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We present a recursive procedure, which is based on the small time expansion of the propagator, in order
to generate a semiclassical expansion of the quantum action for a quantum mechanical potential in arbitrary
dimensions. In the method, we use the spectral information emerges from the singularities of the propagator
on the complex t plane, which are handled by the iε prescription and basic complex analysis. This feature
allows for generalization to higher dimensions. We illustrate the procedure by providing simple examples
in nonrelativistic quantum mechanics.
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I. INTRODUCTION

One of the main practical tasks of a theoretical physicist
is constructing and solving differential or integral equa-
tions. However, it is a well-known fact that exact solutions
to those equations are rare and perturbative methods are
commonly used in many problems. Quantum theories are
no different: perturbation methods are at the center of
practical calculations to obtain quantum observables.
An important perturbative approach in quantum theories

is the semiclassical approximation,1 which assumes ℏ as its
expansion parameter. It is also a tool to make a connection
between the quantized theory and the underlying classical
system. The relation between the quantized spectrum
and the classical equations of motion, known as Bohr-
Sommerfeld quantization, is older than the quantum theory
we know today. Later, this relation was systematically
used in nonrelativistic quantum mechanics via the WKB
method. However, soon the limitation of Bohr-Sommerfeld
quantization in the presence of chaotic classical motion was
realized. (See [2] for a detailed review on the subject.)
While this led to the development of EBK quantization and

quantum chaos theory,2 it also implies a limitation of the
WKB theory itself. From the practical point of view, we can
state that despite its many successful applications, WKB
theory remains limited to effectively one-dimensional
systems.
Another useful method to investigate the classical limit

and its quantum corrections is the path integral. An
advantage of the path integral method is its adaptability
to both relativistic and nonrelativistic theories in arbitrary
dimensions, suggesting a unified picture for quantum
theories. However, generating perturbative corrections
turns into a computational burden very quickly and
computing higher order corrections becomes practically
impossible. This limits the applicability of this beautiful
approach.
At this point, it is reasonable to ask for the motivation

behind computing higher order corrections. Why would
only the first few corrections not be enough? An important
reason is hidden in the resurgent structure of perturbative
expansions [1]. Resurgence theory states that in most of the
cases, naive perturbation theory leads to a divergent series
and, on its own, only provides a partial answer. A more
careful investigation leads to the emergence of nonpertur-
bative effects hidden in the large order behavior of the
divergent expansion, and this is proposed as a possible way
to construct complete solutions.
Computation of quantum corrections based on the WKB

approximation is a well studied subject. In fact, for one-
dimensional anharmonic oscillators, it has been automa-
tized [4], based on the famous Bender-Wu approach [5].
Similar calculations have been done on other methods
based on the geometric properties of the curve represented
by the Hamiltonian of the system. One of them is based on
the Picard-Fuchs differential equations, whose solutions
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1Throughout this paper, the semiclassical expansion refers to
the perturbative series in ℏ, while in the literature the semi-
classical expansion sometimes refers to the terms of e−1=ℏ. In fact,
the exponentially suppressed terms, which generally have its own
perturbative corrections, correspond to the nonperturbative part
of the semiclassical expansion, and together with the perturbative
series, they form the trans-series structure of the semiclassical
expansion. (See [1] for a comprehensive discussion on the
subject.)

2For a nice book on the subject, see [3].
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correspond to the classical actions of the system [6].
Utilizing the recursion relation, the corresponding differ-
ential equation for the quantum corrections were also
generated3 [7–10]. Another method is based on the recur-
sive nature of the holomorphic anomaly equations of
topological string theory [11,12], which is related to the
one-dimensional quantum mechanics in the Nekrasov-
Shatashvili limit [13]. All of these approaches utilize the
recursive dependence of the quantum corrections to the
classical term, i.e., ℏ0 order. This is akin to topological
recursion [14,15], and it allows a systematic generation of
quantum corrections with minimal input.
As we mentioned above, all of these analyses are done

for one-dimensional nonrelativistic problems. The main
motivation of this paper is tackling this problem by
constructing a general procedure for higher dimensional
quantum mechanical problems that can possibly be gen-
eralized to many body theories and quantum field theories.
For these purposes, the investigation of the time translation
operator will be at the center of this paper. The method is
equivalent to a perturbative expansion via path integrals,
and this similarity supports our main objective.
Before examining the propagator itself, in Sec. II, we

start with its relation to spectral functions and derive an
integral representation of the so-called WKB action. Then,
in Sec. III, which is the main section of this paper, we
discuss the perturbative expansion of the propagator by
utilizing a small time expansion and derive the recursion
relation we were looking for. Note that at first, the time
dependent formulation might appear to have a disadvantage
for practical purposes despite its applicability to higher
dimensional problems. However, by the construction we
describe in Sec. II, in our approach, the spectral information
stems from the singularities of the time propagator on the
complex time plane. This reduces the main computational
task to the integration of ordinary integrals and basic
complex analysis. In Sec. IV, we will apply our method
to anharmonic oscillators in arbitrary dimensions. The
numerical results for this part are presented in
Appendix C. Finally, in Sec. V, we finish the paper with
a discussion of our analysis and an outlook to future work.

II. SPECTRAL PROBLEM

In this section, we will briefly review the spectral
problem of a Hermitian operator H acting on a Hilbert
space. From elementary linear algebra, we know that the
spectrum of H is given by the zeroes of the Fredholm
determinant, i.e.,

DðuÞ ¼ detðu − HÞ ¼ 0; ð2:1Þ

where u represents the elements of the spectrum. Instead of
dealing with DðuÞ directly, we focus on another spectral
function, which is the quantum action,4

ΓðuÞ ¼ ln detðu − HÞ ¼ Tr lnðu − HÞ: ð2:2Þ
Now, the branch point of this new function carries the
spectral information. One way to handle the singularity is
introducing the resolvent GðuÞ ¼ ðu − HÞ−1 as

ΓðuÞ ¼
Z

u

u0

dzTrGðzÞ; ð2:3Þ

where u0 is an arbitrary regular point5 of GðzÞ on the
complex z plane. Note that the simple poles of GðzÞ, where
the (discrete) spectrum appears, correspond to the branch
points of ΓðuÞ as demanded by construction [18]. The
information around the branch point can be obtained by
employing the iε prescription [19] [Appendix A] and
defining a gap for the action ΓðuÞ as

ΔΓðuÞ ¼ ΓþðuÞ − Γ−ðuÞ; ð2:4Þ
where we defined the actions in different branches as

Γ�ðuÞ ¼ lim
ε→0

Γðu� iεÞ ¼ lim
ε→0

�Z
u�iε

0�iε
dzTrGðzÞ

�
: ð2:5Þ

It is well-known that the resolvent approach connects the
classical dynamics and the quantum spectrum of H [20,21].
However, in perturbative calculations, it may become
impractical. For this reason, it is more convenient to
introduce its Fourier integral representation,

GðuÞ ¼ �i
Z

∞

0

dte�iðu−HÞt; ð2:6Þ

where t corresponds to a flow-time parameter conjugate to
the eigenvalue u. Near the branch cut, Γ�ðuÞ becomes

Γ�ðuÞ ¼ −lim
ε→0

Z
∞

0

dt
t
e�itðu�iεÞTrU�ðtÞ; ð2:7Þ

where U�ðtÞ ¼ e∓iHt is the propagator,6 which governs the
flow generated by H. It is also possible to incorporate the
analytical continuations into integration contours,

3Note that the generation of the quantum corrections via
Picard-Fuchs equation are originally done for genus-1 potentials,
while some extension to higher genus potentials are also recently
discussed [7].

4Our choice of labeling Γ as the quantum action comes from
the usage of the Fredholm determinant in QFT and many-body
theories to calculate the effective actions (See, e.g., [16]).
Its relation with the spectral ζ and Θ functions are also well-
known [17].

5In another perspective, u0 can be introduced to eliminate the
infinities by a redefinition of the action as Γfin ¼ ΓðuÞ − Γðu0Þ.
However, in our construction, we only encounter with the
singularities that have a physical meaning so there is no need
for any regularization procedure.

6For simplicity in future calculations, the 1
ℏ factor in the

exponential is canceled by scaling t → ℏt.
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Γ�ðuÞ ¼ −lim
ε→0

Z
∞�iε

0�iε

dt
t
e�ituTrU�ðtÞ: ð2:8Þ

In this form, the spectral information arises from the
singularities on the complex t plane, which are intimately
related to periods of classical orbits [22]. Note that the
integrand in (2.8) is already singular at t ¼ 0, which
corresponds to stationary classical motion. In Sec. IV,
for quantum anharmonic oscillators, we will explain how
the spectral information for a perturbative sector, which is
related to the stationary classical motion, emerges from this
singularity. First, we will continue our discussion with the
perturbative expansion of TrU� and its recursive structure.

III. EXPANSION IN D DIMENSIONS

Before describing our recursive scheme for the pertur-
bative expansion of TrU�ðtÞ, let us first investigate its
general perturbative structure for a Hermitian operator H
given in the following form:

Hðp;xÞ ¼ TðpÞ þ VðxÞ; ð3:1Þ

where T and V are operator valued functions of appropri-
ately chosen canonical variables x and p such that they
form a 2D-dimensional phase space. From the quantum
mechanical point of view, H can be considered as a
generalized Hamiltonian. Moreover, from ordinary QM,
we know that projecting H onto x space, the operator p
starts acting as a derivative operator and vice versa. From
this fact, one can easily deduce

½p;VðxÞ� ¼ −iℏ∇xVðxÞ; ½x;TðpÞ� ¼ iℏ∇pTðpÞ;
ð3:2Þ

and the well-known commutation relation between the
canonical variables,

½xi; pj� ¼ iℏδij: ð3:3Þ

The general structure of the perturbative expansion of U�
can be examined by using the Zassenhauss formula,

U�ðtÞ ¼ e∓iTðpÞte∓itVðxÞe�t2
4
½TðpÞ;VðxÞ�

× e�it3
3!
ð2½VðxÞ;½TðpÞ;VðxÞ��þ½TðpÞ;½TðpÞ;VðxÞ���Þ… ð3:4Þ

Together with (3.2), it is easy to see that the sequence of
exponents in (3.4) correspond to a derivative expansion.
Besides this, expanding these exponentials, we can get
another expansion which we call coupling expansion. This
simple observation shows that a perturbative analysis of
U�ðtÞ with an operator H as in (3.1) should be treated as a
double expansion.

Despite the simplicity of the discussion above, the
Zassenhauss formula is not a convenient way for practical
calculations. Instead, we take a step back and rewrite the
propagator as a time ordered exponential,

U�ðtÞ ¼ T exp

�
∓ i

Z
t

0

dt0Hðp;xÞ
�
; ð3:5Þ

which simplifies to an ordinary one when H is t indepen-
dent. Note that (3.5) is the solution of

�i
dU�ðtÞ

dt
¼ Hðp;xÞU�ðtÞ: ð3:6Þ

One way to compute (3.5) is by introducing a Fourier
transformation between the canonical variables and
eliminate one of them [23–25]. In the following, we will
present a perturbative expansion for TrU� inspired by this
approach. However, instead of eliminating one of the
variables, we will work on the phase space and integrate
out x and p after computing the perturbative expansion.
This approach was initiated in [26,27]; however, in these
papers, the recursive structure behind the expansion of the
time-ordered exponential (3.5) and its relation to the
semiclassical expansion were not mentioned.
Let us start by separating the TðpÞ part as

U�ðtÞ ¼ e∓itTðpÞŨ�ðtÞ ð3:7Þ

and rewrite (3.6) as

�i
dŨ�ðtÞ

dt
¼ V�

I Ũ
�ðtÞ; ð3:8Þ

where we introduced the interaction picture potential,

V�
I ¼ e∓itTðpÞVðxÞe�itTðpÞ:

With these definitions, U�ðtÞ is expressed as

U�ðtÞ ¼ e∓iTðpÞtT exp

�
∓ i

Z
t

0

dt0V�
I

�

¼ e∓iTðpÞtX
n¼0

ð∓ iÞn
n!

Z
t

0

Yn
i¼1

dtiT fV�
I ðt1Þ…V�

I ðtnÞg:

ð3:9Þ

The next step is projecting the operator valued functions
onto a 2D-dimensional phase space using7

VðxÞjxi ¼ VðxÞjxi; TðpÞjpi ¼ TðpÞjpi ð3:10Þ

and rewriting

7See Appendix A for conventions.
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TrU�ðtÞ ¼
Z

dDxdDp
ð2πℏÞD e∓iTðpÞtX

n¼0

ð∓ iÞn
n!

×
Z

t

0

Yn
i¼1

dtihxjpihpjT ½V�
I ðt1Þ…V�

I ðtnÞ�jxi:

ð3:11Þ

This allows us to exchange the commutators with a
derivative expansion. In order to do this, we insert an
identity operator for each VIðtiÞ,

hxjpihpjV�
I ðtiÞ

¼ hxjpie�iTðpÞti
Z

dDx0hpjx0ihx0jVe∓iTðpÞti

¼ e�iTðpÞti
Z

dDx0

ð2πℏÞD e−
ip·ðx0−xÞ

ℏ Vðx0Þhx0je�iTðpÞti : ð3:12Þ

At this point, instead inserting a second identity operator
for e�iTðpÞti, we expand Vðx0Þ around x0 ¼ x,

Vðx0Þ ¼
X
k¼0

1

k!
ððx0 − xÞ ·∇xÞkVðxÞ: ð3:13Þ

This enables us to take x0 integral using integration by parts.
Then, removing the part we introduced as identity element,
we get

hxjpihpjVIðtiÞ ¼
X
k¼0

ℏkW�
k hxjpihpj; ð3:14Þ

where

W�
k ¼ VðkÞðxÞ

k!
bk�ðp;∇p; tiÞ;

b�ðp;∇p; tiÞ ¼ i∇p �∇pTðpÞti ∓ ∇pTðpÞt: ð3:15Þ

Finally, we can express TrU� as a time-ordered exponen-
tial,

TrU�ðtÞ ¼
Z

dDx
ð2πℏÞD

�
T exp

�
∓ i

Z
t

0

dt0
X
k¼0

ℏkW�
k

��
�
;

ð3:16Þ

where

h…i� ¼
Z

dDp…e∓iTðpÞt:

A. Recursion relation

Equation (3.16) is still impractical for perturbative
calculations. In addition to that, depending on the functions
VðxÞ and TðpÞ, the volume integrals might lead to infinities

which have no physical implications, and they are handled
by a normalization technique. In the following, we propose
a method that can be used for practical calculations, and
only infinities we encounter will be related to the physical
spectrum. We will extract this physical information without
a need to normalize.
We start by making use of the time-ordered exponential

in (3.16). It enables us to rewrite (3.6) as

�i
dŨ�ðtÞ

dt
¼

X
k¼0

ℏkW�
k Ũ

�ðtÞ: ð3:17Þ

Let us write Ũ in an ℏ expansion as well

Ũ�ðtÞ ¼
X
l

Ũ�
l ðtÞℏl:

Then, matching orders in (3.17), we get

�i
dŨ�

mðtÞ
dt

¼
Xm
l¼0

W�
l Ũ

�
m−lðtÞ: ð3:18Þ

At order m ¼ 0, the solution is

Ũ�
0 ðtÞ ¼ T exp

�
∓ i

Z
t

0

dt0W�
0 ðt0Þ

�
¼ e∓iVt: ð3:19Þ

For m ≥ 1, after multiplying (3.18) with ðŨ�
0 Þ−1, we get

Ũ�
mðtÞ ¼∓ iŨ�

0 ðtÞ
Z

t

0

dt0ðŨ�
0 Þ−1ðt0ÞR�

mðt0Þ; ð3:20Þ

where

R�
mðtÞ ¼

Xm
l¼1

W�
l ðtÞŨ�

m−lðtÞ:

Note that each Ũ�
mðtÞ is written in terms of Ũ�

l≤mðtÞ. This
makes the recursive behavior of the perturbative expansion
evident. To utilize this recursive behavior, we express Ũm in
terms of Ũ0 and Wl only as

ŨmðtÞ ¼ Ũ�
0 ðtÞ

X
k¼1

Ũm;kðtÞ; ð3:21Þ

where

Ũ�
m;kðtÞ ¼

Xm
α1 ;…;αk¼1

ðα1þ…αk¼mÞ

ð∓ iÞk
Z

t

0

dt1

Z
t1

0

dt2…

×
Z

tk−1

0

dtkW�
α1ðt1Þ…W�

αkðtkÞ: ð3:22Þ

In (3.22), we have used
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ðŨ�
0 Þ−1W�

α Ũ�
0 ¼ W�

α ;

which was possible since U�
0 ¼ e∓itV is p independent.

Finally, let us define the sum of products as

Q�
m;k ¼

Xm
α1 ;…;αk¼1

ðα1þ…αk¼mÞ

W�
α1ðt1Þ…W�

αkðtkÞ: ð3:23Þ

For each m and k, Q�
m;k can be written as a product of two

lower order terms. For example, let us separate Wα1 from
the rest. Then, we get

Q�
m;k ¼

X
α1

W�
α1Q

�
m−α1;k−1

¼ W�
1 Q

�
m−1;k−1 þW�

2 ðt1ÞQ�
m−2;k−1 þ � � �

þW�
m−ðk−1Þðt1ÞQ�

k−1;k−1

¼
Xm−kþ1

l¼1

W�
l Q

�
m−l;k−1 ¼

Xm−kþ1

l¼1

Q�
l;1Q

�
m−l;k−1; ð3:24Þ

where we set Qα;0 ¼ δα;0. This is the recursion relation we
were looking for. Using this recursion relation, we can
explicitly express (3.22) as

Ũm;kðtÞ ¼
Xm−kþ1

l¼1

Z
t

0

dt1Wlðt1ÞŨm−l;k−1ðt1Þ ð3:25Þ

¼
Xm−kþ1

l¼1

VðlÞðxÞ
l!

Z
t

0

dt1blðp;∇p; t1ÞŨm−l;k−1ðt1Þ: ð3:26Þ

Assuming Ũm−l;k−1 is already computed, for each Ũm;k, we
only need to compute one lth order differentiation and one
tk integral. This is a crucial point to speed up practical
calculations. Combining all of these, we write the actions in
an ℏ expansion,

Γ�ðuÞ ¼ −lim
ε→0

X
m¼0

ℏm

Z
∞�iε

0�iε

dt
t
e�iut

×
Z

dDx
ð2πℏÞD e∓iVðxÞt

�Xm
k¼1

Ũ�
m;kðtÞ

�
�
: ð3:27Þ

Note that in Ũm;k, k represents the number of potentials,
i.e., the order of coupling expansion, while m represents
the total number of derivatives acting on these potentials.
In our arrangement, at any order k ≤ m. Higher order terms
in the coupling expansion comes from the expansion of
Ũ�

0 ¼ e∓itV , if the x integral could not be taken directly.
In addition to generating additional terms for the

coupling expansion, Ũ�
0 ¼ e�itV in (3.27) also enables

us to obtain finite results for the x integration as long as we

compute it around a minimum of VðxÞ. For example, in
Sec. IV, we will compute the expansion for quantum
anharmonic oscillators around their harmonic minima. In
those cases, the x integrals will be Gaussian and with a
proper analytical continuation of in complex t plane, they
lead to finite results. However, this would not be possible if
we use the time-ordered exponential in (3.16) directly. Note
also that due to the separation in (3.7), the p integrals do not
need a further treatment to prevent nonphysical infinities.

1. Some remarks

(i) Instead of the definition in (3.7), we can split the
original propagator as

U�ðtÞ ¼ e∓iVðxÞtŨ�ðtÞ: ð3:28Þ

This is an equivalent definition, and the only differ-
ence would be the roles of TðpÞ and VðxÞ in the
double expansion. Following the same procedure,
we get the following recursion relation:

P�
n;kðtÞ ¼

Xm−kþ1

l¼1

Z
t

0

dt1Rlðt1ÞPn−l;k−1ðtkÞ; ð3:29Þ

where

P�
n;kðtÞ ¼

Xn
α1 ;…;αk¼1

ðα1þ…αk¼nÞ

ð∓ iÞk
Z

t

0

dt1

Z
t1

0

dt2…

×
Z

tk−1

0

dtkR�
α1ðt1Þ…R�

αkðtkÞ ð3:30Þ

and

R�
k ¼ TðkÞðpÞ

k!
ck�ðx;∇x; tiÞ; c�ðx;∇x; tiÞ

¼ i∇x �∇xVðxÞti ∓ ∇xVðxÞt: ð3:31Þ

In this case, the actions Γ� becomes

Γ�ðuÞ ¼ −lim
ε→0

X
n¼0

ℏn

Z
∞�iε

0�iε

dt
t
e�iut

×
Z

dDp
ð2πℏÞD e∓iTðpÞt

�Xn
k¼1

P�
n;kðtÞ

�
�
;

ð3:32Þ

where

h…i� ¼
Z

dDx…e∓iVðxÞt:

(ii) In both of (3.27) and (3.32), the order ℏ counts the
number of derivatives. But the difference is in the
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first one, it is the number of derivatives on VðxÞ,
while in the latter, it is the one on TðpÞ. This
difference indicates that (3.27) and (3.32) are differ-
ent expressions of same object. However, as long as
we do not truncate one of these expansions, results
coming from both approaches would be equal.

(iii) The recursion relation (3.24) is in the same form
with the well-known WKB recursion relation [28].
However, as stated before, since we consider the
contributions of branch points through the t integral,
we will take x and p integrals directly, and this
will be our ticket to go to higher dimensions. For
completeness, we will also show the equivalence
between our method and the standard WKB in one
dimension in Appendix B.

(iv) Finally, note that the recursive behavior is an
intrinsic property of the iterated integrals, which
stem from the time-ordered exponential, and it is
independent of the functions TðpÞ and VðxÞ. This
indicates the topological nature of the derivative
expansions, and it is totally consistent with the
conjectured equivalence of topological recursion
and WKB expansion [14,15].

IV. AN EXAMPLE: ANHARMONIC OSCILLATORS
IN QUANTUM MECHANICS

Up to this point, we have constructed a recursive
expansion formula for the quantum action Γ and expressed
each term by a number of integrals. In this section, as an
illustrative example, we will demonstrate how the spectral
information of the D-dimensional quantum anharmonic
oscillator is obtained. Let us start with setting

TðpÞ ¼ p2

2
ð4:1Þ

and

VðxÞ ¼ x2

2
þ λvðxÞ; ð4:2Þ

where vðxÞ is a higher degree polynomial. Then, the
quantum actions in (3.27) are written as

Γ�ðuÞ ¼ −lim
ε→0

X
m¼0

ℏm

Z
∞�iε

0�iε

dt
t
e�iut

Z
dDxdDp
ð2πℏÞD

× e∓iðx2
2
þλvðxÞÞt Xm

k¼1

Ũ�
m;kðtÞe∓

ip2t
2 :

We carried out the computations in three separate stages:
(1) Iterated integrals: We first need to compute the

iterated time integrals using the recursion relation
in (3.25).

(i) In these computations, the operator,

b�ðp;∇p; tiÞ ¼ i∇p � pti ∓ pt;

serves as a generator of polynomials in p by
acting on both the polynomials generated in the

lower orders and e∓ip2t
2 . We carried out this

procedure by using the Nest function in
Mathematica.

(ii) Note that the x dependent functions are not
affected by this procedure. Their multiplication
leads to the polynomials in x.

(iii) The ti terms in b� also form polynomials. They
can easily be integrated at each order. Note that
they will also contribute to the next order in the
iteration.

(2) Phase space integrals:At this point, each term in the
expansion is written as a polynomial of p, x and t.
(i) Note that e∓ip2t

2 is already in Gaussian form and
e∓iVðxÞt can be made Gaussian by expanding it
for small λ. Then, we can integrate out x and p
using the standard Gaussian integrals,

I2n ¼
Z

dDze∓it
2

P
D
k¼1

z2kz2n11 …z2nDD

¼
YD
k¼1

Z
dzke

∓it
2
z2kz2nkk

¼
�

1

�2it

�
nYD
k¼1

ð2nkÞ!
nk!

ffiffiffiffiffiffiffiffiffi
2π

�it
;

r
ð4:3Þ

where we set n1 þ…nD ¼ n and in order to
prevent divergences in the zk integrals, the
analytical continuation of t in appropriate
directions is assumed.

(ii) For example, at the leading order in the deriva-
tive expansion, we get

Γ�
m¼0ðu; λÞ

¼ −lim
ε→0

Z
∞�iε

0�iε

dt
t
e�iut

�
2π

�it

�D
2

×
Z

dDx
ð2πℏÞD e∓ix2t

2

X
k¼0

ð∓ iλtÞk
k!

vkðxÞ

¼ −lim
ε→0

Z
∞�iε

0�iε

dt
t

e�iut

ð�itℏÞD
X
n¼0

Að0Þ
2n ðλÞ

ð�itÞn ; ð4:4Þ

where Að0Þ
2n ðλÞ is a polynomial of λ originating

from the Gaussian integral of the x2n term of
vkðxÞ.

(iii) For the higher order terms, additional contri-
butions to both x and p polynomials come from
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the recursive procedure in stage 1. This makes
the general expression more complicated, but it
is still easy to handle by a computer.

(iv) Observe that higher order poles at t ¼ 0 appear
in (4.4). They are critical for us since in our
setting they are associated with the spectrum
of H.

(3) From singularities to spectrum: The singularity at
t ¼ 0 is usually handled by zeta function regulari-
zation [29]. However, instead we will show that the
basic contour integration techniques together with
the iε prescription we mentioned in Sec. II are
sufficient.
(i) To explain how we handle these singularities,

let us continue with (4.4). We start with
introducing a cutoff Λ at the lower limit of
the t integral. This allows us to express (4.4) as

Γ�
m¼0ðu; λÞ ¼ −ℏ−D

X
n¼0

Að0Þ
2n ðλÞð−uÞDþnlim

ε→0
Λ→0

×
EDþnþ1ðΛ� iεÞ
ðΛ� iεÞDþn ; ð4:5Þ

where we used the generalized exponential
integral [30],

EαðzÞ ¼ zα−1
Z

∞

z
dt
e−t

tα
: ð4:6Þ

(ii) For α ∈ N, it can be expressed as

EαðzÞ ¼
ð−zÞα−1
ðα − 1Þ!E1ðzÞ

þ e−z

ðα − 1Þ!
Xα−2
k¼0

ðα − k − 2Þ!ð−zÞk:

ð4:7Þ

The second part of (4.7) is regular at z ¼ 0,
while the first part has a branch cut due to the
branch points of E1ðzÞ at z ¼ 0 and z ¼ ∞.
This branch cut leads to

E1ðze2mπiÞ−E1ðzÞ ¼−2mπi; m∈Z: ð4:8Þ

Note that to use (4.8) in (4.5), we interpret the
analytical continuation as

Λ − iε ¼ ðΛþ iεÞe2πi:

Then, at the leading order, we have

ΔΓ0ðu; λÞ ¼
2πi
ℏD

X
n¼0

Að0Þ
2n ðλÞuDþn

ðDþ nÞ! : ð4:9Þ

(iii) Same technique can be applied to the higher
orders, and ΔΓðuÞ can be expressed as

ΔΓðu; λ;ℏÞ ¼
X∞
m¼0

ΔΓ2mðu; λÞℏ2m; ð4:10Þ

where each ΔΓ2mðu; λÞ corresponds to a series
in u and λ. In Appendix C, we will provide
numerical results for several anharmonic oscil-
lators in D ¼ 1, 2, 3 dimensions.

A. A comment on quantization conditions

Setting λ ¼ 1 for convenience, (4.10) allows us to
express ΔΓ as a series in u and ℏ. However, as we reviewed
in Sec. II, the original spectral quantity is u itself, so it is
natural to investigate a method for obtaining a perturbative
series for u starting from ΔΓ. In one dimension, this can be
achieved by imposing the Bohr-Sommerfeld quantization
condition for (an)harmonic oscillators. In our formulation,
it is expressed as

ΔΓðu;ℏÞ ¼ 2πi

�
N þ 1

2

�
: ð4:11Þ

For a simple harmonic oscillator in one dimension, we have

ΔΓðu;ℏÞ ¼ 2πiu
ℏ

; ð4:12Þ

and it is obvious that (4.11) and (4.12) lead to correct
eigenvalues, i.e., u ¼ ℏðN þ 1

2
Þ. For anharmonic cases, we

will have an infinite series in u for each ΔΓ2m in (4.10). In
these cases, the perturbative expansion of u is achieved by
inverting the series in (4.10) [9,31,32]. On the other hand, it
appears that a meaningful generalization of the Bohr-
Sommerfeld quantization condition to higher dimensions
remains lacking and further investigation is needed.

V. DISCUSSION AND OUTLOOK

In this paper, we investigated the recursive nature of the
derivative expansion of the quantum action and showed
how to implement it in practical calculations for quantum
anharmonic oscillators in arbitrary dimensions. In quantum
mechanics, the semiclassical expansion, which is repre-
sented by a derivative expansion in our language, can also
be obtained via WKB methods in one dimension, or path
integrals in arbitrary dimensions. However, our method has
advantages over both methods since perturbative calcula-
tions using path integral becomes cumbersome very
quickly, and the WKB method is only applicable to
effectively one-dimensional problems.
Besides this practical advantage, the method we used

separates the spectral information into two distinct parts.
The first part, which is identified as the recursion relation
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and iterated integrals, is universal. It is the same for all
quantum mechanical systems. Moreover, despite some
differences in the details, we expect the same structure
to be present in many-body systems and effective quantum
field theories as well. This reveals a general relation
between the classical action and its quantum corrections
at different orders in a wide range of quantum theories. As
we mentioned in the Introduction, this relation has been
well studied for one-dimensional quantum mechanical
models via Picard-Fuchs differential equations and the
holomorphic anomaly equation [6–12]. Thus, the current
paper can also be interpreted as an extension of those
methods to higher dimensions and possibly to more
complicated theories.
On the other hand, the second part, which is identified as

the phase-space integrals, depends on the particular system
chosen, and therefore, it carries information specific to that
system. One important piece of information is the divergent
large order behavior of the semiclassical expansion.
Although we postpone examining this to future work,
our systematic construction allows an efficient computation
of high orders and allows us to examine its hidden non-
perturbative structure.
As we have described, the perturbative spectrum gets

contribution from the singular part of the small t expansion
in (3.27). However, each order in the derivative expansion
in (3.27) contains finite contributions as well. Note that
their order by order integration leads to a divergent series
(see [33] for an example in the 1 loop effective action in
QFT). Although this was not important in our construction
one could, before taking the t integral, obtain a function by
summing the finite part, and it would be interesting to
examine its contribution to the nonperturbative sector of the
spectrum through t integration.
Finally, let us finish with some apparent downsides of the

method we proposed. The first is the lack of expansions
related to the nonperturbative sector. In WKB related
approaches, these expansions are obtained by integrating
along classically nonallowed paths, but we get the spectral
information from the singularity at t ¼ 0 plane, and so no
non-perturbative term emerges in our calculations.
However, as the resurgence theory indicates, there should
be intimate connection between perturbative and nonper-
turbative sectors. For genus one potentials, this is described
by Matone’s relation [6,34,35]. Adapting this to our
formalism could be useful to understand the emergence
of nonperturbative terms, and it can be used to verify the
connection between perturbative and nonperturbative sec-
tors in more complicated theories.
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APPENDIX A: NOTATIONS
AND CONVENTIONS

hxjpi ¼ eix·p=ℏhpjxi ¼ e−ix·p=ℏ

ð2πℏÞD ðA1Þ

hxjx0i ¼ δDðx − x0Þhpjp0i ¼ ð2πℏÞDδDðp − p0Þ ðA2Þ

1 ¼
Z

dDxjxihxj ¼
Z

dDp
ð2πℏÞD jpihpj ðA3Þ

TrO ¼
Z

dDxhxjOjxi ¼
Z

dDp
ð2πℏÞD hpjOjpi ðA4Þ

APPENDIX B: WKB EXPANSION=
DERIVATIVE EXPANSION

Here, for completeness, we compute the first two non-
zero terms in the expansions of the one-dimensional

nonrelativistic quantum mechanics, i.e., TðpÞ ¼ p2

2
, for a

general potential VðxÞ. This will show the equivalence
between the standard WKB approximation and the deriva-
tive expansion in our formalism. In addition to that, we will
also observe how the “physical” singularities transfer from
the t integral to the x integral.

1. Leading order

At the leading order (m ¼ 0) in one dimension (D ¼ 1),
(3.27) simplifies to

Γ�
0 ðEÞ ¼ −ℏlim

ε→0

Z
∞

0

dt
t

Z
dxdp
2πℏ

e∓ip2t
2 e�iðu�iε−VÞt: ðB1Þ

Performing the p integral, rotating the t integral contour by
e�iπ

2 and rescaling t → t
u�iε−VðxÞ, we get

Γ�
0 ðEÞ ¼ e∓iπ

2

Z
∞

0

dte−tffiffiffiffiffiffiffiffiffi
2πt3

p
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� iε − VðxÞ

p
: ðB2Þ

Note that the t integral is still divergent at the lower
boundary. Remark that the branch cut information is now
carried to points giving u ¼ VðxÞ in x space. Handling the
divergence at t ¼ 0 by zeta regularization, we get

ΔΓðEÞ ¼ ΓþðEÞ − Γ−ðEÞ ¼ i
ffiffiffi
2

p X
i

I
αi

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − VðxÞ

p
;

ðB3Þ
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where the each contour αi is taken around the singularities
at u ¼ VðxÞ, i.e., the turning points. Finally, combining
with the quantization condition, we get

ffiffiffi
2

p I
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − VðxÞ

p
¼ 2π

�
N þ 1

2

�
ℏ; ðB4Þ

which matches the Bohr-Sommerfeld formula.

2. Corrections up to Oðℏ2Þ
For m ¼ 1, the action is given as

Γ�
m¼1ðEÞ ¼ −lim

ε→0
ℏ
Z

∞

0

dt
t
e�itðu�iεÞ

Z
dx
2πℏ

e∓iVt

×
Z

t

0

dt0hW1ðt0Þi�; ðB5Þ

where

hW1i� ¼ hV 0ðxÞb�ðpÞi� ¼ 0:

Thus, at order ℏ, there is no contribution to the action.
Similarly, for m ¼ 2, we have

Γ�
m¼2ðEÞ ¼ −lim

ε→0
ℏ2

Z
∞

0

dt
t
e�itðu�iεÞ

Z
dxe∓iVt

×

�Z
t

0

dt1
V 00ðxÞ
2

hb�ðt1Þb�ðt1Þi�

∓
Z

t

0

dt1

Z
t1

0

dt2ðV 0ðxÞÞ2hb�ðt1Þb� ðt2Þi�
�
:

Following the same arguments as for the leading order, we
get

ΔΓm¼2 ¼ −
iℏ2ffiffiffi
2

p
X
i

I
αi

dx

�
V 00ðxÞ

24ðu − VÞ3=2 þ
ðV 0ðxÞÞ2

32ðu − VÞ5=2
�

¼ −iℏ2

ffiffiffi
2

p

26

X
i

I
αi

ðV 0ðxÞÞ2
ðu − VÞ5=2 ;

which reproduces the well-known first quantum correction
to the WKB approximation.

APPENDIX C: RESULTS

Here we present the results for several anharmonic
oscillators in one, two, and three dimensions. The compu-
tations are done by the implementation of the recursive
formula in (3.25) to Mathematica. The results for one
dimension match exactly with the ones in the literature
[10,11,32], and for two and three dimensions, to our
knowledge, these results appear for the first time.

Cubic oscillator: VðxÞ ¼ x2
2
þ λx1x2

One dimension:

ΔΓ0ðuÞ ¼ uþ 15u2λ2

4
þ 1155u3λ4

16
þ 255255u4λ6

128
þ 66927861u5λ8

1024

ΔΓ2ðuÞ ¼
7λ2

16
þ 1365uλ4

64
þ 285285u2λ6

256
þ 121246125u3λ8

2048
þ 51869092275u4λ10

16384

ΔΓ4ðuÞ ¼
119119λ6

2048
þ 156165009uλ8

16384
þ 67931778915u2λ10

65536
þ 24568660040925u3λ12

262144

Two dimensions:

ΔΓ0ðuÞ ¼
u2

2
þ 2u3λ2 þ 30u4λ4 þ 672u5λ6 þ 18480u6λ8

ΔΓ2ðuÞ ¼ −
1

12
þ uλ2

3
þ 10u2λ4 þ 1120u3λ6

3
þ 15400u4λ8

ΔΓ4ðuÞ ¼
11λ4

105
þ 92uλ6

3
þ 3240u2λ8 þ 265408u3λ10 þ 19347328u4λ12
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Three dimensions:

ΔΓ0ðuÞ ¼
u3

6
þ 35u4λ2

48
þ 3003u5λ4

320
þ 46189u6λ6

256
þ 26558675u7λ8

6144

ΔΓ2ðuÞ ¼ −
u
8
−
5u2λ2

96
þ 77u3λ4

128
þ 36465u4λ6

1024
þ 37182145u5λ8

24576

ΔΓ4ðuÞ ¼ −
2369λ2

80640
−
2869uλ4

5120
−
265551u2λ6

28672
þ 30808063u3λ8

294912

Quartic oscillator: VðxÞ ¼ x2
2
þ λðx2Þ2

One dimension:

ΔΓ0ðuÞ ¼ u −
3u2λ
2

þ 35u3λ2

4
−
1155u4λ3

16
þ 45045u5λ4

64
−
969969u6λ5

128

ΔΓ2ðuÞ ¼ −
3λ

8
þ 85uλ2

16
−
2625u2λ3

32
þ 165165u3λ4

128
−
10465455u4λ5

512

ΔΓ4ðuÞ ¼ −
1995λ3

256
þ 400785uλ4

1024
−
26249223u2λ5

2048
þ 1419711293u3λ6

4096

Two dimensions:

ΔΓ0ðuÞ ¼
u2

2
−
4u3λ
3

þ 8u4λ2 − 64u5λ3 þ 1792u6λ4

3

ΔΓ2ðuÞ ¼ −
1

12
−
2uλ
3

þ 8u2λ2 −
320u3λ3

3
þ 4480u4λ4

3

ΔΓ4ðuÞ ¼
4λ2

9
−
2752uλ3

105
þ 17536u2λ4

21
−
192512u3λ5

9
þ 489472u4λ6

Three dimensions:

ΔΓ0ðuÞ ¼
u3

6
−
5u4λ
8

þ 63u5λ2

16
−
1001u6λ3

32
þ 36465u7λ4

128

ΔΓ2ðuÞ ¼ −
u
8
−
5u2λ
16

þ 455u3λ2

96
−
8085u4λ3

128
þ 435435u5λ4

512

ΔΓ4ðuÞ ¼
269λ

4480
þ 523uλ2

1280
−
67479u2λ3

2560
þ 7501923u3λ4

10240
−
136473909u4λ5

8192

Quintic oscillator: VðxÞ ¼ x2
2
þ λx1ðx2Þ2

One dimension:

ΔΓ0ðuÞ ¼ uþ 315u4λ2

16
þ 692835u7λ4

128
þ 9704539845u10λ6

4096
þ 166966608033225u13λ8

131072

ΔΓ2ðuÞ ¼
1085u2λ2

32
þ 15570555u5λ4

512
þ 456782651325u8λ6

16384
þ 6734319857340075u11λ8

262144

ΔΓ4ðuÞ ¼
1107λ2

256
þ 96201105u3λ4

2048
þ 4140194663605u6λ6

32768
þ 489884540580510075u9λ8

2097152
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Two dimensions:

ΔΓ0ðuÞ ¼
u2

2
þ 8u5λ2 þ 1440u8λ4 þ 465920u11λ6 þ 198451200u14λ8

ΔΓ2ðuÞ ¼ −
1

12
þ 56u3λ2

3
þ 9408u6λ4 þ 17937920u9λ6

3
þ 4213780480u12λ8

ΔΓ4ðuÞ ¼
44uλ2

7
þ 20704u4λ4 þ 235023360u7λ6

7
þ 222716628992u10λ8

5

Three dimensions:

ΔΓ0ðuÞ ¼
u3

6
þ 77u6λ2

32
þ 323323u9λ4

1024
þ 1302340845u12λ6

16384
þ 7244053893505u15λ8

262144

ΔΓ2ðuÞ ¼ −
u
8
þ 805u4λ2

128
þ 2263261u7λ4

1024
þ 34659070875u10λ6

32768
þ 624578793013175u13λ8

1048576

ΔΓ4ðuÞ ¼
83819u2λ2

23040
þ 1121359525u5λ4

172032
þ 1891956467895u8λ6

262144
þ 91473021008360675u11λ8

12582912
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