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Numerous experimental and theoretical results in liquids and plasmas suggest the presence of a critical
momentum at which the shear diffusion mode collides with a nonhydrodynamic relaxation mode, giving
rise to propagating shear waves. This phenomenon, labeled “k-gap,” could explain the surprising
identification of a low-frequency elastic behavior in confined liquids. More recently, a formal study of
the perturbative hydrodynamic expansion showed that critical points in complex space, such as the
aforementioned k-gap, determine the radius of convergence of linear hydrodynamics—its regime of
applicability. In this work, we combine the two new concepts, and we study the radius of convergence of
linear hydrodynamics in “real liquids” by using several data from simulations and experiments. We
generically show that the radius of convergence increases with temperature and it surprisingly decreases
with the electromagnetic interactions coupling. More importantly, for all the systems considered, we find
that such a radius is set by the Wigner–Seitz radius—the characteristic interatomic distance of the liquid,
which provides a natural microscopic bound.

DOI: 10.1103/PhysRevD.103.086001

I. INTRODUCTION

“Πα´ νταρϵι”—Everything flows. Hydrodynamics is an
effective field theory (EFT) formulated as a perturbative
expansion in spatial and time gradients. It governs the
dynamics of conserved quantities which in Fourier space
can be constructed as an infinite expansion in frequency ω
and momentum k—from slow processes and large scales to
fast dynamics and short lengths. It applies to the most
disparate systems, from liquids [1] and solids [2] to flocks
[3], crowds [4], and even financial markets [5]. As in every
EFT, the microscopic physics is hidden in an infinite set of
unknown coefficients since it is ”irrelevant” (in the
renormalization group sense) in the low energy regime
of interest, where the EFT applies.
In this broad sense, we only assume the existence of local

thermodynamic equilibrium and of small (or, rather, slow)
fluctuations around it, whose dynamics is indeed described
by hydrodynamics. Here, all the questions lie behind the

words “small” and “slow” and their precise definitions and
meanings.
In its linearized version, hydrodynamics is described by

a finite set of hydrodynamic modes, which can be obtained
from the knowledge of the conservation equations and the
constitutive relations. These modes display dispersion
relations which satisfy the requirement

lim
k→0

ωiðkÞ ¼ 0: ð1Þ

Typical examples are diffusive modes ω ¼ −iDk2 and
propagating sound modes ω ¼ �vk − iΓk2. More broadly,
every hydrodynamic mode obeys a dispersion relation,

ωðiÞðkÞ ¼
X∞
n¼1

αðiÞn kn; ð2Þ

where ω ∈ C and k ∈ R. These modes are practically
obtained from an eigenvalues equation of the form

YN
j¼1

ðω − ωðjÞðkÞÞ≡ Fðω; k2Þ ¼ 0; ð3Þ

which in general not only contains hydrodynamic modes
but nonhydrodynamics1 ones as well.
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By staring at Eq. (2), one could immediately ask if such
a perturbative series is convergent and if yes which is its
radius of convergence. This is tantamount to asking what
is the radius of convergence of linearized hydrody-
namics (in momentum space)—its regime of applicability.2

Reference [8] and later on, in a more complete form,
Refs. [9,10] suggested that in order to answer such question,
one has to formally extend the functionFðω; k2Þ in complex
momentum space and treat it as a complex algebraic curve.
In this language, series like Eq. (2) are known as Puiseux
series, and their radius of convergence is fundamentally
connected to the so-called critical points fωc; kcg—points
at which

Fðωc; k2cÞ ¼ 0;
∂Fðωc; k2cÞ

∂ω ¼ 0; ð4Þ

for both ωc; k2c ∈ C. These critical points signal ”irregular-
ities” in the algebraic curve, and they are related to
quasinormal modes (QNMs)3 crossing. The radius of con-
vergenceR of the hydrodynamic expansion is then set by the
distance to the first of these critical points:

R≡ jkcj: ð5Þ

Moreover, the radius of convergence is intimately connected
to the existence of nonhydrodynamic excitations and their
interactions with the hydrodynamics modes.
This mathematical machinery is extremely elegant but

also rather abstract and hard to digest. So far, it has been
applied only to few holographic models [12,13] whose
relevance for more realistic situations is at least disputable.
In this work, we address the question of the regime of
applicability of hydrodynamics in “real” liquids, and in
particularly we ask the following question: given a specific
liquid, until which length scale are we allowed to trust the
hydrodynamic approximation? This question can be
rephrased as follows: “Which is the physical (and not
mathematical) scale setting the breakdown of the hydro-
dynamic expansion?” A naive answer would be that
hydrodynamics is a good description of a liquid as far
as the full system can be seen as a continuum and not as a
set of molecules/particles interacting with each others.
Technically, the failure of hydrodynamics is related to
the intrusion of nonhydrodynamic modes which cannot be
neglected anymore.
Combining the mathematical methods of Refs. [9,10]

with data from experiments and molecular dynamics (MD)
simulations, we will indeed show that the limiting length

scale for the hydrodynamic framework is given by an Oð1Þ
fraction of the intermolecular distance, given formally by
the size ofWigner-Seitz cell a. Wewill also discuss how the
regime of applicability depends on the temperature T and
on the interactions strength. As we will discuss in detail, the
reinterpretation of the available data will lead us to confirm
some intuitive physical arguments but also to new and
unexpected findings such as the fact that hydrodynamics
does not work better at strong electromagnetic coupling
(as always advertised).

II. CONVERGENCE OF LINEAR
HYDRODYNAMICS IN LIQUIDS

For centuries, the presence of low-frequency propagating
shear waves (i.e., transverse phonons) has been considered
the fundamental criterion to distinguish solids from liquids.
Nevertheless, in the last decade, this definition has been
challenged by several experiments observing the presence
of shear waves in confined liquids at small frequency [14]
and corresponding solidlike elastic effects [15,16] (see also
Ref. [17]). This phenomenon indicates that the difference
between solids and liquids is only quantitative and it is
measured by the relaxation time τ—the average time for
molecules rearrangement. Within Maxwell theory, such a
timescale is simply τ≡ η=G with η the shear viscosity and
G the shear elastic modulus. It follows that in a solid
τ ¼ ∞—molecules do not rearrange but just oscillate
around their equilibrium positions. From a theoretical point
of view, this program goes under the name of Maxwell
interpolation, and its main result is that the dynamics of
shear waves in a fluid is governed by the simple equation

ω2 þ iω=τ − v2k2 ¼ 0; ð6Þ

which is known for historical reason as the telegraph
equation. Here, v is the asymptotic speed of the shear
waves, dictated by the elastic modulus. Solving Eq. (6), one
finds a couple of modes,

ω ¼ −
i
2τ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2 −

1

4τ2

r
ð7Þ

and the existence of a critical momentum kg, labeled as k-
gap, at which transverse waves start to propagate
(Reω ≠ 0). This mechanism appears in several physical
contexts; we refer the reader to Ref. [18] for a complete
review of them.
The appearance of propagating waves for k > kg is the

consequence of the collision between the shear diffusion
mode and a nonhydrodynamic excitation, which happens
exactly at k ¼ kg (see Fig. 1). Given Eq. (6), it is
straightforward to apply the methods of Refs. [9,10] and
determine the critical point of the corresponding algebraic
curve using Eq. (4). One immediately obtains that
ωc ¼ −i=2τ and more importantly that

2In this work, we will not consider the question of convergence
in real space and for the full nonlinear dynamics. For that, see for
example Ref. [6] and specially Ref. [7].

3By these, we refer simply to all modes with dispersion
relation ωðkÞ with k ∈ R. In other words, QNMs are all the
excitations of a specific system [11].
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R≡ jkcj ¼
1

2vτ
¼ kg: ð8Þ

This result is confirmed by explicitly computing the set of
algebraic curves in the complex plane for complex momen-
tum (see Fig. 2). Notice that this already implies

jωcjτ ¼
1

2
; ð9Þ

meaning that linearized hydrodynamics breaks down for a
timescale shorter than twice the intrinsic relaxation time.
In summary, in realistic liquids, in which the dynamics of

shear waves is well described by the k-gap equation (6),
hydrodynamics applies from large distances until a ”micro-
scopic” length scale given by the inverse of the k-gap
momentum L≡ k−1g .
Before proceeding, it is important to discuss the assump-

tions behind the telegraph equation (6) and its validity.
Clearly, this quadratic equation is a good description of the
low energy dynamics only when the system displays a
separation of scales between the two lower excitations
considered in Eq. (6) and the rest of the modes [i.e., higher
order corrections in (6)]. This depends a priori on the
microscopic details of the system, and it can be for instance
achieved whenever the relaxation time τ is parametrically
long (e.g., in presence of a weakly broken symmetry) and
the quasihydrodynamics description of Ref. [19] is valid.
Two more comments are in order:
(i) In our analysis, we do not rely at any time on the

specific relation given by the telegraph equation kg ¼
1=ð2vτÞ. Higher momentum corrections obviously modify
such expression; nonetheless, the radius of convergence
would still be given by the collision point and well
approximated by the value at which the real part of the
dispersion relation becomes nonzero.
(ii) The numerical dispersion relations from which the

data presented are extracted are very well fitted by the
square-root k-gap expression coming from Eq. (6), at least
in the vicinity of the critical momentum of interest. This is
an a posteriori proof that the potentially dangerous higher
order corrections are indeed negligible and that higher
modes do not participate in this dynamics. In summary,
within the regimes discussed, our analysis is expected to be
robust, independent of the validity of the simplex Maxwell
model and affected by higher order corrections only in a
minor way.

III. DATA FROM EXPERIMENTS
AND SIMULATIONS

The validity of the k-gap equation (6) to describe the
shear dynamics in liquids has been extensively corrobo-
rated by several MD simulations and experiments (EXP) in
two-dimensional (2D) and three-dimensional (3D) liquids
and plasmas [20–29]. The dispersion relation of the trans-
verse waves is usually extracted from the transverse current
correlation function hJð−k; tÞJðk; 0Þi and within the
numerical/experimental errors is well fitted by

Reω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2 −

1

4τ2

r
for k > kg: ð10Þ

It is therefore obvious how to extract the critical momentum
from the data.

FIG. 1. The lowest collective modes in the transverse sector of a
liquid, following from the k-gap equation (6). The real part of the
dispersion relation is displayed with a dashed line, and the
imaginary is displayed with a solid line. We set v ¼ τ ¼ 1 for
which the cutoff momentum is kg ¼ 0.5.

FIG. 2. The complex curves corresponding to Eq. (6) for
complex momentum k ¼ jkjeiθ with θ ∈ ½0; 2π� and varying
the modulus jkj. The magenta curve corresponds to the critical
momentum jkcj ¼ 0.5. We set v ¼ τ ¼ 1.
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Unfortunately, the critical point determining the radius of
convergence in the longitudinal sector is not located at real
values of the momentum k. For this reason, we are not in
the position to complete this analysis including the longi-
tudinal sector. To the best of our knowledge, it is at the
moment impossible to obtain data for complex momentum
(and complex frequency). Moreover, a complete under-
standing of the longitudinal sound dynamics in liquids
(e.g., the “positive sound dispersion” phenomenon [30]),
analogous to the k-gap phenomenon for shear waves, is still
elusive. A priori, one cannot determine whether the con-
straint on convergence coming from the longitudinal sector
would be more stringent than the one derived in this work.
Nevertheless, from a simple physical argument, one would
expect both scales to be controlled by the only microscopic
length scale in liquids—the intermolecular distance.
A fundamental parameter, both in the simulations and in

the experiments, is given by the intermolecular distance a,
which is extracted from the position of the first maximum
in the pair distribution function. Technically, this scale

corresponds to the Wigner-Seitz radius a ¼ ð2ðD−1Þ
D nÞ−1=D,

where n is the number density and D is the number of
spatial dimensions. In Table I, we list the value of the
product kca for a large number of 2D and 3D liquids and
plasma, and for all the systems considered, we do find that

kca ≈Oð1Þ: ð11Þ

This result robustly indicates that the radius of convergence
of hydrodynamics is set by the intermolecular distance.4

Moreover, it is in agreement with the naive idea that
hydrodynamics applies up to the scale at which you can
resolve that the continuum of the liquid is actually formed
by a collection of particles. It is important to notice that the
relation (11) is highly nontrivial since the Wigner-Seitz
radius can vary from Å (10−10 m) for most of the fluids to
millimeter scale in dusty plasmas (see for example
Ref. [23]).
Interestingly, the critical momentum for quark gluon

plasma was estimated in Ref. [31] around k−1c ≈ 0.15 fm.
Assuming an interparton distance of the order of a ≈
0.5 fm [32], we again obtain a value kca ¼ Oð1Þ. This
fact is reminiscent of the universality found in the values of
the kinematic viscosity in Ref. [33]. As a comment, it
would be interesting to understand which quantity plays the
role of the microscopic intermolecular scale a in a liquid
which appears to be strongly coupled at all energy scales
(if it exists).

Given the abundance of available data, we can go one step
further and investigate the temperature dependence of the
hydrodynamic convergence radius. In Fig. 3, we have
plotted the data for nine different liquids in a large range
of temperatures. In all the cases, the regime of applicability
increases with temperature, and it is consistent with the idea
that kg ∼ 1=vτ and τ decreases monotonically with temper-
ature (in standard liquids following the well-known
Arrhenius law). It also connects with the idea that at T¼0
(or equivalently τ ¼ ∞) hydrodynamics is not applicable.5

Finally, using the data for Coulomb fluids and plasmas,
we can also investigate the radius of convergence in terms
of the effective coupling parameter,

Γ≡ Q2

4πϵ0akBT
; ð12Þ

which determines the strength of the Coulomb interactions
in the plasma. Here, Q is the charge, and ϵ0 is the dielectric
constant. The data from simulations universally show (see
Fig. 4) a powerlike decrease of the critical momentum in
function of Γ, which is further confirmed by experimental
data [23]. The dusty plasma considered is a suspension of
highly charged microsize particles which repel each others
via a nearly Coulomb potential,

UðrÞ ¼ Q
4πϵ0r

e−r=λD; ð13Þ

in which the exponential correction takes into account the
screening effects via the screening length λD. The results
therefore demonstrate that stronger Coulomb repulsion

TABLE I. A summary of the available data for the momentum
cutoff of shear waves kc in liquids and plasma. The interatomic
distance is defined as a.

Liquid kca

2D Yukawa (MD) [20] 0.25
Dusty plasma (MD) [21,22] 0.3–1.2
2D Yukawa (EXP) [23] 0.16–0.31
Liquid Fe (EXP) [24,25] 0.3
Liquid Cu (EXP) [24,25] 0.4
Liquid Zn (EXP) [24,25] 0.3
3D Lennard-Jones fluid (MD) [26] 0.2–0.7
Liquid Fe (MD) [26] 0.2–0.7
IPL8-IPL12 fluid (MD) [26] 0.2–0.7
Liquid Hg (MD) [26] 0.15–0.55
Supercritical Ar (MD) [27] 0.05–0.8
Subcritical liquid Ar (MD) [27] 0.2–0.7
Supercritical CO2 [27] 0.1–0.5
Liquid Ga (EXP, MD) [28] 0.25–0.6
2D Coulomb classical fluids (MD) [29] 0.3–2
Quark gluon plasma [31] 3.3

4In principle, the critical scale kc could be pushed all the way
down to zero by achieving a very large relaxation time τ (i.e., in
glasses or solids). Nevertheless, in that situation, the hydro-
dynamic window ωτ ≪ 1 would shrink completely, and therefore
hydrodynamics would not be applicable at all. We thank Kostya
Trachenko for pointing this out.

5This follows simply by the violation of the requirements
ω=T ≪ 1 or ωτ ≪ 1.
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decreases the regime of applicability of hydrodynamics.
This observation seems to contradict the common wisdom
that hydrodynamics works better for strongly coupled
systems in which the mean free path becomes smaller
(see for example Fig. 4 in Ref. [31] and Appendices A and
B). Nevertheless, it is important to notice that the coupling
therein refers to the nuclear interactions—the strength of
the bound states [corresponding to the SUðNÞ gauge group]
—and not to the intermolecular Coulomb force.6 Therefore,
no evident discordance is present.

IV. CONCLUSIONS

In this work, we have combined the theoretical methods
proposed by Refs. [9,10] with a large set of data from
molecular dynamics simulations and experiments in 2D
and 3D liquids and plasmas to determine the regime of
applicability of hydrodynamics in realistic systems—the
hydrodynamic convergence radius. Our main result is that
the convergence radius is always set in terms of the
intermolecular distance, namely the length scale at which
one can resolve the independent set of particles within the
fluid continuum.
Moreover, the data indicate that the regime of validity of

hydrodynamics increases with the temperature T and
decreases with the effective electromagnetic coupling
parameter Γ. This trend is totally unexpected and against
the usual (nevertheless never demonstrated) slogan that
“hydrodynamics works better at strong coupling.” This
point definitely deserves further investigation.
Interestingly, the critical momentum for plasmon modes7

in Dirac fluids has been recently computed in Ref. [35], and
it reads

kc ¼
τV

4vτ2c;1
; ð14Þ

where τc;1 is the relaxation time, v is the electrons group
velocity, and τV is the timescale characterizing electrostatic
interaction. We are planning to perform a more detailed
comparison between Eq. (14) and our results in the near
future.
Taking into account the fundamental role of nonhydro-

dynamic modes, it would be extremely helpful to build
experimental setups able to pinpoint them on the lines of
Ref. [36]. Moreover, it would be interesting to understand
which are the experimental and physical consequences of
the nonconvergence of the hydrodynamic series in realistic
systems.8

Finally, the k-gap dynamics (6) universally appears in the
context of diffusive Goldstone bosons [37,38] in dissipative
systems (e.g., in quasicrystals [39,40]). It would be
interesting to connect such mechanism with the results
of this paper.
In conclusion, given the extremely wide usage of hydro-

dynamic methods, it is mandatory to understand until
which length scale those can be trusted. In this work,
we provided a direct and pragmatic answer to this question
in a large set of realistic liquids and plasmas. We hope that
our results will boost the efforts to deeply understand
hydrodynamics and its regime of applicability and to
connect more closely theory with experiments.

FIG. 3. The dimensionless combination kca with kc ¼ kg
determining the radius of convergence and a the intermolecular
characteristic distance. Temperature dependence for IPL8 fluid
(black) [26], IPL12 fluid (gray) [26], liquid supercritical argon
sAr (yellow) [27], supercritical CO2 (green) [27], supercritical
argon sAR (brown) [27], liquid Ga (orange) [28], liquid Hg (red)
[26], liquid Fe ρ ¼ 8 gm=cm3 (purple) [26], and liquid Fe
ρ ¼ 10 g=cm3 (blue) [26].

FIG. 4. The dimensionless combination kca with kc ¼ kg
determining the radius of convergence and a the intermolecular
characteristic distance. The empty squares indicate data from MD
simulations taken from Refs. [21,25,29]. The filled squares are
experimental data from Ref. [23]. See also Ref. [34] for a similar
collection of data.

6We thanks Saso Grozdanov for suggesting this point.

7Plasmons modes are not QNMs, but they are solution of the
equation ϵðω; kÞ where ϵ is the dielectric constant. The latter can
be taken as our abstract function Fðω; k2Þ in (4).

8We thank Egor Kiselev for suggesting this point.
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APPENDIX A: HOLOGRAPHIC EXAMPLES

A common playground where the k-gap equation (6)
appears is in the context of holographic models with
higher-from global symmetries [19,41–43]. These models
are used to described both magneto-hydrodynamics in
charged plasmas and the elasto-dynamics in viscoelastic
media. In the first scenario, the emergent propagating
degree of freedom at k ¼ kg is the photon. In the neutral
plasma approximation, the corresponding critical momen-
tum is given in terms of [44]

kc ≈
πT

2 logðM=πTÞ ; ðA1Þ

where T is the temperature and M is an UV cutoff of the
theory.
In the second scenario, the emergent mode is a propa-

gating phonon and the critical momentum reads [45]

kc¼8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4

ð3M−4πTÞð27M−2πTð18þ ffiffiffi
3

p
π−9 logð3ÞÞÞ

s
;

ðA2Þ

where the same notations are used. It is simple to see that in
both cases the critical momentum, determining the radius
of convergence of hydrodynamics, grows monotonically
with temperature independently of the value of the UV
cutoff M as shown in Fig. 5.
Another situation where the k-gap equation (6) is at work

is in models with dynamical Coulomb interactions and
emergent plasmonic modes [46–48]. In those models, it is
possible to obtain numerically the dispersion relations in
function of the electromagnetic coupling λ. The numerical
results are shown in Fig. 6 and they clearly indicate a
power-law fall-off of the critical momentum in function of
λ. This is in agreement with the data obtained from 2D
plasmas and presented in the main text (see Fig. 4) under
identifying λ with Γ.
Finally, a well-known place where the k-gap appears

is in the Israel-Stewart theory for linearised relativistic
hydrodynamics [49]. In this model, the critical momentum
is given by

kc ¼
1ffiffiffiffiffiffiffiffi
4Dτ

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵþ p
4ητπ

r
: ðA3Þ

The gravity dual of the Israel-Stewart theory is provided by
a Gauss-Bonnet model [19], where the k-gap momentum
reads:

kc ¼ −
ffiffiffi
2

p
πT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− λGB
γðγþ2Þþ2 logð 2

γþ1
Þ−3

q
λGB

; ðA4Þ

with γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λGB

p
and λGB ∈ ½−∞; 1=4�. From Eq. (A4)

two facts are evident. (I) The critical momentum grows
linearly with temperature in agreement with the data shown
in Fig. 3. (II) The critical momentum decreases by
increasing the value of the Gauss-Bonnet coupling on
the negative axes. Given that such direction corresponds
to decrease the coupling of the dual field theory from
infinity, the results shown in Fig. 7 suggest that

FIG. 5. The critical momentum in the higher-form global
symmetries holographic models. The formulas are taken from
[19,42] for the photon propagator and from [43] for the
viscoelastic model.

FIG. 6. The critical momentum in function of the electromag-
netic coupling λ in the holographic model of [47].
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hydrodynamics works better at strong coupling. This out-
come is in agreement with [31]. Notice that the disagree-
ment with the behavior with respect to Γ is certainly
puzzling but it does not constitute a discordance since λ
refers to the SUðNÞ coupling while Γ to the inter-molecular
Coulomb potential.

APPENDIX B: THE TELEGRAPH

As explained in the main text, Eq. (6) is also known as
the telegrapher equation and it was first written by Oliver
Heaviside in the attempt of studying the dynamics of
transmission lines. In particular, such equation comes from
the analysis of a specific circuit displayed in Fig. 8, where
R, L, G, C are respectively a resistance, an inductance, a
conductance and a capacitance. In such a configuration, the
equation for the voltage v across the piece of wire at
position x at time t is given by:

LC
∂2v
∂t2 þ ðLCþ RGÞ ∂v∂t þ RGv ¼ ∂2v

∂x2 ; ðB1Þ

which is a generalized form of Eq. (6) with the presence of
an extra mass term (vanishing for either R ¼ 0 or G ¼ 0).
In any case, the solution enjoys very similar properties and
in particular the presence of a critical momentum defined as

kc ¼
jGL − CRj
2

ffiffiffiffiffiffiffi
CL

p : ðB2Þ

Interestingly, using some data of telegraph wires for
transmissions at low frequency reported in [50], one
obtains:

kc ≈ 0.79 Km−1; ðB3Þ
which means that the radius of convergence of hydro-
dynamics in a telegraph wire is about L ≈ 1.26 Km!
Moreover, one could easily extract the relaxation time:

τ ¼ CL
GLþ CR

≈ 10−6 s ðB4Þ
which determines the timescale at which hydro fails. Notice
that obviously:

1

kcτ
≈ 3 × 108 m=s≡ c; ðB5Þ

i.e., the speed of light—the speed of propagation of
electromagnetic waves inside the transmission wire.
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