
 

Can effective four-dimensional scalar theory be asymptotically free
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We trace what happens with asymptotically free behavior of the running coupling in ϕ3 theory in
six-dimensional spacetime, if to compactify two spatial dimensions on a 2D closed manifold. The result can
be considered as an effective 4D theory of infinitely many KK-type scalar fields with triple interactions.
The effective dimensional coupling constant inherits running to zero at high mass scales in a modified form
depending on the size of the compact manifold. Some physical implications are discussed.
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I. INTRODUCTION

Asymptotic freedom in QCD was discovered by Gross
and Wilczek [1], and independently by Politzer [2] in 1973.
The asymptotically free renormalizable field theory in four
dimensions necessarily involves non-Abelian gauge fields
[3,4]. However, it is not the case if a number of spacetime
dimensions D ≠ 4. The striking examples are the 2D
Gross-Neneu model [5] and 2D nonlinear sigma model
[6]. All these theories are renormalizable and asymptoti-
cally free. A special case is the 4D ϕ4 theory with a
negative coupling constant [7]. It is a common belief that its
spectrum can be shown to be unbounded from below.
Nevertheless, as was shown in [8], this theory may be
consistent. Especially note the 6D scalar ϕ3 theory which
also exhibits the property of asymptotic freedom [9]. One
may ask is there any 4D effective asymptotically free theory
without gauge fields? By effective theory we mean a
reduced theory obtained from a higher dimensional theory
after “integrating out” extra spatial coordinates. To answer
our question, one has to consider theories in a spacetime
with extra dimensions (EDs).
Effective field theories with one or more compact EDs

are of considerable interest during the last years. In
particular, in [10] the total cross section of the scattering
of two light particle was calculated in the ϕ4 scalar model
with a spherical compactification. In [11] one-loop order
contributions from one compact universal ED to the

self-energy and four-point vertex functions in a ϕ4 scalar
theory are given. The one-loop low-energy effective action
in the ϕ4 scalar theory and scalar QED with spacetime
topologyR3;1 ⊗ S1 is calculated in [12]. The decoupling of
heavy KK modes in an Abelian Higgs model with
spacetime topologies R3;1 ⊗ S1 and R3;1 ⊗ S1=Z2 is
examined in [13]. The photon self-energy, the fermion
self-energy, and fermion vertex function in the one-loop
approximation in the context of QED with one ED are
presented in [14]. In [15], the Dþ 1 dimensional ϕ3 model
with an arbitrary D and one compact manifold is studied.
The renormalizable compactification models, when a size
of compact dimensions is of the order of cutoff scale, are
examined in [16]. The universal extra dimensional models
defined on the six-dimensional spacetime with two spatial
dimensions compactified to a two-sphere orbifold S2=Z2

were studied in [17–20]. In [21] T2=Z2, S2=Z2, and other
orbifolds were examined.
The goal of our study is to derive an effective four-

dimensional ϕ3 scalar field theory in a spacetime with two
compact EDs and calculate a running coupling constant in
the one-loop approximation. There are three possibilities to
realize a scalar theory with a power interaction gϕn which
has a dimensionless coupling constant g; see Table I.
Among them only the scalar gϕ3 theory in six dimensions
is known to be asymptotically free [9] (see also [22]). That
is why we will start from this theory.
The paper is organized as follows. In Sec. II we briefly

review a renormalization of the ϕ3 theory in six infinite
dimensions (denoted hereafter as ϕ3

6, with the subscript 6
indicating the spacetime dimensionality). In the next
section we examine an effective ϕ3 theory in the spacetime
with four infinite and two compact dimensions (referred
below as ϕ3

eff ) and calculate a running coupling constant.
In Sec. IV we examine a dependence of our results on a
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topology of the compact dimensions. Finally, in Sec. V a
scale dependence of physical observables is analyzed.
Some properties of two-dimensional inhomogeneous
Epstein zeta function and truncated Epstein-like zeta
function are collected in Appendix.

II. ϕ3 THEORY IN SIX INFINITE DIMENSIONS

The classical Lagrangian for the ϕ3
6 theory in terms of

bare parameters looks like

L ¼ 1

2
½∂μϕðxÞ�2 −

1

2
m2

0ϕ
2ðxÞ − g0

3!
ϕ3ðxÞ; ð1Þ

where the bare coupling constant g0 has a dimensionality of
mass. On a classical level a cubic potential of the ϕ3 theory
is not bounded below. As a consequence, there cannot be a
stable ground state. However, it is not the case, if one
consider the theory on a quantum level and takes into
account a kinetic term in a Hamiltonian, along with the
cubic and quadratic ones [23]. In terms of the renormalized
(R) field ϕR, mass m, and coupling g the Lagragian is
given by

L ¼ LR þ LCT; ð2Þ

where

LR ¼ 1

2
½∂μϕRðxÞ�2 −

1

2
m2ϕ2

RðxÞ −
g
3!
ϕ3
RðxÞ ð3Þ

is its renormalized part, and the counterterm part of (2) is of
the form

LCT ¼ 1

2
ðZϕ − 1Þ½∂μϕRðxÞ�2 −

1

2
δm2ϕ2

RðxÞ

− ðZΓ − 1Þ g
3!
ϕ3
RðxÞ: ð4Þ

The Feynman rules are i=ðp2 −m2Þ for a scalar
propagator, and ð−igÞ for a three-particle vertex. Let
ΓðnÞðp1; p2;…pn−1Þ be one-particle irreducible (OPI)
Green’s function. The inverse propagator is given by

S−1ðp2Þ ¼ −i½p2 −m2 þ Σðp2Þ� ¼ −iΓð2Þðp2Þ; ð5Þ

where Σðp2Þ is a self-energy. Γð3Þðp; qÞ is a three-particle
vertex with “amputated” external legs.

The renormalized quantities ðϕR; g; mÞ are related with
the bare quantities ðϕ; g0; m0Þ through renormalization
constants (see, for instance, [22]). In particular, the scalar
field is renormalized as

ϕR ¼ Z−1=2
ϕ ϕ: ð6Þ

The mass renormalization looks like

m2 ¼ Z−1
m m2

0: ð7Þ

The renormalization of the coupling constant is given by

g ¼ Z3=2
ϕ Z−1

Γ g0: ð8Þ

If we express in (2) all the parameters in terms of the bare
quantities using Eqs. (6)–(8), we come to (1).
In our study, we use the dimensional regularization [24]

for Feynman integrals, and the MOM scheme with the
Euclidean normalization point −μ2 (μ2 > 0) for the
renormalization procedure. Usually an on-shell condition
is imposed on propagators and vertices of scalar fields. In
massive theories where the zero momentum lies in the
analyticity domain, a subtraction point p2 ¼ 0 is used [22].
Nevertheless, it is more appropriate for us to normalize OPI
Green’s functions at some Euclidean point, as it is done in
QCD [1,25], where quarks and gluons are confined, and,
consequently, have no pole masses.
The beta function of the ϕ3

6 theory,

β½gðμÞ� ¼ μ
dgðμÞ
dμ

; ð9Þ

is known to be [9,22,26]

βðgÞ ¼ −β0g3 þ Oðg5Þ; ð10Þ

where

β0 ¼
3

4ð4πÞ3 : ð11Þ

It is calculated up to five loops [27]. All known terms in an
expansion of βðgÞ are negative. Since β0 > 0, there is the
asymptotic freedom in ϕ3

6 theory, and

αðμÞ ¼ αðμ0Þ
1þ 3

4
αðμ0Þ lnðμ2=μ20Þ

; ð12Þ

where

α ¼ g2

ð4πÞ3 : ð13Þ

TABLE I. The dependence of an integer power n on a number
of spacetime dimensions D in scalar theories with an interaction
gϕnðxÞ and dimensionless coupling constant g.

D 3 4 6
n 6 4 3
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Note that, instead of using Eq. (9), the β function can be
alternatively defined as

β½gðμ̄Þ� ¼ −μ̄
dgðμ̄Þ
dμ̄

; ð14Þ

where μ̄ is a scale needed to preserve the canonical
dimension of the coupling constant in the dimensional
regularization. The reason is that the renormalization
constants Zϕ and ZΓ depend on the ratio μ=μ̄.

III. ϕ3 THEORY IN SPACETIMES WITH TWO
EXTRA COMPACT DIMENSIONS

Let us consider ϕ3 theory in a spacetime with two extra
coordinates y1, y2, and metric tensor

GMN ¼ ð1;−1;−1;−1; ηmnÞ ¼ ðγμν; ηmnÞ; ð15Þ

where M;N ¼ ðμ; mÞ, μ ¼ 0, 1, 2, 3, m ¼ 1, 2, and ηmn
stands for the metric tensor of a 2D compact manifold. The
scalar field ϕðx; yÞ is assumed to be defined on a manifold
M4 ⊗ T2=Z2 with equal compactification radii Rc. Thus,
the field fulfills the periodicity and parity conditions

ϕðx; yÞ ¼ ϕðx; yþ 2πRcÞ;
ϕðx; yÞ ¼ ϕðx;−yÞ; ð16Þ

where y ¼ ðy1; y2Þ. A manifold with another topology will
be considered in Sec. IV.
The action in six dimensions with two compact dimen-

sions is given by the following expression:

S4þ½2� ¼
Z

d4x
Z

πRc

−πRc

dy1

×
Z

πRc

−πRc

dy2
ffiffiffiffiffiffiffi
−G

p �
1

2
∂Mϕðx; yÞ∂Mϕðx; yÞ

−
1

2
m2ϕ2ðx; yÞ − g

3!
ϕ3ðx; yÞ

�
; ð17Þ

where G ¼ detðGMNÞ. The canonical dimension of ϕðx; yÞ
is equal to 2. The coupling constant g is dimensionless. It is
clear that in the limit Rc → ∞ the action (17) becomes a 6D
action of a scalar field with interaction gϕ3 in six infinite
spacetime dimensions (see the previous section).
We can use the following Fourier expansion of the field

ϕðx; yÞ ¼ 1

2πRc

X∞
n1¼−∞

X∞
n2¼−∞

eiðn1y1þn2y2Þ=RcϕnðxÞ; ð18Þ

where n ¼ ðn1; n2Þ. Correspondingly, we have

ϕnðxÞ ¼
1

2πRc

Z
πRc

−πRc

dy1

Z
πRc

−πRc

dy2e−iðn1y1þn2y2Þ=Rcϕðx; yÞ:

ð19Þ

Note that every KK mode has canonical dimension 1.
If we require that the Kaluza-Klein (KK) modes ϕnðxÞ

are normalized,

Z
d4xϕnðxÞϕn0 ðxÞ ¼ δn;n0 ; ð20Þ

then

Z
d4x

Z
d2yϕnðx; yÞϕ�

n0 ðx; yÞ ¼ δn;n0 : ð21Þ

The masses of the KK excitations are

m2
n ¼ m2

0 þ
n2

R2
c
; ð22Þ

where n2 ¼ n21 þ n22, andm0 means zero mode mass. Thus,
the effective 4D action is given by

S4eff ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p �
1

2
∂μϕ0ðxÞ∂μϕ0ðxÞ −

1

2
m2

0ϕ
2
0ðxÞ

−
X
n≠0

�
1

2
∂μϕnðxÞ∂μϕnðxÞ −

1

2
m2

nϕ
2
nðxÞ

�

−
g4
3!

�
ϕ3
0ðxÞ þ ϕ0ðxÞ

X
n≠0

ϕnðxÞϕ−nðxÞ

þ
X

n;m;k≠0
ϕnðxÞϕmðxÞϕkðxÞδnþmþk;0

��
; ð23Þ

where γ ¼ detðγμνÞ. Here

g4 ¼
g

2πRc
ð24Þ

is an effective four-dimensional coupling constant. Thus, it
is the inverse compactification scale R−1

c that makes g4 a
quantity with the dimension of mass.

A. Effective four-dimensional propagator
in one-loop approximation

One of our main goals is a calculation of a scale
dependence of the coupling constant g4 (24). As one can
see from (23), it is the same for zero mode interactions,
interactions between zero and KK modes, and nonzero
mode interactions. That is why, here and in what follows it
is assumed that all external particles have zero KK
numbers. From the very beginning, we put m0 ¼ 0.
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The four-dimensional self-energy of the scalar field at
order Oðg2Þ is given by the diagram in Fig. 1. It can be
divided into two parts

Σðp2Þ ¼ Σ0ðp2Þ þ ΣKKðp2Þ; ð25Þ

where

Σ0ðp2Þ ¼ −
i
2
g24μ̄

2ϵ

Z
1

0

dx
Z

dDk
ð2πÞD

1

½k2 þ p2xð1 − xÞ�2
ð26Þ

is the contribution from zero mode, and

ΣKKðp2Þ

¼ −
i
2
g24μ̄

2ϵ
X
n≠0

Z
1

0

dx
Z

dDk
ð2πÞD

1

½k2 þp2xð1− xÞ−m2
n�2

ð27Þ

is the contribution from KK massive modes. It is assumed
that p2 < 0. We define

D ¼ 4 − 2ε: ð28Þ

We find that

Σ0ðp2Þ ¼ g24
2ð4πÞ2−ϵ ΓðϵÞ

�
μ̄2

−p2

�
ε Z 1

0

dx½xð1 − xÞ�−ε

¼ α

2π
R−2
c

�
Nε − ln

−p2

μ̄2
þ 2

�
þ OðεÞ; ð29Þ

where

Nε ¼
1

ε
− γE þ ln 4π: ð30Þ

Thus, the zero mode contributes to the mass renormaliza-
tion only.
Now we consider the contribution from the massive

modes

ΣKKðp2Þ ¼ −
i
2
g24ðμ̄RcÞ2ϵR−2

c

X
n1;n2≠0

Z
1

0

dx
Z

dDl
ð2πÞD

×
1

½l2 þ p2R2
cxð1 − xÞ − n21 − n22�2

; ð31Þ

where l ¼ kRc. Since

Z
dDl
ð2πÞD

1

½l2 þ p2R2
cxð1 − xÞ − n21 − n22�2

¼ i
ð4πÞ2−ε ΓðεÞ½−p

2xð1 − xÞ þ n21 þ n22�−ε; ð32Þ

we obtain

ΣKKðp2Þ ¼ α

2π
ΓðεÞð4πÞεðμ̄RcÞ2ϵR−2

c

×
X

n1;n2≠0

Z
1

0

dx½−p2R2
cxð1 − xÞ þ n21 þ n22�−ε:

ð33Þ

The series in (33) converges absolutely for Reε > 1. To
define this series for other values of ε, we require its
analytic continuation using the two-dimensional inhomo-
geneous Epstein zeta function Za

2ðsÞ [28]

Za
2ðsÞ ¼

X0

n1;n2∈Z2

1

ðn21 þ n22 þ aÞs ; ð34Þ

with a > 0 [the prime in (34) means that the point n ¼ 0 is
to be excluded from the sum]. The zeta function regulari-
zation method for the quantum physical systems was
proposed for the first time in [29,30]. The Riemann zeta
function ζðsÞ was used in fixing a critical spacetime
dimension of the string theory (see, for instance, [31]).
Recently, one-dimensional inhomogeneous Epstein zeta
function Za

1ðsÞ was applied to quantify the UV divergences
induced by the KK fields [11–13]. In [14] both Za

1ðsÞ
and n-dimensional inhomogeneous function Za

nðsÞ were
used.
In Appendix formula (A1) is presented, which gives an

analytical continuation for the function Za
2ðsÞ. It is defined

on the complex plane of s. It has an infinite number of
simple poles, but converges both in the s → 0 limit, and
with a ¼ 0. These results are a consequence of the
analytical properties of the inhomogeneous Epstein zeta
function.
Let us define

c ¼ −p2R2
cxð1 − xÞ: ð35Þ

Note that c > 0, except for two points x ¼ 0, 1. We obtain
from (33)–(35)

ΣKKðp2Þ ¼ α

2π
ΓðεÞð4πÞεðμ̄RcÞ2ϵR−2

c

Z
1

0

dxZc
2ðεÞ; ð36Þ

where

Zc
2ðεÞ ¼ −c−ε −

πc1−ε

1 − ε
þ Aðε; cÞ

ΓðεÞ : ð37Þ
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Since Zc
2ðaÞ is finite for c ¼ 0, see (A3), we can take c > 0

for all x ∈ ½0; 1�. An explicit expression for Aðs; aÞ in (37)
is given by Eq. (A2). The function Aðε; cÞ converges, as
ε → 0, and, consequently, Zc

2ð0Þ ¼ −ð1þ πcÞ. The KK
divergence [the first term in (37)] exactly cancels the zero
mode divergence (29). A similar effect was seen in the
context of quantum electrodynamics with one ED [12].
Since Aðε; cÞ decreases exponentially as c → ∞, we find
for large Rc

Σðp2Þ ¼ p2
α

2
ΓðεÞð4πÞε

�
μ̄2

−p2

�
ε Z 1

0

dx½xð1 − xÞ�1−ε

¼ p2
α

12

�
Nε − ln

−p2

μ̄2
þ 5

3

�
þ OðεÞ: ð38Þ

As a result, for μRc ≫ 1, the field renormalization constant
is equal to

Zϕ ¼ 1 −
α

12

�
Nε − ln

μ2

μ̄2
þ 5

3

�
: ð39Þ

It differs from the field renormalization in the ϕ3
6 theory by

a constant term only. Note, there is no dependence on Rc in
(39). Since Σðp2Þ ∼ p2, the renormalized theory remains
massless in the one-loop approximation (no mass renorm-
alization holds).

B. Effective four-dimensional vertex
in one-loop approximation

The effective four-dimensional three-point vertex Γð3Þ is
defined by the diagram presented in Fig. 2. It is a sum of
two terms,

Γð3Þðp; qÞ ¼ Γð3Þ
0 ðp; qÞ þ Γð3Þ

KKðp; qÞ; ð40Þ
where

Γð3Þ
0 ðp; qÞ ¼ 2g34μ̄

2ϵ

Z
1

0

dx x
Z

1

0

dy
Z

dDk
ð2πÞD

1

ðk2 −M2Þ3 ;

ð41Þ
and

Γð3Þ
KKðp; qÞ ¼ 2g34μ̄

2ϵ
X

n1;n2≠0

Z
1

0

dxx
Z

1

0

dy
Z

dDk
ð2πÞD

1

ðk2 −M2 −m2
nÞ3

¼ 2g34μ̄
2ϵR2þ2ε

c

X
n1;n2≠0

Z
1

0

dx x
Z

1

0

dy
Z

dDl
ð2πÞD

1

ðl2 −M2R2
c − n21 − n22Þ3

: ð42Þ

Here a notation

M2 ¼ −x½p2xyð1 − yÞ þ q2yð1 − xÞ
þ ðpþ qÞ2ð1 − xÞð1 − yÞ� ð43Þ

is introduced. We assume that p2; q2; ðpþ qÞ2 < 0. It
means that M2 > 0, except for two points ðx; yÞ ¼
ð1; 0Þ; ð1; 1Þ. The integral in (41) converges, as ε → 0,
and we obtain

Γð3Þ
0 ðp; qÞ ¼ ð−ig4Þ

α

π
Γð1þ εÞð4πÞεμ̄2ϵR−2

c

×
Z

1

0

dxx
Z

1

0

dyðM2Þ−1−ε: ð44Þ

In particular, we find for ε ¼ 0

Γð3Þ
0 ðp; qÞjp2¼q2¼ðpþqÞ2¼−μ2 ¼ ð−ig4Þ

α

2π
BðμRcÞ−2; ð45Þ

where

B ¼ 2

Z
1

0

dx
Z

1

0

dy½1 − xþ xyð1 − yÞ�−1

¼ 1

27

�
ψ1

�
1

3

�
þ ψ1

�
1

6

�
− ψ1

�
5

6

�
− ψ1

�
2

3

��
; ð46Þ

ψ1ðzÞ¼ðd2=dz2ÞlnΓðzÞ being the trigamma function [32].
The integral on the right-hand side of Eq. (42) is equal to

Z
dDl
ð2πÞD

1

ðl2 −M2R2
c − n21 − n22Þ3

¼ −
i

2ð4πÞ2−ε Γð1þ εÞðM2R2
c þ n21 þ n22Þ−1−ε; ð47Þ

that results in

Γð3Þ
KKðp; qÞ ¼ ð−ig4Þ

α

π
Γð1þ εÞð4πÞεðμ̄RcÞ2ϵ

×
Z

1

0

dxx
Z

1

0

dyZM2R2
c

2 ð1þ εÞ: ð48Þ

Thus, the infinite number of UV divergences results in the
two-dimensional inhomogeneous Epstein zeta function.
We find from Eqs. (A1), (A2)

CAN EFFECTIVE FOUR-DIMENSIONAL SCALAR THEORY BE … PHYS. REV. D 103, 085012 (2021)

085012-5



ZM2R2
c

2 ð1þ εÞ ¼ −ðM2R2
cÞ−1−ε þ

πðM2R2
cÞ−ε

ε

þ Að1þ ε;M2R2
cÞ

Γð1þ εÞ ; ð49Þ

with Að1; cÞ being a finite quantity. As one can see from

(49), ZM2R2
c

2 ð1þ εÞ has a simple pole at ε ¼ 0. It can be
easily shown that in the limit ε → 0 the fist term
in (49), after substitution in (48), cancels the zero mode
contribution (44), and we obtain

Γð3Þðp;qÞ¼ð−ig4Þ
α

π
Γð1þεÞð4πÞεðμ̄RcÞ2ϵ

×
Z

1

0

dxx
Z

1

0

dy

�
πðM2R2

cÞ−ε
ε

þAð1þε;M2R2
cÞ

Γð1þεÞ
�
:

ð50Þ

Thus, for ε → 0 the vertex renormalization constant is
given by the expression

ZΓ ¼ 1 −
α

π

Z
1

0

dxx
Z

1

0

dy

×

�
ΓðεÞπð4πÞε

�
μ̄2

M2
μ

�
ε

þ Að1;M2
μR2

cÞ
�
; ð51Þ

where

M2
μ ¼ μ2x½1 − xþ xyð1 − yÞ�; ð52Þ

−μ2 being the renormalization point. As one can see from
(51), the vertex renormalization constant Z−1

Γ depends both
on the ratio μ=μ̄ and on the compactification radius via
dimensionless parameter μRc. The vertex has a divergence
related with a summation over KK number, while Feynman
integral is finite.
However, for μRc≫1 (and, consequently, forM2

μR2
c≫1),

the function Að1;M2
μR2

cÞ decreases exponentially [see
Eq. (A2)], and we obtain

Z−1
Γ ¼ 1þ α

2

�
Nε − ln

�
μ2

μ̄2

�
− C

�
; ð53Þ

where

C ¼ 2

Z
1

0

xdx
Z

1

0

dyfln xþ ln½1 − xþ xyð1 − yÞ�g

¼ 2B
3

− 3: ð54Þ

As we can see, if the compactification radius exceeds the
physical scale, Rc ≫ μ−1, it disappears from the renorm-
alization constants (39) and (51).

The renormalized effective four-dimensional vertex is
proportional to g4 (24). The fact that the coupling of the
four-dimensional fields becomes smaller at larger Rc can be
easily understood. As it follows from (18), the wave
function of the field ϕnðxÞ in the y-space is given by

ψnðyÞ ¼
1

2πRc
einy=Rc : ð55Þ

The coupling constant of three fields ϕnðxÞ, ϕmðxÞ, ϕkðxÞ is
defined by overlapping of their wave functions

g
Z

πRc

−πRc

dy1

Z
πRc

−πRc

dy2ψnðyÞψmðyÞψkðyÞ ¼
g

2πRc
δnþmþk;0:

ð56Þ

It tends to zero as Rc grows. Thus, in the limit Rc → ∞ (all
six dimensions are infinite), the ϕ3

eff theory becomes a
theory of a free scalar field, whose propagator is equal to
that of the ϕ3

4 theory.

C. Running coupling constant

Let us consider large values of the mass scale μ, namely,
μ ≫ R−1

c . It follows from Eqs. (8), (39), and (53) that in the
one-loop approximation the beta function is equal to

βðgÞ ¼ −
3R2

c

64π
g3; ð57Þ

and, correspondingly,

μ2
∂α4ðμÞ
∂μ2 ¼ −

3R2
c

16
α24ðμÞ; ð58Þ

where

α4 ¼
g24
4π

: ð59Þ

Let us note, it is the dimensional variable R2
c lnðμ2=μ20Þ, not

the dimensionless quantity lnðμ2=μ20Þ, which should be
regarded as an evolution parameter for the coupling
constant α4ðμÞ. It is to be expected, since the coupling
α4 has dimension −2. As a result, we obtain

α4ðμÞ ¼
α4ðμ0Þ

1þ 3
16
α4ðμ0ÞR2

c lnðμ2=μ20Þ

¼ 16

3R2
c lnðμ2=Λ2Þ ; ð60Þ

where

Λ2 ¼ μ20 exp½−16=ð3α4ðμ0ÞR2
cÞ�

¼ μ20 exp½−4=ð3αðμ0Þ�: ð61Þ
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We remind that Eqs. (60) and (61) hold in the one-loop
approximation and at μ ≫ Λ. Ghost pole at μ ¼ Λ is safely
eliminated if to respect the causality [33].
Thus, the effective four-dimensional scalar ϕ3 theory in

the flat spacetime with two compact EDs exhibits the
property of asymptotic freedom. Namely, its effective
coupling constant α4ðμÞ tends logarithmically to zero, as
the mass scale μ grows. One can say that four-dimensional
theory does not forget its higher dimensional origin.
All this can be understood as follows. The renormaliza-

tion of the coupling constant is defined by the UV
divergences and renormalization scale μ, and “it is not
aware” of the scale R−1

c , provided μ ≫ R−1
c . In other words,

the large scale Rc is irrelevant to a small-distance physics.
As a result, the effective four-dimensional coupling con-
stant g4 exhibits a large-scale behavior of the coupling
constant in the ϕ3

6 theory. For a detailed discussion of this
phenomenon, see Sec. V.
It is interesting to compare our prediction (57) with the

results obtained for an effective 4D λϕ4 theory in a
spacetime with one compact ED [12]. Is has been found
that in such a theory an effective coupling constant in one-
loop approximation is renormalized by the constant

Z3=2
ϕ Z−1

Γ ¼ 1þ 3λ2

16π2

�
1

ε
þ lnðμRcÞ

�
: ð62Þ

Note that λ ¼ λ̄=ð2πRcÞ, where λ̄ is the coupling constant in
a 5D action with dimension −1. Thus, one cannot obtain a
RG-like equation for λ with respect to the scale M̄ ¼ R−1

c ,
as it is erroneously stated in [12] (see also [15]), except
when λ̄ ¼ λ̄ðRcÞ ¼ constant × Rc. For instance, if we
assume that this relation takes place for small Rc, then
we come to the equation with respect to the intrinsic scale
of the spacetime topology,

dλ
d ln M̄

¼ −
3λ2

16π2
; ð63Þ

valid for large M̄.
As for the case μ ≪ R−1

c , it can be shown that α4ðμÞ
tends to a constant value, as μ grows (while being less than
R−1
c ). As one see from (36), the total divergence in ε ¼

ð4 −DÞ=2 is due to the UV divergent Feynman integral,
while the sum in the KK modes gives a finite result [Zc

2ðεÞ
is finite, as ε → 0]. On the contrary, as Eq. (48) shows,
the vertex divergence comes from the infinite sum over
KK modes only [Zc

2ð1þ εÞ ∼ ε−1, as ε → 0], while the
Feynman integral is finite. If μ ≫ R−1

c , infinite and
μ-dependent parts of the counterterms of the origin, six-
dimensional, theory and those of the reduced theory
coincide. However, our calculations have shown that
μ-dependent parts of the renormalization constants differ
for μ ≪ R−1

c , and a nontrivial dependence on Rc occurs. Let
us note that the divergent ε−1 terms remain the same

regardless of a value of Rc, in full accordance with the
results of [34]. It is to be expected, since the compactifi-
cation is an infrared process which can not change the UV
properties of the theory.

IV. COMPACTIFICATION ON ORBIFOLD S2=Z2

In Sec. III the manifoldM4 ⊗ T2=Z2 was studied. In this
section we examine the case when the six-dimensional
scalar field ϕ is defined on a manifoldM4 ⊗ S2=Z2, with a
radius of two-dimensional sphere S2 to be Rc. It is
appropriate to introduce spherical coordinates θ;ϕ, and
use the following expansion:

ϕðx; θ;ϕÞ ¼ 1

Rc

X∞
l¼0

Xl

m¼−l
Ym
l ðθ;ϕÞϕlmðxÞ; ð64Þ

where Ym
l ðθ;ϕÞ (m ¼ −l;−lþ 1;…; l − 1; l) are spherical

harmonics [35]. They obey the orthogonality condition

Z
2π

0

dϕ
Z

π

0

sin θdθYm
l ðθ;ϕÞ½Ym0

l0 ðθ;ϕÞ�� ¼ δll0δmm0 : ð65Þ

Using formula

Z
2π

0

dϕ
Z

π

0

sin θdθY0
0ðθ;ϕÞYm

l ðθ;ϕÞY−m
l ðθ;ϕÞ ¼ ð−1Þmffiffiffiffiffiffi

4π
p ;

ð66Þ

one can show that an effective four-dimensional coupling
constant is

ḡ4 ¼
gffiffiffiffiffiffi
4π

p
Rc

; ð67Þ

for zero mode interaction. For interactions between zero
mode and KK modes, a coupling constant is equal to
ð−1Þmḡ4. The masses of the KK excitations are known to be
numerated by an integer l ¼ 0; 1; 2;… [17,18],

m2
l ¼ m2

0 þ
lðlþ 1Þ

R2
c

: ð68Þ

Let us consider zero-mode self-energy Σðp2Þ in the one-
loop approximation (Fig. 1). It is given by

pp

k

FIG. 1. The self-energy diagram for the scalar field in the ϕ3

theory in the one-loop approximation.
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Σðp2Þ ¼ α

2
ΓðεÞð4πÞεðμ̄RcÞ2ϵR−2

c

×
X∞
l¼0

Xl

m¼−l

Z
1

0

dx½lðlþ 1Þ þ c�−ε

¼ α

2
ΓðεÞð4πÞεðμ̄RcÞ2ϵR−2

c

Z
1

0

dx
X∞
l¼0

2lþ 1

½lðlþ 1Þ þ c�ε ;

ð69Þ

where c is defined by Eq. (35). The series on the right-hand
side can be represented as

ζtðs; cÞ ¼
X∞
l¼0

2lþ 1

½lðlþ 1Þ þ c�s

¼ 1

1 − s
d
dα

X∞
l¼0

1

½lðlþ 1Þ þ αð2lþ 1Þ þ c�s−1
				
α¼0

:

ð70Þ

We have

X∞
l¼0

1

½lðlþ 1Þ þ αð2lþ 1Þ þ c�s−1 ¼
X∞
l¼0

1

½ðlþ aÞ2 þ q�s−1

¼ ζtðs; a; qÞ; ð71Þ

where

a ¼ 1

2
þ α; q ¼ c −

1

4
− α2; ð72Þ

and an analytic expression for ζtðs; a; qÞ is given by
Eq. (A6). Note that ½dq=dα�jα¼0 ¼ 0. For c ≫ 1, we obtain
form (70)–(72), and (A6) that

ζtðε; cÞ ¼ −c1−ε
�
1 −

1

12c

�
þ Oðc−2Þ; ð73Þ

as ε → 0. As a result, we come to expression (39) (up to
unimportant finite constant).
The above consideration can be also applied to a

calculation of the effective four-dimensional vertex for
zero mode interaction in the one-loop approximation
(Fig. 2). Taking into account that

ζtð1þ ε; cÞ ¼ c−ε
�
1

ε
þ 1

12c

�
þ Oðc−2Þ; ð74Þ

as ε → 0, we reproduce formula (53) (up to a constant
factor). All said above allows us to conclude that in the
large Rc region our main results do not depend on a
topology of the two-dimensional compact manifold.

V. SCALE DEPENDENCE OF
PHYSICAL OBSERVABLES

As mentioned in Sec. III, a nontrivial dependence of
physical quantities on the compactification radius appears
when the physical scale (μ−1, in our case) becomes much
larger than Rc. In the opposite case, μ−1 ≲ Rc, when a
physical process goes “inside a sphere of the radius Rc,”
such a dependence disappears.
Some other physical examples can be given which

illustrate these statements. In [36] a generalization of the
Froissart-Martin bound for scattering in D-dimensional
spacetime with one compact dimension has been derived.
The upper bound for the imaginary part of the hadronic
scattering amplitude TDðs; tÞ was found to be

ImTDðs; 0Þ ≤ sRD−2
0 ðsÞΦ

�
R0

Rc
;D

�
: ð75Þ

In (75) the “transverse radius” is given by R0ðsÞ∼t−1=20 lns,
where t0 denotes the nearest singularity in the t channel. Rc
is the compactification radius of the ED, and ΦðR0=Rc;DÞ
is a known function. At Rc ≫ R0ðsÞ, the inequality (75)
reproduces the Froissart-Martin bound in a flat spacetime
with arbitrary D dimensions [37]

σDtotðsÞ ≤ constðDÞRD−2
0 ðsÞ; ð76Þ

while in the opposite limit Rc ≪ R0ðsÞ it results in the
inequality [36]

ImTDðs; 0Þ ≤ constðDÞsRD−3
0 ðsÞRc: ð77Þ

In [38] an analogous result has been obtained for the
scattering of two SM particles on a 3D brane embedded
into a flat spacetime with n compact EDs (D ¼ 4þ n). The
inelastic cross section σDinðsÞ was calculated in the trans-
Planckian region

ffiffiffi
s

p
≫ MD; jtj, where t is a momentum

transfer squared, and MD is a fundamental Planck scale in
D dimensions. The result of the calculations is the
following:

l

p + q

p q

FIG. 2. Three-particle vertex in the scalar ϕ3 theory in the one-
loop approximation.
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σDinelðsÞ ≃ constðDÞ ×
�
R2þn
0 ðsÞ; Rc ≫ R̄0ðsÞ;

R2
0ðsÞRn

c; Rc ≪ R̄0ðsÞ;
ð78Þ

where R̄0ðsÞ ¼ 2RgðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðs=M2

DÞ
p

, RgðsÞ being the
“Regge gravitational radius” (for more details, see [38]).
To summarize, we can say that the dependence of

physical observables on the compactification radius of
the ED(s) arises only when the physical scale Rphys
of the process becomes larger than (comparable with)
Rc. On the contrary, if Rphys ≪ Rc, this dependence
disappears (a physical process occurs on distances
∼Rphys, and it does not “feel” the large scale Rc at all).

VI. CONCLUSIONS

We have considered compactification of the asymptotically
free ϕ3

D¼6 theory to manifolds M4 ⊗ T2=Z2 and
M4 ⊗ S2=Z2. The asymptotically free behavior of the dimen-
sionless triple coupling inM6 is being inherited by dimensional
triple couplings of the light modes in both cases of compacti-
fication, with details depending of the shape of compactifica-
tion. We also have considered the physical implications for
high-energy scattering which has the same energy dependence
as in simple four-dimensional case but retaining the compac-
tification radius as a parameter, when the interaction radius
exceeds the compactification size, while the “memory” of the
latter disappears at short-distance interactions which has now a
different energy dependence.

APPENDIX: EPSTEIN’S INHOMOGENEOUS
FUNCTION

We give some useful properties of the two-dimensional
inhomogeneous Epstein zeta function Za

2ðsÞ (34), with
a > 0. In [39] the following explicit expression was
derived

Za
2ðsÞ ¼ −a−s þ πa1−s

s − 1
þ Aðs; aÞ

ΓðsÞ ; ðA1Þ

where

Aðs; aÞ ¼ 4

�
a1=4

�
πffiffiffi
a

p
�

sX∞
n¼1

ns−1=2Ks−1=2ð2πn
ffiffiffi
a

p Þ

þ a1=2
�

πffiffiffi
a

p
�

sX∞
n¼1

ns−1Ks−1ð2πn
ffiffiffi
a

p Þ

þ
ffiffiffi
2

p
ð2πÞs

X∞
n¼1

ns−1=2
X
dkn

d1−2s
�
2þ 4a

d2

�
1=4−s=2

× Ks−1=2

�
πn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4a

d2

r ��
: ðA2Þ

Here KνðzÞ is the modified Bessel function of the second
kind, dkn is the division of n. As one can see from (A2),

Aðs; aÞ decreases exponentially, as a → ∞. In the limit
a → 0 the Chowla-Selberg formula [40] takes place

Z2ðsÞ ¼ 2ζð2sÞ þ 2
ffiffiffi
π

p Γðs − 1=2Þ
ΓðsÞ ζð2s − 1Þ

þ 8πs

ΓðsÞ
X∞
n¼1

ns−1=2
X
dkn

d1−2sKs−1=2ð2πnÞ; ðA3Þ

where

Z2ðsÞ≡ Z0
2ðsÞ ¼

X
n1;n2∈Z2

0 1

ðn21 þ n22Þs
ðA4Þ

is the two-dimensional Epstein zeta function [41], and ζðsÞ
is the Riemann zeta function [32]. Note that all (multi)
series in (A2), (A3) are exponentially convergent.
The above formulas are valid over the whole complex

plane. The inhomogeneous Epstein function (A1) exibits an
infinite number of simple poles at s¼1;1=2;−1=2;−3=2;…,
while the homogeneous Epstein function (A3) has only two
simple poles at s ¼ 1 and s ¼ 1=2, with the residues π and
−1=2, respectively [28]. Note that both functions are
regular at s ¼ 0. The formula

Za
2ðsÞjs→0 ¼ −a−s þ πa1−s

s − 1

þ 4

ΓðsÞ
X∞
n¼1

1

n

�
1

2
e−2πn

ffiffi
a

p þ ffiffiffi
a

p
K1ð2πn

ffiffiffi
a

p Þ

þ
X
dkn

de−πn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ4a=d2

p �
þ Oðs2Þ ðA5Þ

gives an expansion of two-dimensional inhomogeneous
Epstein function around the point s ¼ 0.
The truncated Epstein-like zeta function is given by the

expression [39]

ζtðs; a; qÞ ¼
X∞
n¼0

1

½ðnþ aÞ2 þ q�s

¼
�
1

2
− a

�
q−s þ q−s

ΓðsÞ
X∞
m¼1

ð−1ÞmΓðmþ sÞ
m!

× ζHð−2m; aÞq−m þ
ffiffiffi
π

p
Γðs − 1=2Þ
2ΓðsÞ q1=2−s

þ 2πs

ΓðsÞ q
1=4−s=2

X∞
n¼1

ns−1=2 cosð2πnaÞ

× Ks−1=2ð2πn
ffiffiffi
q

p Þ; ðA6Þ

with q > 0. The first series on the right-hand side is
asymptotic. The last series decreases exponentially in
parameter q. The quantity
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ζHðs; aÞ ¼
X∞
n¼0

1

ðnþ aÞs ðA7Þ

is a Hurwitz zeta function [32]. It is an analytic function
over the entire complex s plane except the point s ¼ 1,
at which it has a simple pole. For k ¼ 0; 1; 2;…, we
have

ζHð−k; aÞ ¼ −
Bkþ1ðaÞ
kþ 1

; ðA8Þ

where BrðaÞ is a Bernoulli polynomial [32]. In particular,
ζHð0; aÞ ¼ 1=2 − a. In (A6), apart form the pole at
s ¼ 1=2, there is a whole sequence of poles for
s ¼ −1=2;−3=2;….
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