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We recast the soft S matrices on the celestial sphere as correlation functions of certain two-dimensional
models of topological defects. In pointing out the double-copy structure between the soft photon and soft
graviton cases, we arrive at a putative classical double copy between the corresponding topological models
and a rederivation of gauge invariance and the equivalence principle as Ward identities of the two-
dimensional theories.
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I. INTRODUCTION

The study of scattering amplitudes as analytical objects
in their own right has been a rather fertile one in recent
years. Of particular interest has been the soft sector of the S
matrix for theories with massless particles, which as it turns
out reflects underlying symmetries which are manifest at
null infinity (see Refs. [1–22] and references therein).
Emerging from this analysis is a picture of flat space

holography, in which (massless) particles on the celestial
sphere control most of the analytic properties of the entire S
matrix. The representation of the S matrix in terms of
operators on the celestial sphere is realized by a change of
basis brought about by theMellin transform [23,24]. In this
basis, the infrared sector of the S matrix can be understood
with relative ease in terms of operator product expansions
of insertions on CP1 [25–28]. This has led to a conjectural
4d=2d duality, which relates the S matrix to correlation
functions of operators of an alleged conformal field theory
(CFT) on the celestial sphere.
In this paper, in focusing our attention on the soft S

matrix, we will realize an amusing web of dualities. The
soft S matrix for photons is recast as a correlation function
of a Coulomb gas, which is a manifestly two-dimensional
system. A double-copy construction relating the soft
photon S matrix to the one in gravity is manifested by
squaring the kinetic operator of the dual 2d model. The
resulting model in two dimensions is identified with a
dynamical system of crystal disclinations. These observa-
tions lead to a rather satisfying web of dualities which to
our knowledge has been stated in this manner for the first

time. The duality conveniently realizes the soft theorems as
a consequence of shift symmetries in the two-dimensional
models, supplying the theorems of charge conservation and
the equivalence principle of Weinberg [29] as manifesta-
tions of the corresponding Ward identities.
Note: Although we have in many instances used the

word duality, it is meant in an unconventional sense. While
dualities are normally meant to express equivalences
between strongly and weakly coupled theories, the dualities
we discuss are all between weakly coupled theories.

II. A DUALITY ON THE CELESTIAL SPHERE

Suppose we have a scattering process with n massless
charged particles. For purposes of simplicity, we assume
that all particles are outgoing. We focus our attention on
that part of the infrared divergent S matrix receiving
contributions from purely virtual photons, defined accord-
ing to the factorization theorem [30,31]

Am;s¼1 ¼ Cn ×Asoft
n;s¼1jvir ×Asoft

n;s¼1jreal ×Hn;s¼1: ð2:1Þ
In this, the functionAn;s¼1 is the scattering amplitude for n
charged particles. Cn isolates singularities due to collinear
sectors (we have compressed the notation somewhat: Cn
itself is resolved into jet functions, one for each collinear
sector). Hn;s¼1 is a hard function computed as a Wilson
coefficient. Recently it has transpired that it may admit of
an intrinsic definition [32]. Asoft

n;s¼1jreal encodes soft singu-
larities due to real emissions. The term of interest for us
however is the term Asoft

n;s¼1jvir, which represents virtual
divergences due to virtual soft transmissions.
For the leading-order soft theorem, this portion of the S

matrix is especially simple, and can be written in dimen-
sional regularization1 (d ¼ 4þ ϵ) as [33]
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ln ðAsoft
n;s¼1jvirÞ ¼ −

1

8π2ϵ

X
i≠j

eiej ln jzi − zjj2 ð2:2Þ

which is exact with the assumption that the theory has
no interacting light matter. For the case of gravity, the
factorization theorem to leading order is far simpler, and
takes the form

Am;s¼2 ¼ Asoft
n;s¼2jvir ×Asoft

n;s¼2jreal ×Hn;s¼2 ð2:3Þ

in accordance with the fact that there are no collinear
divergences in gravity at leading order [33,34]. We will
treat the case of gravity in the next section.
The zi are points on CP1, determined by directions of the

external momenta according to the prescription2

pk ¼ ωkð1þ zkz̄k; zk þ z̄k;−iðzk − z̄kÞ; 1 − zkz̄kÞ: ð2:4Þ

We point out that the divergence manifested here cancels
in suitably inclusive processes [33,35–37]. It has been
established that this object can be represented as correlation
functions of Wilson lines defined using asymptotic values
of the gauge field and metric for the spin-1 [25] and spin-2
cases [28] respectively.3

Moving now to the first leg of the dualities, let the
following action be noted:

S1 ¼ 8πϵ

Z
d2zφðz; z̄Þ∂∂̄φðz; z̄Þ: ð2:5Þ

The ϵ is the dimensional regularization parameter d − 4.
This is easily identified as the Coulomb gas CFT in
stereographic coordinates. It exhibits the well-known
BKT transition due to vortex binding below a critical
temperature.4

The two-point function is simply the Green’s function on
CP1

hφðz1; z̄1Þ;φðz2; z̄2Þi ¼
1

8π2ϵ
ln jz1 − z2j2: ð2:6Þ

We find by direct computation that the vertex operators
defined as

Vjðzj; z̄jÞ≕ eiejφðzj;z̄jÞ ð2:7Þ

lead to the equivalence

hV1ðz1; z̄1Þ � � �Vnðzn; z̄nÞi ¼ Asoft
n jvir;s¼1: ð2:8Þ

We should like to emphasize that this is not a correlator of
Wilson lines: it computes the correlation function of vertex
operators in the Coulomb gas theory. In other words, the
soft S matrix can be derived equivalently as a correlator of
vertex operators belonging to a dual two-dimensional
model of interacting electrons.
So far the relationship discussed is purely formal and not

especially surprising; the form of the integrated soft
contributions lends itself quite easily to this dual picture.
However, we would now like to understand how this
observation can help inform a new perspective into the
double copy on the celestial sphere.5 The following section
is dedicated to laying out the argument that realizes this
hope. To do so, we turn our attention to the soft Smatrix for
gravitationally interacting particles.

III. A DOUBLE COPY ON THE
CELESTIAL SPHERE

The soft part of the S matrix can be defined for any
theory with massless quanta. In this section, we are
concerned with the case of interacting spin-2 quanta.
Accordingly, the virtual particles circulating in soft loops
are gravitons. The soft S matrix for such theories takes the
form

ln ðAsoft
n;s¼2jvirÞ

¼ −
1

8π2ϵ

X
i≠j

κiκjωiωjjzi − zjj2 ln jzi − zjj2 ð3:1Þ

where κi is the coupling constant characterizing the
strength of interaction between the corresponding particle
and the graviton. We know however that the κi must be the
same for all i by the equivalence principle. It will be seen
that this need not be assumed; it arises as an implication
of Ward identities of the two-dimensional model to be
described.
It is worth asking if there exists a double-copy con-

struction that relates the soft Smatrices of spin-1 and spin-2
transitions. Nominally, double-copy statements like the
ones due to Kawai, Lewellen and Tye (KLT) [45] and to
Bern, Carrasco and Johansson (BCJ) [46] rely on string-
like descriptions [47–51] or Feynman expansions. In this
section, we show that this question can be answered
directly at the level of two-dimensional dual models.

2A definition more familiar to readers conversant with soft-
collinear theory is obtained by writing zi ¼ p�

i ¼ px
i � ipy

i .3Wilson lines can also be used to extract the soft theorems as
well, and were applied in proofs of soft-collinear factorization in
the past; see Refs. [38–42] and references therein.

4The BKT transition, named after Berezinskii, Kosterlitz and
Thouless is a topological phase transition. Unlike conventional
Landau transitions, it is precipitated by the formation of topo-
logically nontrivial excitations, which condense below a critical
temperature. See Ref. [43] for an overview of numerical estimates
of the BKT transition temperature.

5See Ref. [44] for a Mellin space perspective at low
multiplicity.
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Take the kernel

KðzijÞ ¼ jzijj2 ln jzijj2 ð3:2Þ

where zij ¼ zi − zj. Now, by direct calculation we have the
result,

∂zi ∂̄ziKðzijÞ ∼ ln jzijj2 ð3:3Þ

where the ∼ is used to indicate equality up to an additive
constant and we have chosen to take the derivative with
respect to zi as a matter of convention. From this we have

ð∂∂̄Þ2KðzÞ ¼ δ2ðz; z̄Þ ð3:4Þ

which indicates that the kernel K is the Green’s function of
the square of the Laplacian Δ ¼ ∂∂̄. In light of this,
suppose we have a nonlinear sigma model defined by
the action,

S2 ¼ 8πϵ

Z
d2zcðz; z̄Þð∂∂̄Þ2cðz; z̄Þ: ð3:5Þ

With the vertex operators

Ujðzj; z̄jÞ≕ eiκjωjcðzj;z̄jÞ ð3:6Þ

it is the case that

Asoft
n;s¼2jvir ¼ hU1ðz1; z̄1Þ � � �Unðzn; z̄nÞi: ð3:7Þ

It is generally expected that there is some double-copy
structure relating the S matrices of gauge theory and
gravity. Here we see a natural manifestation of this in
the form of the soft factors. Unlike standard double-copy
relations however, our prescription provides a direct map
between the soft dynamics of the two theories by a simple
squaring of a kinetic operator in the dual two-dimensional
models. In summary, the double copy between the spin-1
and spin-2 soft S matrices is obtained by the replacements,

∂∂̄ → ð∂∂̄Þ2;
ei → ωiκi: ð3:8Þ

It is worth noting that the phrase double copy has only been
used schematically. No relation is proposed here between
this prescription and traditional double copies like BCJ or
KLT. All we have indicated is that one moves from the spin-
1 case to the spin-2 case by “double copying,” or squaring,
a dynamical quantity, namely the kinetic operator.6

The action (3.5) determines a genuine two-dimensional
model. Indeed, singularities of the sort exhibited by

Eq. (3.2) arise in the theory of crystal dislocations.
Consider the tensor,

σij ¼ εikεjl∂k∂lχ; ð3:9Þ

where χ ≔ χðx; yÞ depends on a source ηðx; yÞ through7

Δ2χðx; yÞ ¼ ηðx; yÞ ð3:10Þ

and the tensor εij is the Levi-Civita tensor in two dimen-
sions. σij is the two-dimensional analogue of the stress
tensor; it measures the stress and shear suffered by the
system supporting dislocated lattice points. Given a suit-
ably singular η of the form

ηðx; yÞ ¼
X
a

bðaÞi ∂iδ
2ðx − xa; y − yaÞ ð3:11Þ

the energy density

1

2

Z
χðx; yÞηðx; yÞd2x ð3:12Þ

characterizes that of a solid with a line defect normal to the

plane charted by the ðx; yÞ coordinates. The vectors bðaÞi are
known as Burgers vectors, which characterize the direction
of dislocation at each defect site. We note however that in
our model the source function η never quite becomes that
singular, since we only need to consider sources of the form

ηðx; yÞ ¼
X
a

κaδ
2ðx − xa; y − yaÞ: ð3:13Þ

This tells us that the theory we have in our hands is not of
dislocations, which are line defects, but of objects known as
disclinations [52], which experience a strongly confining
interaction controlled by a biharmonic field equation and
are point defects.8 We do not consider the theory of defects
in larger detail here, reserving potential expansions of this
point of view for future research. For interested readers
however additional technical details on defects can be
found in Ref. [53] and references therein.
With the results of this section and the last, we have

determined that there exists a double-copy construction that
relates the soft S matrix for photons to that of gravitons,
albeit in a manner that is markedly different from the
kinematical identities normally employed. Such a double-
copy structure is significant, since it appears to exist at the
level of soft factors post integration over virtual momenta.
Diagrammatically we have the summary

6Thanks to Radu Roiban for comments that encouraged me to
clarify this point.

7Note also that we have switched to two-dimensional Cartesian
coordinates.

8I am much obliged to Suraj Shankar for pointing this out and
explaining to me aspects of the theory of crystal defects.
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ð3:14Þ

In other words, a putative double copy is realized by first
moving to the celestial description followed by squaring the
kinetic operator.

IV. THE SOFT THEOREMS

We have one more piece of the story to discuss, namely
that of the soft theorems. So far, we have analyzed dualities
between topological models that have been shown to
reproduce the virtual soft S matrices. The goal of this
section is to establish that Ward identities in the two-
dimensional model are responsible for the soft photon and
graviton theorems, arising due to the emission of real soft
particles.
It is well known that the two-dimensional Coulomb gas

model exhibits a so-called shift symmetry (see Ref. [54] for
details). Specifically, the invariance of the action (2.5)
under global shifts of the form φ → φþ a implies the
existence of a conserved holomorphic current, which takes
the form,

js¼1ðz; z̄Þ ¼ 8πϵ∂̄φðz; z̄Þ: ð4:1Þ

Incidentally, this can be derived by simple inspection of the
equation of motion as well.
We can ask what would occur if we were to insert this

current into the correlator (2.8).9 Doing so yields,

hjs¼1ðz; z̄ÞV1 � � �Vni ¼
�
1

π

X
i

ei
z − zi

�
hV1 � � �Vni ð4:2Þ

which may be readily verified. Indeed, this is precisely the
soft photon theorem expressed in stereographic coordi-
nates. It remains now only to verify the implication of the
Ward identity, namely the fact that the integral

Qs¼1 ¼
I
CP1

js¼1dz ð4:3Þ

annihilates any correlator in which it is placed. Applying
this to the foregoing equation we obtain,

�
2πi
π

X
i

ei

�
hV1 � � �Vni ¼ 0: ð4:4Þ

This condition, known as the neutrality condition in the
CFT context tells us that total charge is conserved. This
amounts to an alternative proof of gauge invariance as a
consequence of the soft theorem due to our 2d=4d duality.
This analysis proceeds analogously for the spin-2 case.

Here, the shift symmetry leads to the Noether current

js¼2ðz; z̄Þ ¼ ∂̄Δcðz; z̄Þ: ð4:5Þ

An insertion thereof inside the correlator (3.7) provides

hjs¼1ðz; z̄ÞU1 � � �Uni ¼
�
1

π

X
i

ωiκi
z − zi

�
hU1 � � �Uni ð4:6Þ

which is none other than the soft theorem for the emission
of a single soft graviton. The Ward identity indicating the
annihilation of any correlator by the operator

Qs¼2 ¼
I
CP1

js¼2dz ð4:7Þ

reduces to the statement that

�
2πi
π

X
i

ωiκi

�
hV1 � � �Vni ¼ 0: ð4:8Þ

For generic kinematics, the foregoing equation cannot be
reconciled with energy conservation unless all the κi are
identified, which is a restatement of the equivalence
principle due to Weinberg [29].
For thoroughness, we provide one more proof of charge

conservation and the equivalence principles as implications
of invariance under shift symmetry. The line of reasoning
follows that of Ref. [54].
Let us consider a shift φ → φþ a. Since this is a global

symmetry, we demand that under it the correlator (2.8) be
invariant. However, performing this operation on Eq. (2.8),
we encounter a phase,

eiaðe1þ���þenÞ: ð4:9Þ

For this to equal unity for arbitrary a, we are led to require

e1 þ � � � þ en ¼ 0 ð4:10Þ

which is the conservation of charge.
Applying this argument to the spin-2 case means that we

study the effects of a shift c → cþ a on the correlator (3.7).
Indeed, we notice a familiar phase factor of

eiaðω1κ1þ���þωnκnÞ: ð4:11Þ
9I am indebted to Sudip Ghosh for suggesting this line of

thought, which led to a complete rewriting of the present section.
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Insisting that this equal unity again forces us to set

ω1κ1 þ � � � þ ωnκn ¼ 0; ð4:12Þ

which is only commensurate with generic kinematics
when the κi are identical, again yielding the equivalence
principle.10

We point out parenthetically that multiple insertions of
the soft currents lead to spurious double poles, which do
not arise in the conventional soft theorems. Indeed, a
systematical dual description of multiple soft emissions
can be developed, and will appear in a forthcoming work.

V. DISCUSSION

In this paper we have studied a dual model of soft
divergences in quantum field theory. We related the soft S
matrix for theories with massless spin-1 particles to a dual
model of topological defects on the worldsheet, known
variously as the Coulomb gas model or XY model. This
construction made it possible to identify a double-copy
prescription that automatically yields the soft S matrix for
theories with gravitons. The corresponding dual model
when recognized as a model of crystal dislocations
completes a satisfying web of dualities, summarized
in Eq. (3.14).
We suggest some possible avenues for future work.

There has been much recent interest in worldsheet [55–64]
and geometric models [65–72] of scattering amplitudes in
quantum field theory. In particular, certain two-dimensional
models at null infinity have been shown to reproduce as
correlation functions scattering amplitudes in gauge theory
[73] and gravity [74]. A synthesis of this work with the
ideas in this paper may reveal a consistent picture of
massless amplitudes at null infinity.
Since we have restricted our attention to Abelian theories

with no interacting light matter, the complications of gauge
theories have not troubled us in this paper. While gauge
theory soft amplitudes are corrected at higher loop order
and the gravitational analogues are not, the double copy has

been shown to hold at the level of Feynman diagrams [75].
Having only dealt with Abelian interactions in this paper, it
remains to be seen with future work how the picture
developed here generalizes to the non-Abelian case as well.
Vertex operators in the Coulomb gas picture are con-

formal primaries. While we have defined vertex operators
by analogy for the gas of disclinations, a simple interpre-
tation of the state generated by the vertex operator is
unclear. One may regard such operators as point sources of
disclinations, as the correlation function (3.7) generates the
free energy of a gas of dislocations. Finding a more
satisfying interpretation can be a topic of further study.11

Since the theories given here are defined in two
dimensions in an intrinsic fashion, they may be helpful
in constructing holographic duals of gauge theory and
gravity and studying the corresponding double-copy
structures—at least at leading order factorization. It was
observed that the KLT relations persist at low multiplicity
on the celestial sphere [76]. Synthesizing this latter work
with the ideas of this paper would be of interest.
Finally, a natural and concrete step forward would be

understanding how higher-order soft theorems can be
derived in this framework.
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