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In this paper,weholographically quantify the entanglement and complexity formixed states by following the
prescription of purification. The bulk theory we consider in this work is a hyperscaling violating solution,
characterized by two parameters, hyperscaling violating exponent θ and dynamical exponent z. This geo-
metry is due to a nonrelativistic strongly coupled theory with hidden Fermi surfaces. We first compute the
holographic analogy of entanglement of purification, denoted as the minimal area of the entanglement wedge
cross section and observe the effects of z and θ. Then in order to probe the mixed state complexity we compute
the mutual complexity for the Banados Teitelboim Zanelli (BTZ) black hole and the hyperscaling violating
geometry by incorporating the holographic subregion complexity conjecture.We carry this out for two disjoint
subsystems separated by a distance and alsowhen the subsystems are adjacent with subsystemsmaking up the
full system. Furthermore, various aspects of holographic entanglement entropy such as the entanglement Smarr
relation, the Fisher information metric, and the butterfly velocity have also been discussed.
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I. INTRODUCTION

The gauge/gravity duality [1–3] has been employed to
holographically compute quantum information theoretic
quantities and has thereby helped us to understand the
bulk-boundary relations. Among various observables of
quantum information theory, entanglement entropy (EE)
has been the most fundamental thing to study as it measures
the correlation between two subsystems for a pure state. EE
has a very simple definition, yet sometimes it is notoriously
difficult to compute. However, the holographic computation
of entanglement entropy, which can be denoted as the
Ryu-Takayanagi (RT) prescription, is a remarkably simple
technique that relates to the area of a codimensional-2 static
minimal surface with the entanglement entropy of a sub-
system [4–6]. The RT prescription along with its modifi-
cation for a time-dependent scenario (HRT prescription [7])
has been playing a key role for holographic studies of
information theoretic quantities as the perturbative calcu-
lations, which could not be done on the field theoretic side
due to its strongly coupled nature, can now be performed in
the bulk side since it is of a weakly coupled nature.

Another important information theoretic quantity which
has gained much attention recently is the computational
complexity. The complexity of a quantum state represents
the minimum number of simple operations that take the
unentangled product state to a target state [8–10]. There are
several proposals to compute complexity holographically.
Recently, several interesting attempts has been made to
define complexity in QFT [11–14]. In context of holo-
graphic computation, initially, it was suggested that the
complexity of a state (measured in gates) is proportional to
the volume of the Einstein-Rosen bridge (ERB) which
connects two boundaries of an eternal black hole [15,16]

CVðtL; tRÞ ¼
VERBðtL; tRÞ
8πRGdþ1

; ð1Þ

where R is the anti–de Sitter (AdS) radius and VERBðtL; tRÞ
is the codimensional one extremal volume of ERB that is
bounded by the two spatial slices at times tL and tR of
two conformal field theories (CFTs) that live on the two
boundaries of the eternal black hole. Another conjecture
states that complexity can be obtained from the bulk action
evaluated on the Wheeler-DeWitt patch [17–19]

CA ¼ IWDW

πℏ
: ð2Þ

The above two conjectures depend on the whole state of
the physical system at the boundary. In addition to these
proposals, there is another conjecture that depends on the
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reduced state of the system. This states that the codimen-
sional one volume enclosed by the codimensional two
extremal RT surface is proportional to the complexity

CV ¼ VðΓmin
A Þ

8πRGdþ1

: ð3Þ

This proposal is known as the holographic subregion
complexity (HSC) conjecture in the literature [20–22].
Recently, in [23], it was shown that there exists a relation
between the universal pieces of Holographic entanglement
entropy (HEE) and HSC. Furthermore, the universal piece
of HSC is proportional to the sphere free energy FSp for
even dimensional dual CFTs and proportional to the Weyl a
anomaly for odd-dimensional dual CFTs.
In recent times, much attention is being paid to the study

of entanglement entropy and complexity for mixed states.
For the study of EE for mixed states, the entanglement of
purification (EOP) [24] and entanglement negativity E [25]
has been the promising candidates. In the subsequent
analysis, our focus will be on the computation of EOP.
Consider a density matrix ρAB corresponding to mixed state
in Hilbert space H, where H ¼ HA ⊗ HB. Now the
process of purification states that one can construct a pure
state jψi from ρAB by adding auxiliary degrees of freedom
to the Hilbert space H

ρAB ¼ trA0B0 jψihψ j; ψ ∈HAA0BB0 ¼HAA0 ⊗HBB0 : ð4Þ

Such states ψ are called purifications of ρAB. It is to be
noted that the process of purification is not unique and
different procedures for purification for the same mixed
state exists. In this setup, the definition of EOP (EP)
reads [24]

EPðρABÞ ¼ min
trA0B0 jψihψ j

SðρAA0 Þ; ρAA0 ¼ trBB0 jψihψ j: ð5Þ

In the above expression, the minimization is taken over any
state ψ satisfying the condition ρAB ¼ trA0B0 jψihψ j, where
A0B0 are arbitrary. In this paper we will compute the
holographic analogy of EOP, given by the minimal area
of an entanglement wedge cross section (EWCS) EW [26].
However, there is no direct proof of EP ¼ EW duality
conjecture yet and it is mainly based on the following
properties of EP, which are also satisfied by EW [24,26].
These properties are as follows:

ðiÞ EPðρABÞ ¼ SðρAÞ ¼ SðρBÞ; ρ2AB ¼ ρAB;

ðiÞ 1

2
IðA∶BÞ ≤ EPðρABÞ ≤ min ½SðρAÞ; SðρBÞ�:

In the above properties, IðA∶BÞ ¼ SðAÞ þ SðBÞ− SðA ∪ BÞ
is the mutual information between two subsystems A and B.
Further, there exists a critical separation length Dc between
A and B beyond which there is no connected phase for

any l. At Dc, EW probes the phase transition of the RT
surface Γmin

AB between connected and disconnected phases.
The disconnected phase is characterized by the condition
mutual information IðA∶BÞ ¼ 0. Some recent very inter-
esting observations in this direction can be found in
[27–41]. Further, recently several measures for mixed
states dual to EWCS has been proposed. Some of them
are odd entropy [42], reflected entropy [43,44] and loga-
rithmic negativity [45,46]. On the other hand, recently the
study of complexity for mixed states has gained appreciable
amount of attention [47–50]. Similar to the case of EE for
mixed state, the concept of “purification” is also being
employed in this context [49,51]. The purification com-
plexity is defined as the minimal pure state complexity
among all possible purifications available for a mixed state.
Preparing a mixed state on some Hilbert space H, starting
from a reference (pure) state involves the extension of the
Hilbert space H by introducing auxiliary degrees of free-
dom [48,50]. In this setup, a quantity denoted as the mutual
complexity ΔC has been prescribed in order to probe the
concept of purification complexity [47–50]. The mutual
complexity ΔC satisfies the following definition

ΔC ¼ CðρAÞ þ þCðρBÞ − CðρA∪BÞ: ð6Þ

In this paper, we will incorporate the HSC conjecture in
order to compute the complexities CðρAÞ, CðρBÞ, and
CðρA∪BÞ. We compute ΔC in two different setups. In one
setup, we consider two disjoint subsystems A and B of
width l on the boundary Cauchy slice σ, separated
by a distance x. We then compute the mutual complexity
between these two subregions. The other setup, we con-
sider that the boundary Cauchy slice σ is a collection of two
adjacent subsystems A and B of width l with A ∩ B ¼ 0
(zero overlap) and Ac ¼ B. In this setup we compute the
mutual complexity between a subregion A and the full
system A ∪ Ac.
The paper is organized as follows. In Sec. II, we briefly

discuss the aspects of the bulk theory which in this case is a
hyperscaling violating geometry. We then consider a single
striplike subsystem and holographically compute the EE in
Sec. III. We also make comments on the thermodynamical
aspects of the computed HEE by computing the entangle-
ment Smarr relation satisfied by the HEE. Furthermore,
we holographically compute the relative entropy in
order to obtain the Fisher information metric. In Sec. IV,
we consider two striplike subsystems and holographically
compute the EOP by using the EP ¼ EW conjecture. We
briefly study the temperature dependent behavior of EWCS
along with the effects of z and θ on the EW . The butterfly
velocity vB corresponding to the hyperscaling violating
geometry is computed in Sec. V. We then compute the HSC
corresponding to a single striplike subsystem in Sec. VI. In
Sec. VII, we holographically compute the mutual complex-
ity ΔC by incorporating the HSC conjecture for the BTZ

ASHIS SAHA and SUNANDAN GANGOPADHYAY PHYS. REV. D 103, 086002 (2021)

086002-2



black hole and the hyperscaling violating geometry.
We consider two different setups to study the mutual
complexity. We then conclude in Sec. VIII. We also have
an Appendix in the paper.

II. BULK THEORY: HYPERSCALING
VIOLATING GEOMETRY

We shall start our analysis with a bulk hyperscaling
violating spacetime geometry. The solution corresponds to
the following effective action of Einstein-Maxwell-scalar
theory [52,53]

Sbulk ¼
1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
ðR − 2ΛÞ −WðϕÞFμνFμν

−
1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð7Þ

where Fμν is the Faraday tensor associated with the gauge
field Aμ, ϕ is the scalar field associated with the potential
VðϕÞ and WðϕÞ is the coupling. Extremization of this
action leads to the following black hole solution [53]1

ds2 ¼ R2

r2

�
−

fðrÞ
r
2ðd−1Þðz−1Þ
ðd−θ−1Þ

dt2 þ r
2θ

d−θ−1
dr2

fðrÞ þ
Xd−1
i¼1

dx2i

�
: ð8Þ

The lapse function fðrÞ has the form fðrÞ ¼
1 − ð rrhÞðd−1Þð1þ

z
d−θ−1Þ, where rH is the event horizon of the

black hole. The Hawking temperature of black hole is
found to be

TH ¼ ðd − 1Þðzþ d − θ − 1Þ
4πðd − θ − 1Þ

1

rzðd−1Þ=ðd−θ−1Þh

: ð9Þ

The above mentioned metric is holographic dual to a
d-dimensional nonrelativistic strongly coupled theory with
Fermi surfaces. The metric is associated with two inde-
pendent exponents z and θ. The presence of these two
exponents leads to the following scale transformations

xi → ξxi;

t → ξzt;

ds → ξ
θ

d−1ds:

This nontrivial scale transformation of the proper spacetime
interval ds is quite different from the usual AdS=CFT
picture. The noninvariance of ds in the bulk theory implies
violations of hyperscaling in the boundary theory. Keeping
this in mind, θ is identified as the hyperscaling violation
exponent and z is identified as the dynamical exponent.

In the limit z ¼ 1, θ ¼ 0, we recover the SAdSdþ1 solution
which is dual to a relativistic CFT in d dimensions and in
the limit z ≠ 1, θ ¼ 0, we obtain the “Lifshitz solutions.”
The two independent exponents z and θ satisfy the

following inequalities

θ ≤ d − 2; z ≥ 1þ θ

d − 1
: ð10Þ

The “equalities” of the above mentioned relations holds
only for gauge theories of non-Fermi liquid states in
d ¼ 3 [54]. In this case, θ ¼ 1 and z ¼ 3=2. For general
θ ¼ d − 2, logarithmic violation of the “Area law” of
entanglement entropy [55] is observed. This in turn means
that, for θ ¼ d − 2, the bulk theory holographically
describes a strongly coupled dual theory with hidden
Fermi surfaces. Some studies of information theoretic
quantities for the above mentioned hyperscaling violating
geometries can be found in [56,57].

III. HOLOGRAPHIC ENTANGLEMENT
SMARR RELATION

To begin our analysis, we consider our subsystem A to be
a strip of volume Vsub ¼ Ld−2l, where − l

2
< x1 <

l
2
and

− L
2
< x2;3;…;d−1 < L

2
. The amount of Hawking entropy

captured by the above mentioned volume reads

SBH ¼ Ld−2l
4Gdþ1rd−1h

: ð11Þ

It is to be noted that the thermal entropy of the dual field
theory is related with the temperature2 as Sth ∝ T

d−1−θ
z . For

θ ¼ d − 2, it reads Sth ∝ T
1
z. This result is observed for

compressible states with fermionic excitations.
We parametrize the codimensional one static minimal

surface as x1 ¼ x1ðrÞ, which leads to the following area of
the extremal surface Γmin

A

AðΓmin
A Þ ¼ 2Rd−1Ld−2r

ð p
p−θÞ−p
t

X∞
n¼1

1ffiffiffi
π

p Γðnþ 1
2
Þ

Γðnþ 1Þ α
npð1þ z

p−θÞ

×
Z

1

0

du
u

θ
p−θ−pþnpð1þ z

p−θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2p

p ; u ¼ r
rt
; α ¼ rt

rh
;

ð12Þ

where rt is the turning point and p ¼ ðd − 1Þ, which we
have introduced for the sake of simplicity. By substituting
the area functional [given in Eq. (12)] in the RT formula, we
obtain the HEE [4]

1Note that this geometry is different in form than the one
considered in [37].

2The thermal entropy of the dual field theory is basically the
Hawking entropy of the black hole given in Eq. (9).
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SE¼
AðΓmin

A Þ
4Gdþ1

;

¼ 2Ld−2

4Gdþ1ð p
p−θ−pÞ

�
1

ϵ

�
p−ð p

p−θÞ

þLd−2r
ð p
p−θÞ−p
t

4Gdþ1

X∞
n¼0

Γðnþ1
2
Þ

Γðnþ1Þ
αnpð1þ

z
p−θÞ

p

Γ
� p

p−θ−pþnpð1þ z
p−θÞ

2p

�
Γ
� p

p−θþnpð1þ z
p−θÞ

2p

� :

ð13Þ

The relationship between the subsystem size l and turning
point rt reads (with the AdS radius R ¼ 1)

l¼ r
p

p−θ
t

X∞
n¼0

Γðnþ 1
2
Þ

Γðnþ1Þ
αnpð1þ

z
p−θÞ

p

Γ
� p

p−θþpþnpð1þ z
p−θÞ

2p

�
Γ
� p

p−θþ2pþnpð1þ z
p−θÞ

2p

� : ð14Þ

We now proceed to probe the thermodynamical aspects of
HEE. It can be observed from Eq. (13) that the expression
of SE contains a subsystem independent divergent piece
which we intend to get rid by defining a finite quantity. We
call this finite quantity as the renormalized holographic
entanglement entropy (SREE). From the point of view of the
dual field theory this divergence free quantity represents
the change in entanglement entropy under an excitation. In
order to obtain SREE holographically, first we need to
compute the HEE corresponding to the asymptotic form
(rh → ∞) of the hyperscaling violating black brane sol-
ution given in Eq. (8). This yields the following expression

SG¼
2Ld−2

4Gdþ1

�
p

p−θ−p
��1

ϵ

�
p−ð p

p−θÞ

−
2p−θLd−2

4Gdþ1ðp− p
p−θÞ

�
p−θ

p

�
p−θ−1 π

p−θ
2

lp−1−θ

0
B@Γ

�
pþ p

p−θ
2p

�
Γ
� p

p−θ
2p

�
1
CA

p−θ

:

ð15Þ

We now subtract the above expression (which represents
the HEE corresponding to the vacuum of the dual field
theory) from SE [given in Eq. (13)] in order to get a finite
quantity SREE. This can be formally represented as

SREE ¼ SE − SG: ð16Þ

On the other hand, the internal energy E of the black hole
can be obtained by using the Hawking entropy [given in
Eq. (11)] and the Hawking temperature [given in Eq. (9)].
The computed expression of E can be represented as

E ¼
�

p − θ

zþ p − θ

�
SBHTH: ð17Þ

This is nothing but the classical Smarr relation of BH
thermodynamics. In [58], it was shown that the quantity
SREE and the internal energy E satisfies a Smarr-like
thermodynamic relation corresponding to a generalized
temperature Tg. In this setup, this relation reads [59]

E ¼
�

p − θ

zþ p − θ

�
SREETg: ð18Þ

It is remarkable to observe that the relation given in Eq. (18)
has a striking similarity with the classical Smarr relation
of BH thermodynamics, given in Eq. (17). In the limit
rt → rh, the leading term of the generalized temperature Tg

produces the exact Hawking temperature TH whereas in the
limit rt

rh
≪ 1, the leading term of Tg reads [59]

1

Tg
¼ Δ1lz; ð19Þ

where the detailed expression of Δ1 reads

Δ1 ¼
2π3=2

p

�
1

p
p−θ − pþ pð1þ z

p−θÞ
�0B@ pffiffiffi

π
p

Γ
�
pþ p

p−θ
2p

�
Γ
�
2pþ p

p−θ
2p

�
1
CA

1þz

×

0
B@Γ

�
pþ p

p−θþpð1þ z
p−θÞ

2p

�
Γ
�
2pþ p

p−θþpð1þ z
p−θÞ

2p

�
1
CA:

From Eq. (19) it can be observed that in the UV limit, Tg

shows the similar behavior as entanglement temperature
Tent (proportional to the inverse of subsystem size l) [60].

A. Relative entropy and the Fisher
information metric

We now proceed to compute the Fisher information
metric for the hyperscaling violating geometry using the
holographic proposal. The Fisher information metric mea-
sures the distance between two quantum states and is given
by [61]

GF;λλ ¼ hδρδρiðσÞλλ

¼ 1

2
Tr

�
δρ

d
dðδλÞ logðσ þ δλδρÞjδλ¼0

�
; ð20Þ

where σ is the density matrix and δρ is a small deviation
from the density matrix. On the other hand, there exists a
relation between the Fisher information metric and the
relative entropy Srel [62]. This reads

GF;mm ¼ ∂2

∂m2
Srelðρmkρ0Þ;

Srelðρmkρ0Þ ¼ ΔhHρ0i − ΔS: ð21Þ
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In the above expression, ΔS is the change in the entangle-
ment entropy from vacuum state, ΔhHρ0i is the change in
the modular Hamiltonian and m is the perturbation param-
eter. In this setup, we holographically compute the relative
entropy Srelðρmkρ0Þ. We consider that the background is
slightly perturbed from pure hyperscaling violating space-
time while the subsystem volume Ld−2l is fixed. Then the
inverse of the lapse function fðrÞ [given in Eq. (8)] can be
expressed as

1

fðrÞ ¼ 1þmrpð1þ
z

p−θÞ þm2r2pð1þ
z

p−θÞ; ð22Þ

where m ¼ ð 1
rH
Þpð1þ z

p−θÞ is the holographic perturbation
parameter. Since we consider a perturbation to the back-
ground geometry and also consider that the subsystem size
l has not changed, we can express the turning point in the
following perturbed form

rt ¼ rð0Þt þmrð1Þt þm2rð2Þt ; ð23Þ

where rð0Þt is the turning point for the pure hyperscaling

violating geometry and rð1Þt , rð2Þt are the first and second
order corrections to the turning point. We now write down
the subsystem length l up to second order in perturbation as

l

r
p

p−θ
t

¼ a0 þma1r
pð1þ z

p−θÞ
t þm2a2r

2pð1þ z
p−θÞ

t ; ð24Þ

where

a0 ¼
ffiffiffi
π

p
p

Γ
� p

p−θþp

2p

�
Γ
� p

p−θ
2p

� ; a1 ¼
ffiffiffi
π

p
2p

Γ
� p

p−θþpþpð1þ z
p−θÞ

2p

�
Γ
� p

p−θþpð1þ z
p−θÞ

2p

� ;

a2 ¼
3

ffiffiffi
π

p
8p

Γ
� p

p−θþpþ2pð1þ z
p−θÞ

2p

�
Γ
� p

p−θþ2pð1þ z
p−θÞ

2p

� :

Using Eq. (23) in Eq. (24) and keeping in mind the
consideration that l has not changed, we obtain the forms

of rð0Þt , rð1Þt , and rð2Þt

rð0Þt ¼
�

l
a0

�p−θ
p

;

rð1Þt ¼ −
�
p − θ

p

��
a1
a0

�
ðrð0Þt Þ1þpð1þ z

p−θÞ;

rð2Þt ¼ ξðrð0Þt Þ1þ2pð1þ z
p−θÞ; ð25Þ

where

ξ ¼
�
p − θ

p

���
2p − θ

2p

��
a1
a0

�
2

þ ðp − θÞ
�
1þ z

p − θ

��
a1
a0

�
2

−
�
a2
a0

��
: ð26Þ

On a similar note, the expression for area of the static
minimal surface up to second order in perturbation param-
eter m can be obtained from Eq. (12). We then use Eq. (23)
to recast the expression for the area of the minimal surface
in the form

AðΓmin
A Þ¼AðΓmin

A Þð0Þ þmAðΓmin
A Þð1Þ þm2AðΓmin

A Þð2Þ: ð27Þ

It has been observed that at first order in m, Srel vanishes
[62] and in second order in m it reads Srel ¼ −ΔS. In this
setup, it yields

Srel ¼ −m2
AðΓmin

A Þð2Þ
4Gdþ1

¼ m2
Ld−2

4Gdþ1

Δ2

�
l
a0

�
1þ2zþðp−θÞ

; ð28Þ

where

Δ2 ¼ 2p

�
p − θ

p

��
a21
a0

�
þ p

�
p −

θ

p − θ

��
p − θ

p

�
2
�
a21
a0

�

−
�

2pa2
2pð1þ z

p−θÞ − pþ p
p−θ

�
− 2pa0ξ:

By substituting the above expression in Eq. (21), the Fisher
information is obtained to be

GF;mm ¼ Ld−2

2Gdþ1

Δ2

�
l
a0

�
1þ2zþðp−θÞ

∝ ldþ2z−θ: ð29Þ

In the limit z ¼ 1 and θ ¼ 0, the above equation reads
GF;mm ∝ ldþ2, which agrees with the result obtained in
[63]. The Fisher information corresponding to the Lifshitz
type solutions can be found in [64].

IV. ENTANGLEMENT WEDGE CROSS
SECTION AND THE EP =EW DUALITY

We now proceed to compute the holographic entangle-
ment of purification by considering two subsystems,
namely, A and B of length l on the boundary ∂M. From
the bulk point of view, ∂M is the boundary of a canonical
time slice M made in the static gravity dual. Furthermore,
A and B are separated by a distance D so that the
subsystems does not have an overlap of nonzero size
(A ∩ B ¼ 0). Following the RT prescription, we denote
Γmin
A , Γmin

B , and Γmin
AB as the static minimal surfaces corre-

sponding to A, B, and AB respectively. In this setup, the
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domain of entanglement wedge MAB is the region in the
bulk with the following boundary

∂MAB ¼ A ∪ B ∪ Γmin
AB : ð30Þ

It is also to be noted that if the separation D is effectively
large then the codimensional-0 bulk region MAB will be
disconnected. We now divide Γmin

AB into two parts

Γmin
AB ¼ ΓA

AB ∪ ΓB
AB; ð31Þ

such that the boundary ∂MAB of the canonical time slice of
the full spacetime MAB can be represented as

∂MAB ¼ Γ̄A ∪ Γ̄B; ð32Þ

where Γ̄A ¼ A ∪ ΓA
AB and Γ̄B ¼ B ∪ ΓB

AB. In this setup, it is
now possible to define the holographic entanglement
entropies SðρA∪ΓA

AB
Þ and SðρB∪ΓB

AB
Þ. These quantities can

be computed by finding a static minimal surface Σmin
AB

such that

∂Σmin
AB ¼ ∂Γ̄A ¼ ∂Γ̄B: ð33Þ

There can be infinite number possible choices for the
splitting given in Eq. (31) and this in turn means there can
be infinite number of choices for the surface Σmin

AB . The
EWCS is obtained by minimizing the area of Σmin

AB over all
possible choices for Σmin

AB . This can be formally written
down as

EWðρABÞ ¼ minΓ̄A⊂∂MAB

�
AðΣmin

AB Þ
4Gdþ1

�
: ð34Þ

We now proceed to compute EW for the holographic dual
considered in this paper. As we have mentioned earlier,
EWCS is the surface with minimal area which splits the
entanglement wedge into two domains corresponding to A
and B. This can be identified as a vertical, constant x
hypersurface. The time induced metric on this constant x
hypersurface reads

ds2ind ¼
R2

r2

�
r

2θ
p−θ

dr2

fðrÞ þ
Xd−2
i¼1

dx2i

�
: ð35Þ

By using this above mentioned induced metric, the EWCS
is obtained to be

EW ¼ Ld−2

4Gdþ1

Z
rtð2lþDÞ

rtðDÞ

dr

rd−1
ffiffiffiffiffiffiffiffiffi
fðrÞp ;

¼ Ld−2

4Gdþ1

X∞
n¼0

1ffiffiffi
π

p Γðnþ 1
2
Þ

Γðnþ 1Þ
�
rtð2lþDÞnpð1þ z

p−θÞ−pþ1 − rtðDÞnpð1þ z
p−θÞ−pþ1

npð1þ z
p−θÞ − pþ 1

��
1

rh

�
npð1þ z

p−θÞ
:

As mentioned earlier, the above expression of EW always
maintains the following bound

EW ≥
1

2
IðA∶BÞ;

IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ; ð36Þ

where IðA∶BÞ is the mutual information between two
subsystems A and B. On the other hand, in [65] it was
shown that there exists a critical separation between A and
B beyond which there is no connected phase for any l. This
in turn means that at the critical separation length Dc, EW

probes the phase transition of the RT surface Γmin
AB between

connected and disconnected phases. The disconnected
phase is characterized by the fact that the mutual informa-
tion IðA∶BÞ vanishes, which in this case reads

2SðlÞ − SðDÞ − Sð2lþDÞ ¼ 0: ð37Þ

The above condition together with the bound given in
Eq. (36) leads to the critical separation length Dc [66].
We now write down the expression for EW [given

in Eq. (36)] in terms of the parameters of the boundary

theory. This we do for the small temperature case

(rtðDÞ
rh

≪ rtð2lþDÞ
rh

≪ 1) and for the high temperature case

ðrtðDÞ
rh

≪ 1; rtð2lþDÞ
rh

≈ 1Þ.

A. EW in the low temperature limit

In the limit rtðDÞ
rh

≪ rtð2lþDÞ
rh

≪ 1, it is reasonable to
consider terms up to order m (where m ¼ 1

r
pð1þ z

p−θÞ
h

) in the

expression for EW [given in Eq. (36)]. On the other hand for
low temperature considerations, it is possible to perturba-
tively solve Eq. (14) which leads to the following relation-
ship between a subsystem size l and its corresponding
turning point rt

rtðlÞ ¼ l
p−θ
p

0
B@ pffiffiffi

π
p

Γ
�
2pþ p

p−θ
2p

�
Γ
�
pþ p

p−θ
2p

�
1
CA

p−θ
p

×
h
1 − Δ3l

ðp−θÞð1þ z
p−θÞTð1þp−θ

z Þ
i
; ð38Þ

where
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Δ3 ¼
�
p− θ

2p

��
4π

pð1þ z
p−θÞ

�
1þp−θ

z

0
B@Γ

�
2pþ p

p−θ
2p

�
Γ
�
pþ p

p−θ
2p

�
1
CA

×

0
B@Γ

�
pþ p

p−θþpð1þ z
p−θÞ

2p

�
Γ
�
2pþ p

p−θþpð1þ z
p−θÞ

2p

�
1
CA
0
B@ pffiffiffi

π
p

Γ
�
2pþ p

p−θ
2p

�
Γ
�
pþ p

p−θ
2p

�
1
CA

ðp−θÞð1þ z
p−θÞ

:

Now by using Eq. (38) for rtð2lþDÞ and rtðDÞ, we obtain
the expression for EW in the low temperature limit to be

EW ¼ ET¼0
W −

Ld−2

4Gdþ1

Δ4½ð2lþDÞðp−θp Þð1þ pz
p−θÞ

−Dðp−θp Þð1þ pz
p−θÞ�T1þðp−θz Þ þ � � � ; ð39Þ

where the detailed expression for Δ4 is given in the
Appendix. The first term in Eq. (39) is the EWCS at
T ¼ 0. This reads

ET¼0
W ¼ Ld−2

4ðp − 1ÞGdþ1

0
B@ ffiffiffi

π
p
p

Γ
�
pþ p

p−θ
2p

�
Γ
�
2pþ p

p−θ
2p

�
1
CA

ðp−θÞ−ðp−θp Þ

×

��
1

D

�ðp−θÞ−ðp−θp Þ
−
�

1

2lþD

�ðp−θÞ−ðp−θp Þ�
: ð40Þ

It can be observed from Eq. (39) that the EWCS is a
monotonically decreasing function of temperature T (as
1þ p−θ

z > 0). We now compute the critical separation
length Dc at which EW probes the phase transition of
the RT surface Γmin

AB between the connected and discon-
nected phases. This to be obtained from the condition

2SðlÞ − SðDÞ − Sð2lþDÞ ¼ 0: ð41Þ

The general expression for the HEE of a strip of length l is
given in Eq. (13). Now similar to the above computation,

in the limit rtðDÞ
rh

≪ rtð2lþDÞ
rh

≪ 1, we consider terms up to
OðmÞ in Eq. (13). By using this consideration, Eq. (41) can
be expressed as

β1

�
2

lp−θ−1
−

1

Dp−θ−1 −
1

ð2lþDÞp−θ−1
�

þ β2

r
pð1þ z

p−θÞ
h

ð2l1þz −D1þz − ð2lþDÞ1þzÞ ¼ 0; ð42Þ

where

β1 ¼
ffiffiffi
π

p
4p

Γ
� p

p−θ−p
2p

�
Γ
� p

p−θ
2p

�
0
B@ ffiffiffi

π
p
p

Γ
�
pþ

p
p−θ
2p

�
Γ
�
2pþ p

p−θ
2p

�
1
CA

p−θ−1

;

β2 ¼ Δ3

�
p −

p
p − θ

�
β1 þ

ffiffiffi
π

p
8p

0
B@ pffiffiffi

π
p

Γ
�
pþ p

p−θ
2p

�
Γ
�
2pþ p

p−θ
2p

�
1
CA

1þz

×

0
B@Γ

�
pþ p

p−θþpð1þ z
p−θÞ

2p

�
Γ
�
2pþ p

p−θþpð1þ z
p−θÞ

2p

�
1
CA:

By solving the above equation we can find out the critical
separation length Dc (where we substitute D

l ¼ k ¼
constant). It is worth mentioning that in the above compu-
tations of EW and IðA∶BÞ, we have considered terms up to
OðmÞ which is the leading order term for thermal correc-
tion. Similarly, one can incorporate next-to leading order
terms or more to get a more accurate result.

B. EW in the high temperature limit

We now consider the limit rtð2lþDÞ → rh and
rtðDÞ
rh

≪ 1. This in turn means the static minimal surface
associated with the turning point rtð2lþDÞ wraps a
portion of the event horizon rh. In the large n limit, the
infinite sum associated with the turning point rtð2lþDÞ
goes as ≈ 1ffiffi

π
p ð1nÞ3=2ðrtð2lþDÞ

rh
Þnpð1þ z

p−θÞ, which means that it is

convergent (
P∞

n¼1
1

n3=2
¼ ξð3

2
Þ). Further, we are considering

rtðDÞ
rh

≪ 1 and in this limit it is reasonable to keep terms only
up to order m in the infinite sum associated with rtðDÞ. In
this setup, the expression for EWCS reads

EWðTÞ ¼ ET¼0
W þ Ld−2

4Gdþ1

Δ4D
zþðp−θp ÞT1þðp−θz Þ

−
Ld−2

4Gdþ1

Δ5T
ðp−θz Þ−ðp−θpz Þ þ � � � ; ð43Þ

where the temperature independent term (EWCS at T ¼ 0)
is being given by

ET¼0
W ¼ Ld−2

4ðp−1ÞGdþ1D
ðp−θp Þðp−1Þ

0
B@ ffiffiffi

π
p
p

Γ
�
pþ p

p−θ
2p

�
Γ
�
2pþ p

p−θ
2p

�
1
CA

ðp−θÞ−ðp−θp Þ

:

ð44Þ

The expressions for Δ4 and Δ5 are given in the Appendix.
Now we proceed to compute the critical separation length
Dc in the high temperature configuration. In the limit
rt → rh, the computed result of SE (HEE of a striplike
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subsystem with length l), given in Eq. (13) can be
rearranged in the following form3

SE ¼ Ld−2l
4Gdþ1r

p
h
þ Ld−2

4Gdþ1r
p− p

p−θ
h

X∞
n¼0

Pn;

Pn ¼
�

1
p

p−θ − pþ npð1þ z
p−θÞ

�

×
Γðnþ 1

2
Þ

Γðnþ 1Þ
Γ
�
pþ p

p−θþnpð1þ z
p−θÞ

2p

�
Γ
�
2pþ p

p−θþnpð1þ z
p−θÞ

2p

� : ð45Þ

By using the above form of HEE, we can write down
Eq. (41) in the following formP∞

n¼0 Pn

r
p− p

p−θ
h

−
D

4r
p− p

p−θ
h

−
β1

Dp−θ−1 −
β2

r
pð1þ z

p−θÞ
h

D1þz ¼ 0: ð46Þ

In Figs. 1 and 2, we have graphically represented the
effects of z and θ on the EWCS and holographic mutual
information (HMI) for both low and high temperature case,
respectively. For the low temperature case (Fig. 1) we have
chose the separation length D between the subsystems to
be D ¼ 0.4l. From the above plots it can be observed that
the EWCS always maintains the bound EW > 1

2
IðA∶BÞ.

The HMI continuously decays and approaches zero at a
particular critical separation length Dc. This critical sep-
aration Dc decreases with increasing z and θ. On the other
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FIG. 1. Effects of θ and z on EW and IðA∶BÞ at low temperature (with d ¼ 3, k ¼ 0.4, L ¼ 1, and Gdþ1 ¼ 1).
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FIG. 2. Effects of θ and z on EW and IðA∶BÞ at high temperature (with d ¼ 3, L ¼ 1 and Gdþ1 ¼ 1).

3The first term of the expression is nothing but the thermal
entropy of the boundary subsystem given in Eq. (11).
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hand EW shows a discontinuous jump at Dc. Up to Dc, EW
has a finite cross section due to the connected phase,
whereas beyond this critical separation length EW vanishes
due to the disconnected phase of the RT surface Γmin

AB .

V. BUTTERFLY VELOCITY

In this section we shall discuss about information
spreading in the dual field theory from the holographic
point of view. In context of quantum many body physics,
the study about the chaotic nature of the system (response
of the system at a late time after a local perturbation at
initial time) can be characterized by the following thermal
average

Cðx; tÞ ¼ h½Wðt; xÞ; Vð0Þ�2iβ; ð47Þ

where Vð0Þ is a generic operator acting at the origin at
earlier time andWðt; xÞ is a local operator acting at position
x at later time t. The butterfly effect is usually governed by
such commutators. It probes the dependency of a late time
measurement on the initial perturbation. The time at which
the commutator grows toOð1Þ, is known as the scrambling
time [67]. The study of the butterfly effect in context of
AdS=CFT naturally occurs as the black holes are observed
to be the fastest scramblers in nature [68]. For large N field
theories, Eq. (47) grows as

Cðx; tÞ ¼ K
N2

exp

�
λL

�
t −

jxj
vB

��
þO

�
1

N4

�
; ð48Þ

where K is a constant, λL is the Lyapunov exponent, which
probes the growth of chaos with time and vB is the butterfly
velocity. The butterfly velocity vB probes the speed at
which the local perturbation grows (the speed of the growth
for chaos). This velocity composes a light cone for chaos
and outside this light cone, the perturbation does not effects
the system. Further, vB has the interpretation of effective
Lieb-Robinson velocity (state dependent) vLR for strongly
coupled field theories [69]. The Lyapunov exponent sat-
isfies an upper bound [70]

λL ≤ 2πT: ð49Þ

One can consider acting of a local operator (perturbation)
on a thermal state of a CFT. At the initial stages, the
information about the nature of the operator can be
obtained by operating another local operator at position x.
However, due to the scrambling property, this information
about the initial perturbation will spread out in a larger and
larger region with time.
In context of gauge/gravity duality, vB can be calculated

by using the subregion duality [71]. The static black hole in
the bulk represents the initial thermal state in the dual field
theory. One can add a local perturbation in this setup which

eventually falls into event horizon. The timelike trajectories
of the local perturbation in the bulk can be probed by
using the codimensional two RT surfaces [72,73]. In both
of these scenarios, there shall be a smallest subregion that
will contain enough information (at later time t) about the
local perturbation. It is assumed that the bulk dual to this
smallest subregion of the boundary is the entanglement
wedge [74]. The butterfly velocity represents the rate at
which these subregions increases. The holographic com-
putation requires only the near-horizon data about the dual
gravitational solution. By following the approach given in
[73], a expression for the butterfly velocity vB correspond-
ing to a general black brane geometry has been computed
in [75]. For hyperscaling violating geometry [given in
Eq. (8)], the expression for vB is obtained to be

vB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ z

d − θ − 1

�s �
4π

ðd − 1Þð1þ z
d−θ−1Þ

�
1−1

z

T1−1
z

∝ T1−1
z: ð50Þ

In the AdS limit z → 1, θ → 0, it reduces to the well-known

result vB ¼
ffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þ

q
[73]. It is known that vB is a model

dependent parameter, which in this case captures the
collective effects of z and θ. It should also be noted that,
for hyperscaling violating backgrounds, vB is related to
the Hawking temperature (temperature of the dual thermal
field theory) [73,76].

VI. HOLOGRAPHIC SUBREGION
COMPLEXITY

The quantum complexity can be realized in the following
way. Considering a simple (unentangled) product state
j↑↑…↑i as a reference state, quantum complexity is
defined as the minimum number of two-qubit unitary
operation required to prepare a target state jψi from the
reference state. In this section we study the HSC proposal
[20]. This conjecture states that the volume enclosed by the
codimensional two static minimal surface (RT surface)
with the boundary coinciding with that of the subsystem, is
dual to the complexity of that subregion. For the hyper-
scaling violating geometry, this codimensional one volume
reads

VðΓmin
A Þ ¼ 2Ld−2r

pþθ
p−θ−p
t

Z
1

ϵ=rt

du
u

2θ−p
p−θ−pffiffiffiffiffiffiffiffiffi
fðuÞp

×
Z

1

u
dk

kpþ
θ

p−θffiffiffiffiffiffiffiffiffi
fðkÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2p
p : ð51Þ

We now use the above volume to obtain the HSC. This is
given by (setting AdS radius R ¼ 1) [20]
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CVðAÞ ¼
VðΓmin

A Þ
8πGdþ1

;

¼ Ld−2l

8πGdþ1ðp− θ
p−θÞϵðp−

θ
p−θÞ

þLd−2r
pþθ
p−θ−p
t

8πGdþ1

X∞
n¼0

X∞
m¼0

V̄

�
rt
rh

�ðmþnÞpð1þ z
p−θÞ

; ð52Þ

where

V̄ ¼
Γðnþ 1

2
ÞΓðmþ 1

2
ÞΓ
�ðmþnÞpð1þ z

p−θÞþ1þ 2θ
p−θ

2p

�
ffiffiffi
π

p
Γðnþ 1ÞΓðmþ 1ÞΓ

�ðmþnÞpð1þ z
p−θÞþ1þpþ 2θ

p−θ
2p

�
×

�
1

pðmpð1þ z
p−θÞ þ θ

o−θ − pÞ
�
:

The first term in Eq. (52) is the divergent piece of the HSC.
In the subsequent analysis we will denote it as Cdiv.
We now consider the small temperature limit, that is
rt
rh
≪ 1. In the spirit of this limit, we keep terms up to

OðmÞ in Eq. (52). This in turn means that we are interested
only in the leading order temperature corrections to the
HSC. These considerations lead to the following expression
of HSC

CVðAÞ¼Cdivþ Ld−2

8πGdþ1

V̄ð0Þr
pþθ
p−θ−p
t

þ Ld−2

8πGdþ1

½V̄ð1Þ þ V̄ð2Þ�r
pþθ
p−θ−p
t

�
rt
rh

�
pð1þ z

p−θÞ
; ð53Þ

where V̄ð0Þ ¼ V̄jðn¼0;m¼0Þ, V̄ð1Þ ¼ V̄jðn¼1;m¼0Þ and V̄ð2Þ ¼
V̄jðn¼0;m¼1Þ. We now use Eq. (38) in order to express the
above expression in terms of the subsystem size l. This is
obtained to be

CVðAÞ ¼ Cdiv þ C1l
ðpþθ

p Þ−ðp−θÞ þ C2l
ðpþθ

p ÞþzT1þðp−θz Þ; ð54Þ

where the expressions for C1 and C2 are given in the
Appendix. As we have mentioned earlier, Cdiv represents
the divergent piece of HSC whereas the second term is the
temperature independent term. The lowest order temper-
ature correction occurs in the third term. This result for the
HSC will be used in the next section to compute the mutual
complexity between two subsystems.

VII. COMPLEXITY FOR MIXED STATES:
MUTUAL COMPLEXITY (ΔC)

The complexity for mixed states (purification complex-
ity) is defined as the minimal (pure state) complexity
among all possible purifications of the mixed state. This
in turn means that one has to optimize over the circuits

that take the reference state to a target state jψABi
(a purification of the desired mixed state ρA) and also
need to optimize over the possible purifications of ρA. This
can be expressed as

CðρAÞ ¼ minBCðjψABiÞ; ρA ¼ TrBjψABihψABj; ð55Þ

where Ac ¼ B. Recently a quantity denoted as the “mutual
complexity (ΔC)” has been defined in order to compute
the above mentioned mixed state complexity [47,48]. The
computation of ΔC starts with a pure state ρAB in an
extended Hilbert space (including auxiliary degrees of
freedom), then by tracing out the degrees of freedom of
B, one gets the mixed state ρA. On the other hand, tracing
out the degrees of freedom of A yields ρB. These computed
results then can then be used in the following formula to
compute the mutual complexity ΔC [47]

ΔC ¼ CðρAÞ þ þCðρBÞ − CðρA∪BÞ: ð56Þ

The mutual complexity ΔC is said to be subadditive if
ΔC > 0 and superadditive if ΔC < 0.
We now choose to follow the subregion “Complexity ¼

Volume” conjecture to compute the quantities CðρAÞ, CðρBÞ
and CðρA∪BÞ. Similary one can follow the “Complexity ¼
Action” conjecture or C ¼ V2.0 conjecture [77] to com-
pute these quantities. We consider two different setups to
probe the mutual complexity ΔC. In the first scenario, we
consider two disjoint subsystems A and B of width l on the
boundary Cauchy slice σ. These two subsystems are
separated by a distance x. We then compute the mutual
complexity between these two subregions. Next we con-
sider that the boundary Cauchy slice σ is a collection of two
adjacent subsystems A and B of width l with A ∩ B ¼ 0
(zero overlap) and Ac ¼ B. In this setup we compute the
mutual complexity between a subregion A and the full
system A ∪ Ac.

A. Case 1: Mutual complexity between two
disjoint subregions

In this set up, we assume the two subsystems A and B of
width l on the Cauchy slice σ. The separation length
between A and B is x. We want to see how the rate of
complexification of these two subsystems get affected
when we introduce correlation (classical and quantum)
between these two subregions. In [78], the authors have
used the “Complexity ¼ Action” conjecture to study the
mutual complexity between two subsystems and in [38]
“Complexity ¼ Volume” conjecture was incorporated to
probe ΔC between two subregions. Here we follow the
approach given in [38].

1. BTZ black hole

We first compute the HSC corresponding to a single
subsystem A of length l for the BTZ black hole.
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The mentioned black hole geometry is characterized by the
following metric [79,80]

ds2 ¼ R2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2
�
;

fðzÞ ¼ 1 −
z2

z2h
: ð57Þ

Following the prescription of C ¼ V conjecture, the HSC
corresponding to a single subsystem A of length l in the
dual field theory is obtained by computing the codimen-
sional one volume enclosed by the codimensional two RT
surface. This leads to the following

CðρAÞ ¼
2R

8πRG2þ1

Z
zt

0

xðzÞ
z2

ffiffiffiffiffiffiffiffiffi
fðzÞp dz;

¼ 2R
8πRG2þ1

Z
zt

0

1

z2
ffiffiffiffiffiffiffiffiffi
fðzÞp dz

Z
zt

z

duffiffiffiffiffiffiffiffiffi
fðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuztÞ2 − 1
q ;

¼ 1

8π

�
l
ϵ
− π

�
ðsettingG2þ1 ¼ 1Þ; ð58Þ

where ϵ is the cutoff introduced to prevent the UV
divergence and zt is the turning point of the RT surface.
It is to be observed that the computed result of HSC in this
case is independent of the black hole parameter (that is,
event horizon zh). This is a unique feature of AdS3 as the
subregion complexity in this case is topological. We now
consider two subsystems A and B of equal length l,
separated by a distance x. In this setup, the connected
RT surface is governed by two strips of length 2lþ x and
length x [81]. This leads to the following [38,81]

CðA ∪ BÞ ¼ Cð2lþ xÞ − CðxÞ: ð59Þ

Note that when the separation x between the two sub-
systems vanishes, then

Cðl ∪ lÞ ¼ Cð2lÞ: ð60Þ

By substituting Eq. (59) in Eq. (56), the mutual complexity
is obtained to be

ΔC ¼ 2CðlÞ − Cð2lþ xÞ þ CðxÞ ¼ −
1

4
: ð61Þ

It can be observed that the mutual complexity is less than
zero. This implies that the complexity is superadditive. In
the above computation of CðA ∪ BÞ, we have considered
only the connected RT surface. This is true as long as we
work within the limit x

l ≪ 1. However, there can also be a
disconnected configuration in which CðA ∪ BÞ ¼ CðAÞ þ
CðBÞ [81]. This in turn means that when the separation
length x is large enough, mutual complexity between

two subregions ΔC is zero. This is similar to mutual
information.

2. Hyperscaling violating geometry

By considering the same setup, we now compute the
mutual complexity between A and B for the hyperscaling
violating geometry. The HSC corresponding to a single
strip of length l is given in Eq. (52). We use this result to
compute the complexities CðlÞ, Cð2lþ xÞ, and CðxÞ. This
leads to the following expression of mutual complexity

ΔC ¼ 2CðlÞ − Cð2lþ xÞ þ CðxÞ;

¼ Ld−2

8πGdþ1

X∞
n¼0

X∞
m¼0

V̄

�
2rtðlÞ

pþθ
p−θ−p

�
rtðlÞ
rh

�ðmþnÞpð1þ z
p−θÞ

þ rtðxÞ
pþθ
p−θ−p

�
rtðxÞ
rh

�ðmþnÞpð1þ z
p−θÞ

− rtð2lþ xÞpþθ
p−θ−p

�
rtð2lþ xÞ

rh

�ðmþnÞpð1þ z
p−θÞ

�
; ð62Þ

where rtðlÞ, rtð2lþ xÞ, and rtðxÞ corresponds to the turning
points of the RT surfaces associated to l, 2lþ x and x,
respectively. It is to be observed that the divergent pieces
of HSC cancel out, which yields a finite result. We

now consider the small temperature limit rtðxÞ
rh

≪ rtðlÞ
rh

≪
rtð2lþxÞ

rh
≪ 1 and keep terms up to OðmÞ. This in turn yields

the following expression for mutual complexity

ΔC ¼ C1

h
2lð

pþθ
p Þ−ðp−θÞ − ð2lþ xÞðpþθ

p Þ−ðp−θÞ þ xð
pþθ
p Þ−ðp−θÞ

i
þC2

h
2lzþ

pþθ
p − ð2lþ xÞzþpþθ

p þ xzþ
pþθ
p

i
T1þðp−θz Þ: ð63Þ

Similar to the study of mutual information, we can also
point out a critical separation length xc at which the above
expression is zero. In Fig. 3, we have graphically repre-
sented the computed result of ΔC. In the above plots, we
have introduced k ¼ x

l in order to compute the critical
separation length xc at which ΔC ¼ 0. These plots also
represent the collective effects of z and θ on the mutual
complexity.

B. Case 2: Mutual complexity between two
adjacent subsystems

We now consider that the boundary Cauchy slice σ is
composed of two adjacent subsystems A and B of width l.
Further, we assume A ∩ B ¼ 0 (zero overlapping) and
Ac ¼ B and the full system (on σ) is in a pure state. In
this setup we compute the mutual complexity between a
subregion A and the full system A ∪ Ac [49,50].
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1. BTZ black hole

We now proceed to compute the mutual complexity
between A and B ¼ Ac. In this setup, the connected RT
surface is composed of one strip of length 2l. This leads to
the following expression for mutual complexity

ΔC ¼ 2CðlÞ − Cð2lÞ;

¼ 1

8π

�
l
ϵ
− π þ l

ϵ
− π −

2l
ϵ
þ π

�
;

¼ −
1

8
: ð64Þ

Similar to the disjoint subregion case, mutual complexity in
this setup is also superadditive. This in turn means that the
complexity of the state corresponding to the full system is
greater than the sum of the complexities of the states in the
two subsystems.

C. Hyperscaling violating geometry

We now proceed to compute the mixed state complexity
for the hyperscaling violating geometry. By using the HSC
result given in Eq. (52), ΔC in this setup reads

ΔC ¼ 1

8πGdþ1

½VðΓmin
A Þ þ VðΓmin

B Þ − VðΓmin
A∪BÞ�;

¼ Ld−2

8πGdþ1

X∞
n¼0

X∞
m¼0

V̄

�
2rtðlÞð

pþθ
p−θÞ−p

�
rtðlÞ
rh

�ðmþnÞpð1þ z
p−θÞ

− rtð2lÞð
pþθ
p−θÞ−p

�
rtð2lÞ
rh

�ðmþnÞpð1þ z
p−θÞ

�
: ð65Þ

We now consider the limit rtðlÞrh
≪ rtð2lÞ

rh
≪ 1. In this limit, we

keep terms up to order OðmÞ in the above expression. This
in turn leads to the following expression

ΔC ¼ ½2 − 2ð
pþθ
p Þ−ðp−θÞ�C1l

ðpþθ
p Þ−ðp−θÞ

þ ½2 − 2zþðpþθ
p Þ�C2l

zþðpþθ
p ÞT1þðp−θz Þ: ð66Þ

We observe that similar to the BTZ case, the above result
for ΔC is less than zero. This in turn means that the mutual
complexity computed using the HSC conjecture yields a
superadditive result.

VIII. CONCLUSION

In this paper, we compute the entanglement entropy and
complexity for mixed states by using the gauge/gravity
correspondence. We start our analysis by considering a
hyperscaling violating solution as the bulk theory. This
geometry is associated with two parameters, namely,
hyperscaling violating exponent z and dynamical exponent
θ. It is dual to a nonrelativistic, strongly coupled theory
with hidden Fermi surfaces. We then consider a single
striplike subsystem in order to compute the HEE of this
gravitational solution. We observe that the computed result
of HEE along with the internal energy E, satisfies a Smarr-
like thermodynamics relation associated with a generalized
temperature Tg. This thermodynamic relation naturally
emerges by demanding that the generalized temperature
Tg reproduces the Hawking temperature TH as the leading
term in the IR (rt → rh) limit. In UV limit (rtrh ≪ 1), it is

found that Tg ∝ 1
lz, that is, Tg is inversely proportional to

subsystem size l. This behavior is compatible with the
definition of entanglement temperature given in the liter-
ature. We then holographically compute the relative
entropy Srel, by incorporating the perturbative approach.
Using this the Fisher information metric is computed. We
find that in this case the power of l carries both the
exponents z and θ. We then consider two striplike sub-
systems A and B separated by a length D, in order to
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FIG. 3. Effects of θ and z on ΔC (with d ¼ 3, k ¼ 0.4, L ¼ 1, and Gdþ1 ¼ 1).
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compute the EWCS (EW) which is the holographic analogy
of EOP. We compute EW for both low and high temperature
conditions. In both cases, there is a temperature indepen-
dent term (denoted as ET¼0

W ) that is independent of the
hyperscaling violating exponent z but depends on the
dynamical exponent θ. On the other hand for a large
enough value of D (critical separation length Dc), the RT
surface Γmin

AB becomes disconnected and EW should vanish.
This in turn means that EW probes the phase transition
between the connected and disconnected phases of the RT
surface Γmin

AB . We evaluate these critical separation point Dc
by using the property that at Dc the mutual information
between A and B becomes zero as they become discon-
nected. This behavior for IðA∶BÞ and EW is shown in
Figs. 1 and 2 for both low and high temperature cases.
We observe that EW always satisfies the property
EW > 1

2
IðA∶BÞ. We then discuss the property of informa-

tion spreading by computing the Butterfly velocity. We
observe that the computed expression of butterfly velocity
explicitly depends on the temperature of the dual field
theory. We then compute the HSC by considering again a
single striplike subsystem. The complexity for mixed state
is computed by following the concept of mutual complexity
ΔC. We have used the HSC conjecture to compute the ΔC
for both BTZ black hole and hyperscaling violating
geometry. We have studied the mutual complexity by

considering two different setups. First, we consider two
disjoint subsystems A and B of width l, separated by a
length x on the boundary Cauchy slice σ. Computation of
ΔC in this setup probes rate of complexification of these
two subsystems when we consider correlation (both
classical and quantum) between them. Next we consider
a single subsystem A in such a way that Ac ¼ B and
A ∩ B ¼ 0. We then measure the mutual complexity
between a subsystem A and the full system A ∪ Ac. We
observe that the computed result of mutual complexity is
superadditive, that is ΔC < 0. This in turn means that the
complexity of the state corresponding to the full system is
greater than the sum of the complexities of the states in the
two subsystems. We observe that for BTZ black hole ΔC is
independent of temperature however for hyperscaling
violating solution it contains a temperature independent
term as well as a temperature dependent term. It is to be
kept in mind that this nature of ΔC is observed for the HSC
conjecture and similarly one can use “Complexity=Action”
conjecture [47,78] or “CV2.0” conjecture to compute ΔC
in this context [49].
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APPENDIX: EXPLICIT EXPRESSIONS OF THE CONSTANTS APPEARING IN THE TEXT

In this Appendix, we give the expressions of quantities that appear in the main text. These are as follows:

Δ4 ¼ Δ3

0
B@ pffiffiffi

π
p

Γ
�
2pþ p

p−θ
2p

�
Γ
�
pþ p

p−θ
2p

�
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−

�
4π

pð1þ z
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1þp−θ

z

2ðpð1þ z
p−θÞ − pþ 1Þ
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