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We present the first proof-of-principle Cauchy evolutions of asymptotically global anti–de Sitter (AdS)
spacetimes with no imposed symmetries, employing a numerical scheme based on the generalized
harmonic form of the Einstein equations. In this scheme, the main difficulty in removing all symmetry
assumptions can be phrased in terms of finding a set of generalized harmonic source functions that are
consistent with AdS boundary conditions. In four spacetime dimensions, we detail an explicit set of source
functions that achieves evolution in full generality. A similar prescription should also lead to stable
evolution in higher spacetime dimensions, in various couplings with matter fields, and on the Poincaré
patch. We apply this scheme to obtain the first long-time stable 3þ 1 simulations of four-dimensional
spacetimes with a negative cosmological constant, using initial data sourced by a massless scalar field. We
present preliminary results of gravitational collapse with no symmetry assumptions, and the subsequent
quasinormal mode ringdown to a static black hole in the bulk, which corresponds to evolution toward a
homogeneous state on the boundary.
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I. INTRODUCTION

In recent years anti–de Sitter (AdS) space has proven to
be a particularly exciting theoretical laboratory for studying
the strong-field regime of general relativity (GR). AdS with
reflective boundary conditions plays the role of a box that
naturally keeps propagating waves confined to its interior,
where they are perpetually interacting. Thus, even the
smallest perturbations in AdS can enter the strong-field
regime, where qualitatively new gravitational phenomena
emerge. One of the most important of these is gravitational
collapse—the growth of curvatures that eventually leads to
the formation of a singularity in spacetime potentially
associated with a black hole. Obtaining the details of this
fundamental process in full generality in AdS is still an
open problem. In asymptotically flat spacetimes, although
it has not yet been proven rigorously, this process of
gravitational collapse is expected to generically end in a
rotating black hole that is characterized by two conserved
numbers: total mass and total angular momentum. In

asymptotically AdS spacetimes, the end point is less clear.
Small, rapidly rotating black holes are unstable due to a
process known as superradiance—the amplification of
waves that scatter off a rotating object. Along with the
boxlike nature of AdS, this amplification leads to a run-
away process whose end point is unknown.
In an unprecedented way, the simulation of asymptoti-

cally AdS spacetimes has also opened up the field of
numerical relativity to the study of phenomena in areas
beyond the traditional astrophysical setting. At the heart of
this push to understand AdS is a deep connection between
gravity in AdS to certain conformal field theories (CFT),
now known as the AdS=CFT correspondence [1–3].
Through this connection, the study of AdS spacetimes
has become immediately relevant to fundamental questions
in many areas in physics, such as fluid dynamics [4–6],
relativistic heavy ion collisions [7–10], and superconduc-
tivity [11–13]. See, for example, Refs. [14–17] for excel-
lent reviews. The reason why the study of AdS is crucial for
our understanding of these phenomena is that AdS=CFT
provides an important—and in most cases the only—
window into the real-time dynamics of strongly interacting
quantum field theories far from equilibrium. The dynamical
far-from-equilibrium strongly interacting regime is pre-
cisely the one that is least explored and understood, and the
one that has the best chance of making contact with certain
experiments.
Our current understanding of gravity in AdS remains

limited for several reasons. First, evolution in AdS is
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notoriously hard, in part because it is an initial-boundary
value problem whose systematic study is still in its infancy.
Cauchy evolution in AdS requires data to be prescribed
not only at an initial spacelike hypersurface but also at
spatial and null infinity which constitutes the timelike
boundary of an asymptotically AdS spacetime. Second,
the most interesting phenomena involve spacetimes that
have very little or no symmetry, making these evolutions
beyond the reach of most numerical codes. Third, for many
of these phenomena, there is a variety of physical scales
that must be adequately resolved to correctly capture the
relevant physics.
The main purpose of this article is to present the first

proof-of-principle Cauchy evolution of asymptotically AdS
spacetimes that has been achieved with no symmetry
assumptions, and to describe the framework that makes
Cauchy evolution in AdS possible in full generality. The
results presented here are based on a code with adaptive
mesh refinement (AMR) capabilities that solves the
Einstein equations in generalized harmonic form for
asymptotically AdS spacetimes, subject to reflective (i.e.,
Dirichlet) boundary conditions. We couple gravity to a
massless scalar field, but the latter does not play any
fundamental role in our scheme; we introduce it as a
convenient mechanism to arrange for initial data whose
future Cauchy development contain trapped surfaces.
Ingoing characteristic (e.g., Eddington-Finkelstein)

coordinates have been successfully used to simulate
dynamical spacetimes containing black branes in asymp-
totically AdS spacetimes in Poincaré coordinates in full
generality, i.e., no symmetry assumptions.1 This method
has been applied to a variety of settings, and by now the
literature on the subject is vast; we will not review it here.
We refer the reader to [20] for a detailed review. This
approach, however, will fail if the ingoing radial null
geodesics form caustics within the numerical domain,
which can happen whenever there is a strong localized
perturbation of the background spacetime. For instance, the
dynamical formation of localized black holes in the back-
ground of the AdS soliton spacetime [21] or even a
localized black hole falling through the Poincaré horizon
of AdS are just two possible examples where the ingoing
coordinates of [20] are likely to become singular due to the
formation of caustics.2 On the other hand, Cauchy evolu-
tion in conjunction with generalized harmonic coordinates
is well-known to successfully handle strong, highly
dynamical and localized gravitational fields, such as those
produced by the individual black holes in a binary. While it

is possible that many problems that have been solved using
ingoing coordinates in the Poincaré patch of AdS can also
be solved with Cauchy evolution, the latter can be applied
to situations where ingoing coordinates will almost cer-
tainly fail. Furthermore, the use of Cauchy evolution
benefits from the infrastructure developed over many years
to numerically solve the black hole binary problem in
general relativity [24–26]. In particular, the code described
in the present work has built-in AMR and is designed to run
in large supercomputing clusters; both of these features will
likely turn out to be crucial in solving certain key open
problems in AdS.
A key requirement for obtaining stable evolution in AdS

is a gauge choice that is consistent with the conditions
imposed at the AdS boundary (see, for example, Ref. [27]).
In most cases, a gauge choice leading to stable numerical
evolution is typically found in spacetimes with a certain
degree of symmetry. In the present work, we detail a gauge
choice in D ¼ 4 spacetime dimensions that leads to stable
evolution in an asymptotically global AdS setting with no
symmetry assumptions. This work is a direct precursor to
fully general studies of gravitational collapse and black
hole formation in AdS. In this context, Cartesian coordi-
nates are suitable as they are regular everywhere, do not
contain coordinate singularities, and do not have the well-
known limitation suffered by spherical coordinates in the
form of severely shorter time steps imposed by the Courant-
Friedrichs-Lewy (CFL) condition. In addition, most AMR
infrastructures are designed for this type of coordinates.
Similar coordinates were used in [28] to study the non-
spherically symmetric collapse of a massless scalar field in
global AdS5 with SO(3) symmetry. In anticipation of fully
general studies, we choose to write our prescription in
terms of global Cartesian coordinates, using second order
finite difference derivative stencils to discretize the initial
constraint equations and the evolution equations. The
framework we present here straightforwardly generalizes
to other settings and other discretization schemes.
The rest of this article is organized as follows. In Sec. IIwe

describe the setup, starting with a short review of anti–de
Sitter spacetime, and two complementary characterizations
of asymptotically AdS boundary conditions. In Sec. III we
detail our prescription for obtaining stable Cauchy evolution
with no symmetries in Cartesian coordinates. The crucial
ingredients for this prescription are reflective Dirichlet
boundary conditions imposed on appropriate evolution
variables, and a specific choice of generalized harmonic
source functions. In Sec. IV we define boundary quantities
whose evolution describes the physics at the AdS boundary.
In Sec. V we outline the generalized harmonic scheme that
we use in our simulations. Section VI contains preliminary
results of simulations of gravitational collapse with no
symmetry assumptions. We conclude with a discussion in
Sec. VII.We have relegated some technical details to several

1The same coordinates were used to successfully evolve
single black holes in asymptotically flat spacetimes [18] and in
global AdS [19].

2In asymptotically flat spaces, it has not been possible thus far
to simulate all stages of a black hole binary with characteristic
coordinates precisely because of the formation of caustics outside
the black holes [22,23].
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appendixes. In Appendix A we write down the Einstein
equations in harmonic coordinates. In Appendix B we
follow our prescription for the interesting case of global
AdS in spherical coordinates, andwe obtain the correspond-
ing stable gauge. In Appendix C we do the same for the
Poincaré patch. Appendix D contains a description of our
construction of initial data for the class of spacetimes
considered in the paper, while in Appendix E we provide
the details of our complete gauge choice, including the bulk.
In Appendix F we explain how we carry out the extrapo-
lation to read off the boundary quantities. Some convergence
tests are presented in Appendix G. Throughout, we use
geometric unitswhereNewton’s constant is set toG ¼ 1 and
the speed of light is set to c ¼ 1.

II. SETUP

A. Anti–de Sitter spacetime

The dynamics of gravity with a cosmological constant Λ
in four dimensions coupled to a real massless scalar field φ
can be described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
ðR − 2ΛÞ − gαβ∂αφ∂βφ

�
; ð2:1Þ

where R is the Ricci scalar of the metric gαβ with
determinant g. The variation of the action (2.1) with respect
to gαβ and φ gives the equations of motion

Rαβ −
1

2
Rgαβ þ Λgαβ

¼ 8π

�
∂αφ∂βφ − gαβ

1

2
gγδ∂γφ∂δφ

�
; ð2:2Þ

gαβ∇α∇βφ ¼ 0: ð2:3Þ

We then recast (2.2) into generalized harmonic form.
See Appendix A for the explicit form of the resulting
equations that we evolve and Ref. [29] for more details
about the theoretical aspects of the formulation. The
numerical solution we obtain is given in terms of the
spacetime metric gαβ, the scalar field φ, and a choice of
gauge source functions Hα.
The metric of AdS4 is the maximally symmetric vacuum

(i.e., φ ¼ 0) solution of (2.2) and (2.3) in four dimensions.
In terms of global coordinates that cover the whole
spacetime, given by ðt; r; θ;ϕÞ ∈ ð−∞;þ∞Þ × ð0;þ∞Þ×
½0; π� × ½0; 2πÞ, this metric can be expressed as

ĝ ¼ −
�
1þ r2

L2

�
dt2 þ

�
1þ r2

L2

�−1
dr2 þ r2dΩ2

2; ð2:4Þ

with a characteristic length scale L, also called the AdS
radius, that is related to the cosmological constant by
Λ ¼ −3=L2, and where dΩ2

2 ¼ dθ2 þ sin2θdϕ2 is the
metric of the round unit 2-sphere. A crucial feature of this

spacetime is the presence of a timelike boundary at
r → þ∞, which makes stable evolution of initial data
possible only if boundary conditions are imposed on the
evolved fields. In other words, any Cauchy problem in this
setting is an initial-boundary value problem.
To proceed further, we first compactify r ¼ 2ρ=

ð1 − ρ2=l2Þ so that the AdS boundary at r→þ∞ is at a
finite value of the new radial coordinate, ρ ¼ l.3 We
hereafter set l¼1 without loss of generality, so that the
AdS boundary is at ρ ¼ 1. In this way, we obtain (compac-
tified) spherical coordinates xα ¼ ðt; ρ; θ;ϕÞ. Defining a
convenient function f̂ðρÞ ¼ ð1 − ρ2Þ2 þ 4ρ2=L2, the metric
of AdS4 in this set of coordinates reads

ĝ ¼ 1

ð1 − ρ2Þ2
�
−f̂ðρÞdt2 þ 4ð1þ ρ2Þ2

f̂ðρÞ dρ2 þ 4ρ2dΩ2
2

�
:

ð2:5Þ

Second, we make use of Cartesian coordinates
xμ ¼ ðt; x; y; zÞ defined by x ¼ ρ cos θ, y ¼ ρ sin θ cosϕ,
z ¼ ρ sin θ sinϕ. This allows us to bypass the severe
restriction that would be imposed on the time step size
near ρ ¼ 0 on a grid in spherical coordinates. The metric of
AdS4 in Cartesian coordinates reads

ĝ ¼ 1

ð1 − ρ2Þ2
�
−f̂ðρÞdt2 þ 4ð1þ ρ2Þ2

ρ2f̂ðρÞ ðxdxþ ydyþ zdzÞ2

þ 4

ρ2
ððy2 þ z2Þdx2 þ ðx2 þ z2Þdy2 þ ðx2 þ y2Þdz2

− 2xydxdy − 2yzdydz − 2xzdxdzÞ
�
; ð2:6Þ

where ρ ¼ ρðx; y; zÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Without loss of

generality, in the rest of this work we set the AdS length
scale to L ¼ 1. With this choice, the metric (2.6) takes the
diagonal form

ĝ¼−
�
1þρ2

1−ρ2

�
2

dt2þ 4

ð1−ρ2Þ2 ðdx
2þdy2þdz2Þ: ð2:7Þ

B. Asymptotically anti–de Sitter spacetimes

We will be interested in the Cauchy evolution of
asymptotically AdS spacetimes. In this section we present
a review of two different characterizations of such space-
times and the relation between them, specializing to the
case of D ¼ 4 spacetime dimensions for concreteness. In
doing so, we will also be able to write down the boundary
conditions for asymptotically AdS spacetimes in terms of
these two different characterizations.

3We emphasize that the arbitrary compactification scale l is
completely independent of the AdS length scale L.
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Let us start from the original arguments presented in
[30]. The authors implicitly considered spacetimes ðM; gÞ
that admit a conformal compactification, and thus a
definition of conformal boundary ∂M. Then they define
asymptotically AdS spacetimes by requiring that the
spacetime asymptotically approaches the pure AdS solu-
tion. More precisely, for any set of global coordinates xα,
the authors required the deviation of the full metric gαβ from
the pure AdS metric ĝαβ, given by hαβ ¼ gαβ − ĝαβ, to
satisfy three conditions:

(i) It is consistent with the asymptotic decay of the
Kerr-AdS metric near ∂M in this set of coordinates.

(ii) Its falloff near ∂M is invariant under the global AdS
symmetry group Oð3; 2Þ, i.e.,

ðLXhÞαβ ¼ OðhαβÞ; ð2:8Þ

near the boundary ∂M for any generatorX ofOð3; 2Þ.
(iii) The surface integral charges associated with the

generators of Oð3; 2Þ are finite.
In addition, for the purposes of this article, we restrict
this definition to spacetimes that satisfy the Einstein
equations (2.2).
It is important to recognize that conditions (i), (ii), and

(iii) can be condensed into one. Reference [30] already
shows that the explicit falloff satisfying (i) and (ii) auto-
matically implies (iii). Furthermore, requiring (ii) is suffi-
cient to obtain the falloff near the boundary that satisfies
also (i) and (iii). This can be seen from the results of [31], in
which (2.8) is solved in any spacetime dimension and the
four-dimensional case coincides with the falloffs in [30].
The condition (ii) amounts to a full spacetime metric gαβ

that approaches the pure AdS metric ĝαβ near ∂M. This has
two consequences for the terminology commonly used in
the literature, as well as in this work. First, we can refer to
∂M as the AdS boundary because it has the same conformal
structure as the boundary of pureAdS, i.e.,R × S2 topology,
and metric given by that of the Einstein Static Universe.
Second,we can define certain classes of coordinates in terms
of the corresponding falloffs of the metric components near
the boundary as follows. Given a set of coordinates xα in
which the pure AdS metric components are ĝαβ, we denote
by xα all sets of coordinates in which the full metric
components gαβ approach the pure AdS metric components
in the form ĝαβ. For example, we will denote any set of
coordinates inwhich themetric g asymptotes to ĝ in the form
(2.5) by ðt; ρ; θ;ϕÞ, and we will refer to them as spherical
coordinates. Similarly, wewill denote any set of coordinates
in which g asymptotes to ĝ in the form (2.7) by ðt; x; y; zÞ,
and we will refer to them as Cartesian coordinates.4

The falloffs for the metric obtained by [30] can thus be
written in the form

hρα ¼ fραðt; θ;ϕÞð1− ρÞ2 þOðð1− ρÞ3Þ; if α ≠ ρ;

hαβ ¼ fαβðt; θ;ϕÞð1− ρÞ þOðð1− ρÞ2Þ; otherwise;

ð2:9Þ

for arbitrary functions fαβðt; θ;ϕÞ. These are supplemented
by the falloffs for the scalar field, given in [31]. Here we
restrict the discussion to a massless scalar field φwith a fast
falloff that preserves the asymptotics (2.9), for which

φ ¼ fðt; θ;ϕÞð1 − ρÞ3 þOðð1 − ρÞ4Þ ð2:10Þ

for arbitrary fðt; θ;ϕÞ. In Cartesian coordinates, these fall-
offs read

hμν ¼ fμνðt; x; y; zÞð1 − ρÞ þOðð1 − ρÞ2Þ; ð2:11Þ

φ ¼ fðt; x; y; zÞð1 − ρÞ3 þOðð1 − ρÞ4Þ; ð2:12Þ

for arbitrary fμν and f, and where ρ ¼ ρðx; y; zÞ.
The falloffs of the source functions, involved in the

generalized harmonic formulation employed in this study,
can be deduced from (2.9) through the definition

Hα ≡□xα ¼ 1ffiffiffiffiffiffi−gp ∂βð
ffiffiffiffiffiffi
−g

p
gβγxα;γÞ

¼ 1ffiffiffiffiffiffi−gp ∂βð
ffiffiffiffiffiffi
−g

p
gβαÞ: ð2:13Þ

In spherical coordinates, denoting the pure AdS values by
Ĥα, Eqs. (2.9) and (2.13) imply

Hα ¼ Ĥα þ fαðt; θ;ϕÞð1 − ρÞ3 þOðð1 − ρÞ4Þ; if α ≠ ρ;

Hρ ¼ Ĥρ þ fρðt; θ;ϕÞð1 − ρÞ2 þOðð1 − ρÞ3Þ; ð2:14Þ

for arbitrary fα. In Cartesian coordinates, denoting the pure
AdS values by Ĥμ, Eqs. (2.11) and (2.13) imply

Hμ ¼ Ĥμþfμðt;x;y;zÞjρ¼1ð1−ρÞ2þOðð1−ρÞ3Þ ð2:15Þ

for arbitrary fμ and ρ ¼ ρðx; y; zÞ.
A different characterization of asymptotically AdS

spacetimes can be given in terms of the well-known
Fefferman-Graham (FG) expansion [32]. In this approach,
one starts with the definition of a locally asymptotically
AdS spacetime ðM; gÞ as a spacetime that admits a
conformal compactification, thus allowing the definition
of a conformal boundary ∂M, and that satisfies the Einstein
equations (2.2). No assumption is made at this stage on the
topology of the boundary. The FG theorem states that one
can always find a coordinate system xᾱ ¼ ðt̄; z̄; θ̄; ϕ̄Þ in a

4Note that these coordinates should only be regarded as
asymptotically spherical and Cartesian coordinates, respectively,
since they are only completely specified near the boundary ∂M.
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neighborhood of the boundary for which the boundary is at
z̄ ¼ 0 and the metric can be written in the form

g ¼ 1

z̄2
ðdz̄2 þ gā b̄dx

ādxb̄Þ; ð2:16Þ

where

gā b̄ðt̄; z̄; θ̄; ϕ̄Þ ¼ gð0Þā b̄ðt̄; θ̄; ϕ̄Þ þ gð2Þā b̄ðt̄; θ̄; ϕ̄Þz̄2 þOðz̄3Þ:
ð2:17Þ

Then, the near-boundary (i.e., about z̄ ¼ 0) expansion of
the Einstein equations completely determines the coeffi-
cient gð2Þā b̄ in terms of gð0Þā b̄. Therefore the dynamics
that makes this spacetime differ from pure AdS appears
at order z̄3 in the expansion of gā b̄. If we make the
further requirement that the topology of the boundary is
the same as in the pure AdS case, i.e., R × S2, the
spacetime becomes globally asymptotically AdS and this

characterization becomes equivalent to the one obtained
from the original arguments in [30]. The FG form (2.16) of
the metric immediately provides the near-boundary behav-
ior and shows that coordinates can be defined so that the z̄ z̄
component of any asymptotically AdS metric goes as 1=z̄2,
and the z̄ ā components vanish in a neighborhood of the
AdS boundary.
We conclude this section by showing an explicit example

of how FG coordinates can be found in the case of general
asymptotically AdS4 spacetimes. We start from the general
form for the asymptotically AdS metric in spherical
coordinates xα, given by gαβ ¼ ĝαβ þ hαβ. The deviations
hαβ from the pure AdS metric ĝαβ have falloffs that are
given by the asymptotically AdS boundary conditions
(2.9). Defining z ¼ 2ð1 − ρÞ=ð1þ ρÞ, we can bring the
pure AdS metric (2.5) into the FG form. Since z asymptotes
to 1 − ρ near the AdS boundary ρ ¼ 1, we can use (2.9) to
immediately write down the metric falloffs in terms of our
new coordinate z. The metric in these coordinates reads

g ¼ 1

z2

�
−ð1þ z2=2þ fttz3 þOðz4ÞÞdt2 þ ð1þ fρρz3 þOðz4ÞÞdz2 þ ð1 − z2=2þ fθθz3 þOðz4ÞÞdθ2

þ sin2θ

�
1 − z2=2þ fϕϕ

sin2θ
z3 þOðz4Þ

�
dϕ2 þ 2ðftθz3 þOðz4ÞÞdtdθ þ 2ðftϕz3 þOðz4ÞÞdtdϕ

þ 2ðfθϕz3 þOðz4ÞÞdθdϕ − 2ðftρz4 þOðz5ÞÞdtdz − 2ðfρθz4 þOðz5ÞÞdzdθ − 2ðfρϕz4 þOðz5ÞÞdzdϕ
�
; ð2:18Þ

where the coefficients fαβ in the expansion above are functions of ðt; θ;ϕÞ. Notice that the metric in (2.18) is not in the FG
form yet because the zz component is not 1=z2 up to the desired order in z, and the tz, zθ, zϕ components do not vanish up to
Oðz2Þ. Defining

t̄ ¼ tþ 1

10

�
2ftρðt; θ;ϕÞ þ

1

3
fρρ;tðt; θ;ϕÞ

�
z5 þOðz6Þ;

z̄ ¼ zþ 1

6
fρρðt; θ;ϕÞz4 þOðz5Þ;

θ̄ ¼ θ −
1

10

�
2fρθðt; θ;ϕÞ þ

1

3
fρρ;θðt; θ;ϕÞ

�
z5 þOðz6Þ;

ϕ̄ ¼ ϕ −
1

10

�
2fρϕðt; θ;ϕÞ þ

1

3
fρρ;ϕðt; θ;ϕÞ

�
z5 þOðz6Þ; ð2:19Þ

which can be inverted near the boundary as

t ¼ t̄ −
1

10

�
2ftρðt̄; θ̄; ϕ̄Þ þ

1

3
fρρ;t̄ðt̄; θ̄; ϕ̄Þ

�
z̄5 þOðz̄6Þ;

z ¼ z̄ −
1

6
fρρðt̄; θ̄; ϕ̄Þz̄4 þOðz̄5Þ;

θ ¼ θ̄ þ 1

10

�
2fρθðt̄; θ̄; ϕ̄Þ þ

1

3
fρρ;θ̄ðt̄; θ̄; ϕ̄Þ

�
z̄5 þOðz̄6Þ;

ϕ ¼ ϕ̄þ 1

10

�
2fρϕðt̄; θ̄; ϕ̄Þ þ

1

3
fρρ;ϕ̄ðt̄; θ̄; ϕ̄Þ

�
z̄5 þOðz̄6Þ; ð2:20Þ
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we finally obtain the metric in FG form:

g ¼ 1

z̄2

�
dz̄2 −

�
1þ z̄2

2
þ
�
ftt −

1

3
fρρ

�
z̄3 þOðz̄4Þ

�
dt̄2 þ

�
1 −

z̄2

2
þ
�
fθθ þ

1

3
fρρ

�
z̄3 þOðz̄4Þ

�
dθ̄2

þ sin2θ̄

�
1 −

z̄2

2
þ
�

fϕϕ
sin2θ̄

þ 1

3
fρρ

�
z̄3 þOðz̄4Þ

�
dϕ̄2 þ 2ðftθz̄3 þOðz̄4ÞÞdt̄dθ̄ þ 2ðftϕz̄3 þOðz̄4ÞÞdt̄dϕ̄

þ 2ðfθϕz̄3 þOðz̄4ÞÞdθ̄dϕ̄þOðz̄5Þdt̄dz̄þOðz̄5Þdz̄dθ̄ þOðz̄5Þdz̄dϕ̄
�
; ð2:21Þ

where now the coefficients fαβ are functions of ðt̄; θ̄; ϕ̄Þ.
Notice that fρρ has been reabsorbed in gt̄ t̄, gθ̄ θ̄, gϕ̄ ϕ̄. From
the form of the metric in (2.21), we could use the holo-
graphic renormalization prescription of [33] to read off
the boundary CFT stress tensor. See Appendix B 4 for
more details.

III. BOUNDARY PRESCRIPTION

In this section, we present our prescription to obtain a
choice of generalized harmonic gauge source functions that
achieves stable evolution. We choose to do so using
Cartesian coordinates, as they provide a suitable chart to
evolve points near the center of the grid, which is necessary
when analyzing gravitational collapse and black hole
formation. This procedure generalizes in a straightforward
manner to other asymptotically AdS spacetimes in D ≥ 4
spacetime dimensions, different coupling with matter
fields, and coordinates on global AdS or on the Poincaré
patch. We consider the application to spherical coordinates
in Appendix B, and to the Poincaré patch in Appendix C.
We impose asymptotically AdS boundary conditions
(2.11), (2.12), (2.15) as reflective Dirichlet boundary
conditions on appropriate evolution variables, as explained
in the next section. For a discussion in a simpler context
with more symmetry, see [27].

A. Evolution variables and boundary conditions

The boundary conditions on asymptotically AdS space-
times, discussed in Sec. II B, can be imposed as Dirichlet
boundary conditions at the AdS boundary. This requires
appropriately defining and evolving a new set of variables,
from which the full solution ðgμν;φ; HμÞ can be sub-
sequently reconstructed. Here, we define evolution varia-
bles in the Cartesian coordinates employed by our
numerical scheme. Later, in Sec. IV we will show expres-
sions for quantities at the AdS boundary in spherical
coordinates. In Appendix B, we explicitly show how these
spherical variables relate to our Cartesian evolution
variables.
The Cartesian metric evolution variables, ḡμν, are defined

by first considering the deviation from pure AdS in
Cartesian coordinates, hμν ¼ gμν − ĝμν, and then stripping
hμν of as many factors of ð1 − ρ2Þ as needed so that each

component falls off linearly in (1 − ρ) near the AdS
boundary at ρ ¼ 1.5 We see from (2.11) that in four
dimensions, the metric evolution variables ḡμν that satisfy
these requirements are simply

ḡμν ¼ hμν: ð3:1Þ

Similarly, the Cartesian boundary condition on the scalar
field (2.12) suggests that we use the evolution variable

φ̄ ¼ φ

ð1 − ρ2Þ2 : ð3:2Þ

Finally, the boundary conditions (2.15) on Hμ suggest the
use of

H̄μ ¼
Hμ − Ĥμ

1 − ρ2
: ð3:3Þ

For evolved variables defined in this way, the boundary
conditions (2.11), (2.12), (2.15) can easily be imposed as
Dirichlet boundary conditions at the AdS boundary:

ḡμνjρ¼1 ¼ 0; φ̄jρ¼1 ¼ 0; H̄μjρ¼1 ¼ 0: ð3:4Þ

B. Gauge choice for stability

Coordinates over the entire spacetime are fully deter-
mined only once we choose the gauge source functionsHμ.
In Cartesian coordinates, as can be seen from (2.15),Hμ are
fixed up to order 1 − ρ by its pure AdS values Ĥμ in an
expansion near the AdS boundary. As we shall see, the
choice of Hμ at the next order in this expansion, ð1 − ρÞ2,
cannot be completely arbitrary if we wish to achieve stable
evolution. A specification of generalized harmonic source
functions at order ð1 − ρÞ2 that provides stable Cauchy
evolution can be obtained following the procedure detailed
in this section.

5Looking at the boundary conditions (2.11), it seems natural to
factor out (1 − ρ) rather than ð1 − ρ2Þ. However, the latter is
preferred since it preserves the even/odd character in the ρ
variable.
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The first step involves expanding the evolved variables,
ḡμν, H̄μ, and φ̄, in a power series about ð1 − ρÞ≡ q ¼ 0. By
construction, these evolved variables are linear in q at
leading order:

ḡμν ¼ ḡð1Þμνqþ ḡð2Þμνq2 þ ḡð3Þμνq3 þOðq4Þ; ð3:5Þ

H̄μ ¼ H̄ð1Þμqþ H̄ð2Þμq2 þ H̄ð3Þμq3 þOðq4Þ; ð3:6Þ

φ̄ ¼ φ̄ð1Þqþ φ̄ð2Þq2 þ φ̄ð3Þq3 þOðq4Þ; ð3:7Þ

where all the coefficients are functions of the coordinates
ðt; x; y; zÞ on the boundary ρðx; y; zÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼ 1
[or qðx; y; zÞ ¼ 0]. We now substitute these variables into
the evolution equations (A3), and we expand each compo-
nent in powers of q. The three lowest orders, q−2, q−1, q0,
are fixed by the pure AdS metric ĝ which itself is a solution
of (A3), so these terms vanish trivially. The remaining
orders vanish only if ḡμν, H̄μ, φ̄ are a solution of (A3).
We are now interested in identifying the order of q at

which the second derivatives of ḡð1Þμν with respect to
ðt; x; y; zÞ appear. For each component, we denote their
combination by □̃ḡð1Þμν, i.e.,

□̃ḡð1Þμν ≡
�
ctμν

∂2

∂t2 þ cxμν
∂2

∂x2 þ cyμν
∂2

∂y2 þ czμν
∂2

∂z2
�
ḡð1Þμν;

ð3:8Þ

for some functions ctμν, cxμν, cyμν, czμν of ðt; x; y; zÞ at
ρðx; y; zÞ ¼ 1.6 These derivative terms are included in
the first piece of (A3), namely in − 1

2
gρσ ḡμν;ρσ. From this,

we can easily find their order of q by recalling that the
leading order of the inverse metric is given by its purely
AdS piece, gμν ¼ OðĝμνÞ ¼ Oðq2Þ, and ḡð1Þμν is multiplied
by q in the near-boundary expression of ḡμν [see Eq. (3.5)].

Thus, □̃ḡð1Þμν must appear in the coefficient of order q3 for
every component of (A3).7 In other words, each component
of the expansion of (A3) near q ¼ 0 can be written in the
schematic form

0 ¼ Að1Þμνqþ Að2Þμνq2 þ Að3Þμνq3 þ Að4Þμνq4 þOðq5Þ
¼ Að1Þμνqþ Að2Þμνq2 þ ð□̃ḡð1Þμν þ Bð3ÞμνÞq3
þ Að4Þμνq4 þOðq5Þ ð3:9Þ

or, rearranging the terms in order to obtain wavelike
equations,

□̃ḡð1Þμν ¼−Að1Þμν
1

q2
−Að2Þμν

1

q
−Bð3Þμν−Að4ÞμνqþOðq2Þ:

ð3:10Þ

Similar arguments show that the terms involving the scalar
field, with the fast falloff that we have chosen in (2.10),
appear in Að4Þμν and higher order coefficients of (3.9). A
similar result holds in any number of dimensions and
any set of coordinates xα: the terms involving fastly
decaying matter fields appear at the next order with respect
to the order of □̃ḡð1Þαβ in the near-boundary expansion of
the Einstein equations. This implies that the details of the
matter sector, e.g., the value of the mass of a matter field, do
not affect the results of the prescription presented here,
since only the lowest order coefficients in the expansion of
the Einstein equations are relevant.
We now explicitly write the lowest order terms of the

Einstein equations in the wavelike form (3.10). The near-
boundary expansion is most easily obtained by first writing
the Cartesian coordinates ðx; y; zÞ in terms of the boundary-
adapted spherical coordinates ðq; θ;ϕÞ, and then expanding
near q ¼ 0. We find

□̃ḡð1Þtt ¼ −ðcos θð3 cos θḡð1Þxx − 2H̄ð1ÞxÞ þ sin θð3 sin θcos2ϕḡð1Þyy þ 3 sin θ sinϕð2 cosϕḡð1Þyz þ sinϕḡð1ÞzzÞ
− 2ðcosϕH̄ð1Þy þ sinϕH̄ð1ÞzÞÞ þ 3 sin 2θ cosϕḡð1Þxy þ 3 sin 2θ sinϕḡð1ÞxzÞq−2 þOðq−1Þ; ð3:11Þ

□̃ḡð1Þtx ¼ −2 cos θð3 cos θḡð1Þtx þ 3 sin θðcosϕḡð1Þty þ sinϕḡð1ÞtzÞ − 2H̄ð1ÞtÞq−2 þOðq−1Þ; ð3:12Þ

□̃ḡð1Þty ¼ −2 cosϕ sin θð3 cos θḡð1Þtx þ 3 sin θðcosϕḡð1Þty þ sinϕḡð1ÞtzÞ − 2H̄ð1ÞtÞq−2 þOðq−1Þ; ð3:13Þ

□̃ḡð1Þtz ¼ −2 sin θ sinϕð3 cos θḡð1Þtx þ 3 sin θðcosϕḡð1Þty þ sinϕḡð1ÞtzÞ − 2H̄ð1ÞtÞq−2 þOðq−1Þ; ð3:14Þ

7OðĝμνÞ ¼ Oðq2Þ is true in any number of dimensions but only for Cartesian coordinates. For an arbitrary set of coordinates, the
leading power in ĝμν, and hence the order at which the operator (3.8) appears, depends on the specific component under consideration.
See Appendix B and [27] for examples in spherical coordinates in four and five dimensions, respectively.

6None of these coefficients are tensors, despite the notation, and there is no sum over repeated indices.

CAUCHY EVOLUTION OF ASYMPTOTICALLY GLOBAL AdS … PHYS. REV. D 103, 086006 (2021)

086006-7



□̃ḡð1Þxx ¼
1

4
ð3ð−4cos2θðḡð1Þtt þ 2ḡð1ÞxxÞ þ ðcos 2θ þ 3Þðḡð1Þyy þ ḡð1ÞzzÞ þ 8 cos θH̄ð1ÞxÞ

− 8 sin θ cosϕð3 cos θḡð1Þxy þ H̄ð1ÞyÞ − 8 sin θ sinϕð3 cos θḡð1Þxz þ H̄ð1ÞzÞ
þ 6sin2θ cos 2ϕðḡð1Þyy − ḡð1ÞzzÞ þ 12sin2θ sin 2ϕḡð1ÞyzÞq−2 þOðq−1Þ; ð3:15Þ

□̃ḡð1Þxy ¼ −
1

2
ð2 sin θ cosϕð3 cos θðḡð1Þtt þ ḡð1Þxx þ ḡð1Þyy − ḡð1ÞzzÞ − 4H̄ð1ÞxÞ þ 3ḡð1Þxyð2 cos 2θsin2ϕþ cos 2ϕþ 3Þ

þ 6sin2θ sin 2ϕḡð1Þxz þ 6 sin 2θ sinϕḡð1Þyz − 8 cos θH̄ð1ÞyÞq−2 þOðq−1Þ; ð3:16Þ

□̃ḡð1Þxz ¼ −
�
sin θ sinϕð3 cos θðḡð1Þtt þ ḡð1Þxx − ḡð1Þyy þ ḡð1ÞzzÞ − 4H̄ð1ÞxÞ þ 3sin2θ sin 2ϕḡð1Þxy − 3sin2θ cos 2ϕḡð1Þxz

þ 3

2
ðcos 2θ þ 3Þḡð1Þxz þ 3 sin 2θ cosϕḡð1Þyz − 4 cos θH̄ð1Þz

�
q−2 þOðq−1Þ; ð3:17Þ

□̃ḡð1Þyy¼−
�
ðsinθð3sinθð2cos2ϕḡð1Þyyþ sin2ϕḡð1Þyz− ḡð1ÞzzÞ−6cosϕH̄ð1Þyþ2sinϕH̄ð1ÞzÞ

þ6sinθcosθcosϕḡð1Þxy−6sinθcosθ sinϕḡð1Þxzþ2cosθH̄ð1ÞxÞ−3sin2θcos2ϕḡð1Þtt

þ3

4
ḡð1Þxxð2sin2θcos2ϕþ cos2θþ3Þ

�
q−2þOðq−1Þ; ð3:18Þ

□̃ḡð1Þyz ¼ −
1

2
sin θð4 sinϕð3 cos θḡð1Þxy − 2H̄ð1ÞyÞ þ 4 cosϕð3 cos θḡð1Þxz − 2H̄ð1ÞzÞ

þ 3 sin θ sin 2ϕðḡð1Þtt − ḡð1Þxx þ ḡð1Þyy þ ḡð1ÞzzÞ þ 12 sin θḡð1ÞyzÞq−2 þOðq−1Þ; ð3:19Þ

□̃ḡð1Þzz ¼
�
−2 cos θð3 sin θ sinϕḡð1Þxz þ H̄ð1ÞxÞ þ sin θð3 sin θḡð1Þyy − 6 sin θ sinϕðcosϕḡð1Þyz þ sinϕḡð1ÞzzÞ

− 2 cosϕH̄ð1Þy þ 6 sinϕH̄ð1ÞzÞ − 3sin2θsin2ϕḡð1Þtt

þ 3

4
ḡð1Þxxð−2sin2θ cos 2ϕþ cos 2θ þ 3Þ þ 3 sin 2θ cosϕḡð1Þxy

�
q−2 þOðq−1Þ; ð3:20Þ

where the coordinates ðq; θ;ϕÞ should be understood as functions of ðx; y; zÞ. All that remains is to write
down the generalized harmonic constraints Cμ ≡Hμ −□xμ ¼ 0 at leading order in the same near-boundary
expansion. We get

Ct ¼ q2ð−3 cos θḡð1Þtx − 3 sin θ cosϕḡð1Þty − 3 sin θ sinϕḡð1Þtz þ 2H̄ð1ÞtÞ þOðq3Þ; ð3:21Þ

Cx ¼
1

2
q2ð−3 cos θḡð1Þtt − 3 cos θḡð1Þxx − 6 sin θ cosϕḡð1Þxy − 6 sin θ sinϕḡð1Þxz

þ 3 cos θḡð1Þyy þ 3 cos θḡð1Þzz þ 4H̄ð1ÞxÞ þOðq3Þ; ð3:22Þ

Cy ¼
1

2
q2ð−3 sin θ cosϕḡð1Þtt þ 3 sin θ cosϕḡð1Þxx − 6 cos θḡð1Þxy

− 3 sin θ cosϕḡð1Þyy − 6 sin θ sinϕḡð1Þyz þ 3 sin θ cosϕḡð1Þzz þ 4H̄ð1ÞyÞ þOðq3Þ; ð3:23Þ

Cz ¼
1

2
q2ð−3 sin θ sinϕḡð1Þtt þ 3 sin θ sinϕḡð1Þxx − 6 cos θḡð1Þxz

þ 3 sin θ sinϕḡð1Þyy − 6 sin θ cosϕḡð1Þyz − 3 sin θ sinϕḡð1Þzz þ 4H̄ð1ÞzÞ þOðq3Þ: ð3:24Þ
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In the generalized harmonic formulation, choosing a
gauge amounts to choosing a set of generalized harmonic
source functions H̄μ for the entire evolution. Although we
expect that many gauge choices are allowed, Ref. [27]
mentions a few that do not give rise to stable evolutions. We
now present a procedure that provides the stable gauge in
our Cartesian simulations. We believe that our prescription
provides a stable gauge in a variety of settings of physical
interest, such as higher spacetime dimensions, various
couplings to matter fields, different types of global coor-
dinates or Poincaré coordinates. Thus, it enables numerical
Cauchy evolution in AdS in full generality, that is, with no
symmetry assumptions. The steps that lead to our stable
gauge, in a form that can easily be applied to all previously
mentioned cases, are the following:

1. Solve the leading order of the near-boundary gen-
eralized harmonic constraints for H̄ð1Þμ. For exam-
ple, in the Cartesian case, the leading orders of
(3.21)–(3.24) vanish for

H̄ð1Þt¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ðxḡð1Þtxþyḡð1Þtyþ zḡð1ÞtzÞ;

H̄ð1Þx ¼
3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ð2yḡð1Þxyþ2zḡð1Þxz

þxðḡð1Þttþ ḡð1Þxx− ḡð1Þyy− ḡð1ÞzzÞÞ;

H̄ð1Þy ¼
3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ð2xḡð1Þxyþ2zḡð1Þyz

þyðḡð1Þttþ ḡð1Þxx− ḡð1Þyy− ḡð1ÞzzÞÞ;

H̄ð1Þz¼
3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ð2xḡð1Þxzþ2yḡð1Þyz

þ zðḡð1Þttþ ḡð1Þxx− ḡð1Þyy− ḡð1ÞzzÞÞ: ð3:25Þ

2. Let Nð1Þ be the lowest order in q appearing in the
near-boundary expansions of all the □̃ḡð1Þμν. Plug
the source functions obtained in step 1 into the qNð1Þ

terms of the near-boundary expansions □̃ḡð1Þμν. This
gives a number of independent equations that,
together with their derivatives, ensure tracelessness
and conservation of the boundary stress-energy
tensor (see Sec. IV).8 Solve these equations for an
equal number of metric coefficients ḡð1Þμν and their
derivatives. In the Cartesian case, Nð1Þ ¼ −2 and
there is only one independent equation given by

ḡð1Þtt − ḡð1Þxx − ḡð1Þyy − ḡð1Þzz ¼ 0; ð3:26Þ

which we can solve, for instance, in terms of ḡð1Þtt.

3. Plug the solutions to the equations in step 2 into the
gauge obtained in step 1. In Cartesian coordinates,
using (3.26) to eliminate ḡð1Þtt from (3.25), we have

H̄ð1Þt¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ðxḡð1Þtxþyḡð1Þtyþ zḡð1ÞtzÞ;

H̄ð1Þx ¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ðxḡð1Þxxþyḡð1Þxyþ zḡð1ÞxzÞ;

H̄ð1Þy ¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ðxḡð1Þxyþyḡð1Þyyþ zḡð1ÞyzÞ;

H̄ð1Þz¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p ðxḡð1Þxzþyḡð1Þyzþ zḡð1ÞzzÞ:

ð3:27Þ
This is the asymptotic gauge condition that we have
empirically verified leads to stable 3þ 1 evolution of
asymptotically AdS4 spacetimes in Cartesian coordinates.
Other choices of asymptotic source functions may enjoy
similar stability properties. The choice of H̄μ in the bulk is
still completely arbitrary, and the functional form that we
implement in our simulations is detailed explicitly in
Appendix E.
The rationale for this procedure is as follows. Recall that if

Cμ ¼ 0 and ∂tCμ ¼ 0 are satisfied at t ¼ 0,9 and the
boundary conditions are consistent with Cμ ¼ 0 being
satisfied at the boundary for all time, then, at the analytical
level, the generalized harmonic constraint Cμ ¼ 0 remains
satisfied in the interior for all time. The addition of constraint
damping terms to the Einstein equations, Eq. (A3), helps to
ensure that deviations at the level of the discretized equations
remain under control. Thus, in solving the expanded system
of Eqs. (A3), we are assured that only the subset of solutions
that are also solutions of the Einstein equations are being
considered. With this in mind, the near-boundary form of
(A3), given by (3.9), implies that our task in obtaining a
solution is to satisfy AðiÞμν ¼ 0 for all i and for some choice
of source function variables H̄μ. This task is significantly
eased by picking a gauge, through a suitable choice of H̄μ,
that eliminates Að1Þμν, i.e., the lowest order of the expansion
of the Einstein equations near the AdS boundary. This is
precisely what the above set of steps is designed to do, and it
is why we did not stop at the gauge obtained in step 1,
Eq. (3.25), which would have resulted in a gauge that does
not explicitly set Að1Þμν ¼ 0.
Finally, it is also important to develop an understanding

of the reason why the choice of H̄μ is not completely free.
Although identifying every cause for the instability of a
simulation is usually very complicated, one practical reason
is clear and can be understood with the following example
in Cartesian coordinates. Suppose we choose a gauge in
which, after some time t > t0, H̄ð1Þt takes the value8We show this in Appendix B using spherical coordinates,

since they are adapted to the AdS boundary and make the proof
less unwieldy. 9This condition is satisfied by our initial data; see Appendix D.
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H̄ð1Þtðt > t0Þ ¼
3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ðxḡð1Þtx þ yḡð1Þty þ zbtÞ;

ð3:28Þ
where bt ∈ R is a possibly vanishing constant. According
to (3.25), the requirement that Ct ¼ 0 now implies
ḡð1Þtz ¼ bt. Even though this condition does not violate
any of the requirements above, it is an additional Dirichlet
boundary condition that must be imposed for t > t0 if we
hope to find a solution for this example.10Although imposing
boundary conditions that change with time are of interest in
certain studies motivated by the AdS=CFT correspondence,
for simplicity we do not consider such cases in this article. It
should be straightforward to generalize our prescription for
time-dependent boundary conditions.

IV. BOUNDARY STRESS TENSOR

In the simulations we output the holographic stress-
energy tensor of the dual CFT. In this section, we obtain the
analytic expression for this object in spherical coordinates
xα ¼ ðt; ρ; θ;ϕÞ, as they are adapted to the metric of the
AdS boundary in global coordinates. Thus, in order to
obtain their numerical values, we will have to convert the
evolution variables in Cartesian coordinates ḡμν provided
by our numerical scheme into their counterparts ḡαβ in
spherical coordinates. We do this in Appendix B through
the transformation (B2).
Let us denote by xa ¼ ðt; θ;ϕÞ the coordinates on

timelike hypersurfaces ∂Mq at fixed ρ (or q). To compute
the holographic stress-energy tensor of the boundary CFT,
hTabiCFT, we first compute the quasilocal stress-energy
tensor ðqÞTαβ at ∂Mq as prescribed in [34]. We have

ðqÞTαβ ¼
1

8π
ðΘαβ − Θωαβ − 2ωαβ þ GαβÞ; ð4:1Þ

where Θαβ ¼ −ωγ
αωδ

β∇γSδ is the extrinsic curvature of
∂Mq, ωαβ ¼ gαβ − SαSβ is the induced metric on ∂Mq

(in four-dimensional form), Sα is the spacelike, outward
pointing timelike unit vector normal to ∂Mq, and Gαβ is the
Einstein tensor of ∂Mq.

11,12 We will be interested in the

value of ðqÞTαβ for q close to 0, i.e., near the AdS boundary.
Restricting the indices corresponding to the coordinates xa,
we can compute the boundary stress-energy tensor as

hTabiCFT ¼ lim
q→0

1

q
ðqÞTab: ð4:2Þ

From ðqÞTαβ we also compute the total AdS mass as
follows [34]. At each time t of evolution, we take a
spacelike two-dimensional surface S in ∂Mq, with induced
metric σab ¼ ωab þ uaub, where ua ¼ −NðdtÞa is the
future pointing unit 1-form normal to S in ∂Mq, lapse
N, and shift Na. The total AdS mass is then given by

M ¼ lim
q→0

Z
S
dθdϕ

ffiffiffi
σ

p
NððqÞTabuaubÞ: ð4:3Þ

The holographic stress-energy tensor can be expressed in
terms of the leading order coefficients of the near-boundary
expansion of ḡαβ. We find13

hTttiCFT ¼ 1

16π

�
2ḡð1Þρρ þ 3ḡð1Þθθ þ 3

ḡð1Þϕϕ
sin2θ

�
;

hTtθiCFT ¼ 3

16π
ḡð1Þtθ;

hTtϕiCFT ¼ 3

16π
ḡð1Þtϕ;

hTθθiCFT ¼ 1

16π

�
3ḡð1Þtt − 2ḡð1Þρρ − 3

ḡð1Þϕϕ
sin2θ

�
;

hTθϕiCFT ¼ 3

16π
ḡð1Þθϕ;

hTϕϕiCFT ¼ sin2θ
16π

ð3ḡð1Þtt − 2ḡð1Þρρ − 3ḡð1ÞθθÞ: ð4:4Þ

Similarly, for the total mass in AdS we find

M ¼
Z

π

0

dθ
Z

2π

0

dϕ
sin θ
16π

�
2ḡð1Þρρ þ 3ḡð1Þθθ þ 3

ḡð1Þϕϕ
sin2θ

�
:

ð4:5Þ
We can now use the metric of the AdS boundary,

λabdxadxb¼−dt2þdθ2þsin2θdϕ2, to raise one index of
hTabiCFT and solve the eigenvalue problem hTa

biCFTvb ¼
Λvva at each point along the AdS boundary. In this
way, assuming that hTabiCFT satisfies the weak energy
condition,14 we obtain the energy density of the boundary

10The Dirichlet boundary condition ḡtzjρ¼1 ¼ 0 clearly does
not restrict ḡð1Þtz.

11Notice the different sign in the last term of (4.1) with
respect to [34]. When comparing the two results, recall that in
our expressions we set L ¼ 1.

12All these tensors, although defined on the tangent space of
the spacetime manifold M, are invariant under projection ωα

β ¼
δαβ − SαSβ onto ∂Mq. Therefore, they can be identified, under a
natural (i.e., basis-independent) isomorphism, with tensors de-
fined on the tangent space of ∂Mq. The components of tensors on
∂Mq in coordinates xa is simply given by taking the components
of tensors on M in coordinates xα and disregarding every
combination of indices that includes an index ρ. See [35] for
more details on this correspondence.

13The expressions (4.4) have a factor of 1=G that corresponds
to the large-N scaling of the expectation value of the stress tensor
in the boundary 2þ 1-dimensional CFT. When quoting numeri-
cal results, we keep the convention of working in geometric units
with G ¼ 1.

14If � hTabiCFT fail to satisfy the weak energy condition, the
L2-norm of hTabiCFT, khTabiCFTk2, can have complex conjugate
pairs of eigenvalues and no real timelike eigenvector, as pointed
out in footnote 9 of [20].
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CFT, ϵ, as minus the eigenvalue associated with the unique
(up to rescaling) timelike eigenvector. Similarly, the boun-
dary anisotropy is given by Δp≡ jp1 − p2j, where p1 and
p2 are the eigenvalues associated with, respectively, the
remaining two spacelike eigenvectors.
One useful quantity to compute is the trace of the stress-

energy tensor, htrTiCFT ¼ λabhTabiCFT. We obtain

htrTiCFT ¼ 3

8π

�
ḡð1Þtt − ḡð1Þρρ − ḡð1Þθθ −

ḡð1Þϕϕ
sin2θ

�
: ð4:6Þ

If we convert the spherical quantities into their Cartesian
counterparts we see that htrTiCFT depends only on the
factor ḡð1Þtt − ḡð1Þxx − ḡð1Þyy − ḡð1Þzz. We saw in (3.26) that
this factor vanishes. This is an important sanity check: we
see that tracelessness of the stress-energy tensor, expected
for a CFT in 2þ 1 dimensions, is ensured by the lowest
order in the near boundary expansion of the Einstein
equations, provided that the generalized harmonic con-
straints are satisfied. In other words, tracelessness of the
boundary stress tensor is, in our scheme, directly tied to
how close our numerical solution is to a solution of the
Einstein field equations. We check that we are indeed
converging to such a solution in Appendix G. In practice,
we monitor htrTiCFT to estimate the truncation error.
Another important check that we performed is the con-
servation of the analytic form of hTabiCFT. The simplest
way to prove this is by using the near-boundary expansion
of the Einstein equations in spherical coordinates, as done
in Appendix B.

V. NUMERICAL SCHEME

In this section we consider the core elements of the
numerical scheme used in this study. We start by discussing
the numerical features on which this scheme relies for
solving the initial-boundary value problem in AdS.We then
describe our apparent horizon finder and the method with
which we excise trapped regions.

A. Numerics of the initial-boundary value problem

We solve the Einstein equations in generalized har-
monic form (A3) with constraint damping terms, coupled
with the massless Klein-Gordon equation (A5). We obtain
asymptotically AdS spacetimes in Cartesian coordinates
xμ ¼ ðt; x; y; zÞ. The solution is determined in terms
of the metric, scalar field, and source function variables
ðḡμν; φ̄; H̄μÞ defined in Sec. III A. We substitute the
definitions of these variables, Eqs. (3.1)–(3.3), in the
equations of motion and analytically remove all the purely
AdS terms. The resulting partial differential equations
(PDEs) are discretized with second order finite difference
derivative stencils, and then integrated in time using an
iterative Newton-Gauss-Seidel relaxation procedure with
a three time level hierarchy. The source function variables

H̄μ near the AdS boundary are set as we have prescribed in
(3.27), while deep in the bulk they are set to zero. In
between, we use smooth transition functions to interpolate
between the near boundary and the bulk regions; see
Appendix E for the details of our full implementation.
We use the PAMR/AMRD libraries [36] for running

these simulations in parallel on Linux computing clusters.
Although these libraries have adaptive mesh refinement
capabilities, numerical evolution is performed on a grid
with fixed refinement. The numerical grid is in ðt; x; y; zÞ
with t ∈ ½0; tmax�, x ∈ ½−1; 1�, y ∈ ½−1; 1�, z ∈ ½−1; 1�. The
typical grid resolution uses Nx ¼ Ny ¼ Nz ¼ 325 points in
each of the Cartesian directions, with equal grid spac-
ings Δx ¼ Δy ¼ Δz≡ Δ.
The time step of evolution is determined by Δt ¼ λΔ.

Although we do not perform a detailed analysis of
the stability of our finite difference scheme, the CFL
condition for stability is expected to be satisfied as
long as the CFL factor λ is set to a value well below 1.
Thus, we use λ ¼ 0.3. Notice that the most remarkable
advantage of using Cartesian coordinates is that the CFL
condition does not severely restrict the CFL factor as it
would in spherical coordinates, hence allowing simula-
tions to reach large evolution times with modest computa-
tional resources. In contrast, spherical coordinates
ðt; ρ; θ;ϕÞ with fixed resolution Δρ, Δθ, Δϕ would
necessitate Δt ¼ λminðΔρ; ρminΔθ; ρminΔθΔϕÞ. At points
next to the origin, which must be evolved in studies of
gravitational collapse and black hole formation, ρ takes its
smallest value ρmin ¼ Δρ. Hence, in spherical coordinates,
Δt would become prohibitively small for higher resolu-
tions, i.e., for smaller Δρ, Δθ, Δϕ.
The following components play a fundamental role in

the numerical implementation of the initial-boundary
value problem. Reflective Dirichlet boundary conditions
(3.4) are imposed at the AdS boundary ρ ¼ 1. In general
the AdS boundary does not lie on Cartesian grid points, so
we set boundary conditions at points at most one grid
point away from the boundary via interpolation. Referring
to Fig. 1, for any given evolution variable, we set its value
at grid points with ρ < 1 − Δ=2 (i.e., the green dots inside
the blue dotted line in this figure) by first order inter-
polation between the Dirichlet value at boundary points
(red dots) and the value at the adjacent point further into
the interior ρ < 1 (purple dots). To identify the latter, we
move along the Cartesian direction corresponding to the
coordinate of the green dot with the largest absolute value.
This direction is represented by light blue arrows. Notice
that points with ρ ≥ 1 − Δ=2 are excised to avoid issues
with quantities that would diverge at ρ ¼ 1. Finally, to
obtain the values of quantities at the boundary needed to
extract the holographic observables, we use third order
extrapolation from their bulk point values. The details of
the implementation in our numerical simulations can be
found in Appendix F.
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Last but not least, time-symmetric initial data, sourced
by a massless real scalar field, are obtained by solving the
conformal decomposition of the Hamiltonian constraint
(D15). The solution to (D15) is computed, after second
order finite discretization, through a full approximation
storage (FAS) multigrid algorithm with v-cycling and
Newton-Gauss-Seidel relaxation, built into the PAMR/
AMRD libraries. We ensure that initial data satisfy the
generalized harmonic constraints. See Appendix D for
more details and the complete choice of initial data.

B. Apparent horizon finder and excision

Once the solution is obtained at a certain time t, we can
search for the position Rðθ;ϕÞ of an apparent horizon
(AH). We use the following flow method in spherical
coordinates ðρ; θ;ϕÞ, obtained in the usual way from the
Cartesian coordinates of the solution. We consider n two-
dimensional surfaces at constant, equally spaced, values
of ρ within a user-specified range included in (0,1),
and we pick the one with the smallest L2-norm of the
outward null expansion. Let ρ0 be the ρ coordinate on
this surface. Starting from the initial guess Rðθ;ϕÞ ¼ ρ0,
for any ðθ;ϕÞ ∈ ½0; π� × ½0; 2πÞ we find the solution to the
equation

dRðθ;ϕÞ
ds

¼ −Θðρ; θ;ϕÞjρ¼Rðθ;ϕÞ; ð5:1Þ

where Θðρ; θ;ϕÞjρ¼Rðθ;ϕÞ is the outward null expansion
of the two-dimensional surface given by Fðρ; θ;ϕÞ≡
ρ − Rðθ;ϕÞ ¼ 0. We iterate this process with the starting
point given by the solution Rðθ;ϕÞ to (5.1) found in the
previous iteration. Assuming that the initial guess ρ0 is not
too distant from the position of the AH, Rðθ;ϕÞ is expected
to progressively approach the AH after each iteration. This
process stops when either the L2-norm ofΘðρ; θ;ϕÞjρ¼Rðθ;ϕÞ
is below some specified tolerance, i.e., Rðθ;ϕÞ is suffi-
ciently close to the AH, or the user-specified maximum
number of iterations has been reached, i.e., either there is no
AH at time t or this method was not able to find it.

This AH finder is based on a ðθ;ϕÞ grid with equal grid
spacings Δθ ¼ Δϕ ¼ ΔAH.

15 The outward null expansion
at a given AH finder grid point ðθ;ϕÞ is obtained by first
order interpolation in three dimensions from the values of
the expansion at Cartesian grid points that surround ðθ;ϕÞ.
These values are calculated from the definition of outward
null expansion once the spacetime metric at time t is known.
Weobserve that aNθ × Nϕ ¼ 9 × 17 resolution is enough to
find the AH in the simulations considered in Sec. VI in less
than 104 iterations. Since (5.1) is a parabolic equation, the
“time” step Δs must be at least of order Δ2

AH for stability.
When using n ¼ 10 initial trial surfaces and an initial range
of ρ values between 0.1 and 0.5, as we do in our simulations,
we find that the AH finder works effectively if Δs takes
much smaller values. Specifically, we set Δs ¼ 10−4.
When an AH is found, we excise Cartesian grid points in

an ellipsoid included in the AH and centered at the center of
the AH, in order to avoid the formation of geometric
singularities in the computational domain.16 More specifi-
cally, the excision ellipsoid has Cartesian semiaxes, aexx ,
aexy , aexz , determined by aexx ¼ xAHð1 − δexÞ, where xAH is
the x-coordinate value of the intersection between the AH
and the x-axis, and similarly for aexy and aexz . We set the
excision buffer to δex ¼ 0.4. In our simulations, we assume
that the characteristics of the equations of motion in the AH
region flow toward the origin, although we do not compute
the characteristics explicitly. As a consequence, the sol-
ution at points inside the AH only evolves to affect points,
at later times, that are further inside the AH. In other words,
the information needed to solve the equations of motion on
and outside the excision surface at a certain time is entirely
contained in the numerical domain at previous times. This
allows us to solve the equations of motion at the excision
surface by employing one-sided stencils that do not
reference points inside the excised region, with no need
to impose conditions at the excision boundary. By con-
struction, the excised surface is the same for all three time
levels involved in the Newton-Gauss-Seidel relaxation for
evolution variables at time t. Therefore, we only need to use
the one-sided version of the spatial stencils.
It commonly occurs that the excised surface moves

during evolution and previously excised points become
unexcised. In this case, we initialize the value of newly
unexcised points closest to the previous surface using
fourth order extrapolated values from adjacent exterior

FIG. 1. Visual description of the implementation of Dirichlet
boundary conditions through first order interpolation in a portion
of a z ¼ const surface for a grid with spatial grid spacing Δ.

15The grid on which the AH finder is executed is completely
independent of the specifics of the Cartesian evolution grid that
was described in Sec. VA.

16This method is effective in removing singularities if the
following common assumptions are valid on the spacetimes that
we consider: (i) weak cosmic censorship is not violated; i.e.,
geometric singularities are contained inside a black hole event
horizon; (ii) the AH at any time t is contained in t-constant slices
of the event horizon; (iii) the AH at any t provides a sufficiently
accurate approximation for t-constant slices of the event horizon.
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points along each Cartesian direction. We do so for any
variable and at all three time levels of the hierarchy. Finally,
Kreiss-Oliger dissipation [37] is essential to damp unphys-
ical high-frequency noise that arises at excision grid
boundaries; we use a typical dissipation parameter
of ϵKO ¼ 0.35.

VI. RESULTS

As a proof-of-principle, we evolve initial data that
undergoes gravitational collapses within one light-crossing
time and follow the subsequent ringdown to the
Schwarzschild-AdS solution. The geometry of the initial
slice is sourced by a massless real scalar field with a
Gaussian profile, distorted along each Cartesian direction
and centered at x ¼ y ¼ z ¼ 0:

φ̄jt¼0¼Ae−ðr̃ðx;y;zÞ=ΔÞ2 ;

r̃ðx;y;zÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1−e2xÞþy2ð1−e2yÞþ z2ð1−e2zÞ

q
: ð6:1Þ

The amplitude of the profile is A ¼ 0.55 and the eccen-
tricities are ex ¼ 0.3, ey ¼ 0.2, ez ¼ 0.25, so that the most
prominent distortion is on the ðx; yÞ-plane. The width of the
Gaussian is Δ ¼ 0.2. We choose the initial slice to be a
moment of time symmetry, and the details of the time-
symmetric initial data sourced by this matter field are
collected in Appendix D. As we see in that Appendix, the
momentum constraint is trivially satisfied for this type of
data, so only the Hamiltonian constraint has to be solved.
We evolve this initial data up to t ¼ 31 in units of the
characteristic length scale L ¼ 1 (approximately 20 light
crossing times), well after the end of gravitational collapse
and the resulting black hole formation. The initial data have
zero total angular momentum, and angular momentum
conservation [38] ensures that this is zero at all times.
Therefore, we can expect the black hole to settle down to
the Schwarzschild-AdS solution. However, for generic
initial data with nonvanishing total angular momentum,
this may not be the final state: Ref. [39] conjectured that
Schwarzschild-AdS, or more generally Kerr-AdS, may
suffer from a nonlinear instability for generic perturbations.
We will leave this interesting problem for future work.

A. Collapse and ringdown

We describe here the evolution in the bulk: this consists
of an initial short phase, in which the scalar field collapses
and forms a black hole, and a long ringdown stage, in
which the spacetime settles down to Schwarzschild-AdS.
Figure 2 shows the profile of the scalar field variable, φ̄,

at four representative times on the equatorial plane z ¼ 0
for the highest resolution grid, with Nx ¼ Ny ¼ Nz ¼ 325

grid points along each Cartesian direction. Notice that in all
of these snapshots φ̄ ¼ 0 at the AdS boundary, as required
by the Dirichlet boundary conditions. At t ¼ 0, the

asymmetry of the initial Gaussian profile is too small to
be visible. At the beginning of evolution, we see that the
scalar field lump starts propagating away from the origin,
and a portion of it soon forms an AH. This occurs at t ¼
0.331 in the highest resolution simulation. The rest of the
scalar field remains outside the black hole, where it keeps
bouncing back and forth the AdS boundary and is gradually
absorbed. The asymmetry on the ðx; yÞ-plane is clearly
visible at t ¼ 2.6, where the scalar field is stretched along
the x-direction and squeezed along the y-direction. The
elongation changes its direction multiple times during the
evolution, as shown in the next two plots: it is along
the y-axis at t ¼ 5.0 and again along the x-axis at t ¼ 7.2.
At later times, t ≃ 9, the value of the scalar field becomes
consistent with zero up to the solution error,17 and the
spacetime settles down to a Schwarzschild-AdS black hole
spacetime with mass M ¼ 0.403.
The late-time solution is close to Schwarzschild-AdS,

which can be seen explicitly in Fig. 3. Here, we compare

FIG. 2. Snapshots of the scalar field profile φ̄ on the z ¼ 0 slice
in ðx; yÞ coordinates. In each plot, x and y are the horizontal
and vertical axes, respectively, and the black square denotes
the boundary of the numerical grid, i.e., x ¼ �1 and y ¼ �1. The
external boundary of the colored part is the AdS boundary. The
black ellipse denotes the approximate position of the AH. This is
obtained as the z ¼ 0 slice of the ellipsoid with Cartesian
semiaxes, xAH, yAH, zAH, where xAH is the x-coordinate value
of the intersection between the AH and the x-axis, and similarly
for yAH and zAH. The internal boundary of the colored region is
the excision surface: we excise points inside an ellipsoid whose
semiaxes, aexx , aexy , aexz , are given by aexx ¼ xAHð1 − δexÞ, and
similarly for aexy and aexz . We use the value δex ¼ 0.4 for the
excision buffer. Highest resolution: Nx ¼ Ny ¼ Nz ¼ 325.

17We estimate the solution error by comparing φ̄ at different
resolutions.
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the numerical solution at the last time slice, i.e., t ¼ 31, to a
slice of the Schwarzschild-AdS metric with conserved mass
obtained from our highest resolution run (M ¼ 0.403). This
comparison is achieved with the following procedure. First,
we compute the Riemann cube scalar R3 ¼ RμνρσRρσγδRγδ

μν

and the Kretschmann scalar K ¼ RμνρσRμνρσ. Second, we
compute the corresponding values, R3

AdS and KAdS, for pure
AdS4. We then use all four quantities to represent the
relative Riemann scalar ðR3=R3

AdSÞ − 1 as a function
of the relative Kretschmann scalar ðK=KAdSÞ − 1 for the
Schwarzschild-AdS black hole with M ¼ 0.403. The same
Riemann-Kretschmann dependence is estimated for our
numerical solution at different resolutions from the values
of ðR3=R3

AdSÞ − 1 and ðK=KAdSÞ − 1 at each grid point

along the x-axis (y ¼ z ¼ 0 colored lines of the top panel)
and the y-axis (x ¼ z ¼ 0 colored lines of the bot-
tom panel).
The black vertical lines in Fig. 3 denote the value of

K
KAdS

− 1 at the horizon of the Schwarzschild-AdS black

hole. Notice that K
KAdS

− 1 ¼ 0 at the AdS boundary by

construction, so going to larger values of K
KAdS

− 1 is
equivalent to moving toward the center of the grid and
closer to the singularity. Therefore the black vertical lines
give an indication of the position of the AH relative to the
AdS boundary. The two panels of Fig. 3 indicate that,
sufficiently close to the AdS boundary, the curvature
invariants of the numerical solution are almost identical
to Schwarzschild-AdS. For clarity, this is shown using only
values of the Riemann cube and Kretschmann scalars along
the x and y axes, but we verified this for values from the
entire grid. At any given resolution, the numerical curvature
invariants start to differ from their Schwarzschild-AdS
values as we get closer to the AH. This is expected since
the gradients become larger as we approach the center of
the grid. However, these differences converge away as the
resolution is increased. Finally, although there is an
asymmetry at any given resolution between the x and y
axes even at this last time slice, this late-time asymmetry
also converges away as resolution is increased.

B. Boundary scalar field and stress-energy tensor

In this section we consider the evolution of the holo-
graphic quantities at the AdS boundary defined in Sec. IV.
These quantities are obtained via third order extrapolation
from points in the interior, with the only exception of the
t ¼ 0 plot of Fig. 4, which is computed analytically from
the initial distorted Gaussian profile (6.1). See Appendix F
for a detailed explanation of the extrapolation scheme.
We start by noting that the numerical values for the total

massM in AdS, obtained from Eq. (4.5), are approximately
constant during the evolution, as expected by mass con-
servation [38]. More precisely, a small drift of the total
mass is observed numerically; however, this becomes
smaller as we increase the resolution, and it is consistent
with zero within our error estimate for boundary quantities
that we will discuss shortly.
Figure 4 shows four snapshots of the vacuum expectation

value of the dual scalar field operator at the boundary, φ̄ð1Þ,
obtained from the near-boundary expansion of the bulk
scalar field in (3.5). Unlike the z ¼ 0 slice snapshots of
Fig. 2, these plots of the boundary S2 encode the asym-
metry in all three Cartesian directions in the bulk, as they
appear on the boundary at ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 1. In fact,

the asymmetry of the initial data is already visible at t ¼ 0,
where the different values of eccentricities along the three
Cartesian directions (largest along x and smallest along y)
are evident in this plot. At this time, the boundary scalar
field is overall very small, which is expected since the

FIG. 3. Riemann cube scalar relative to AdS4, ðR3=R3
AdSÞ − 1,

as a function of Kretschmann scalar relative to AdS4,
ðK=KAdSÞ − 1. In each panel, the black curve denotes the result
for a slice of Schwarzschild-AdS with mass given byMh ¼ 0.403
(in units of the characteristic length scale L ¼ 1), i.e., the value of
M [see Eq. (4.5)] for the highest resolution run with grid spacing
h. The black vertical line denotes the value of ðK=KAdSÞ − 1 at
the horizon of the Schwarzschild-AdS black hole. The relative
Kretschmann increases as we move closer to the origin of the
spacetime. Top panel: the colored lines denote the Riemann-
Kretschmann dependence obtained from grid points on the x-axis
(i.e., y ¼ z ¼ 0) of the numerical solution at t ¼ 31. Bottom
panel: the colored lines denote the Riemann-Kretschmann
dependence obtained from grid points on the y-axis (i.e.,
x ¼ z ¼ 0) of the numerical solution at t ¼ 31.
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initial φ̄, given by (6.1), is localized near ρ ¼ 0. Notice
from Fig. 4 that the asymmetry changes axes during
evolution, but interestingly it is always strongest along x
and weakest along y or vice versa. Furthermore, a direct
comparison with Fig. 2 shows that the features present at a
certain t at the boundary take approximately π=2 ≃ 1.6 to
reach the interior of the bulk, i.e., about a light-crossing
time, as expected. At later times, mirroring the evolution in
the bulk, φ̄ð1Þ decays exponentially in time as the bulk
spacetime settles down to Schwarzschild-AdS.
Figure 5 displays the energy density ϵ of the boundary

CFT. At t ¼ 0 this is strongly asymmetric along the
x-direction, as expected from the shape of the initial scalar
field profile (6.1). After that, ϵ undergoes a phase of strong
evolution with several changes of elongation axes, sampled
at t ¼ 5.6 and terminating at approximately t ¼ 7.2. From
that time onwards, ϵ settles down to a uniform configura-
tion, as appropriate for the Schwarzschild-AdS black hole.
The approach to uniformity is emphasized by using color
scales with fixed interval lengths, centered at the mean
value of ϵ at the corresponding evolution time.
More information about the energy density of the

boundary field theory can be deduced from Fig. 6. The
trace htrTiCFT vanishes for a conformal field theory in
2þ 1 dimensions, which is the case for our R × S2

boundary. In Sec. IV, we had spelled out how this trace,
in our scheme, is tied to how well we are solving the

FIG. 4. Snapshots of the vacuum expectation value of the dual
scalar field operator φ̄ð1Þ. The first snapshot is obtained analyti-
cally from the initial scalar field profile. The remaining three are
obtained by third order extrapolation and subsequent smoothen-
ing via a low-pass filter; see Appendix F. Highest resolution:
Nx ¼ Ny ¼ Nz ¼ 325.

FIG. 5. Snapshots of energy density ϵ of the dual boundary
CFT, obtained by third order extrapolation and smoothened
via a low-pass filter; see Appendix F. The scale of each
snapshot has a fixed interval length centered at the mean value
of ϵ at the corresponding evolution time to make the approach
to a uniform configuration more visible. Highest resolution:
Nx ¼ Ny ¼ Nz ¼ 325.

FIG. 6. Comparison of boundary quantities with the error
estimate given by the deviation of the L2-norm of htrTiCFT from
its predicted zero value for the 2þ 1 CFT (red line). We consider
the following boundary quantities: difference between maximum
and minimum of boundary energy density ϵ (blue line), L2-norm
of difference between ϵ and the Schwarzschild-AdS value
ϵSchw-AdS ¼ M

4π (green line), with Schwarzschild mass M ¼ Mh ¼
0.403 (i.e., the value ofM for the resolution with grid spacing h),
and L2-norm of boundary anistropy Δp (magenta line). This plot
is obtained from the data of the highest resolution run
(Nx ¼ Ny ¼ Nz ¼ 325), but at any resolution these quantities
exhibit the same hierarchy, although at different scales. Boundary
quantities are computed by third order extrapolation.
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Einstein field equations. We thus use the L2-norm of the
numerical values of htrTiCFT (red line) as an error estimate
for boundary quantities. We compare this error with the
difference between the maximum and minimum of ϵ (blue
line), the L2-norm of the difference between ϵ and its
Schwarzschild-AdS value ϵSchw-AdS ¼ M

4π (green line), with
M ¼ Mh ¼ 0.403, i.e., the highest resolution value of M,
and the L2-norm of Δp (magenta line). We compute
these quantities from the data of the highest resolution
simulation, but at any resolution the hierarchy is the
same, although it appears at different scales. If we exclude
very early times, we see that maxðϵÞ −minðϵÞ is
consistent with zero, which confirms that the energy
density becomes uniform in time. We also see that
kϵ − ϵSchw-AdSk2 is consistent with zero and decreases in
time, which shows that the energy density settles down to
ϵSchw-AdS, as expected. Finally, kΔpk2 is consistent with
zero, as appropriate for the boundary anistropy of the
Schwarzschild-AdS black hole.

VII. DISCUSSION

We have presented the first proof-of-principle Cauchy
evolution scheme with no symmetry assumptions that
solves the Einstein-Klein-Gordon equations for asymptoti-
cally AdS spacetimes. Stability of this numerical scheme is
achieved through the gauge choice (3.27) near the AdS
boundary. We have used this scheme to obtain preliminary
results using stationary initial data constructed from com-
pletely asymmetric Gaussian initial profiles of a massless
scalar field.
We observe the collapse of the scalar field into a black

hole and the subsequent ringdown to a Schwarzschild-AdS
black hole spacetime, in both bulk and boundary quantities.
Deviations from Schwarzschild-AdS at late times are
consistent with zero within estimates of the numerical
error. At very late times, the spatial profiles of these small
deviations appear to cascade toward higher harmonics.
Even though these deviations are consistent with our error
estimates, they may nevertheless trigger a nonlinear insta-
bility that can be revealed only by evolving for longer times
and with higher spatial resolutions.18 It will be interesting to
conduct a detailed analysis by decomposing the scalar field
profile into spherical harmonics and showing that the radial
part is nonvanishing near the boundary for a very long time.
We leave this for future studies.
In this work we limited ourselves to D ¼ 4 spacetime

dimensions, but the calculation outlined in Sec. III B would
be almost identical if we were to study Cartesian evolution
of asymptotically AdS spacetimes in any D ≥ 4 dimen-
sions. In particular, the stable gauge found with this method
would be the same up to a numerical factor. Interestingly, a

comparison between (3.27) and the corresponding result in
[28] [see Eq. (S10) in that previous work] clearly suggests a
trend for the expression of the stable gauge as we relax
symmetries, and thus increase the number of spatial
coordinates on which the solution depends. If this trend
were confirmed, repeating the calculation above would not
be necessary when increasing the number of spatial degrees
of freedom. See [21] for an example in higher dimensions
where this was done explicitly. Furthermore, the scheme
presented here can be applied to cases with different types
of matter fields, with different types of global coordinates,
and to coordinates on the Poincaré patch. For instance, in
Appendix B we followed the prescription of Sec. III to
obtain the stable gauge also in spherical coordinates. In
Appendix C, the same procedure leads to a gauge that
stabilizes evolution on a Poincaré patch of AdS4. In other
words, this framework makes numerical Cauchy evolution
in asymptotically AdS spacetimes possible in full general-
ity, with no need to impose symmetries.
We expect to be able to tackle several interesting problems

in asymptotically AdS spacetimes using this Cauchy evo-
lution scheme. We want to highlight two of the most
important of these here. The first is the study of gravitational
collapse in AdS with no symmetry assumptions and with
angular momentum. The numerical study of gravitational
collapse inAdSwas done inD ≥ 4 spacetime dimensions by
[40,41] in spherical symmetry. In these papers it was shown
that a class of small perturbations of amplitude ϵ undergoes
gravitational collapse and forms a black hole on a timescale
Oðϵ−2Þ, due to a turbulent cascade of energies from large to
small distances until a horizon forms. Subsequently, the
authors of Ref. [28] considered the same massless scalar
field model in AdS5 in a 2þ 1 setting, and it was observed
that for a certain class of initial data, the subsequent
evolution resulted in collapse that happens faster away from
spherical symmetry. On the other hand, the authors in [42]
used a particular metric ansatz in a 1þ 1 setting to consider
the inclusion of angular momentum and observed delayed
collapse. A promising direction is provided in [43,44] with a
proof of the instability of AdS in spherical symmetry for the
Einstein-massless Vlasov system. The scheme described in
this article makes it possible for numerical investigations to
help settle this question by incorporating all the relevant
physics needed to study gravitational collapse in AdS in full
generality.
The second important problemwewish to highlight is the

study of the superradiant instability in AdS. Superradiantly
unstable (see [45] for a review of superradiance) initial data
around a Kerr-AdS black hole spacetime were evolved in
[19], without imposing symmetries, up to approximately
580 light-crossing times using the characteristic scheme
presented in [20]. This paper showed a transition of theKerr-
AdS black hole to a rotating black hole with one helical
Killing field consistentwith a black resonator [46]. Since the
known black resonators are rapidly rotating black holes with

18Schwarzschild-AdS has been shown to be stable under
spherically symmetric deformations [39].
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an ergo region, they are also unstable to superradiance
[47,48]. Hence a cascade to smaller and smaller resonators,
potentially leading to a violation of the weak cosmic
censorship conjecture, was suggested [49]. The authors of
[19] see a second transition at late times that could be the
beginning of such a cascade but they do not continue the
evolution further. Hence, the end point of the Kerr-AdS
superradiant instability is still unknown. To settle this
question, it will be necessary to keep track of progressively
smaller spatial scales during the course of the evolution,
which typically go hand-in-hand with progressively richer
dynamics. On top of the computationally expensive nature
of 3þ 1 simulations, it will be necessary to keep track of the
evolution on sufficiently long timescales until the end point
is reached, requiring commensurately large-scale computa-
tional resources. We leave this important study for
future work.
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APPENDIX A: GENERALIZED HARMONIC
FORMULATION

The generalized harmonic formulation of the Einstein
equations is based on coordinates xα that each satisfies a
wave equation □xα ¼ Hα with source functions Hα. As
long as the constraints Cα ≡Hα −□xα ¼ 0 are satisfied,
we can then write the trace-reversed Einstein equations in
D dimensions with cosmological constant Λ,

0 ¼ Rαβ −
2Λ
d − 2

gαβ − 8π

�
Tαβ −

1

d − 2
Tγ

γgαβ

�
; ðA1Þ

as

0 ¼ Rαβ −∇ðαCβÞ −
2Λ
d − 2

gαβ − 8πT̄αβ

¼ Rαβ −∇ðαHβÞ þ∇ðα□xβÞ −
2Λ
d − 2

gαβ − 8πT̄αβ

¼ −
1

2
gγδgαβ;γδ − gγδ;ðαgβÞγ;δ −Hðα;βÞ þHγΓγ

αβ

− Γγ
αδΓδ

γβ −
2Λ
d − 2

gαβ − 8πT̄αβ; ðA2Þ

where T̄αβ ¼ Tαβ − Tγ
γgαβ=ðd − 2Þ, the choice of Hα ¼

gαβHβ fixes the gauge, Γα
βγ are the Christoffel symbols

associated with the spacetime metric gαβ, and Tαβ is the
matter stress-energy tensor. It can be proven that the
constraints Cα ¼ 0 are satisfied for all times t≡ x0, as
long as Cα ¼ 0 and ∂tCα ¼ 0 at t ¼ 0. In an initial-
boundary value problem, this still holds if we assume that
the boundary conditions are consistent with Cα ¼ 0 being
satisfied on the boundary for all times. However, for
numerical initial data, the constraints and their derivatives
with respect to t vanish at t ¼ 0 typically only up to
truncation error. Thus, to suppress constraint-violating
solutions, we supplement (A2) with constraint damping
terms as introduced in [51], controlled by the parameters κ
and P. We thus obtain the final form of our evolution
equations:

−
1

2
gγδgαβ;γδ − gγδ;ðαgβÞγ;δ −Hðα;βÞ þHγΓγ

αβ

− Γγ
δαΓδ

γβ − κð2nðαCβÞ − ð1þ PÞgαβnγCγÞ

¼ 2

d − 2
Λgαβ þ 8π

�
Tαβ −

1

d − 2
Tγ

γgαβ

�
; ðA3Þ

where nα ¼ −∂αt is the timelike, future-directed unit
1-form normal to slices of constant t. Notice that the
principal part of (A3), − 1

2
gγδ∂γ∂δgαβ, is a wave operator

acting on metric components. Thus, the well-posedness of
the wave equation suggests that the initial-boundary value
problem in generalized harmonic form is well-posed, if we
make reasonable assumptions on the remaining compo-
nents of the problem. See, for example, Refs. [27,29] for
more details on this formulation. In our simulations we use
the values κ ¼ −10 and P ¼ −1.19

In this work, we are interested in the case where matter
fields are given by a single massless real scalar field φ, and
hence the stress-energy tensor reads

Tαβ ¼ ∂αφ∂βφ − gαβ
1

2
gγδ∂γφ∂δφ: ðA4Þ

For completeness, we also write the Klein-Gordon equa-
tion (2.3) for the scalar field φ in terms of partial derivatives
with respect to the chosen set of coordinates:

gαβ∂α∂βφ − gαβΓγ
βα∂γφ ¼ 0: ðA5Þ

19Reference [27] mentions that it is important to use P close to
−1, while the value of κ is not too important to achieve effective
constraint damping.
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APPENDIX B: BOUNDARY PRESCRIPTION FOR
SPHERICAL COORDINATES

Although spherical coordinates xα ¼ ðt; ρ; θ;ϕÞ are not
suitable for numerically evolving points near the origin (see
discussion in Sec. VA), they are convenient to extract the
physics of the CFT at the AdS boundary, since they are
adapted to the boundary topologyR × S2. In this section we
apply the prescription outlined in Sec. III to the case of
asymptotically AdS spacetimes inD ¼ 4 spacetime dimen-
sions in spherical coordinates. Similar to the Cartesian case,
we first define the spherical coordinate version of the
evolution variables ðḡαβ; φ̄; H̄αÞ. We also write down the
transformations between these variables and their Cartesian
version, Eqs. (3.1)–(3.3). Then, we obtain the stable gauge
in spherical coordinates by following the steps introduced
in Sec. III B. We compare this with a different potentially
stable gauge that can be inferred from the one used in [27].
Finally, we show that tracelessness and conservation of the
boundary stress-energy tensor hTabiCFT, defined in Sec. IV,
is a consequence of the lowest order of the Einstein
equations in the near boundary expansion, provided that
the leading order of the generalized harmonic constraints
is satisfied.20

1. Evolution variables and boundary conditions

We remind the reader that new evolution variables
are defined in order to apply the boundary conditions
found in Sec. II B as simple Dirichlet conditions at the AdS
boundary ρ ¼ 1. In the same way as in the Cartesian
coordinate case where we defined metric evolution varia-
bles ḡμν in (3.1), the metric evolution variables in spherical
coordinates ḡαβ are defined by (i) considering the deviation
from pure AdS tensor hαβ ¼ gαβ − ĝαβ in spherical coor-
dinates, and (ii) stripping hαβ of as many factors of ð1 − ρ2Þ
as needed so that they fall off linearly in (1 − ρ) near the
AdS boundary.
The boundary conditions on hαβ (2.9) tell us that

ḡρα ¼
hρα

1 − ρ2
; if α ≠ ρ;

ḡαβ ¼ hαβ; otherwise: ðB1Þ

Despite the notation, we emphasize that ḡαβ and ḡμν are not
in general components of the same tensor (as it should be
clear from their definition), and therefore the usual trans-
formation between tensor components in different sets of
coordinates cannot be applied. The correct transformation
can easily be deduced from (B1) and (3.1), remembering
that h is indeed a tensor:

ḡρα ¼
1

ð1 − ρ2Þ
∂xμ
∂ρ

∂xν
∂xα ḡμν; if α ≠ ρ;

ḡαβ ¼
∂xμ
∂xα

∂xν
∂xβ ḡμν; otherwise: ðB2Þ

Similarly, the boundary conditions on the scalar field (2.10)
suggest that we use the evolution variable

φ̄ ¼ φ

ð1 − ρ2Þ2 ; ðB3Þ

which is the same as the one in Cartesian coordinates, as
expected for a scalar field. Finally, the boundary conditions
(2.14) on Hα suggest the use of the evolution variables

H̄α ¼
Hα − Ĥα

ð1 − ρ2Þ2 ; if α ≠ ρ;

H̄ρ ¼
Hρ − Ĥρ

1 − ρ2
; ðB4Þ

in spherical coordinates. Neither Hα, Ĥα, H̄α nor Hμ, Ĥμ,
H̄μ are components of the same tensor, so there is no simple
transformation from one set to the other. The two triplets of
quantities can be obtained only from the definition of
source functions in terms of the full metric g in the
appropriate set of coordinates, e.g., Eq. (2.14) in spherical
coordinates.
In a numerical scheme in spherical coordinates employ-

ing the framework presented in this article, reflective
Dirichlet boundary conditions can easily be imposed as

ḡαβjρ¼1 ¼ 0; φ̄jρ¼1 ¼ 0; H̄αjρ¼1 ¼ 0: ðB5Þ

2. Gauge choice for stability

Since the evolution variables in spherical coordinates,
ðḡαβ; φ̄; H̄αÞ, are linear in q ¼ 1 − ρ by construction,
we can borrow the near-boundary expansions (3.5)–(3.7).
We now substitute these into the evolution equations (A3),
and we expand each component in powers of q. Rewriting
the resulting equations in the wavelike form (3.10),
we obtain

□̃ḡð1Þtt ¼ q−2ð2H̄ð1Þρ − 3ḡð1ÞρρÞ þOðq−1Þ; ðB6Þ

□̃ḡð1Þtρ ¼
1

2
q−2ð−ḡð1Þθθ;t þ ḡð1Þρρ;t − ḡð1Þtt;t

þ csc2θð2ḡð1Þtϕ;ϕ − ḡð1Þϕϕ;tÞ
þ 2ḡð1Þtθ;θ − 2H̄ð1Þρ;t − 3 cot θḡð1Þtθ

− 40ḡð1Þtρ þ 20H̄ð1ÞtÞ þOðq−1Þ; ðB7Þ

□̃ḡð1Þtθ ¼ Oðq−1Þ; ðB8Þ
20In fact, tracelessness was already proved in Sec. IV by

converting Cartesian variables into spherical ones. We prove it
again in this section employing only spherical coordinates.
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□̃ḡð1Þtϕ ¼ Oðq−1Þ; ðB9Þ

□̃ḡð1Þρρ ¼ 3q−2ðcsc2θḡð1Þϕϕ þ ḡð1Þθθ − 2ḡð1Þρρ − ḡð1Þtt þ 2H̄ð1ÞρÞ þOðq−1Þ; ðB10Þ

□̃ḡð1Þρθ ¼
1

2
q−2ðḡð1Þθθ;θ þ csc2θð−ḡð1Þϕϕ;θ þ 2ḡð1Þθϕ;ϕ þ 5 cot θḡð1ÞϕϕÞ þ ḡð1Þρρ;θ

− 2ḡð1Þtθ;t þ ḡð1Þtt;θ − 2H̄ð1Þρ;θ − 3 cot θḡð1Þθθ − 40ḡð1Þρθ þ 20H̄ð1ÞθÞ þOðq−1Þ; ðB11Þ

□̃ḡð1Þρϕ ¼ 1

2
q−2ð2ḡð1Þθϕ;θ þ csc2θḡð1Þϕϕ;ϕ − ḡð1Þθθ;ϕ þ ḡð1Þρρ;ϕ − 2ḡð1Þtϕ;t þ ḡð1Þtt;ϕ − 2H̄ð1Þρ;ϕ

− 13 cot θḡð1Þθϕ − 40ḡð1Þρϕ þ 20H̄ð1ÞϕÞ þOðq−1Þ; ðB12Þ

□̃ḡð1Þθθ ¼ q−2ð3ḡð1Þρρ − 2H̄ð1ÞρÞ þOðq−1Þ; ðB13Þ

□̃ḡð1Þθϕ ¼ Oðq−1Þ; ðB14Þ

□̃ḡð1Þϕϕ ¼ q−2sin2θð3ḡð1Þρρ − 2H̄ð1ÞρÞ þOðq−1Þ: ðB15Þ

Doing the same for the generalized harmonic constraints 0 ¼ Cα ≡Hα −□xα, we have

Ct ¼
1

2
q3ð−ḡð1Þθθ;t − ḡð1Þρρ;t − ḡð1Þtt;t þ csc2θð2ḡð1Þtϕ;ϕ − ḡð1Þϕϕ;tÞ þ 2ḡð1Þtθ;θ − 16ḡð1Þtρ þ 8H̄ð1ÞtÞ þOðq4Þ; ðB16Þ

Cρ ¼ q2
�
2H̄ð1Þρ −

3

2
ðcsc2θð−ḡð1ÞϕϕÞ − ḡð1Þθθ þ ḡð1Þρρ þ ḡð1ÞttÞ

�
þOðq3Þ; ðB17Þ

Cθ ¼
1

2
q3ðḡð1Þθθ;θ þ csc2θð−ḡð1Þϕϕ;θ þ 2ḡð1Þθϕ;ϕ þ 2 cot θḡð1ÞϕϕÞ − ḡð1Þρρ;θ − 2ḡð1Þtθ;t

þ ḡð1Þtt;θ − 16ḡð1Þρθ þ 8H̄ð1ÞθÞ þOðq4Þ; ðB18Þ

Cϕ ¼ 1

2
q3ðḡð1Þθθ;θ þ csc2θð−ḡð1Þϕϕ;θ þ 2ḡð1Þθϕ;ϕ þ 2 cot θḡð1ÞϕϕÞ

− ḡð1Þρρ;θ − 2ḡð1Þtθ;t þ ḡð1Þtt;θ − 16ḡð1Þρθ þ 8H̄ð1ÞθÞ þOðq4Þ: ðB19Þ

We now follow the three steps of Sec. III B to obtain a stable gauge choice.
1. Solve the leading order of the near-boundary generalized harmonic constraints, Eqs. (B16)–(B19), for H̄ð1Þα. We

obtain

H̄ð1Þt¼
1

8
ðḡð1Þθθ;tþ csc2θðḡð1Þϕϕ;t−2ḡð1Þtϕ;ϕÞþ ḡð1Þρρ;tþ ḡð1Þtt;t−2ḡð1Þtθ;θþ16ḡð1ÞtρÞ;

H̄ð1Þρ¼
3

4
ð−csc2θḡð1Þϕϕ− ḡð1Þθθþ ḡð1Þρρþ ḡð1ÞttÞ;

H̄ð1Þθ ¼
1

8
ð−ḡð1Þθθ;θþ csc2θðḡð1Þϕϕ;θ−2ðḡð1Þθϕ;ϕþ cotθḡð1ÞϕϕÞÞþ ḡð1Þρρ;θþ2ḡð1Þtθ;t− ḡð1Þtt;θþ16ḡð1ÞρθÞ;

H̄ð1Þϕ¼
1

8
ð−2ḡð1Þθϕ;θþ csc2θð−ḡð1Þϕϕ;ϕÞþ ḡð1Þθθ;ϕþ ḡð1Þρρ;ϕþ2ḡð1Þtϕ;t− ḡð1Þtt;ϕþ4cotθḡð1Þθϕþ16ḡð1ÞρϕÞ: ðB20Þ

2. Plug (B20) into the q−2 terms of (B6)–(B15). This gives the following independent equations:

ḡð1Þtt − csc2θḡð1Þϕϕ − ḡð1Þθθ − ḡð1Þρρ ¼ 0; ðB21Þ

csc2θð−ḡð1Þϕϕ;θ þ ḡð1Þθϕ;ϕ þ cot θḡð1ÞϕϕÞ −
2

3
ḡð1Þρρ;θ þ ḡð1Þtt;θ þ cot θḡð1Þθθ ¼ 0; ðB22Þ

csc2θðḡð1Þϕϕ;t − ḡð1Þtϕ;ϕÞ þ ḡð1Þθθ;t þ
2

3
ḡð1Þρρ;t − cot θḡð1Þtθ ¼ 0; ðB23Þ
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ḡð1Þθϕ;θ − ḡð1Þθθ;ϕ −
2

3
ḡð1Þρρ;ϕ

þ ḡð1Þtt;ϕ þ cot θḡð1Þθϕ ¼ 0: ðB24Þ

We prove below that these equations ensure trace-
lessness and conservation of the boundary stress-
energy tensor hTabiCFT, defined in Sec. IV.

3. Use (B21)–(B24) to eliminate ḡð1Þtt, ḡð1Þtθ;t, ḡð1Þtθ;θ,
ḡð1Þtϕ;t from (B20). In this way we obtain a stable
gauge in spherical coordinates

H̄ð1Þt¼
1

12
ðḡð1Þρρ;tþ3cotθḡð1Þtθþ24ḡð1ÞtρÞ;

H̄ð1Þρ¼
3

2
ḡð1Þρρ;

H̄ð1Þθ¼
1

12
ð3cotθðḡð1Þθθ−csc2θḡð1ÞϕϕÞ

þ ḡð1Þρρ;θþ24ḡð1ÞρθÞ;

H̄ð1Þϕ¼
1

12
ðḡð1Þρρ;ϕþ9cotθḡð1Þθϕþ24ḡð1ÞρϕÞ: ðB25Þ

By looking at the gauge choice made in [27] [see Eq. (74)]
to obtain stability in simulations of five-dimensional
asymptotically AdS spacetimes with an SO(3) symmetry,
and choosing numerical factors consistent with (B25), we
can infer the following potentially stable gauge for the four-
dimensional case with no symmetry assumptions:

H̄ð1Þt ¼ 2ḡð1Þtρ;

H̄ð1Þρ ¼
3

2
ḡð1Þρρ;

H̄ð1Þθ ¼ 2ḡð1Þρθ;

H̄ð1Þϕ ¼ 2ḡð1Þρϕ: ðB26Þ

Notice that by setting certain terms in (B25) to zero, one
recovers (B26). It will be interesting to confirm the
numerical stability of (B25) with empirical studies.

3. Tracelessness and conservation of
boundary stress tensor

We conclude this subsection by showing that trace-
lessness and conservation of hTabiCFT follow from (B21)–
(B24), i.e., from the lowest order of the Einstein equations,
provided that the leading order of the generalized harmonic
constraints are satisfied.
With the notation of Sec. IV, let xa ¼ ðt; θ;ϕÞ be the

coordinates along the AdS boundary, λabdxadxb ¼ −dt2 þ
dθ2 þ sin2θdϕ2 be the metric of the AdS boundary, and D
be the Levi-Civita connection of λab; i.e., D is torsion-
free and Daλbc ¼ 0. Then, htrTiCFT ¼ λabhTabiCFT is the
trace of the boundary-stress tensor and DahTabiCFT ¼
λacDchTabiCFT is its divergence. We want to prove that

htrTiCFT ¼ 0 and DahTabiCFT ¼ 0. The expression of
htrTiCFT in terms of the leading order of the metric
variables in spherical coordinates was already written in
(4.6). We repeat it here for completeness:

htrTiCFT ¼
3

8π
ðḡð1Þtt− ḡð1Þρρ− ḡð1Þθθ−csc2θḡð1ÞϕϕÞ: ðB27Þ

The divergence of the boundary stress tensor is given by

DahTatiCFT ¼ 1

16π
ð−3csc2θḡð1Þϕϕ;t − 3ḡð1Þθθ;t − 2ḡð1Þρρ;t

þ 3ḡð1Þtθ;θ þ 3csc2θḡð1Þtϕ;ϕ þ 3 cot θḡð1ÞtθÞ;
ðB28Þ

DahTaθiCFT¼
1

16π
ð3csc2θḡð1Þθϕ;ϕ−2ḡð1Þρρ;θ

−3csc2θḡð1Þϕϕ;θ−3ḡð1Þtθ;tþ3ḡð1Þtt;θ

þ3cotθḡð1Þθθþ3cotθcsc2θḡð1ÞϕϕÞ; ðB29Þ

DahTaϕiCFT ¼ 1

16π
ð3ḡð1Þθϕ;θ − 3ḡð1Þθθ;ϕ − 2ḡð1Þρρ;ϕ

− 3ḡð1Þtϕ;t þ 3ḡð1Þtt;ϕ þ 3 cot θḡð1ÞθϕÞ:
ðB30Þ

We immediately see that htrTiCFT ¼ 0 as a consequence
of (B21). Moreover, by solving the system of six
equations given by the first derivatives of (B21) with
respect to t, θ, ϕ and (B22), (B23), (B24) for ḡð1Þtt;t,
ḡð1Þtt;θ, ḡð1Þtt;ϕ, ḡð1Þtθ;t, ḡð1Þtθ;θ, ḡð1Þtϕ;t, and substituting the
solution into the right-hand side of (B28)–(B30), we see
that DahTabiCFT ¼ 0.

4. Boundary stress tensor from holographic
renormalization

We can straightforwardly compute the boundary stress
tensor from (2.21) using the holographic renormalization
prescription of [33] in spherical coordinates xā ¼ ðt̄; θ̄; ϕ̄Þ
on the AdS boundary. We have

hTā b̄iCFT ¼ 3

16π
gð3Þ
ā b̄
; ðB31Þ

where gð3Þ
ā b̄

are the z3 terms of the metric components in FG
form, Eq. (2.21). The explicit components of the stress
tensor in (B31) are given by
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hTt̄ t̄iCFT ¼ 1

16π
ð3ftt − fρρÞ;

hTt̄ θ̄iCFT ¼ 3

16π
ftθ;

hTt̄ ϕ̄iCFT ¼ 3

16π
ftϕ;

hT θ̄ θ̄iCFT ¼ 1

16π
ð3fθθ þ fρρÞ;

hT θ̄ ϕ̄iCFT ¼ 3

16π
fθϕ;

hTϕ̄ ϕ̄iCFT ¼ sin2θ̄
16π

�
fϕϕ
sin2θ̄

þ 1

3
fρρ

�
: ðB32Þ

On the other hand, in Sec. IV we compute the boundary
stress tensor starting from the metric in global spherical
coordinates and then using the prescription of [34]. Of
course, the expressions (4.4) and (B32) are equivalent, as
we now explain. To obtain (4.4), we have not imposed that
the metric components satisfy the Einstein equations. On
the other hand, Eq. (B31) gives the correct boundary stress-
energy tensor if the bulk metric solves the Einstein
equations, in agreement with the assumptions of the FG
theorem. It is thus expected that (4.4) and (B32) agree if we
assume the validity of the lowest order of the Einstein
equations in the form that takes into account the general-
ized harmonic constraints, i.e., Eqs. (B21)–(B24). In fact,
we only need (B21). For example, starting from (4.4),
imposing (B21), and using the fact that t̄ ¼ t, θ̄ ¼ θ, ϕ̄ ¼ ϕ
at the boundary ρ ¼ 1 together with ḡð1Þαβ ¼ fαβ,

21 we find
precisely the expressions (B32).

APPENDIX C: BOUNDARY PRESCRIPTION
FOR THE POINCARÉ PATCH

Here we follow the prescription of Sec. III in the case
of Poincaré AdS and display a choice of generalized
harmonic source functions that stabilizes the evolution in
this case.
The metric of the Poincaré patch of AdS4 can be

written as

ĝ ¼ L2

z2
ð−dt2 þ dz2 þ dx12 þ dx22Þ; ðC1Þ

in terms of Poincaré coordinates ðt; z; x1; x2Þ. To include
the Poincaré horizon z → ∞ in our computational domain,
we compactify the bulk coordinate z ¼ ð1 − ρ2Þ=ρ2 to have
the Poincaré horizon at ρ ¼ 0 and the AdS boundary at
ρ ¼ 1. This gives the following form for the metric of
AdS4:

ĝ ¼ L2ρ4

ð1 − ρ2Þ2 ð−dt
2 þ ð4=ρ6Þdρ2 þ dx21 þ dx22Þ: ðC2Þ

Let us now consider asymptotically AdS spacetimes.
Since (C1) is in the form given by the leading order of
the FG expansion, Eqs. (2.16) and (2.17), we see that
ðt; z; x1; x2Þ are FG coordinates. We can thus read off the
falloffs of the metric components from the rest of the FG
expansion. The evolved fields consist of the spacetime
metric gμν, possibly a scalar field φ, and the generalized
harmonic source functions Hμ. The falloffs of the metric
components gμν read the same as (2.11), with fμνðt; x1; x2Þ
coefficients. The scalar field falloff that preserves the
metric asymptotics is given by (2.12), with cðt; x1; x2Þ
coefficient. The falloffs of the source functions can be
inferred from the metric falloffs, which are given by
(2.15), with fμðt; x1; x2Þ coefficients. As a result, the
corresponding evolution variables in this Poincaré setting
are given exactly by the same expressions as we had written
in (3.1)–(3.3).
Using the same steps as in Sec. III B, we obtain the

following gauge:

H̄ð1Þt ¼
3

2
ḡð1Þtρ;

H̄ð1Þρ ¼
3

2
ḡð1Þρρ;

H̄ð1Þx1 ¼
3

2
ḡð1Þρx1 ;

H̄ð1Þx2 ¼
3

2
ḡð1Þρx2 : ðC3Þ

We have verified that this gauge leads to stable evolution in
asymptotically AdS4 spacetimes in Poincaré coordinates.
We close by noting that [21] obtained a similar stable gauge
to evolve dynamical black holes in the background of the
AdS soliton.

APPENDIX D: INITIAL DATA

The Cauchy problem in GR requires the prescription of
initial data on a spacelike hypersurface Σ and a choice of
gauge throughout the entire evolution. In an asymptotically
AdS spacetime, in addition we have to specify boundary
conditions at the boundary of AdS; we have dealt with
boundary conditions in Sec. III. We pick Cartesian coor-
dinates xμ ¼ ðt; x; y; zÞ such that t ¼ 0 on Σ. The spatial
Cartesian coordinates on Σ are denoted by xi ¼ ðx; y; zÞ,
and the corresponding indices by i; j; k;…. With this
notation, the data needed for the Cauchy evolution in
the generalized harmonic scheme is composed of the initial
data φ̄jt¼0, ḡijjt¼0, ∂tφ̄jt¼0, ∂tḡijjt¼0 and the source func-
tions H̄μ at all times. The gauge used in our numerical
scheme at t > 0 is discussed in Appendix E. With regard to
the gauge at t ¼ 0, we do not set H̄μjt¼0 explicitly, but we

21Note that t̄ ¼ t, θ̄ ¼ θ, ϕ̄ ¼ ϕ at ρ ¼ 1 (i.e., z̄ ¼ 0) from
(2.20), while ḡð1Þαβ ≡ ∂ḡαβ

∂q jq¼0 ¼ fαβ, where the second equality
is obtained by comparing (2.9) with (B1) to write ḡαβ in terms of
fαβ and the corresponding ρ-dependent factors.
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make an equivalent choice for ḡtμjt¼0, and ∂tḡtμjt¼0, and
then compute H̄μjt¼0 from (2.13). In summary, the com-
plete set of initial data that we prescribe is φ̄jt¼0, ḡμνjt¼0,
∂tφ̄jt¼0, and ∂tḡμνjt¼0. In this section we explain how this is
done in our simulations, taking into account two crucial
facts. First, initial data cannot be chosen in a completely
arbitrary way, but it must satisfy the constraints of GR.
Second, the choice of the initial degrees of freedom must be
consistent with the desired gauge (3.27) near the AdS
boundary.

1. Constraints

Here we review the constraints in GR and how they are
solved in our numerical scheme. We start by defining the
relevant quantities on the initial spacelike hypersurface Σ.
The timelike, future-directed unit 1-form normal to Σ is

given by

nμ ¼ −αðdtÞμ; ðD1Þ

where α ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðdtÞμðdtÞν

q
is the lapse function. The

projection operator onto Σ is defined by

γμν ¼ δμν þ nμnν: ðD2Þ

(Notice that γμν is idempotent, i.e., γμργ
ρ
ν ¼ γμν , as appropriate

for a projector.) This operator can be applied to any tensor
at a point p ∈ Σ to obtain the part of that tensor tangent to
Σ. For instance, given a vector X at a point p ∈ Σ, Xμ

k ¼
γμνXν is the part of X tangent to Σ, i.e., Xμ

knμ ¼ 0. Let us

now consider a tensor defined on the tangent space of the
spacetime manifold M at a point p ∈ Σ. If the tensor is
invariant under projection onto Σ, then it can be identified
with a tensor defined on the tangent space of Σ at p, under a
natural (i.e., basis-independent) isomorphism. For exam-
ple, γμν ¼ gμν þ nμnν at points on Σ can be identified with
the Riemannian metric of Σ defined as the pullback22 on Σ
of the spacetime metric gμν, given by γij in spatial Cartesian
coordinates. See [35] for more details. Indices of tensors
invariant under projection onto Σ can be raised and lowered
by γμν or gμν, equivalently. Indices i; j; k;…, of tensors on
the tangent space of Σ can be raised and lowered by γij.
The projection of ∇μnν defines the extrinsic curvature

of Σ,23

Kμν ¼ −γρμγσν∇ρnσ ¼ −
1

2
Lnγμν: ðD3Þ

The Lie derivative along the normal direction in the second
equality suggests that a choice of Kμν on Σ is “morally”
equivalent to a choice for the time derivative of the metric
components at t ¼ 0. Kμν is identified with the tensor on
the tangent space of Σ, given by Kij.
As a final ingredient, the covariant derivative on Σ of a

tensor field invariant under projection onto Σ is defined as
the projection onto Σ of the covariant derivative ∇ of the
tensor field, and we denote it by D. For instance, DμXν

k ¼
γρμγνσ∇ρXσ

k and DμXν
k is identified with the tensor on the

tangent space of Σ given by DiX
j
k ¼ γρi γ

j
σ∇ρXσ

k. D is the

Levi-Civita connection of γij; i.e., it is torsion-free
and Diγjk ¼ 0.
We can now write the constraints that initial data on Σ

must satisfy. The “normal-normal” projection (i.e., con-
traction with nμnν) of the Einstein equations gives the
Hamiltonian constraint

ð3ÞR − KijKij þ K2 − 2Λ ¼ 16πρ; ðD4Þ

where ð3ÞR is the Ricci scalar associated with the connection
D, K ¼ γijKij and ρ ¼ Tμνnμnν is the matter energy
density measured by an observer with 4-velocity nμ. The
“tangent-normal” projection (i.e., contraction with γμνnρ)
of the Einstein equations gives the momentum constraint

DjKj
i −DiK ¼ 8πji; ðD5Þ

where ji ¼ −Tρσnργσi is the matter momentum density
measured by an observer with 4-velocity nμ.
We now explain how these constraints are solved for

massless real scalar matter, whose energy-momentum
tensor is (A4), in the simplified case of time-symmetric
data. Time symmetry in the scalar sector,

∂tφ̄jt¼0 ¼ 0; ðD6Þ

implies ji ¼ 0. Time symmetry in the gravitational sector,

∂tḡijjt¼0 ¼ 0; ðD7Þ

together with the initial gauge choice

ḡtijt¼0 ¼ 0; ðD8Þ

implies Kij ¼ 0. Thus, we see that the momentum con-
straint is trivially satisfied. The Hamiltonian constraint,
instead, reduces to

ð3ÞR − 2Λ ¼ 16πρ: ðD9Þ

22We refer to the pullback with respect to the inclusion map
that embeds Σ in M.

23We can make sense of covariant derivatives of nμ by
extending its definition on Σ (D1) to a 1-form field over a
neighborhood of Σ, which can be done in an arbitrary way
without changing the value of Kμν on Σ given by (D3).
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This can be solved through the conformal approach,
initiated in [52], which assumes that the spatial metric
γij is conformal to the spatial metric γ̂ij of the t ¼ 0 slice of
pure AdS in Cartesian coordinates,

γij ¼ ζ4γ̂ij; ðD10Þ

where ζ is a smooth positive function on Σ, satisfying the
AdS boundary condition ζjρ¼1 ¼ 1. Let D̂ be the Levi-

Civita connection of γ̂ij and
ð3ÞR̂ the corresponding Ricci

scalar. Using (D10) and its inverse, γij ¼ ζ−4γ̂ij, we obtain

ð3ÞR ¼ 1

ζ4

�
ð3ÞR̂ −

8

ζ
γ̂ijD̂iD̂jζ

�
: ðD11Þ

Plugging (D11) into (D9) gives

ð3ÞR̂ζ − 8γ̂ijD̂iD̂jζ − 2Λζ5 ¼ 16πρζ5: ðD12Þ
ð3ÞR̂ can be computed from the spatial part of the pure AdS
metric (2.6): ð3ÞR̂ ¼ −6=L2 ¼ 2Λ. Thus, Eq. (D12) can be
written as

γ̂ijD̂iD̂jζ −
1

4
Λζ þ 1

4
ðΛþ 8πρÞζ5 ¼ 0: ðD13Þ

Finally, the version of the Hamiltonian constraint that we
are going to solve is obtained by writing the matter energy
density ρ in terms of ζ. The time-symmetry requirement
∂tφjt¼0 ¼ 0 gives

ρ ¼ 1

2ζ4
γ̂ij∂iφ∂jφ; ðD14Þ

so the Hamiltonian constraint reads

γ̂ijD̂iD̂jζ −
1

4
Λζ þ 1

4
ðΛζ5 þ 4πζγ̂ij∂iφ∂jφÞ ¼ 0: ðD15Þ

For any given choice of scalar field φ on Σ, Eq. (D15) is an
elliptic equation that can be solved for ζ with boundary
condition ζjρ¼1 ¼ 1. In our simulations we pick the initial
scalar field profile φjt¼0 ¼ φ̄jt¼0ð1 − ρ2Þ2 with φ̄jt¼0 speci-
fied by (6.1), and we solve (D15) with a multigrid
algorithm, built into the PAMR/AMRD libraries. The initial
metric variables ḡijjt¼0 are then easily reconstructed from
(D10) and γij ¼ gijjt¼0 ¼ ĝijjt¼0 þ ḡijjt¼0, i.e.,

ḡijjt¼0 ¼ ζ4γ̂ij − ĝijjt¼0: ðD16Þ

2. Consistency at the boundary

In the previous section we explained how some compo-
nents of the initial data for our simulations are obtained:
(i) we impose time symmetry, namely ∂tφ̄jt¼0 ¼ 0 and

∂tḡijjt¼0 ¼ 0; (ii) we make the initial gauge choice
ḡtijt¼0 ¼ 0; (iii) we choose the massless real scalar field
profile φ̄jt¼0 given by (6.1); and (iv) we determine ḡijjt¼0

through the conformal decomposition of the Hamiltonian
constraint. In this section we determine the remaining
necessary components for Cauchy evolution based on
the generalized harmonic scheme: ḡttjt¼0 and ∂tḡtμjt¼0.
In doing so, the only restriction to consider is the one

already obtained in step 2 of our gauge prescription in
Sec. III B: the Einstein equations in a gauge that satisfies
the generalized harmonic constraints impose the condition
ḡð1Þtt ¼ ḡð1Þxx þ ḡð1Þyy þ ḡð1Þzz near the boundary. This will
hold at all times of the evolution, and it must be imposed on
initial data. Given that there is no requirement on the value
of ḡtt in the bulk, we make the simplest choice and set that
to zero. In order to smoothly transition from the bulk value
of ḡtt to its required boundary value, we use the smooth
transition function

fðρÞ¼

8>><
>>:
1; if ρ≥ρb;

1−R3ðρÞð6R2ðρÞ−15RðρÞþ10Þ; if ρb >ρ≥ρa;

0; otherwise;

ðD17Þ

where RðρÞ ¼ ðρb − ρÞ=ðρb − ρaÞ and ρa, ρb are the values
between which the transition takes place, set to ρa ¼ 0.5,
ρb ¼ 0.9 in our simulations. Thus, our choice of ḡttjt¼0 is

ḡttjt¼0 ¼ fðḡxxjt¼0 þ ḡyyjt¼0 þ ḡzzjt¼0Þ: ðD18Þ

To conclude, the remaining initial variables can be
chosen in a completely arbitrary way so we make the
simplest choice everywhere on the grid:

∂tḡtμjt¼0 ¼ 0: ðD19Þ

APPENDIX E: COMPLETE GAUGE CHOICE

In Sec. III B we discussed the gauge choice of source
functions that we impose near the boundary in order to
obtain stable evolutions. Furthermore, the gauge at t ¼ 0,
H̄μjt¼0 is determined from the initial data, detailed in
Appendix D, through the definition of source functions
(2.13) at t ¼ 0. All that remains is to make a gauge choice
of H̄μ in the bulk and smoothly join this with the target
boundary values (3.27) on each spatial slice and with the
initial values H̄μjt¼0 during evolution. In this section we
describe how all this is implemented in our numerical
scheme.
We start by choosing a zero value for H̄μ in the bulk, as

this is the simplest choice. Therefore, the values of the
source functions on each spatial slice, after the time
transition from t ¼ 0, are given by
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Ft ≡ 3f1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ðxḡtx þ yḡty þ zḡtzÞ;

Fx ≡ 3f1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ðxḡxx þ yḡxy þ zḡxzÞ;

Fy ≡ 3f1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ðxḡxy þ yḡyy þ zḡyzÞ;

Fz ≡ 3f1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ðxḡxz þ yḡyz þ zḡzzÞ; ðE1Þ

where the spatial transition function f1ðρÞ is defined as in
(D17) with the transition occurring between ρ1a ¼ 0.05
and ρ1b ¼ 0.95.
Then, we define the time-transition function

gðt; ρÞ ¼
�

t
ξ2f0ðρÞ þ ξ1ð1 − f0ðρÞÞ

�
4

; ðE2Þ

where f0ðρÞ is defined as in (D17) with a transition
interval between ρ0a ¼ 0.0 and ρ0b ¼ 0.95. Notice that
gð0; ρÞ ¼ 0, gðt; ρÞ ≫ 1 for t ≫ ξ1; ξ2, and, in particular,
gðt; ρÞ takes large values with characteristic time ξ1 in the
interior region ρ ≤ ρ0a (i.e., where f0 ¼ 0) and character-
istic time ξ2 in the near-boundary region ρ ≥ ρ0b (i.e.,
where f0 ¼ 1).
With these ingredients, we can finally write the complete

gauge choice made in our simulations

H̄μ ¼ H̄μjt¼0 expð−gÞ þ Fμ½1 − expð−gÞ�: ðE3Þ

From the properties of gðt; ρÞ, we see that H̄μ ¼ H̄μjt¼0

at t ¼ 0 and H̄μ ¼ Fμ for t ≫ ξ1 in the interior and t ≫ ξ2
near the boundary. Since the target gauge is crucial for
stability and needs to be reached quickly, ξ2 is typically set
to a small value. On the other hand, it is not necessary, and
perhaps even troublesome, to deal with a fast transition in
the bulk; therefore ξ1 takes a larger value. In our simu-
lations, we set ξ1 ¼ 0.1, ξ2 ¼ 0.0025.

APPENDIX F: BOUNDARY EXTRAPOLATION

As explained in Sec. IV, since the AdS boundary
generally does not lie on points of the Cartesian grid,
we can only obtain the approximated value of any boundary
quantity f through extrapolation from the numerical values
of f on grid points near the boundary. In this section we
describe how extrapolation is implemented in our scheme
with the help of Fig. 7.
For simplicity, we consider first order extrapolation, i.e.,

extrapolation from two grid points. The following can be
generalized to higher extrapolation orders in a straightfor-
ward way. In particular, third order extrapolation is used for

the plots in Sec. VI B, since this improves the accuracy
of the extrapolated numerical values.24

Given a Cartesian grid with spacing Δ, let fΔ denote
the values of f at bulk grid points and fbdyΔ denote the
extrapolated values of f at boundary points. We extrapolate
the values fbdyΔ through the following procedure:

1. Restrict to the points with Cartesian coordinates
ðx; y; zÞ satisfying ρðx; y; zÞ < 1–9Δ=2 (inside the
orange dashed line of Fig. 7) and maxðx; y; zÞ >
1 − 17

2
ð3
2
ÞnΔΔ (outside the continuous orange line of

Fig. 7), where nΔ denotes the degree of the three
resolutions used for convergence, n9h=4 ¼ 0,
n3h=2 ¼ 1, nh ¼ 2 [notice that ð3

2
ÞnΔΔ is a constant

for all three resolutions]. We have empirically found
that considering points outside of this region in the
next steps leads to unphysical or nonconverging
values.

2. For any point in the range defined at step 1, identify
the coordinate with the largest absolute value, e.g., x,
and its sign, say x > 0. If two coordinates have the
same absolute value, then we pick x over y and z,
and y over z. Each direction identified in this way is
represented by a light blue arrow. Among all the
points along the identified direction (x in our
example) and within the range of step 1, pick the
closest point to the boundary. We denote this point
by p1 and its coordinates by ðx1; y1; z1Þ. For each
direction identified as above, the corresponding p1

point is represented as a green dot in Fig. 7.
3. Consider the nearest point to p1 along the identified

axis in the direction of the bulk (decreasing x in the
example). We denote this point by p2 and its
coordinates by ðx2; y2; z2Þ. For each p1 point, the

FIG. 7. Visual description of first order extrapolation technique
in the first quadrant of a z ¼ const surface for a grid with spatial
refinement Δ.

24This fact was tested by comparing values obtained with
increasing extrapolation order and analytic values, in cases where
the latter are known, e.g., boundary scalar field values at t ¼ 0.
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corresponding p2 is represented as a purple dot in
Fig. 7. In our example x2¼ x1−Δ, y2 ¼ y1, z2 ¼ z1.

4. Use first order extrapolation on fΔðp1Þ, fΔðp2Þ to
determine the value of fbdyΔ ðpbdyÞ where pbdy is the
boundary point along the identified axis in the
direction of the boundary. For each pair p1, p2,
the corresponding pbdy is represented by a red dot in
Fig. 7 and the AdS boundary is represented by a red
line. In our example, pbdy is the point with coor-

dinates ðxbdy;ybdy;zbdyÞ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−y21− z21

p
;y1;z1Þ and

fbdyΔ ðpbdyÞ ¼
xbdy − x2
x1 − x2

fΔðp1Þ þ
xbdy − x1
x2 − x1

fΔðp2Þ:

ðF1Þ

5. In order to avoid issues arising from singularities in
the definition of spherical coordinates in terms of
Cartesian coordinates, we do not extrapolate boun-
dary points with zbdy ¼ 0. Instead, we fill each of
these points by copying the mean value of the closest
boundary extrapolated points. This ensures continu-
ity at the semicircle zbdy ¼ 0; ybdy ≥ 0, i.e., points
with ϕ ¼ 0 ∼ 2π.

Figure 7 shows that the extrapolated values are not
uniformly distributed on the boundary. We aim to improve
this in the future by extrapolating the values at points on a
uniform ðθ;ϕÞ grid with given resolution on the S2 at the
boundary. For now, we fill the empty regions by linearly
interpolating boundary values. The data obtained in this
way display high-frequency noise that does not allow for a
clear visualization of physical features. Therefore, we apply
a low-pass filter to quantities to be shown on the boundary
S2. More precisely, we apply the filter on three copies of the
boundary sphere joined along the semicircle zbdy ¼ 0,
ybdy ≥ 0, and then we plot the smooth data of the central
copy. After reenforcing continuity at the semicircle as
explained in step 5 above, this strategy provides regular
smooth data at the semicircle if the original raw data are
approximately periodic in ϕ with period 2π, which is
expected for data on a sphere.
Notice that, as (F1) shows, second order convergence of

boundary values fbdyΔ is a direct consequence of second
order bulk convergence of fΔ, which is confirmed by Fig. 8
in our simulations. Despite this fact, some modifications
must be made to our extrapolation scheme if we wish to
perform explicit convergence tests on our boundary data.
We now explain the reason for this and the necessary
modifications. We assume the validity of the Richardson
expansion [53] for fΔ at any grid point p,

fΔðpÞ ¼ fðpÞ þ eðpÞΔ2 þOðΔ3Þ; ðF2Þ

where fðpÞ is the true value of f at p and the rest of the
right-hand side is the solution error of fΔðpÞ. The validity

of this expansion is confirmed by bulk convergence of fΔ
to f. Then, from (F1), we obtain the Richardson expansion
for fbdyΔ at any extrapolated boundary point pbdy,

fbdyΔ ðpbdyÞ ¼ fðpbdyÞ þ eextrðpbdy; p1; p2Þ
þ eΔðp1; p2ÞΔ2 þOðΔ3Þ; ðF3Þ

where the fðpbdyÞ is the true value of f at pbdy,
eextrðpbdy; p1; p2Þ is the error due to the extrapolation
approximation. The remaining error terms come from
the solution error in fΔ. The typical convergence test
involves the computation of the convergence factor

QðpbdyÞ ¼
1

lnð3=2Þ ln
�
f9h=4ðpbdyÞ − f3h=2ðpbdyÞ
f3h=2ðpbdyÞ − fhðpbdyÞ

�
ðF4Þ

at each boundary point pbdy. We clearly see that QðpbdyÞ
can be expected to asymptote to 2 as Δ → 0, thus
confirming second order convergence in the continuum
limit, only if the points p1, p2 are the same for all three
resolutions involved. Therefore, our extrapolation scheme
must be modified to select a pair of bulk points, p1 and p2,
for extrapolation that are present in all three grids involved
in the convergence test. In practice, we saw that the
boundary convergence follows the trend of bulk conver-
gence only if, in addition to this modification, we restrict to
p1 points in the range mentioned in step 1 above. The
reason for this should be investigated further.
Finally, Eq. (F3) shows that this type of test does not

prove convergence to the true value fðpbdyÞ, but rather to its
approximation fðpbdyÞ þ eextrðpbdy; p1; p2Þ. For this rea-
son, the convergence test (G1) cannot be performed at the
boundary for functions with vanishing true value (such as
htrTiCFT), because their extrapolated value is not just the
term linear in Δ2 but it also includes the extrapolation error
cextr. A more detailed analysis must be made to examine the

FIG. 8. Time evolution for the L2-norm of the convergence
factor for independent residual of Einstein equations at different
resolutions on the z ¼ 0 slice.
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explicit form eextrðpbdy; p1; p2Þ and be able to find the rate
of convergence to fðpbdyÞ. In our study, we simply make
the natural assumption that eextrðpbdy; p1; p2Þ decreases as
we increase resolution, so fbdyΔ ðpbdyÞ is a sufficiently
accurate approximation of fðpbdyÞ for sufficiently high
resolution (i.e., sufficiently small Δ).

APPENDIX G: CONVERGENCE OF THE
INDEPENDENT RESIDUAL

To show that the solution is converging to a solution of
the Einstein equations, we compute the independent
residual that is obtained by taking the numerical solution,
substituting it back into a discretized version of the Einstein
equations. At each grid point, we then take the maximum

value over all components of the Einstein equations, which
we denote by ΦΔ. The independent residual should be a
purely numerical truncation error, so we can compute a
convergence factor for it by using only two resolutions:

QEFEðt; x; y; zÞ ¼
1

lnð3=2Þ ln
�
Φ3h=2ðt; x; y; zÞ
Φhðt; x; y; zÞ

�
: ðG1Þ

Again, with second-order accurate finite difference stencils
and with a factor of 3=2 between successive resolutions, we
expect Q to approach Q ¼ 2 as Δ → 0. Figure 8 displays
the L2-norm of the convergence factor (G1) for two pairs of
resolutions on the z ¼ 0 slice. It clearly shows second order
convergence to a solution of the Einstein equations, after an
initial transition phase.
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