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The requirement of diffeomorphism symmetry for the target space can lead to anomalous commutators
for the energy-momentum tensor for sigma models and for fluid dynamics, if certain topological terms are
added to the action. We analyze several examples. A particular topological term is shown to lead to the
known effective hydrodynamics of a dense collection of vortices, i.e., the vortex fluid theory in 2þ 1

dimensions. The possibility of a similar vortex fluid in 3þ 1 dimensions, as well as a fluid of knots and
links, with possible extended diffeomorphism algebras is also discussed.
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I. INTRODUCTION

The components of the energy-momentum tensor in fluid
dynamics or in a field theory will obey commutation rules
which express the fact that they are the generators of
diffeomorphisms. Anomalies in diffeomorphism sym-
metries will be reflected, in a Hamiltonian formulation
of the theory, as anomalous commutators. Although we
generally seek to avoid such anomalies for reasons of
unitarity, the following more nuanced situation can arise.
The fields or fluid variables we are considering are maps
from spacetime, denoted as M, into a target manifold M.
As is well known in the context of sigma models, the choice
of local coordinates on M should not affect physical
results, such as the S-matrix. In other words, field rede-
finitions via diffeomorphisms of M are possible. It is then
possible that there are certain types of topological terms
which can be included in the action and which can create an
incompatibility between diffeomorphisms in spacetime M
and on the target space M. This feature can then be
manifest as anomalous commutation rules for the energy-
momentum tensor. Such topological terms are the subject
of this paper.
The immediate motivation comes from the work of

Wiegmann, and Wiegmann and Abanov, who considered
vortices in a superfluid, and for the quantum Hall system, in
2þ 1 dimensions [1]. In a situation with a large number of
vortices, it is possible to consider an effective hydro-
dynamics for them. In other words, each vortex can be

viewed as a point particle and a fluid with such constituents
is obtained. This fluid is different from the underlying fluid
which produced the vortices in the first place. The authors
of [1] showed that the commutation rules for the energy-
momentum tensor for the vortex fluid has anomalous terms.
We may recall that anomalous commutators can be viewed
as 2-cocycle terms obtained via the descent equations from
an index density in two higher dimensions, and hence, they
are closely tied to the existence of gravitational anomalies
[2]. Since there are no purely gravitational anomalies in
2þ 1 dimensions [3], how is it possible to have anomalous
commutators? Could they arise from the incompatibility
mentioned above?
There is also a larger context for our analysis inviewof the

recent resurgence of interest in fluid dynamics. Studies of the
behavior of a quantum Hall droplet as an incompressible
fluid with the possibility of nondissipative viscosity in 2þ 1
dimensions [4] and the holographic fluid-gravity correspon-
dence in the AdS/CFT framework [5] have been two major
tracks for ongoing research. Added to this is the fact that a
formalism for non-Abelian fluid dynamics incorporating
anomalous symmetries [6] is clearly the natural framework
for interesting physical phenomena such as the chiral
magnetic effect and its variants [7]. And, of course, the
fluid version of theWess-Zumino term as an effective action
for anomalies is the classic example of a topological term
which can influence the dynamics of a fluid [8,9]. In the
present analysis, wewill focus on a slightly different class of
topological terms. We will consider terms which can lead to
anomalous commutators as well as terms which can couple
different fluids. Notice that the example of the vortex fluid
may be considered as a two-fluid system with the funda-
mental underlying fluid and the vortex fluid, so it should be
interesting to analyze systems with independent dynamics
for each component except for coupling via topologi-
cal terms.
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A useful observation is that anomalous commutators
define 2-cocycles in the operator algebra [3]. For the equal-
time algebra for a theory in 3þ 1 dimensions, we should
thus consider a five-form which is closed but not exact.
Locally such a five-form can be written as the exterior
derivative of a four-form Γ. This can be added to the action,
and can lead to anomalous commutators. Thus, in 3þ 1
dimensions, our strategy will be to consider sigma models
or fluid variables for which we can identify nontrivial
five-forms. For 2þ 1 dimensions, we will need nontrivial
four-forms.
This paper is organized as follows. In Sec. II, we analyze

the sigma model with target space CP2, showing how the
extended version of the diffeomorphism algebra arises
and how it is connected to diffeomorphism of the target
space. In Sec. III, we consider various types of topological
terms which can be added to the standard action for fluid
dynamics. This is done in terms of a group-theoretic
formulation of the Clebsch variables, which helps to
simplify the analysis. Section IV is devoted to the case
of one of the topological terms and the corresponding
extended version of the diffeomorphism algebra is
obtained. In Sec. V., we carry out the necessary comparison
to identify this case with the vortex fluid work of [1] in
2þ 1 dimensions, and also show that a special case yields a
central extension identified in [10] for 3þ 1 dimensions. In
Sec. VI, we analyze the other topological term, designated
I2, and argue that the extended algebra obtained may apply
for an effective hydrodynamics of knots and links in 3þ 1
dimensions. The paper concludes with a short discussion.

II. A SIGMA MODEL ON CP2

We will start with a sigma model in 2þ 1 dimensions
with the target space M as the complex projective space
CP2. This will serve as a concrete example which sets the
paradigm for later discussion. The spaceCP2 has nontrivial
H4 and a generating element of this can be taken as Ω ∧ Ω,
where Ω is the Kähler two-form. We can think of CP2 as
SUð3Þ=Uð2Þ and use a group element U ∈ SUð3Þ with the
identification U ∼Uh, h ∈ Uð2Þ ⊂ SUð3Þ to coordinatize
the manifold. In a 3 × 3 matrix representation of U, the
Kähler one-form is given by

A¼ i
2ffiffiffi
3

p Trðt8U−1dUÞ; t8 ¼
1

2
ffiffiffi
3

p

2
64
1 0 0

0 1 0

0 0 −2

3
75: ð1Þ

Under U → Uh, A is not invariant, but transforms as

AðUhÞ ¼ AðUÞ − 1ffiffiffi
3

p dθ8 ð2Þ

where h ¼ expðit8θ8 þ itiθiÞ, i ¼ 1; 2; 3. Thus A is not a
one-form on the coset SUð3Þ=Uð2Þ, but Kähler two-form

Ω ¼ dA is invariant under U → Uh and is well defined on
CP2. One can introduce local coordinates for the manifold
by writing

Ui3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z̄ · z
p ðz1; z2; 1Þ: ð3Þ

It is also useful to consider real coordinates defined by, say,
z1 ¼ φ1 þ iφ2, z2 ¼ φ3 þ iφ4. In terms of these paramet-
rizations, the one-form A can be written as

A¼−
i
2

z̄ ·dz−z ·dz̄
ð1þ z̄ ·zÞ ¼−Jab

φadφb

ð1þφ2Þ ;

J12¼−J21¼1; J34¼−J43¼1; all other Jab¼0: ð4Þ

The product Ω ∧ Ω can be written as dΓ where Γ¼A∧dA.
WhileΩ ∧ Ω is well defined onCP2, Γ does not descend to
the coset space since A is not invariant under U → Uh. Γ
will be the topological term we add to the action. Thus the
theory we are considering is defined by the action

S ¼ 1

2

Z
d3xGab∂μφ

a∂μφb þ k
Z

Γ ð5Þ

where k is a constant and Gab is the metric tensor for the
target space CP2. Notice that Γ shifts by a total derivative
under U → Uh, so that the bulk action is well defined with
appropriate boundary conditions. We take the fields to
vanish at spatial infinity. The surface terms on equal-time
spatial slices do not necessarily vanish and can lead to a
canonical transformation. In terms of the real coordinates
φa, Γ is given by

Γ ¼ 1

3
ϵabcd

φadφbdφcdφd

ð1þ φ2Þ2

¼ 1

3
ϵabcd

φa∂μφ
b∂νφ

c∂αφ
d

ð1þ φ2Þ2 dxμ ∧ dxν ∧ dxα: ð6Þ

The canonical momentum Πa can be read off from the
action as

d2xΠa ¼ d2xGab _φ
a − Γa; ð7Þ

Γa ¼ kϵabcd
φbdφcdφd

ð1þ φ2Þ2

¼ kϵabcd
φb∂iφ

c∂jφ
d

ð1þ φ2Þ2 dxi ∧ dxj: ð8Þ

(The differentials dx in Γa in this equation are for the spatial
coordinates only.)
The term Γ we have added is a differential form on

spacetime and is therefore independent of the spacetime
metric. Therefore it will not contribute to the energy-
momentum tensor. By considering the variation of the
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action with respect to the spacetime metric, we obtain the
energy-momentum tensor as

Tμν ¼ Gab∂μφ
a∂νφ

b − ημν
1

2
ðG∂φ∂φÞ: ð9Þ

The momentum density which can be identified as
the generator of spatial diffeomorphisms is given by
Ti0 ¼ Gab∂iφ

a _φb. The generator of the transformation
xi → xi þ ξi is thus given by

TðξÞ ¼
Z

ðξi∂iφ
aÞGab _φ

b ¼
Z

ðξi∂iφ
aÞðΠa þ ΓaÞ

¼
Z

ðξ · ∂φaÞ
�
−i

δ

δφa þ Γa

�
¼ −i

Z
ðξ · ∂φaÞDa;

Da ¼
�

δ

δφa þ iΓa

�
: ð10Þ

Da is a covariant derivative for the target space with Γa as
the gauge field.
It is now completely straightforward to calculate the

commutator of two such generators. We find

½TðξÞ; Tðξ0Þ� ¼ iTð½ξ; ξ0�Þ −
Z

ρaðxÞσbðyÞ½Da;Db� ð11Þ

where ½ξ; ξ0�i ¼ ξ · ∂ξ0i − ξ0 · ∂ξi, ρa ¼ ðξ · ∂φaÞ, and
σb ¼ ðξ0 · ∂φbÞ. We can think of Γa as a connection or
gauge field on the space of fields and hence the commutator
½Da;Db� is the field strength,

½Da;Db� ¼ i

�∂ΓbðyÞ
∂φaðxÞ −

∂ΓaðxÞ
∂φbðyÞ

�
≡ iF abðx; yÞ: ð12Þ

It is simpler to use the notation of differential forms for the
target space and write the connection as

A ¼
Z

Γaδφ
a ð13Þ

where δ denotes the exterior derivative for the space of
fields. What we need for the curvature (12) is thus δA. In
terms of Ω ¼ 1

2
Ωabdφadφb, we can write A as

A ¼ k
Z

½Aaδφ
aΩþ Ωklδφ

kdφlA�: ð14Þ

[We do not write the wedge sign any more to avoid too
much clutter; it is taken as understood. Notice that the
comparison of (13) and (14) gives another expression for
Γa as well.] To obtain the curvature, we may note the
following identities:

δðAaδφ
aÞ ¼ 1

2
Ωabδφ

aδφb;

δΩ ¼ dðΩklδφ
kdφlÞ;

δðΩklδφ
kdφlÞ ¼ −d

�
1

2
Ωklδφ

kδφl

�
;

δðAadφaÞ ¼ dðAaδφ
aÞ þ Ωabδφ

adφb: ð15Þ

Using these results we can calculate δA as

δA ¼ k
Z �

1

2
Ωabδφ

aδφbΩkldφkdφl

−Ωabδφ
adφbΩklδφ

kdφl

�
: ð16Þ

Some total derivatives in the integrand have been dropped
since they integrate to zero. We assume the boundary
conditions are such that this is the case. The second term on
the right-hand side of (11) can now be written as

−
Z

ρaðxÞσbðyÞ½Da;Db�

¼ −ik
Z �

1

2
Ωabρ

aσbΩkldφkdφl − 2Ωabρ
adφbΩklσ

kdφl

�

¼ −ikVρcVσcF ð17Þ

where the symbol Vρc denotes the interior contraction with
the functional vector field

Vρ ¼
Z

ρa
δ

δφa : ð18Þ

Explicitly, for a (functional) differential form F ¼R
1
2
Fabδφ

aδφb,

VρcF ¼
Z

ρa
δ

δφac
Z

1

2
Fabδφ

aδφb

¼ 1

2

Z
½Fabρ

aδφb − Fabδφ
aρb�

¼
Z

Fabρ
aδφb: ð19Þ

Consider now the differential four-form Ω2 on the target
space. We use contractions with Vρ and Vσ and write it as a
differential form on space by taking φa as functions of the
coordinates; i.e., we pull back the result to spatial manifold.
We can then easily check that

VρcVσcF ¼ VρcVσcðΩΩÞ: ð20Þ

We can now rewrite (11) for the commutator of the
generators of spatial diffeomorphisms as
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½TðξÞ; Tðξ0Þ� ¼ iTð½ξ; ξ0�Þ − ik
Z

VρcVσcðΩ2Þ: ð21Þ

The first term on the right-hand side is what is expected
from the fact that a diffeomorphism xi → xi þ ξi on a
space-dependent function f leads to the change

δf ¼ ξi
∂
∂xi fðxÞ: ð22Þ

The second term on the right-hand side of (21) shows that
the generators TðξÞ for the diffeomorphisms have anoma-
lous commutation rules, the anomaly being related to the
H4 element of the target space M. The definition of the
generator as in (10) also shows how this anomaly can be
avoided. Define

T ðξÞ¼TðξÞ−
Z

ðξ ·∂φaÞΓa ¼−i
Z

ðξ ·∂φaÞ δ

δφa : ð23Þ

It is then trivial to see that ½T ðξÞ; T ðξ0Þ� ¼ iT ð½ξ; ξ0�Þ,
with no anomalous terms. However, T is related to the
components of the energy-momentum tensor via the sub-
traction of the integral of ðξ · ∂φaÞΓa. Since Γa is not well
defined on CP2, as we have mentioned after (2), this
redefinition is problematic. In other words, A is a gauge
field on the space of field configurations and hence not
invariant under field redefinitions or target space diffeo-
morphisms. Thus, while the use of T ðξÞ will eliminate the
anomaly for diffeomorphisms of the spatial manifold,
we lose the freedom of field redefinitions or target space
diffeomorphisms.
This is the key result of this section. We can add to the

action a term
R
Aa _φ

a where A is the potential for an
element ofH4 (orHdþ1 for d-dimensional spacetime) of the
target space. This can lead to a conflict between diffeo-
morphisms of the base spatial manifold and the space of
field configurations, resulting in anomalous commutators.
In the next two sections, we will explore a similar structure
for fluids in 2þ 1 and 3þ 1 dimensions.

III. THE NATURE OF POSSIBLE
TOPOLOGICAL TERMS FOR FLUIDS

We start with fluids in 3þ 1 dimensions; the 2þ 1
dimensional case can be easily obtained by a simple
reduction.
In the classic Lagrange approach to fluid dynamics, one

considers a multiparticle system, where xiðz; tÞ denotes the
position of the zth particle at time t, where z is an element
of some indexing set labeling the particles. When the
number of particles is very large and a continuum approxi-
mation is meaningful, one chooses the initial positions of
the particles as the label for the particle. In other words,
xiðz; 0Þ ¼ zi. Thus xiðz; tÞmay be regarded as the image of
zi under a diffeomorphism parametrized by the time

coordinate t. The kinetic term in the action takes the usual
form

Skin ¼
1

2

Z
d3zρ0ðzÞ_xi _xi: ð24Þ

We take the particle mass to be 1 and ρ0ðzÞ gives the
number density of particles as a function of the fiducial
variables zi. The canonical one-form at the level of particles
is obviously given by

A ¼
Z

d3zρ0ðzÞviδxi ¼
Z

d3zρ0ðzÞ_xiδxi: ð25Þ

The use of the notation δxi rather than dxi signifies that this
is to be viewed as a one-form on the space of configura-
tions. If the helicity of the fluid system is fixed, then the
velocity admits the Clebsch parametrization

vi ¼ ∂iθ þ α∂iβ ð26Þ

for arbitrary functions θ, α, β. The canonical one-form, for
this parametrization, reduces to

A ¼
Z

d3zρ0ðzÞð∂iθþ α∂iβÞδxi ¼
Z

d3zρ0ðzÞðδθþ αδβÞ

¼
Z

d3xρðxÞðδθþ αδβÞ ð27Þ

where the density ρðxÞ, as a function of the x coordinates, is
defined by d3zρ0ðzÞ ¼ d3xρðxÞ. This shows that to obtain
the canonical one-form as in (27) we should take the term in
the action involving time derivatives to be

R
ρ_θ þ ρα _β.

A suitable action for fluid dynamics (in terms of the
Eulerian variables) is then

S½ρ; θ; α; β� ¼
Z

ρ_θ þ ρα _β −
�
1

2
ρv2 − V

�
: ð28Þ

Here we have also included a term corresponding to the
potential energy. This expression gives the action suitable
for the Clebsch parametrization with ðρ; θÞ, ðρα; βÞ forming
two sets of canonically conjugate variables. For more on
actions for fluids and the derivation of the standard fluid
equations of motion, including the emergence of the
convective derivative, from (28), see [6,11].
There is a group-theoretic version of the Clebsch para-

metrization which is also useful. Towards this, consider
the group SUð1; 1Þ. A typical element g may be para-
metrized as

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ūu

p
�
1 u

ū 1

��
eiθ=2 0

0 e−iθ=2

�
ð29Þ

where u is a complex variable. It is easy to verify that
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− iTrðσ3g−1dgÞ ¼ dθ þ αdβ;

α ¼ ūu
1 − ūu

; β ¼ ð−i=2Þ ln
�
u
ū

�
: ð30Þ

The variable θ corresponds to the compact direction, or
Uð1Þ subgroup generated by the Pauli matrix σ3; α and β
parametrize SUð1; 1Þ=Uð1Þ. The action (28) can be written
in terms of g as

S½Jμ; g� ¼ −i
Z

JμTrðσ3g−1∂μgÞ −
Z �

JiJi
2ρ

þ V
�

ð31Þ

where we denote J0 ¼ ρ. Ji can be eliminated by its
equation of motion and leads back to the form in (28).
[The action (31) is to be viewed as a functional of the
currents Jμ and the group element g. Upon elimination of
Ji, it becomes a functional of J0 ¼ ρ and g (i.e., α, β, θ) as
in (28).] It is also easy to make a relativistic generalization,
with the action given by

S ¼ −i
Z

JμTrðσ3g−1∂μgÞ − FðnÞ ð32Þ

where FðnÞ is a function of the variable n, which is defined
by JμJμ ¼ n2. The function FðnÞ will characterize the
fluid.1 We will not discuss this in any more detail, except to
note that the Ti0 component of the energy-momentum
tensor for (32) is given by

Ti0 ¼ ρð∂iθ þ α∂iβÞ: ð33Þ

Given that ðρ; θÞ, ðρα; βÞ are canonical pairs, we verify
easily that

½TðξÞ; Tðξ0Þ� ¼ iTð½ξ; ξ0�Þ; TðξÞ ¼
Z

ξiTi0: ð34Þ

Our aim is to consider topological terms which one can
add to the action (31), or (32), and which can potentially
lead to anomalous commutation rules for diffeomorphisms.
However, a comment is in order, before we move on. The
compact Uð1Þ direction of the SUð1; 1Þ may be a bit
puzzling, since the classical Clebsch parametrization does
not have a compactness requirement. Using (27), we get

½ρðfÞ;gðxÞ� ¼−igðxÞσ3
2
fðxÞ; ρðfÞ¼

Z
fðxÞρðxÞ: ð35Þ

This means that in the quantum theory

U†gU ¼ geiπσ3 ¼ −g ð36Þ

with U ¼ exp ½−2πi R ρ�. All observables involve even
powers of g, and so are invariant under the action of U.
Effectively, we can set U ¼ 1, giving

R
ρ ¼ N for some

integer N. This is equivalent to saying that the fluid is made
of particles with ρ being the number density. Since this is
what happens in reality, we regard the existence of a
compact direction as a good feature, justifying the use of
SUð1; 1Þ. [If the total vorticity is also quantized we should
use SUð2Þ in place of SUð1; 1Þ.]
Turning to possible topological terms, we consider

differential forms we can construct using g. Given
−iTrðσ3g−1dgÞ, we can construct the two-form

ω ¼ dð−iTrðσ3g−1dgÞÞ ¼ iTrðσ3ðg−1dgÞ2Þ: ð37Þ

The spatial components of this correspond to the vorticity
with the identification (30). Further, we have the three-form
−iTrðσ3g−1dgÞ ∧ ω, which is proportional to Trðg−1dgÞ3
for dimensional reasons. The integral of Trðg−1dgÞ3 is the
helicity of the fluid and is known to commute with all
observables if we use the standard commutation rules for a
fluid. Since ω ∧ ω is zero (for dimensional reasons), some
of the interesting topological terms we can construct using
g are as follows:
(1) I1 ¼

R
ω ∧ B, B ¼ two-form in 3þ 1, one-form in

2þ 1 dimensions;
(2) I2 ¼

R
Trðg−1dgÞ3 ∧ C, C ¼ one-form in 3þ 1,

zero-form in 2þ 1 dimensions;
(3) I3 ¼

R
Trðσ3g−1dgÞ ∧ Ω, Ω ¼ three-form in 3þ 1,

two-form inn 2þ 1 dimensions.
The first one, namely I1, is easy to dispose of. Since

ω ¼ dð−iTrðσ3g−1dgÞÞ, an integration by parts shows that
I1 is a surface term if B is a closed form. Thus it will not
affect the equations of motion or the canonical structure in
the bulk. We will assume boundary conditions such that the
surface term is zero. If B is not a closed form, it reduces to
I3, with Ω ¼ dB.
Turning to I2, notice that the variation of Trðg−1dgÞ3 is a

total derivative and hence I2 will not contribute to the
equations of motion if C is closed, i.e., dC ¼ 0. By
considering the term with time derivatives of g in I2, we
can see that its contribution to the canonical one-form is

ΔA ¼ −3
Z

Tr½g−1δgdðg−1dgÞ� ∧ C: ð38Þ

This leads to δðΔAÞ ¼ −3
R
d½ðg−1δgÞ2g−1dg� ∧ C, so

that, if C is closed, I2 does not contribute to the canonical
two-form either. (Again, we assume boundary conditions
where the surface term does not contribute.) In other words
ΔA is a flat connection on the space of configurations
fgðxÞg. While it does not affect the Poisson brackets of
observables, it does lead to a vacuum angle (via a term like
θI2), characterizing the state of the fluid in the quantum
theory.

1For a general discussion about using group-theoretic variables
for fluid dynamics, see [6,8].
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If C is not closed, we can have a nonzero δðΔAÞ. In this
case, other than an external field, a natural choice for C
would be something like Trðσ3h−1dhÞ, where h∈ðSUð1;1Þ
refers to another fluid. Thus I2 will be a topological term
coupling two fluids. However it is then of the form I3 with
Ω ¼ Trðh−1dhÞ3 if we further reverse the roles of the two
fluids with an exchange g ↔ h.
The interesting cases to emerge from this analysis are

thus (a) I3 with Ω external, (b) I2 with C external, with
dC ≠ 0, (c) I2 with C ∼ Trðσ3h−1dhÞ, which is also the
same as I3 with Ω ¼ Trðg−1dgÞ3 with an exchange of g and
h. We will now analyze these cases in some detail below.

IV. THE TERM I3 IN 3 + 1 AND
2+ 1 DIMENSIONS

We now consider a fluid where, in addition to the usual
terms, we add a term proportional to I3 in the action. Thus
the action is taken to be of the form

S¼−i
Z

ρTrðσ3g−1∂0gÞþ ik
Z

Trðσ3g−1dgÞ∧Ω−
Z

dtH:

ð39Þ

Here k is a constant andΩ is a three-form for fluids in 3þ 1
dimensions, and a two-form in 2þ 1 dimensions. IfΩ has a
time component, then g−1dg in the extra term will be a
spatial derivative and will not contribute to the canonical
structure. So, for our purpose, we will assume that Ω is a
three-form/two-form on the spatial manifold. Any time
components can be added to our analysis without affecting
the canonical structure which is the focus of our work. For
brevity we write

ρ̄ ¼ k

� 1
3!
ϵijkΩijk ð3þ 1 dimensionsÞ

1
2!
ϵijΩij ð2þ 1 dimensionsÞ : ð40Þ

[We are taking the dual ofΩ to get ρ̄, so that there should be
a factor of ðdet gμνÞ−1=2 in curved space, where gμν is the
metric tensor.] The action (39) can be written as

S ¼ −i
Z

ðρ − ρ̄ÞTrðσ3g−1∂0gÞ −
Z

dtH: ð41Þ

The canonical one-form and two-form are given by

A¼−i
Z

ðρ− ρ̄ÞTrðσ3g−1δgÞ;

δA¼−i
Z

δρTrðσ3g−1δgÞþ i
Z

ðρ− ρ̄ÞTrðσ3g−1δgg−1δgÞ:

ð42Þ

It is now straightforward to work out a number of Poisson
brackets. Consider a vector field LðθÞwhich corresponds to

left translations on g given by VLðθÞg ¼ −iθatag.
Contracting this vector field with δA, we find

VLðθÞcδA ¼ δ

�Z
ðρ − ρ̄ÞTrðσ3g−1θatagÞ

�
ð43Þ

which corresponds to the Poisson bracket relation

½LðθÞ; gðxÞ� ¼ iθaðxÞtagðxÞ;

LðθÞ ¼ −
Z

ðρ − ρ̄ÞTrðσ3g−1tagÞθa: ð44Þ

In a similar way, it is easy to obtain the relation

½ρðfÞ; gðxÞ� ¼ −igðxÞt3fðxÞ: ð45Þ

We now turn to spatial diffeomorphisms given by a vector
field Vξ defined by

Vξg ¼ ξi∂ig; Vξρ ¼ ∇ · ½ξðρ − ρ̄Þ�: ð46Þ

(We consider ρ̄ to be spatially constant for this.) The
contraction of this vector field with δA gives

VξcδA ¼ −δT ðξÞ;

T ðξÞ ¼ −i
Z

ðρ − ρ̄ÞTrðσ3g−1ξ · ∂gÞ

¼
Z

ðρ − ρ̄Þξivi; ð47Þ

where vi ¼ −iTrðσ3g−1∂igÞ is the fluid velocity as in (26).
T ðξÞ is thus the canonical generator of diffeomorphisms
and it obeys the Poisson bracket algebra

½T ðξÞ;T ðξ0Þ�¼T ð½ξ;ξ0�Þ; ½ξ;ξ0�i¼ ξ ·∂ξ0i−ξ0 ·∂ξi: ð48Þ

This algebra is as expected for diffeomorphisms. However,
if we define the energy-momentum tensor by varying the
action with respect to the metric, it has no contribution from
the topological term, and we find

TðξÞ ¼
Z

ξiTi0 ¼
Z

ρξivi ¼ −i
Z

ρTrðσ3g−1ξ · ∂gÞ

¼ T ðξÞ þ
Z

ρ̄ξivi: ð49Þ

From the Poisson bracket relations given above, we can
easily verify that

Z
ξ ·v

�
ðρ− ρ̄Þ;

Z
ξ0ivi

�
¼−

Z
ξ0 ·∂ðξ ·vÞ;

½viðxÞ;vjðyÞ�¼−
1

ρ− ρ̄
ð∂ivj−∂jviÞδðx−yÞ: ð50Þ
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Using these relations, the Poisson bracket algebra for TðξÞ
can be worked out as

½TðξÞ; Tðξ0Þ�

¼ Tð½ξ; ξ0�Þ −
Z �

ρρ̄

ρ − ρ̄

�
ξiξ0jð∂ivj − ∂jviÞ: ð51Þ

We see that the algebra for TðξÞ has an extension term
involving the density and the vorticity ωij ¼ ∂ivj − ∂jvi.
This extension is absent for T ðξÞ which is obtained by
adding the integral of −ρ̄ξ · v to TðξÞ. Since this extra term
is well defined on the space of field configurations, the
extension in the algebra (51) is not a true anomaly. To put
this another way, it is cohomologically trivial, since it can
be removed by a redefinition of the generators. So far this is
in keeping with the absence of gravitational anomalies in
3þ 1 and 2þ 1 dimensions.
However, we can consider a reduction of the algebra (51)

to the case of an incompressible fluid where we set ρ − ρ̄ to
some constant ρ0; i.e., we impose a constraint

ρ − ρ̄ − ρ0 ≈ 0: ð52Þ

In the canonical reduction, we need a conjugate constraint,
which may be taken as θ ≈ 0, where θ is the Clebsch
variable in (26) and (29). The phase space is reduced to the
set of all maps from space into SUð1; 1Þ=Uð1Þ. The fluid
velocity −iTrðσ3g1∂igÞ is not invariant under a shift of θ
and hence does not descend to the reduced space. The
addition of the integral of −ρ̄ξ · v to TðξÞ is not defined on
the reduced space and so the extension in (51) becomes a
true anomaly. This is very similar to what we found for the
sigma model in Sec. II.
Strictly speaking, we should also reduce the Poisson

bracket algebra to an algebra for Dirac brackets to see if
there is any change in the extension. But notice that the
Poisson bracket of TðξÞ with the constraint ðρ − ρ̄ − ρ0Þ
vanishes on the constrained space since

½TðξÞ;
Z

fðρ − ρ̄ − ρ0Þ�

¼
Z

ρξ · ∂f

¼
Z

ðρ − ρ̄ − ρ0Þξ · ∂f −
Z

fðρ̄þ ρ0Þ∇ · ξ

≈ 0 ð53Þ

for divergence-free vector fields ξi. (When we consider
incompressible fluids only diffeomorphisms by divergence-
free vector fields are meaningful.) As a result of this
relation, the Dirac bracket ½TðξÞ; Tðξ0Þ�� has the same
right-hand side as in (51).

V. PHYSICAL EXAMPLES OF THE I3 TERM

In this section we will consider specific physically
interesting cases for which the I3 topological term can
be used.

A. The vortex fluid in 2 + 1 dimensions

Vortices in a fluid are known to have many interesting
properties. A particularly noteworthy feature is that their
position variables in two spatial dimensions (or the two
transverse position variables in three dimensions) form a
canonically conjugate set, a result going back to Kirchhoff
[12]. Recently Wiegmann, and Wiegmann and Abanov
studied the hydrodynamic description of a large number of
vortices in 2þ 1 dimensions, in the physical contexts of
superfluids and the quantum Hall effect [1]. The dynamics
of this vortex fluid can be extracted from the Kirchhoff
description of individual vortices and the dynamics of the
underlying fluid. The number density to be used for the
vortex fluid is related via a constitutive-type equation to
the vorticity of the underlying fluid. A background overall
rotation is introduced to cancel the vorticity to a large
extent so that a separation of scales, with the underlying
fluid having fast dynamics and the vortex fluid as the
system of slow dynamics, is possible. Here we will not
discuss more details of how the vortex fluid dynamics is
extracted, for that the reader is referred to the papers cited,
but we will give the key results relevant to comparison with
our work.
In 2þ 1 dimensions, it is natural to use complex coor-

dinates z;z̄¼x1�ix2, with derivatives ∂;∂̄¼ 1
2
ð∂1∓ i∂2Þ.

The holomorphic component of the fluid velocity is taken as
u ¼ u1 − iu2. The algebra of various observables can be
summarized by the commutation rules

½uðxÞ; ρðyÞ� ¼ −i∂δðx − yÞ;

½uðxÞ; u†ðyÞ� ¼ −
2π

ν
δðx − yÞ; ð54Þ

where ν is a constant related to the strength Γ of the
individual vortices via ν ¼ 1=Γ. (It may also be interpreted
as the filling fraction in the context of the Hall effect.)
Diffeomorphisms are generated by the operators

P ¼ ρuþ 1

2ν
∂ρ; P† ¼ u†ρ −

i
2ν

∂̄ρ: ð55Þ

DefiningPðwÞ ¼ R
wP, P†ðwÞ ¼ R

w̄P†, with complex test
functions w, w̄, the commutation rule for P, P† can be
obtained from (54) as
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½PðwÞ; P†ðw0Þ� ¼ i
Z

ðw̄0∂̄wP − w∂w̄0P†Þ

þ
Z

w̄0w
�
iρð∂̄u − ∂u†Þ − 2π

ν
ρ2
�

þ 1

2ν

Z
ðw̄0∂̄w∂ρþ w∂w̄0∂̄ρ

þ ρðw∂̄∂w̄0 þ w̄0∂̄∂wÞÞ: ð56Þ

Further simplification of the right-hand side can be done
using the constitutive relation from [1]. It is given by

ið∂̄u − ∂u†Þ≡ ð∇ × uÞ ¼ 2π

ν
ðρ − ρ̄Þ ð57Þ

where ρ̄ ¼ νΩ=π, with Ω being the angular velocity of the
overall rotation. The commutation rule (56) now becomes

½PðwÞ; P†ðw0Þ� ¼ i
Z

ðw̄0∂̄wP − w∂w̄0P†Þ

−
2π

ν

Z
w̄0wρρ̄ −

1

ν

Z
∂̄w∂w̄0ρ: ð58Þ

In comparing this result with what was obtained in (51),
we first note that, in two spatial dimensions, we have the
freedom of adding to TðξÞ a term proportional to the
density, so that we can consider the more general quantity

T̃ðξÞ ¼ TðξÞ þ b
Z

ð∇ × ξÞρ ð59Þ

where b is a constant. This is essentially the same as the
addition of ∂ρ, ∂̄ρ terms in defining P, P† as in (55). The
Poisson algebra for T̃ðξÞ can be easily worked out from
(51) and the other relations given in the last section as

½T̃ðξÞ; T̃ðξ0Þ� ¼ T̃ð½ξ; ξ0�Þ −
Z �

ρρ̄

ρ − ρ̄

�
ωϵijξiξ

0
j

− b
Z

ρϵijð∂kξi∂kξ
0
j þ ∂iξk∂jξ

0
kÞ ð60Þ

where ω ¼ ∂1v2 − ∂2v1 is the two-dimensional vorticity.
We now introduce test functions w, w̄ via w; w̄ ¼ ξ1 � iξ2
so that

T̃ðξÞ ¼−
Z

ðwPþ w̄P†Þ;

P¼−
1

2
ðT̃01− iT̃02Þ; P† ¼−

1

2
ðT̃01þ iT̃02Þ: ð61Þ

It is a bit tedious but straightforward to write (60) in terms
of the complex test functions. We find

½PðwÞ; P†ðw0Þ� ¼ i
Z

ðw̄0∂̄wP − w∂w̄0P†Þ

þ 1

2

Z �
ρρ̄

ρ − ρ̄

�
ωw̄0wþ 2b

Z
ρ∂̄w∂w̄0:

ð62Þ

We have also converted our Poisson bracket relations to
commutators for operators by the appropriate multiplica-
tion by i, for ease of comparison. For us, the velocity of the
fluid obeys the commutation rule ½ρviðxÞ; ρðyÞ� ¼
iρ∂iδðx − yÞ. In comparing this with (54), we see that
we must make the identification u≡ u1 − iu2 ¼
− 1

2
ðv1 − iv2Þ, which leads to ∇ × u ¼ − 1

2
ω. The constit-

utive relation (57) in our notation is thus

ω ¼ −
4π

ν
ðρ − ρ̄Þ: ð63Þ

When this relation is used in (62), we see that we have exact
agreement with (58), with b ¼ − 1

2ν.
What we have shown in this subsection may be sum-

marized as follows. Consider the action

S¼−i
Z

ρTrðσ3g−1∂0gÞþ ik
Z

Trðσ3g−1dgÞ∧Ω−
Z

dtH

þ
Z

A0dt

�
iTr½σ3ðg−1dgÞ2�þ

4π

ν
ðρ− ρ̄Þ

�
ð64Þ

where k ¼ 1=ðπΓÞ ¼ ν=π. The two-form Ω (or its compo-
nent Ω12) is to be interpreted as the angular velocity of
overall rotation, and ρ̄ ¼ kΩ12 as in (40). The last term in
(63) has a Lagrange multiplier field A0, which enforces the
constitutive relation (63). Our result is that this action (64)
describes the effective fluid dynamics of a vortex fluid in
2þ 1 dimensions; it leads to the commutation rules (58) or
(62). What we have obtained is thus an action formulation
for the extended algebra (58), in much the same way as the
topological term of the Wess-Zumino-Witten (WZW)
model leads to the central extension of the Kac-Moody
algebra [13].
We close this section with a comment clarifying the

comparison with [1]. The commutation rules (54) are
exactly those given in [1], so the algebra (58) follows by
direct computation. However, the extension term as dis-
played in [1] is slightly different from the term in (58),
involving the Laplace operator rather than holomorphic and
antiholomorphic derivatives on w̄0 and w. We expect that
the reason for this is the following. In [1], the quantization
of the fluid is considered where the ground state obeys the
condition Pj0i ¼ h0jP† ¼ 0. This is like a holomorphicity
condition and, effectively, should be equivalent to a
holomorphicity condition on the test function w. The
algebra given in [1], written out with such test functions,
then reduces to (58).
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B. The vortex fluid in 3 + 1 dimensions

It is also interesting to consider a vortex fluid in 3þ 1
dimensions with a constitutive relation similar to (63). The
second extension to the algebra (58) arising from the
addition of

R
ρð∇ × ξÞ to TðξÞ is irrelevant for this case;

it is trivial from the point of view of the cohomology of the
algebra anyway, so we will focus on (51). We write the
vorticity as

ωij ¼ ∂ivj − ∂jvi ¼ ϵijkNkω ð65Þ
where Nk is a unit vector giving the orientation of the
vorticity at a given point and ω is its magnitude. Unlike in
two dimensions, we now have vortex lines, so Nk gives the
local orientation of a set of vortex lines coarse-grained over
a small volume. As in the (2þ 1)-dimensional case, we
expect ω to be proportional to the number density of
vortices. So we propose to use the same constitutive
relation in three dimensions as well, namely,

ω ¼ −
4π

ν
ðρ − ρ̄Þ ð66Þ

where ρ̄ is given in terms of the three-formΩ as in (40). The
algebra (51) takes the form

½TðξÞ; Tðξ0Þ� ¼ Tð½ξ; ξ0�Þ þ
Z

ϵijkξ
iξ0jck

ck ¼ 4π

ν
ρρ̄Nk: ð67Þ

We will now relate this to some recent work on the
algebra of vector fields for an incompressible fluid [10]. If
we consider the reduction of the algebra (67) to the
incompressible case, with the vector fields ξi, ξ0j being
divergence-free, ρρ̄ can be taken to be a constant. The
motion of the vortices is on a two-dimensional surface
transverse to their vortex lines, i.e., transverse to the vector
Nk. If we have a large dense collection of vortices, Nk will
be uniform in the transverse surface, just as it was in 2þ 1

dimensions. As one follows along the vortex lines, Nk can
change orientation. It is useful to consider the case of Nk

being constant, independent of x⃗. This would be realizable
at least in some subvolume of space. In this case, the
extension term in (67) becomes

Extension ¼ ck
Z

ϵijkξ
iξ0j: ð68Þ

If space is taken to be a 3-torus as in [10], one can
parametrize the divergence-free vector fields as

ξi ¼ ϵiabαambeim⃗·x⃗; ξ0j ¼ ϵjrsβrnsein⃗·x⃗: ð69Þ

Here mi, ni are vectors of integer components and eim⃗·x⃗,
ein⃗·x⃗ provide a basis for functions on the torus. By taking

the components of each of αi, βi and ðα⃗ × β⃗Þi to be linearly
independent over the integers, one can get a dense set of test
functions. With the test functions in (69), the extension
term (68) becomes

Extension ¼ −ðα⃗ × β⃗Þ · n⃗ c⃗ ·n⃗: ð70Þ

This is in agreement with the central extension considered
in [10]. So our conclusion is that the topological term I3 can
explain the central extension of [10] as a special case with
the reduction conditions as explained above. The consid-
eration of a constant ck was just for showing this con-
nection. But using the action (39) we can go beyond
considering constant ck, with the more general algebra (67)
being applicable to a vortex fluid in 3þ 1 dimensions. The
extension is no longer a central term in the general case.

VI. THE TERM I2 IN 3 + 1 DIMENSIONS

We now turn to the second case of a topological term we
listed at the end of Sec. III, namely, I2 ¼ Trðg−1dgÞ3 ∧ C
where C will be taken as external, with dC ≠ 0. Adding
such a term with coefficient −k=3, the action we are
considering is

S¼ −i
Z

ρTrðσ3g−1∂0gÞ−
k
3

Z
Trðg−1dgÞ3 ∧ C−

Z
dtH:

ð71Þ

The terms with the time derivative of g lead to the canonical
one-form and two-form

A ¼ −i
Z

ρTrðσ3g−1δgÞ − k
Z

Tr½g−1δgðg−1dgÞ2� ∧ C;

δA ¼ −i
Z

½δρTrðσ3g−1δgÞ − ρTrðσ3ðg−1δgÞ2�

þ k
Z

Tr½ðg−1δgÞ2g−1dg� ∧ C: ð72Þ

In this case the identification of the Hamiltonian vector
fields is not very easy; it is simpler to work out the inverse
of the canonical two-form and form the Poisson brackets.
Towards this, we write

g−1δg ¼ −itaEa ¼ −itaEa
αδφ

α;

g−1dg≡ −itaIa: ð73Þ

The canonical two-form δA is then given as

δA ¼ −δρE3 þ 1

2
ρϵab3Ea ∧ Eb −

1

2
ϵabcbcEa ∧ Eb ð74Þ

where
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bc ¼ k
2
BiIci ; Bk ¼ ϵklm∂lCm: ð75Þ

Taking the inverse of δA, the Poisson bracket of functions
A, B is given as

½A;B� ¼
Z �

δA
δρðxÞ E

−1α
3

δB
δφαðxÞ −

b1
ρ − b3

δA
δρðxÞ E

−1α
1

δB
δφαðxÞ

−
b2

ρ − b3

δA
δρðxÞ E

−1α
2

δB
δφαðxÞ

−
1

ρ − b3

δA
δφα E

−1α
1 E−1β

2

δB
δφβ − ðA ↔ BÞ

�
: ð76Þ

The computation of the Poisson brackets of various
quantities of interest using this formula is tedious but
straightforward. The bracket of ρ and g is given by

½ρðfÞ; gðxÞ� ¼ −i
�

ρ

ρ − b3
gt3 −

1

ρ − b3
gbata

�
fðxÞ: ð77Þ

As before, using the energy-momentum tensor obtained by
varying (71) with respect to the metric, we have

TðξÞ ¼ −i
Z

ρTrðσ3g−1ξ · ∂gÞ ¼
Z

ρξ · v: ð78Þ

For this we have the Poisson bracket algebra

½ρðfÞ; TðξÞ� ¼ −
Z

ρξ ·∇f

−
Z

ρ

ρ− b3
Trð½σ3; bata�ðg−1ξ · ∂gÞÞf;

½TðξÞ; Tðξ0Þ� ¼ Tð½ξ; ξ0�Þ

þ k
Z

ρ

ρ− b3
Trð½g−1ξ · ∂g; g−1ξ0 · ∂g�g−1dgÞ

∧ dC: ð79Þ

Recall that the helicity of the fluid is given by

C ¼ 1

8π

Z
v · ω ¼ 1

12π

Z
Trðg−1dgÞ3 ≡

Z
σ: ð80Þ

In terms of the density σ for helicity as defined above, the
bracket relation for TðξÞ can be written as

½TðξÞ;Tðξ0Þ�¼Tð½ξ;ξ0�Þþ4πk
Z �

ρσ

ρ−b3

�
ðξ⃗× ξ⃗0Þ ·B⃗: ð81Þ

A natural question at this point would be whether there is
a physical system for which the present case of I2 is

applicable. The example of vortex fluids discussed in the
last section can be a guide in this direction. As known for a
long time, helicity is related to knots and links for vortex
lines. For example, consider the linking of a vortex line
with another, the latter forming a circle which may be
viewed as the boundary of some two-surface Σ. If vortices
are approximated by thin lines, the integrand σ for helicity
has support at the point of intersection of the vortex line
with the surface Σ. The support for σ is pointlike localized
in the thin vortex approximation. As time evolves, these
points can move and for a fluid with a dense collection of
such knots one can envisage constructing an effective
hydrodynamics of knots or links. The action with the I2
term added as in (71) is a good candidate for such an
effective hydrodynamics. Again an overall rotation (inter-
preted as dC) may be needed to ensure a proper separation
of scales. Although well motivated, admittedly, this con-
nection is still speculative; it will need more work to tie
down the specifics.

VII. DISCUSSION

In this paper, we considered some topological terms
which can be added to the standard actions for sigma
models and for fluid dynamics. The example of the sigma
model with CP2 as the target space shows how the
additional term can lead to a conflict between diffeo-
morphisms for the target and base spaces. For the case
of fluid dynamics, it is worth emphasizing that we are not
introducing any additional variables or degrees of freedom.
We use the standard action in terms of the Clebsch variables
with the topological terms added. In 2þ 1 dimensions, we
showed how one such topological term leads to the
effective hydrodynamics of a vortex fluid as derived in
[1]. This provides an action-based derivation of the
extended diffeomorphism algebra in much the same way
as the WZW model gives an action-based derivation of the
central extension of the Kac-Moody algebra. A similar
analysis was made in 3þ 1 dimensions, presumably
applicable to a fluid of vortex lines. A special case leads
to the central extension found in [10]. We also discussed
another topological term using the helicity of the fluid,
which might apply to a fluid made of knots and links of
vortex lines.
There are a couple of other relevant observations. For the

example of the invariant I2, we considered the one-form C
to be external, with dC ≠ 0. As already mentioned, one
could also consider C to be of the form Trðσ3h−1dhÞ where
h defines the Clebsch variables for another fluid. The
algebra of observables for the second fluid will be similar to
what was obtained for the I3 invariant. However, for the
combined system, there can be cross terms. These need
further analysis. Our second observation is about the Hopf
invariant. If one considers vortices of quantized charge or
strength, the Clebsch variables are described by SUð2Þ
rather than SUð1; 1Þ with the vorticity as the pull-back to
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space of the volume form on S2 ¼ SUð2Þ=Uð1Þ. It is then
natural to consider the Hopf invariant in 2þ 1 dimensions,
and in 3þ 1 dimensions with an additional one-form C.
A partial analysis of the 2þ 1 case is given in [14], but
more needs to be done for this case as well.
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