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In this paper, we derive the universal (cutoff-independent) part of the holographic entanglement entropy
in the noncommutative Yang-Mills theory and examine its properties in detail. The behavior of the
holographic entanglement entropy as a function of a scale of the system changes drastically between large
noncommutativity and small noncommutativity. The strong subadditivity inequality for the entanglement
entropies in the noncommutative Yang-Mills theory is modified in large noncommutativity. The behavior
of the entropic c-function defined by means of the entanglement entropy also changes drastically between
large noncommutativity and small noncommutativity. In addition, there is a transition for the entanglement
entropy in the noncommutative Yang-Mills theory at finite temperature.
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I. INTRODUCTION

The noncommutative gauge theories discussed in this
paper are gauge theories in which the product of any two
fields is given by the Moyal-Weyl product [1,2]

f⋆gðxÞ≡ fðxÞ exp
�
i
2
θμν∂⃖μ ∂⃗ν

�
gðxÞ; ð1:1Þ

where θμν is the deformation parameter. It is well known
that these gauge theories naturally arise as low-energy
theories of D-branes in a Neveu-Schwarz–Neveu-Schwarz
B-field background [3–6]. A remarkable phenomenon in
these gauge theories is UV/IR mixing [1,2], where the UV
and IR degrees of freedom of the theory are mixed in a
complicated way. It is very important to deepen the
understanding of such quantum effects in both perturbative
and nonperturbative approaches.
There exists a holographic description for the strongly

coupled noncommutative gauge theories in the large-N
limit [7–10]. The holographic description of the non-
commutative gauge theories is often useful to investigate
how the noncommutativity (the deformation parameter)
affects the quantum properties of the gauge theories. For
instance, the noncommutativity modifies the Wilson loop
behavior [11–13] and glueball mass spectra [14]. The
holographic duals of noncommutative gauge theories with
flavor degrees of freedom have also been constructed by

using probe techniques [15]. Employing the holographic
description, we have been able to find that the noncom-
mutativity is also reflected in the flavor dynamics [16].
It should be emphasized that the noncommutativity can also
modify phase diagrams such as, for instance, chiral sym-
metry breaking in the noncommutative gauge theory [17,18].
In this paper, we focus on quantum entanglement in

noncommutative gauge theory. Entanglement entropy is
known as a measure of entanglement in quantum systems
(see, e.g., Ref. [19]). The entanglement entropy of a
subsystem A is defined by the von Neumann entropy of
the reduced density matrix ρA of the system A,

SA ¼ −trAðρA ln ρAÞ: ð1:2Þ

It is possible to compute the entanglement entropy by
employing the holographic approach. Ryu and Takayanagi
conjectured that the holographic formula of entanglement
entropy should be

SA ¼ A
4G

; ð1:3Þ

where A is the area of a minimal surface with a given
boundary [20,21]. The proof of this formula was given
in Ref. [22].
Quantum physics allows for a superposition of states,

causing a nonlocal correlation between subsystems far
apart from each other. Entanglement is the distinguishing
feature of the quantum physics, including quantum field
theories, and that is one of the important concepts to
understand quantum aspects of the quantum physics.
It is known that entanglement entropy for nonlocal field

theories whose action contains infinite derivatives follows a
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volume law, in general [23–25]. The noncommutative
gauge theory is a kind of nonlocal field theory. It would
be worth investigating how the nonlocality of the non-
commutative gauge theory affects the properties of the
entanglement entropy. The entanglement entropies in the
noncommutative gauge theories have been studied based on
the holographic approaches [26–29]. It has been pointed
out that the divergence (cutoff dependence) part of the
entanglement entropy in the large noncommutativity limit
follows a volume law [26].
The holographic entanglement entropies for quantum field

theories are often regularized by introducing an ultraviolet
cutoff parameter. Little attention, however, has been given to
the cutoff-independent part of the holographic entanglement
entropies in the noncommutative gauge theories. In this
paper,we try to derive the universal (cutoff-independent) part
of the holographic entanglement entropy in the noncommu-
tative Yang-Mills theory and discuss its properties. The
properties of the holographic entanglement entropy in the
noncommutative Yang-Mills theory should be discussed on
the basis of universal (cutoff-independent) quantities.
The paper is organized as follows. In Sec. II, we intro-

duce the holographic entanglement entropy conjectured
by Ryu and Takayanagi and derive the universal (cutoff-
independent) part of the holographic entanglement entropy
in the noncommutative Yang-Mills theory. In Sec. III, we
investigate the strong subadditivity for the holographic
entanglement entropy in the noncommutative Yang-Mills
theory. The properties of the mutual information that can be
derived from the entanglement entropies is also discussed.
In Sec. IV, we investigate the properties of the entropic
c-function in the noncommutative Yang-Mills theory. In
Sec. V, we derive the universal part of the holographic
entanglement entropy in the noncommutative Yang-Mills
theory at finite temperature and discuss a kind of transition
based on the holographic entanglement entropy. SectionVI is
devoted to conclusions and discussions.

II. HOLOGRAPHIC ENTANGLEMENT ENTROPY
IN NONCOMMUTATIVE YANG-MILLS THEORY

We consider the dual description of the noncommutative
Yang-Mills theory on a spacetime R1þ1 × R2

θ, where R
2
θ is

the noncommutative (Moyal) plane defined by a Moyal
algebra ½x2; x3� ¼ iθ. At large N and strong ’t Hooft
coupling, a holographic description of the noncommutative
Yang-Mills theory is given by

ds2 ¼ R2

�
u2fdx02 þ dx12 þ hðuÞðdx22 þ dx32Þg

þ
�
du2

u2
þ dΩ5

2

��
;

h ¼ 1

1þ a4u4
; ð2:1Þ

where R4 ¼ 4πgsNl4s and a denotes the noncommutativity
parameter with dimension of length.
We will use the generalized Ryu-Takayanagi formula

for the ten-dimensional geometry with a varying dilaton.
The holographic definition of the entanglement entropy is
given by

SA ¼ A

4Gð10Þ
N

¼ 1

4Gð10Þ
N

Z
d8σe−2Φ

ffiffiffiffiffiffiffiffiffi
Gð8Þ

ind

q
; ð2:2Þ

where Gð10Þ
N ¼ 8π6α04 is the ten-dimensional Newton’s

constant. The five-dimensional Newton’s constant Gð5Þ
N

is proportional to Gð10Þ
N up to a volume factor Gð5Þ

N ¼
Gð10Þ

N =π3R5.
Let us compute the entanglement entropy for an infinite

strip specified by

y≡ x2 ∈
�
−
l
2
;
l
2

�
; x1; x3 ∈ ð−L;LÞ; ð2:3Þ

with L → ∞. It is worth pointing out that when we
exchange x2 for x3, the noncommutative deformation has
no effect on the entanglement entropy. Under this con-
figuration, the entanglement entropy defined by Eq. (2.2)
takes the form

SA ¼ N2L2

π

Z
duu3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0ðuÞ2 þ 1

u4hðuÞ

s
; ð2:4Þ

where y0ðuÞ is the derivative of y with respect to u. We find

that the quantity u3y0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02ðuÞþ1=u4hðuÞ

p is a constant which does

not depend on u. This quantity leads to

y0ðuÞ ¼ 1

u2
ffiffiffiffiffiffiffiffiffi
hðuÞp 1ffiffiffiffiffiffiffiffiffiffiffiffi

u6

u6�
− 1

q ; ð2:5Þ

whereu� denotes an integral ofmotion andu ¼ u� represents
the point of closest approach of the extremal surface. Such
surfaces have two branches, joined smoothly at u ¼ u� and
u� can be determined using the boundary conditions

yðu�Þ ¼ � l
2
: ð2:6Þ

The entanglement entropy given by Eq. (2.4) at the stable
solution is given by

SA ¼ N2L2

π

Z
uΛ

u�
duu4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðauÞ4
u6 − u6�

s
; ð2:7Þ

where uΛ is a cutoff parameter. The (dimensionless) entan-
glement entropy functional defined bySA ≡ ðπa2=N2L2ÞSA
can be rewritten as
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SA ¼ ðau�Þ2
Z

1

u�=uΛ

dt
t5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

1 − t6

s
; ð2:8Þ

where t≡ u�=u is a dimensionless variable. The ratio of the
length l to the noncommutativity parameter a is also a
function of the product of the noncommutativity parameter a
and the integral of motion u�:

l
a
¼ 2

a

Z
∞

u�
duy0ðuÞ ¼ 2

au�

Z
1

0

dtt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

1 − t6

s
: ð2:9Þ

In the deep infrared bound au� ≅ 0, we can approximate

the right-hand side of Eq. (2.9) by 2
au�

R
1
0 dtt

ffiffiffiffiffiffiffi
t4

1−t6

q
, and

we have

l
a
≅ 2

ffiffiffi
π

p Γð2
3
Þ

Γð1
6
Þ ·

1

au�
; ð2:10Þ

where Γ denotes the gamma function. The length l given by
Eq. (2.10) is the same as that in the commutative (a ¼ 0)
version. Hereafter, we refer to the approximation in
the deep infrared bound as the commutative regime. The
commutative theory (a ¼ 0) and the noncommutative
(a ≠ 0) theory can be compared through the approximation
in the deep infrared bound.
The entanglement entropy functional (2.8) in the com-

mutative regime can be divided into a universal (finite)
part SU that is independent of the cutoff parameter uΛ
and the divergence part SD that depends on the cutoff
parameter uΛ:

SU

�
¼ πa2

N2L2
SU

�
≅ −

ffiffiffi
π

p
2

Γð2
3
Þ

Γð1
6
Þ · ðau�Þ

2;

SD

�
¼ πa2

N2L2
SD

�
≅
1

2
· ðauΛÞ2: ð2:11Þ

In deriving this expression, we have utilized the formula

Z
1

0

dt
tλ

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − tκ

p − 1

�
−

1

λ − 1
¼

ffiffiffi
π

p
κ

Γð1−λκ Þ
Γðκ−2λþ2

2κ Þ ; ð2:12Þ

with λ> 1. Notice that the finite part SU is independent of
the cutoff parameter uΛ and thus is universal quantity.
Eliminating the parameter u� from Eqs. (2.10) and (2.11),
we find the relation between the universal part SU and the
ratio l=a in the commutative regime:1

SU ¼ −2
� ffiffiffi

π
p Γð2

3
Þ

Γð1
6
Þ
�

3
�
l
a

�
−2
: ð2:13Þ

Meanwhile, we find that the divergence part of the
entanglement entropy SD in the commutative regime is
proportional to the area L2:

2π

N2
SD ¼ L2 · u2Λ: ð2:14Þ

In the deep ultraviolet bound 1=au� ≅ 0, the ratio of the
length l to the noncommutativity parameter a can be
approximated as

l
a
≅

ffiffiffi
π

p
3

Γð1
3
Þ

Γð5
6
Þ · au�: ð2:15Þ

Hereafter, we refer to the approximation in the deep
ultraviolet bound as the deep noncommutative regime
[26]. The entanglement entropy functional (2.8) in the
deep noncommutative regime can be divided into the
universal part SU and divergence part SD:

SU ¼
ffiffiffi
π

p
24

Γð1
3
Þ

Γð5
6
Þ · ðau�Þ

4; SD ¼ 1

4
· ðauΛÞ4; ð2:16Þ

respectively. The relation between the finite part SU and the
ratio l=a in the deep noncommutative regime is given by

SU ¼ 1

8

�
3ffiffiffi
π

p Γð5
6
Þ

Γð1
3
Þ
�3� l

a

�
4

: ð2:17Þ

We notice that the dependence of the finite part SU on the
ratio l=a is quite different between the commutative regime
and the deep noncommutative regime. Eliminating the
noncommutativity parameter a from Eqs. (2.15) and
(2.16), we find the relation between the divergence part
SD and the length l in the deep noncommutative regime:

4π3=2

3N2

Γð1
3
Þ

Γð5
6
Þ SD ¼ L2l ·

u4Λ
u�

: ð2:18Þ

For u� ∼ uΛ, this expression shows that the divergence
part of the entanglement entropy SD in the deep non-
commutative regime is proportional to the volume L2l.
The difference in the l dependence between Eqs. (2.14)
and (2.18) can be understood as the area/ volume law
transition [26].
The variation with au� of l=a is shown in Fig. 1(a). The

behavior of l=a is quite different between the commutative
regime and the deep noncommutative regime. The length l
has a minimum value lmin ∼ 1.614a at u� ∼ 0.7946=a in the
noncommutative theory. The ratio l=a is proportional to the
inverse of au� for u� ≪ 0.7946=a and is proportional to
au� for u� ≫ 0.7946=a. The ratio l=a increases in the case
of au� → ∞ as well as in the case of au� → 0. This
behavior is reminiscent of the UV/IR relation [1].

1The dependence of Eq. (2.13) on the noncommutativity
parameter a arises from the definition of the (dimensionless)
entanglement entropy functional SU ≡ ðπa2=N2L2ÞSU.
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The dimensionless quantity (2.8) can also be divided into the finite part SU and divergence part SD:

SU

�
¼ πa2

N2L2
SU

�
¼ ðau�Þ2

Z
1

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

p
t5

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − t6
p − 1

�

−
ðau�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðau�Þ4

p
4

−
1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

						; ð2:19aÞ

SD

�
¼ πa2

N2L2
SD

�
¼ a2u4Λ

4u2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u�
uΛ

�
4

þ ðau�Þ4
s

þ 1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

						: ð2:19bÞ

In deriving the expressions above, we have utilized the
formula

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ k

p

x5
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ k

p

4x4
−

1

8
ffiffiffi
k

p ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

k

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

k

q
						;
ð2:20Þ

with a constant k. The divergence part SD becomes 0 when
the parameter uΛ is taken to be 0. The universal part SU
given by Eq. (2.19a) is also a function of the dimensionless
quantity au�. The variation with au� of SU is shown in
Fig. 1(b). The behavior of SU is also different between
the commutative regime and the deep noncommutative
regime. The universal part SU given by Eq. (2.19a) takes a
minimum value at u� ∼ 0.7946=a. This is the same value at
which the length l takes the minimum value lmin in the
noncommutative theory.
We can evaluate the dependence of the universal part SU

on the ratio l=a numerically. The variation with l=a of the
universal part SU is shown in Fig. 2.
Although the sign of the universal term SU can be

negative, the sign of the entanglement entropy is positive.

As we will see later, the sign of the derivative of the
universal term SU is more important.
There is a major difference in the dependence of the

universal part SU on the ratio l=a between in the commu-
tative regime and in the deep noncommutative regime.
The curve of SU is concave downward in the commutative
regime (shown as the red curve in Fig. 2), while it is
concave upward in the deep noncommutative regime
(shown as the purple curve in Fig. 2). This concave upward

0.5 1.0 1.5 2.0

1

2

3

4

5

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

1.5

2.0

(b)(a)

FIG. 1. (a) Variation with au� of the ratio l=a. (b) Variation with au� of the universal part SUð¼ πa2

N2L2 SUÞ. The blue curve denotes the
variation in the noncommutative theory. The red and purple curves denote the variation in the commutative regime and in the deep
noncommutative regime, respectively.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.1

0.1

0.2

0.3

FIG. 2. The variation with l=a of SU. The blue curve denotes
the variation in the noncommutative theory. The red and purple
curves denote the variation in the commutative regime and in the
deep noncommutative regime, respectively.
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curve suggests that the behavior of SU in the deep non-
commutative regime becomes unphysical. In the noncom-
mutative theory, the curve of SU branches into a concave
downward curve and a concave upward curve at l=a ¼
lmin=a (shown as the blue curves in Fig. 2). Figure 2 shows
that the blue concave downward curve (lower branch) and
the blue concave upward curve (upper branch) asymptoti-
cally approach the red concave downward curve and the
purple concave upward curve in the limit l=a → ∞,
respectively.
We see that the universal part SU with the identical ratio

l=að>lmin=aÞ actually has different values in the non-
commutative theory. Therefore, the concave downward
curve becomes presumably dominated for the curve of
SU in the noncommutative theory. When the concave
upward curve of SU is realized in the noncommutative
theory, the derivative of the universal part SU with respect
to the ratio l=a seems to be discontinuous at the point
l=a ¼ lmin=a. This behavior could be interpreted as the
area/ volume law transition [26] from the viewpoint of the
universal part SU.

III. STRONG SUBADDITIVITY
AND MUTUAL INFORMATION

Entanglement entropies are subject to an inequality
known as strong subadditivity [30,31]. This inequality

can be stated as SðAÞ þ SðBÞ ≥ SðA ∪ BÞ þ SðA ∩ BÞ for
any two regions of spaceA andB. Wewould like to examine
if the holographic entanglement entropies in the noncom-
mutative Yang-Mills theory are subject to the strong sub-
additivity. We consider two identical infinite strips with a
width l, arranged to overlap each other by a length x along
the x2 direction. A conceptual figure is given in Fig. 3.
Let us define the following quantity:

DðxÞ ¼ 2SU

�
l
a

�
− SU

�
x
a

�
− SU

�
2l − x
a

�
: ð3:1Þ

The quantityD ¼ πa2

N2L2 D becomes positive when the strong
subadditivity inequality is satisfied. The variation of d with
x=a is shown in Fig. 4.
As we expected, the strong subadditivity inequality for

the entanglement entropies in the commutative regime is
satisfied. On the other hand, the strong subadditivity
inequality for the entanglement entropies in the deep
noncommutative regime is not satisfied. The strong sub-
additivity inequality for the entanglement entropies in the
noncommutative theory is also satisfied under the condition
u� < 0.7946=a. It is interesting to note that the strong
subadditivity inequality for the entanglement entropies in
the noncommutative theory is partially satisfied under the
condition u� > 0.7946=a, in spite of their unphysical
behavior. We find that the inequality in the noncommuta-
tive theory is completely satisfied when the two subsystems
almost overlap.
The mutual information IðA; BÞ of any two regions of

space A and B can be written in terms of the entanglement
entropies as IðA;BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ. It mea-
sures how much we learn about one region of space A by
observing the other region of space B. This interpretation
convinces us that the mutual information IðA;BÞ has to be
non-negative. The non-negativity property of the mutual
information is guaranteed by the subadditivity of the
entanglement entropy. We would like to examine if the
mutual information in the noncommutative Yang-Mills
theory is subject to the non-negativity property. We con-
sider two infinite strips, each of length l, separated by a

FIG. 3. Left: two overlapping regions A and B of the boundary,
with their respective minimal bulk hypersurfaces AA and AB.
Right: two regions A ∪ B and A ∩ B of the boundary, with their
respective minimal hypersurfaces AA∪B and AA∩B.

2. 2.5 3.
0

0.02

0.04

0.06

2. 2.5 3.
0

1

2

(b)(a)

FIG. 4. (a) Variation with x=a of the quantity D for l=a ¼ 3 and u� < 0.7946=a. (b) Variation of the quantity D with x=a for l=a ¼ 3
and u� > 0.7946=a. The blue curve denotes the variation in the noncommutative theory. The red and purple curves denote the variation
in the commutative regime and in the deep noncommutative regime, respectively.
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distance x along the x2 direction. A conceptual figure is
given in Fig. 5.
Let us define the following quantity:

IðxÞ ¼ 2SU

�
l
a

�
− SU

�
x
a

�
− SU

�
2lþ x
a

�
: ð3:2Þ

The variation of the quantity I ¼ πa2

N2L2 I with x=a is shown
in Fig. 6.
We find that the value of the mutual information in the

noncommutative theory under the condition u� < 0.7946=a
is slightly larger than that in the commutative regime. The
mutual information in the noncommutative theory under
the condition u� > 0.7946=a (and also in the deep non-
commutative regime) takes a negative value for all values of
the distance x.

IV. ENTROPIC c-FUNCTION

It is well known that there exists a so-called c-function
that is a positive real function and is monotonically
decreasing under the renormalization group flow. The
c-function can be defined by means of the entanglement

entropy, and this quantity is called entropic c-function
[32–34]. For an infinite strip subsystem with length l, the
entropic c-function denoted by C can be rewritten as
[26,35,36]

CðlÞ ¼ dSA
d ln l

¼ l
dSA
dl

: ð4:1Þ

Note that this quantity does not depend on the cutoff
parameter uΛ. The variation of CðlÞ ¼ πa2

N2L2 CðlÞ with l=a is
shown in Fig. 7.
Since the c-function denoted by CðlÞ measures the

number of degrees of freedom, it is expected to satisfy
the inequality CðlUVÞ ≥ CðlIRÞð for lUV ≤ lIRÞ and the
derivative of C with respect to l is expected to be negative.
As we expected, the entropic c-function in the commutative
regime (shown as the red curve in Fig. 7) satisfies such
properties. The entropic c-function in the deep noncom-
mutative regime (shown as the purple curve in Fig. 7),
however, does not follow the expected behavior. It diverges
as l approaches ∞. The entropic c-function in the non-
commutative theory (shown as the blue curve in Fig. 7)
under the condition u� < 0.7946=a also satisfies the
inequality CðlUVÞ ≥ CðlIRÞð for lUV ≤ lIRÞ and the deriva-
tive of C with respect to l is negative. The turning point on
the blue curves in Figs. 2 and 7 can be observed at the same
value for l=að¼ lmin=aÞ.
The behavior of the entropic c-function in the commu-

tative regime under the condition l → 0 is similar to that in
the deep noncommutative regime under the condition
l → ∞. This phenomenon also seems to be relevant to
the UV/IR mixing phenomenon [1], in the sense that the
UV divergence of the commutative regime appears to be
replaced by the IR singularity of the deep noncommutative
regime.

V. FINITE TEMPERATURE

In this section, we consider the holographic entangle-
ment entropy in the noncommutative Yang-Mills theory at

FIG. 5. Left: two separated regions A and B of the boundary,
with their respective minimal bulk hypersurfaces AA and AB.
Right: the region A ∪ B of the boundary, with their respective
minimal hypersurface AA∪B.

1.8 2. 2.2
0

0.02

0.04

0.06

FIG. 6. Variation with x=a of the quantity I for l=a ¼ 3 and
u� < 0.7946=a. The blue curve denotes the variation in the
noncommutative theory. The red curve denotes the variation in
the commutative regime.

0 1 2
0

2

4

FIG. 7. Variation with l=a of C. The blue curve denotes the
variation in the noncommutative theory. The red and purple
curves denote the variation in the commutative regime and in the
deep noncommutative regime, respectively.
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finite temperature. A holographic description of the non-
commutative Yang-Mills theory at finite temperature is
given by

ds2 ¼ R2

�
u2ffðuÞdx02 þ dx12 þ hðuÞðdx22 þ dx32Þg

þ
�

du2

u2fðuÞ þ dΩ5
2

��
;

f ¼ 1 −
�
uT
u

�
4

; ð5:1Þ

where uT is a parameter with dimension of mass and is the
lower bound of u. The corresponding temperature T of the
background can be obtained to be T ¼ uT=π.
We compute the entanglement entropy for an infinite

strip specified by Eq. (2.3) with L → ∞. Under this con-
figuration, the entanglement entropy denoted by SAT at the
stable solution is modified to include the parameter uT :

SAT ¼ A

4Gð10Þ
N

¼ N2L2

π

Z
uΛ

u�
duu6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðauÞ4

ðu6 − u6�Þðu4 − u4TÞ

s
:

ð5:2Þ
The length l is also modified to include the parameter uT :

l
2
¼ u2�

Z
∞

u�
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðauÞ4

ðu6 − u6�Þðu4 − u4TÞ

s
: ð5:3Þ

We can find that in the large-l limit, the main contribution
of (the finite part of) the integrals (5.2) and (5.3) coming
from the region near u ∼ u� ∼ uT leads to the relation

SfiniteAT ¼ π2

2
N2T3 · L2l: ð5:4Þ

The entanglement entropy given by Eq. (5.4) is propor-
tional to the volume L2l. Thus, it is extensive as in the
thermal entropy. The l dependence of the entanglement
entropy shown by Eq. (5.4) is at first glance similar to that
shown by Eq. (2.18). It should be noted, however, that
Eq. (2.18) represents the dependence of the divergent part
of the entanglement entropy, while Eq. (5.4) represents the
dependence of the finite part of the entanglement entropy.
The (dimensionless) entanglement entropy functional

SAT ¼ ðπa2=N2L2ÞSAT can be rewritten as

SAT ¼ ðau�Þ2
Z

1

u�=uΛ

dt
t5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

ð1 − t6Þð1 − ð τt
au�

Þ4Þ

s
; ð5:5Þ

where t≡ u�=u and τ is a dimensionless parameter defined
by τ≡ auT. The ratio of the length l to the noncommu-
tativity parameter a is also modified to include the
parameter τ:

l
a
¼ 2

au�

Z
1

0

dtt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

ð1 − t6Þð1 − ð τt
au�

Þ4Þ

s
: ð5:6Þ

Equation (5.4) can also be rewritten in terms of
Sfinite
AT ¼ ðπa2=N2L2ÞSfiniteAT ; l=a, and τ:

Sfinite
AT ¼ τ3 ·

l
a
: ð5:7Þ

The entanglement entropy functional given by Eq. (5.5)
can be divided into the universal part SUT and divergence
part SDT :

SUT ¼ ðau�Þ2
Z

1

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

p
t5

×

8<
: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − t6Þð1 − ð τt
au�

Þ4Þ
q − 1

9=
;

−
ðau�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðau�Þ4

p
4

−
1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

						;
ð5:8aÞ

SDT ¼ a2u4Λ
4u2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u�
uΛ

�
4

þ ðau�Þ4
s

þ 1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

						:
ð5:8bÞ

Although the universal part SUT depends on the param-
eter τ, related to the temperature T, the divergence part SDT
does not depend on the parameter τ. This fact indicates that
the behavior of the universal part of the entanglement
entropy is modified at finite temperature, while the behav-
ior of the divergent part of the entanglement entropy is not
modified at all.
We can also evaluate the dependence of the universal part

of the entanglement entropy functional SUT given by
Eq. (5.8a) on the length l given by Eq. (5.6) numerically.
The variation with l=a of the universal part SUT is shown
in Fig. 8.
Here, τ ¼ 0 corresponds to the zero-temperature case

discussed in the previous sections. (It should be noted that
the domain and range of the graph in Fig. 8 are different
from that in Fig. 2.)
Notice that the minimum length lmin exists even at finite

temperature. It can be found that the value of lmin increases
with increasing temperature τ. The change in the minimum
length lmin with temperature τ is however slight. There
are no significant changes in the l dependence of the
entanglement entropy in the region au� > τ (u� > uT). In
contrast, Fig. 8(b) shows that the relationship expressed in
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Eq. (5.7) is approximately satisfied between SUT and l=a in
the large-l limit (in the region au� ∼ τ or u� ∼ uT).
Generally, there is another surface that satisfies the

boundary condition (2.6) because the holographic dual
of the field theory at finite temperature involves black hole
horizons [36]. The surface is parametrized as

y ¼ x2 ¼ � l
2
; u ¼ uT: ð5:9Þ

We call this a piecewise smooth surface, to distinguish it
from the smooth minimal surface. Therefore, there are two
candidates for the surfaces to which Ryu-Takayanagi
prescription can be applied, the smooth minimal surface
and the piecewise smooth surface. Let us compute the area
of the piecewise smooth surface denoted by A0 and
examine the behavior of two areas A and A0 as a function
of the ratio l=a. The induced line elements for different
segments are

ds2

R2
¼ u2ffðuÞdx02 þ dx12 þ hðuÞdx32g

þ du2

u2fðuÞ þ dΩ5
2 for y ¼ � l

2
; ð5:10aÞ

ds2

R2
¼ u2ffðuÞdx02 þ dx12 þ hðuTÞðdx22 þ dx32g
þ dΩ5

2 for for u ¼ uT: ð5:10bÞ

The entanglement entropy denoted by S0AT is then
given by

S0AT ¼ A0

4Gð10Þ
N

¼ N2L2

π

(Z
uΛ

u�
duu3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðauÞ4
u4 − u4T

s
þ l
2
u3T

)
:

ð5:11Þ

The (dimensionless) entanglement entropy functional
S0
AT ¼ ðπa2=N2L2ÞS0AT can also be divided into the uni-

versal part S0
UT and divergence part S0

DT :

S0
UT ¼ ðau�Þ2

Z
1

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

p
t5

8<
: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð τt
au�

Þ4
q − 1

9=
;

þ τ3

au�

Z
1

0

dtt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ ðau�Þ4

ð1 − t6Þð1 − ð τt
au�

Þ4Þ

s

−
ðau�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðau�Þ4

p
4

−
1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðau�Þ4
q

						;
ð5:12aÞ

S0
DT ¼ a2u4Λ

4u2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u�
uΛ

�
4

þ ðau�Þ4
s

þ 1

8
ln

						
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ðauΛÞ4
q

						:
ð5:12bÞ

The divergence part S0
DT is the same as SDT , and thus S0

DT
does not depend on the parameter τ. The variation with l=a
of the universal part SUT and S0

UT is shown in Fig. 9.
We would like to focus on the behavior of the curves of

the entanglement entropy functionals SUT and S0
UT near

au� ∼ τðu� ∼ uTÞ. As shown in Fig. 9, the value of the
entanglement entropy functional S0

UT also increases with

1 2 3 4

0.08

0.04

0.02

10 20 30

5

10

(b)(a)

FIG. 8. Variation with l=a of SUT in the noncommutative theory. (a) The blue, green, and brown curves correspond, respectively, to
τ ¼ 0.00, 0.16, and 0.19. (b) The blue, orange, and magenta curves correspond, respectively, to τ ¼ 0.00, 0.40, and 0.50.

15 30

0.1

0.1

/
|

FIG. 9. Variation with l=a of SUT (blue curve) and SUT
0 (green

curve) in the noncommutative theory. Both the blue and green
curves correspond to τ ¼ 0.15.
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the increase of l=a. As is clear from the fact that the slope of
the curve of S0

UT is almost flat, however, the increase rate of
S0
UT with respect to l=a is smaller than that of SUT .

Therefore, the curves of the entanglement entropies SUT
and S0

UT cross at l ¼ lcrit > lmin. This fact shows that the
entanglement entropy is governed by the configuration of
the piecewise smooth surface for l > lcrit, since the Ryu-
Takayanagi prescription requires the selection of curved
surfaces with a smaller area. In other words, there is a
transition for the entanglement entropy in the noncommu-
tative theory. It has been shown that such transitions do not
occur in the corresponding (four-dimensional) commuta-
tive theory [36].
The variation with l=a of the difference SUT − S0

UT is
shown in Fig. 10.
SUT − S0

UT ¼ 0 corresponds to the intersection of curves
of the entanglement entropies SUT and S0

UT . Figure 10
shows that the transition for the entanglement entropy
occurs at positive τ, whereas the transition for the entan-
glement entropy does not occur at τ ¼ 0. The configuration
of the smooth surface has the lowest entanglement entropy
for small τ and is the dominant contribution. On the other
hand, the configuration of the piecewise smooth surface has
the lowest entanglement entropy for large τ and becomes
the dominant contribution.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have examined the properties of the
holographic entanglement entropy in the holographic dual of
the noncommutative Yang-Mills theory. The finite part of the
holographic entanglement entropy in the noncommutative
Yang-Mills theory can bederivedwithout cutoff dependence,
and thus is universal. Although the divergence part of the
holographic entanglement entropy in the commutative
regime (au� → 0 limit) follows the area law, in the deep
noncommutative regime (au� → ∞ limit) it follows the
volume law. This area/volume law transition [26] could
be understood as a feature of nonlocal field theories.

The universal part of the holographic entanglement
entropy as a function of length l in the noncommutative
theory exhibits a peculiar behavior. There exists a minimum
length lmin in the noncommutative theory, and the curve
of the entanglement entropy branches at points of the
minimum length lmin. This behavior seems to be a remarkable
feature that somehow reflects the area/volume law transition.
The holographic entanglement entropy in the deep

noncommutative regime does not satisfy the strong sub-
additivity inequality. In addition, the value of the mutual
information of any two regions of space in the deep non-
commutative regime takes a negative value for all values of
the distance. These undesired results might be related to the
nonlocal properties of the noncommutative Yang-Mills
theory. These points require further discussion. It should
be emphasized that the noncommutativity of space itself
does not violate the strong subadditivity. The value of the
mutual information in the noncommutative theory under
the condition au� < 0.7946 takes a rather large value
compared to that in the commutative regime.
The entropic c-function in the noncommutative theory

does not satisfy monotonicity with respect to l as the scale
parameter. The monotonicities of the c-functions built from
the entanglement entropy are derived as a result of the
strong subadditivity and Lorentz invariance of the theory.
This behavior of the entropic c-function in the noncom-
mutative theory might be understood from the breaking of
Lorentz symmetry. On the other hand, the behavior of the
entropic c-function in the IR limit of the commutative
regime is similar to that in the UV limit of the deep non-
commutative regime, if we interpret l → ∞ as the infrared
limit and l → 0 as the ultraviolet limit. This phenomenon
seems to be a kind of UV/IR relation. It would be
interesting to discuss such arguments with the entropic
c-theorems in four dimensions (a-theorem) [37,38].
Thereexists aminimumlength lmin that gives abranchpoint

of the curve of the entanglement entropy even in the non-
commutative theory at finite temperature. On the other hand,
the effect of temperature on the behavior of the entanglement
entropy curve becomes remarkable for large l=aðu� ∼ uTÞ.
We also notice that there is a transition from the configuration
of the smooth surface to the piecewise smooth surface for the
entanglement entropy in the noncommutative theory. The
anisotropy of the noncommutativity is considered to be a
major factor in inducing this transition.
The holographic entanglement entropy can act as an

order parameter for the confinement/deconfinement
phase in a confining gauge theory and can be used as a
diagnostic tool to examine the confinement/deconfinement
phase structure2[35,40]. It is interesting to discuss how the
noncommutativity parameter affects the confinement/
deconfinement phase structure. In addition, it has been

5 10 15

0.1

0.05

0.05

FIG. 10. Variation with l=a of the difference SUT − SUT
0. The

blue, brown, and orange curves correspond, respectively, to
τ ¼ 0.00, 0.20, and 0.30.

2It was also pointed out that the entanglement measures may
be unable to discriminate confining theories from nonconfining
ones with a mass gap [39].
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known that the existence of a “stripe phase,” characterized
by the peculiar position dependence of the order parameter
in the noncommutative scalar field theories [41,42]. It seem

that such phases do not yet manifest in the holographic
entanglement entropy of the noncommutative Yang-Mills
theory. We hope to discuss these subjects in the future.
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