the critical temperature, Tc, the
fundamental quarks and gluons inside the colorless matter
are allowed towalk away from its partners, forming a plasma
of deconfined colored particles. It is usually considered that
the light vector meson dominates the deconfinement tran-
sitions. That is, the medium is formed when the light quarks
can escape from the hadrons. Consequently, we use the light
meson spectrum to fix the energy scales governing the
confinement/deconfinement transition.
The observed spectrum of radial excitations of the ρmeson

includes the masses of the first five radial excitations, and the
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decay constant of the ground state [10]. It is important to
mention that additional scales in the model encode heavy
quarkonia properties and bring no particular advantages in
describing the light meson spectrum. In particular, for light
mesons, the parameter α in Eq. (6) is set to vanish. The
observed spectrum of the radial excitations of the ρmeson are
reasonable fitted using the model parameters κ ¼ 0.6 GeV,
M ¼ 0.06 GeV,

ffiffiffi
Γ

p ¼ 0.02 GeV.Using these parameters to
fix the dilaton profile, we compute the gravitational on-shell
action of theAdS-Schwarzschild black hole geometry and the
thermal AdS geometry. The normalized difference is then
obtained as

ΔS ¼
Z

zh

ϵ
dz

e−ΦðzÞ

z5
−

ffiffiffiffiffiffiffiffiffi
fðϵÞ

p Z
∞

ϵ
dz

e−ΦðzÞ

z5
: ð23Þ

We show in Fig. 1 the difference in action as a function
of temperature. In the region where ΔS is positive, the
thermal AdS is stable. In the region with ΔS is negative,
the black hole is stable. The condition ΔS ¼ 0 defines the
critical temperature, and we obtain

Tc ¼ 142 MeV: ð24Þ

There are two important comments to make at this point.
First, using the ρ meson spectrum to fix model parameters
is a particular choice. As it was recently pointed out in [66],
the definition of Tc through a Hawking-Page transition is
model depending. The same authors performed a similar
calculation considering the gluon condensate obtaining a
critical temperature of 156 MeV [67]. Second, the phase
transition associated with QGP formation in heavy-ion
collisions is more likely a continuous crossing over than an
abrupt transition [68]. However, the present computation
of Tc has no intention of dealing with these subtleties.
The critical temperature we obtain (Tc ¼ 142 MeV) is

consistent with the present holographic model and will be
adopted from now on.

B. Spectral density

The holographic spectral density comes from the thermal
Green’s function. We define the bulk-to-boundary propa-
gator in momentum space Vμðz; qÞ ¼ Vðz; qÞV0

μðqÞ, where
V0
μðqÞ is the source at the boundary. According to the

Minkowskian prescription, this correlator is written in
terms of the derivatives of the bulk-to-boundary propagator
Vðz; qÞ as

GRðωÞ ¼ −
2

zhN
e−BðuÞfðuÞVðu;−ωÞ∂uVðu;ωÞj

u¼0

: ð25Þ

The spectral density, according to the Kubo relations, is
written as the imaginary part of the Green’s function

ρðωÞ ¼ −ImGRðωÞ: ð26Þ
The bulk-to-boundary propagator obeys the bulk spatial

vector equation of motion

∂u½e−BðuÞfðuÞ∂uVðu;ωÞ� þ
z2hω

2

fðuÞ e
−BðuÞVðu;ωÞ ¼ 0: ð27Þ

Although we are at finite temperature, the bulk-to-
boundary propagator still preserves its properties at the
conformal boundary. If this is not guaranteed, the field/
operator duality does not hold anymore. Recall that at the
conformal boundary, we require that Vðu → 0Þ → 1. On
the other side, we also need that Vðu;ωÞ obeys the out-
going boundary condition ϕ−ðuÞ, defined as

ϕ−ðuÞ ¼ ð1 − uÞ−iωzh4 ð28Þ
These conditions define the procedure to compute the

spectral density. We will follow the method depicted in
[43,44,69,70]. Our starting point is writing a general
solution vðuÞ for the Eqn. (27) in terms of the normalizable
ψ0ðuÞ and non-normalizable ψ1ðuÞ, that form a basis, in the
following form

vðuÞ ¼ A

�
ψ1ðuÞ þ

B
A
ψ0ðuÞ

�
; ð29Þ

such that the bulk-to-boundary propagator is written as
Vðω; uÞ ¼ A−1vðuÞ, and satisfying the asymptotic solu-
tions near the conformal boundary

ψ0ðuωÞ ¼
2

ωzh
uJ1ðωzhuÞ ð30Þ

ψ1ðuωÞ ¼ −
πωzh
2

uY1ðωzhuÞ ð31Þ

After replacing this solution into the Green’s function
definition we obtain

FIG. 1. The difference between the on-shell gravitational action
of AdS-Schwarzschild and thermal AdS geometries is depicted as
a function of temperature in GeV. The intersection with the
horizontal axis gives the critical temperature of the deconfine-
ment transition.
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GRðωÞ ¼ −
2R
zhN

�
B
A
−
ω2z2h
2

log

�
eγeεωzh

2

�
ε2
�����

ε→0

ð32Þ

Finally, the spectral density is written as the imaginary
part of the Green’s function

ρðωÞ ¼ −ImGRðωÞ

¼ 2R
zhN

Im
B
A
: ð33Þ

Numerical results for the spectral density calculated for
charmonium and bottomonium system are shown in Fig. 2.

C. Thermal holographic potential

Another essential quantity that carries valuable informa-
tion about the heavy quarkonium thermal picture is the
thermal potential. At zero temperature case, the potential
translates the dilaton effect into the holographic confine-
ment. Holographic mesonic states appear as eigenfunctions
of this potential.
The thermal dissociation of mesons is connected with the

holographic potential. In [59], this idea was discussed in the
context of softwall-like dilatons that vanish at the con-
formal boundary. In this proposal, the melting is charac-
terized by the disappearance of the potential well. At zero
temperature, the dilaton vanishes near the boundary, and
the potential holographic displays one single minimum that
is global at zero temperature. The disappearance of the
global minimum of the holographic potential encodes the
information of meson dissociation.
In this work, we consider a dilaton that does not vanish

near the boundary. This dilaton field, given in Eq. (6)
interpolates between linear and the deformed quadratic
behavior, which induces a nonlinear spectrum. This dilaton
also changes the global structure of the potential by
introducing local minima near the UV at zero temperature.
As argued in [33,52], this UV deformation is needed in

order to describe the proper phenomenological behavior the
decay constants of the excited quarkonia states.
It is expected that, at finite temperature, the holographic

potential also has information about the melting process.
To make a formal approach to this phenomenology, we
apply the Liouville (tortoise) transformation. It transforms
the equations of motion into a Schrödinger-like equation in
terms of a Liouville (tortoise) coordinate r�. The potential
exhibits a barrier that decreases with the temperature,
mimicking how the confinement starts to cease when the
temperature rises. Following [59], one expect that the
barrier disappears when all of the quarkonia states melt
down into the thermal medium. However, the appearance of
a local minima near z ¼ 0 can sustain the state after the
disappearance of the barrier.
The Liouville transformation appears in the core of the

Liouville theory of second-order differential equations.
Given a differential equation, we can associate it with a
differential diagonalizable operator. As a consequence,
this operator will acquire a spectrum of eigenvalues and
eigenfunctions. In the holographic case at hand, the
associated potential is defined via the transformation

r�ðuÞ ¼ zh

Z
u

0

dξ
1 − ξ4

¼ zh
2
ðtan−1 uþ tanh−1uÞ: ð34Þ

The equations of motion (27) transform into the follow-
ing Schrodinger-like equation

−
d2ϕðr�Þ
dr�2

þ Uðr�Þϕðr�Þ ¼ ω2z2hϕðr�Þ; ð35Þ

with the following definitions

FIG. 2. This figure describes the spectral density for charmonium (left panel) and bottomonium (right panel) calculated using
Eqn. (33), depicting the melting process. Dashed lines corresponds to the melting temperature in each case.
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Uðr�Þ ¼ fðuÞ2
�
3

4u2
þΦ0ðuÞ

2u
þΦ0ðuÞ2

4
−
Φ00ðuÞ
2

−
f0ðuÞ
2ufðuÞ −

f0ðuÞΦ0ðuÞ
2fðuÞ

�
ð36Þ

ϕðr�Þ ¼ ψðuÞe1
2
BðuÞ ð37Þ

u ¼ uðr�Þ: ð38Þ

where u ¼ uðr�Þ is obtained by inverting the Liouville
coordinate defined in Eq. (34).
In Fig. 3, we depict the melting process from the

Liouville potential for the heavy quarkonia. In the zero
temperature case, the potential reduces to the holographic
one described in Eq. (12).
The melting process in the present case is a two step

process involving two different energy scales. The first step
is the disappearance of the infrared barrier when the
temperature is increased above Tc allowing for the bulk
modes to be absolved by the event horizon. At this step all
the excited states melts in the thermal medium. But this is
not sufficient to state the melting of the ground state. The
appearance of a deep, narrow and persistent well near z ¼ 0
produces a barrier greater them the mass of the ground
state. The well is separated from the event horizon by a
barrier which narrows with the raising of temperature. At
the melting temperature the barrier is too narrow to hold
the bulk wave packet, that escapes from the well and is
absolved by the event horizon. A quantitative description of
the tunneling process is not performed here and the melting
temperature depicted in Fig. 3 are obtained from the
Breight-Wigner analysis performed in the next section.

V. BREIT-WIGNER ANALYSIS

Once the spectral functions are calculated, we will
perform the Breit-Wigner analysis to discuss the thermal

properties captured by the holographic model described
above. This analysis allows extracting information about
the meson melting process, as the temperature and the
thermal mass shifting. Recall that when a meson starts to
melt, the resonance begins to broad (the width becomes
large), and the peak height, which is proportional to the
decay constant, decreases. In other words, the mesonic
couplings tend to zero as the temperature rises, implying
these states ceased to be formed in the colored medium.
Therefore, comparing the peak height and the width size

will be the natural form to define the meson melting
temperature: the temperature at which the width size
overcomes the peak high is where the meson starts to
melt. This phenomenological landscape also comes in the
context of pNRQCD at thermal equilibrium.
The next thing to consider is the background. These

background effects observed in the spectral function come
from continuum contribution, and they should be sub-
tracted in order to isolate the Breit-Wigner behavior. The
background subtraction methodology is not unique, and in
general, is model depending. However, most of the authors
define interpolation polynomials in terms o powers of ω2.
See, for example, [71,72] in the light scalar sector and [44]
for heavy vector quarkonium. In these references, authors
worked with quadraticlike dilatons.
In our particular case, we will follow a different path: we

will consider the large ω2 behavior to deduce a background
subtraction mechanism. As Ref. [33] pointed it out, in a
conformal theory at short distances, we could expect that

lim
ω2→∞

ρðω2Þ
ω2

¼ π

2g25
i:e:; a dimensionless constant; ð39Þ

for the case of quadraticlike dilatons. The OPE-expansion
of the 2-point function dictates this behavior, allowing the
match between the bulk and the boundary theories. In
the purely phenomenological sense, the existence of this

FIG. 3. In this figure, we plot the holographic Liouville potential for charmonium (left panel) and bottomonium (right) panel. Also, we
plot the first three masses calculated a zero temperature to illustrate the melting process. When the barrier decreases below the mass, we
can consider that such a state had undergone a melting process.
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dimensional constant is a signature of asymptotic freedom.
Thus, the spectral function for these quadratic-like dilatons
can be rescaled as

ρ̄ðω2Þ ¼ ρ

ω2
; ð40Þ

in order to test the asymptotic freedom signature in the
model. Therefore, if the rescaled spectral function behavior
does not match this criterion, the model does not have a
proper large ω2 limit compared with QCD. The softwall
model with quadratic dilaton perfectly matches this
condition.
Then, what happens when the model does not have a

quadratic dilaton? To answer this question, we can go
further by imposing the same asymptotic condition.
However, changing the quadratic structure on the dilaton
will imply that the asymptotic behavior of the spectral
function is different: it is still linear in ω2, but with a shifted
value of the coupling g5, defined at zero temperature from
the holographic 2-point function. Thus, we suggest the
following rescaling:

ρ̄ðω2Þ ¼ ρðω2Þ
δω2

; ð41Þ

where δ is determined from the large ω2 behavior observed
in the spectral function ρðω2Þ. From this rescaled spectral
function, we will subtract the background effects and
construct the Breit-Wigner analysis. For our practical
purposes, we will write the Breit-Wigner distribution as

ρ̄ðω2Þ ¼ 1

2

A0ω
2
0Γ0ω

a0

ðω2 − ω2
0Þ2 þ ω2

0
Γ2
0

4

; ð42Þ

where A0, a0 are fitting parameters, ω0 is the mesonic peak
and Γ0 is the decay width, proportional to the inverse of the
meson lifetime.

A. Background substraction

In the thermal approach to heavy quarkonium, the colored
medium is vital since it strongly modifies the vacuum
phenomenology. In particular, following the Feynman-
Hellman theorem analysis, it is expected that bound states
energy decrease when constituent mass is increased at zero
temperature [73]. Consequently, zero temperature spectral
peaks experience shifting in their positions, color singlet
excitations transform into other singlet states by thermal
fluctuations, or these singlet excitations transform into
another color octets. All of this intricate phenomenology
is encoded in the medium. Therefore, in order to isolate the
thermal information regarding the heavy quarkonium state
melting process, a proper subtraction scheme is needed. In
our case, we will consider an interpolating polynomial in ω2

that will be subtracted to the spectral density, allowing us to

obtain a Breit-Wigner distribution associated with the heavy
quark state only. In Fig. 4, we depict the subtraction process
for the melting of J=ψ , observed in our model at 415 MeV
(2.92 Tc).
At this step, an important remark should be made. The

interpolating polynomial is not defined univocally. We can
fix a criterium that these sorts of polynomial should obey.
In principle, since we do not have a proper phenomeno-
logical tool at hand to split the behavior of the medium
from the hadronic state, we will ask for a smooth sub-
traction. In other words, the region where the interpolating
polynomial splits from the spectral function should not
display an abrupt change. Since the possible functions that
could match this condition are infinite, we can only bring a
temperature interval where the meson starts to melt.
However, choosing similar polynomials will lead to the
same melting interval. See lower panels in Fig. 4.

B. Melting temperature criterium

As we observe in Fig. 2, mesonic states disappear
progressively with increasing temperature. In the holo-
graphic potential case, the melting temperature is not
connected with the disappearing of the confining barrier.
Since the potential has a depth well in the UV region, the
thermal stability would be associated with the tunneling of
such a barrier.
In the holographic situation, the generated dual object is

a colored medium at thermal equilibrium, where the heavy
quarkonium exists. In such a static situation, mesonic states
either exist or have melted down. Thus, the only relevant
information at the holographic level we have is the spectral
function and the background subtraction.
In order to find the interval where heavy mesons start to

melt, we will follow the standard criterium connecting the
Breit-Wigner maximumwith its graphical width, defined as
a product of the meson mass and the thermal width

ρ̄ðω2
0Þ

ω0
Γ
2

< 1: ð43Þ

Notice that the definition depicted above is an alternative
to the criteria defined from the effective potential models and
lattice QCD, defined where the melting occurs when the in-
medium binding energy equals the thermal decay width [74].
In the holographic case, melting temperatures are intrinsi-
cally connected to decay constants, proportional to the two-
point function residues at zero temperature. Recall the decay
constants carry information about how the mesonic states
decay electromagnetically into leptons. Thus, indirectly they
measure the mesonic stability affected by thermal changes:
excited states with lower binding energy than the ground one
melt first. This connection with meson stability is supported
by the experimental fact that decay constants decrease with
the excitation number. Another possible form to explore the
connection between the mesonic melting process and
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stability is done in the context of configurational entropy,
discussed in Refs. [51,75–77].
In the case of the charmonium, the ψ 0 state melts near

90 MeVor 0.63Tc. The ground state, the J=ψ meson melts
near to 415 MeV or 2.92Tc. If we compare with the
pNRQCD results [78], we obtain a lower temperature

for the 2S charmonium state (lattice result: 0.95Tc) but
higher for the ground state (lattice result: 1.37Tc). The main
difference in both results is that in our holographic case we
are considering heavy quarkonium at rest, i.e., jp⃗j ¼ 0.
A similar situation is observed in the bottomonium case:

the ϒð2SÞ melts near to 115 MeV (or 0.81Tc), compared

FIG. 4. This figure depicts the subtraction procedure for J=ψ at 400 MeVand 415 MeV, ψ 0 at 85 MeVand 90 MeV, andϒ at 465 MeV.
Notice that the background polynomial appears as the orange function in both cases. We plot the subtracted spectral density on the top
right part of each figure that we fit with the Breit-Wigner distribution (42). In the lower panels, we plot the bottomonium case for the
same temperature, 465 MeV, with two different interpolating polynomials. In both situations, changing the polynomial does not affect
the melting criterium. Recall that, unless other nonholographic effective models, the in-medium effects are encoded into the metric
tensor. Thus, any proper characteristic behavior, as heavy quarkonium regeneration or gluon radiation, is indistinguishable.
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with the pNRQCD result of 1.25Tc. For the ground state we
have 465 MeV (or 3.27Tc), compared with the lattice result
of 2.66Tc.
If we compare with holographic stringy models [79],

where the melting temperature is estimated from the string
tension in an AdS deformed target space, we found bigger
results for heavy quarkonium melting temperature. They
predict 1.05Tc and 2.52Tc for charmonium and bottomo-
nium respectively.

C. Thermal mass

Other important quantities to discuss are the masses and
widths of the different hadronic states since these param-
eters have information about the interaction with the
colored medium. Figure 5 has summarized the mass
thermal behavior modeled for the first two charmonium
and bottomonium excited states. Comparing with other
holographic models (see [43,44] for heavy mesons; [71,71]
and [72] for light mesons), the mass for the ground state in
our case tends to increase with temperature until the meson
melting takes place, as the upper (J=ψ) and lower (ϒ)
panels in Figure 5 display. The same behavior is observed
for the charmonium first excited state, depicted in Figure 5
right upper panel. However, this very same behavior is not

observed for the first excited state of the bottomonium. In
the ϒð2SÞ meson case, the hadronic resonance location
decreases with the temperature.
The observed behavior for the thermal mass in our case

seems to be quite different from the one depicted in [43]. In
their case, the thermal mass increases toward a maximum,
where the authors claimed the melting process starts, and
then thermal mass decreases up to the last charmonium
meson is melted. In our case, such a concavity change
occurs for low temperatures compared with Tc, far from the
melting temperatures, around three times Tc. The monot-
onicity of the thermal mass appears to be more consistent
with lattice calculations [74,80]. In those approaches,
writing the NRQCD heavy quark potential is done in the
soft scale, i.e., kinematical scale. In the case of hard scales,
near to the constituent quark masses, other approaches are
necessary.
In the context of QCD sum rules [60], following the

Hilbert moment mechanism, the thermal mass in the case of
heavy quarks does not change with the temperature until
the system reaches the critical temperature, where it drops.
As an interesting observation, in this model, the decay
constants go to zero as the temperature comes closer to the
critical one, indicating that the melting has occurred.

FIG. 5. Resonance location as a function of the temperature. The shaded region in each panel describes the increase of the thermal
width until the meson melting occurs. The left panels correspond to ground states, and the right panels are the first excited states. Upper
panels correspond to charmonium, and lower panels correspond to bottomonium.
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VI. CONCLUSIONS

By deforming the nonquadratic dilaton defined in [55]
using the proposal given by Braga et al. in [50], it was
possible to fit for the vector charmonium and bottomonium
both the mass spectra as nonlinear Regge trajectories and
their decreasing decay constants. The precise holographic
description of the heavy vector meson excited states is
reached by considering all the lessons learned in the last
decade of bottom-up AdS/QCD.
The precision of the fit is measured by the δRMS, defined in

Eq. (19), being 6% for charmonium and 7, 2% for bottomo-
nium. The dilaton deformations are necessary for a precise
description of the spectrum of masses and decay constants. If
we use the original quadratic dilaton to describe the charmo-
nium spectrum by fixing k ¼ 1.55 GeV, we find
δRMS ¼ 74%. So, the new parameters introduced in the
dilaton do allow an accurate description of the spectrum.
Notice that the model has predictability even though we are
using four parameters to fit each heavy quarkonium family.
As a matter of fact, for the nonlinear trajectoryM2 ¼ aðnþ
bÞν we need three parameters. If we assume that decay
constants are functions of the excitation number n only, we
can write them as fðnÞ ¼ cð−nþ dÞ, if we suppose linearity
as our first guest. The minus sign in the parametrization
emphasizes the decreasing behavior of the decays with n.
Thus, if we count the maximum number of parameters need
for both decays and masses, we obtain five parameters. If we
assume nonlinear behavior for decays, we have one extra
parameter, implying six instead of five maximum parameters
per family. Thus, in our case, we have four. Thus our model is
predictable. Such precision is essential to set the correct zero
temperature behavior of the spectral functions. If we think of
the increasing temperature as an analog for time evolution,
zero-temperature properties play the role of initial conditions.
Spectral functions have been numerically computed for

several representative values of the temperature. As
expected, pronounced resonance peaks around the zero

temperature masses of charmonium and bottomonium are
observed near Tc. To discuss the fate of the particle states
when increasing temperature, it is necessary to subtract
background contributions from the spectral functions. We
provide a detailed discussion on this subject and propose a
numerical scheme to perform such a subtraction. The Breit-
Wigner peaks are analyzed. We obtain the melting temper-
ature of J=Ψ and ϒ to be, respectively, TJ=Ψ ¼ 415 MeV
and Tϒ ¼ 465 MeV. These high melting temperatures
obtained are directly connected to the correct description
of the decay constants of the corresponding fundamental
states of cc̄ and bb̄. The excited states Ψ0, ϒ0 melts at
temperatures smaller them Tc. So, we consider smaller
temperatures around 50–60 MeV where we can see the
pronounced peaks associated with the states. Within this
range of temperatures, around 50–470 MeV, we consider
the thermal mass shifting of J=Ψ,Ψ0 andϒ,ϒ0. We observe
a small and monotonic increase in the masses of the ground
states with temperature.
The specific form of the dilaton leads to a holographic

potential that differs from the one obtained in quadratic
dilaton models. In the present case, there is a narrow well in
the ultraviolet region. The melting of the fundamental state
is no longer entirely governed by the disappearance of the
infrared barrier. For this shape of holographic potential, the
criteria for defining the melting of the states established in
[59] does not apply. It is a task for future work to
understand the melting process from the thermal evolution
of this class of holographic potentials.
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