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2Physics Department, Champlain College–Lennoxville,
2580 College Street, Sherbrooke, Québec J1M 0C8, Canada
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We examine the influence of the dispersion relation on the Unruh effect by Lorentz boosting the phase of
Minkowski vacuum fluctuations endowed with an arbitrary dispersion relation. We find that, unlike what
happens with a linear dispersion relation exhibited by massless fields, thermality is lost for general
dispersion relations. We show that thermality emerges with a varying “apparent” Davies-Unruh temper-
ature depending on the acceleration of the observer and on the degree of departure from linearity of the
dispersion relation. The approach has the advantage of being intuitive and able to pinpoint why such a loss
of thermality occurs and when such a deviation from thermality becomes significant. We discuss the link of
our results with the well-known fundamental difference between the thermalization theorem and the
concept of Rindler noise. We examine the possible experimental validation of our results based on a
successful setup for testing the classical analog of the Unruh effect recently described in the literature.
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I. INTRODUCTION

Concepts like modified dispersion relations and minimal
length have been introduced into physics through various
approaches to quantum gravity [1–5]. As soon as they
appeared in the literature, they have immediately been put
to use as tools to investigate deviations from what is
predicted for phenomena relying on Heisenberg’s uncer-
tainty principle or those phenomena relying on the usual
relativistic dispersion relation (see, e.g., Refs. [6–12] and
the review papers [13,14]). In addition, it is well known that
these two concepts are actually related to each other. A
minimal length concept, as implied by the generalized
uncertainty principle (GUP) [15–18], does yield a modified
dispersion relation as well [14] and vice versa [19]. See
Ref. [20] for a thorough discussion of the interrelationships
between the various concepts. Therefore, any result
obtained under the assumption of modified dispersion
relations should also shed some light on cases invoking
the generalized uncertainty principle. Our focus in this
paper will thus be restricted to the former for which a more
intuitive picture of the results can be gained as we shall see.

One of the very fundamental applications of the concept
of modified dispersion relations (or minimal length) is
found in the investigation of black hole thermodynamics
[21–28]. In fact, as the Hawking radiation combines
quantum field theory with a curved spacetime [29], one
naturally hopes to learn from such an investigation more
about semiclassical and quantum gravity by working in
deformed settings: either on the classical spacetime side or
on the quantum field theory side. These two alternatives
offer thus two different approaches. The first possibility
allows one to work with a black hole’s metric background
by using the classical metric itself and its possible defor-
mations [30] to investigate black hole thermodynamics [31]
and the outgoing Hawking radiation. The second possibil-
ity is to take full advantage of the equivalence principle
[32]. One can then compute, instead, the spectrum of the
deformed quantum fields that would be detected by an
accelerated observer in a Minkowski vacuum, i.e., using the
Unruh effect [33–38]. We shall focus in this paper on the
second possibility rather than the first because much less is
rigorously known about the effect of modified dispersion
relations on spacetime at the quantum level. In addition,
the Unruh effect has been suggested, among other things, to
be a potential alternative for investigating nonlocal field
theories [39,40] as well as various quantum gravity
proposals [41]. Moreover, as we shall see, it is con-
ceptually very instructive to mimic the effect of gravity
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by letting an accelerating observer detect the spectrum
of vacuum fluctuations that would obey an arbitrary
dispersion relation.
Several authors have already investigated the influence

of minimal length and modified dispersion relations on
the Unruh effect based on the standard and widely used
methods of Bogoliubov transformations and Wightman’s
two-point functions (for a review, see, e.g., Refs. [42,43]).
The latter emerge within the Unruh-DeWitt pointlike
detector approach [44]. However, based on these two
different methods, different results were reported by vari-
ous authors. Literature on the effect of minimal length/
modified dispersion relations on the Unruh effect can
indeed be split into two classes. In one class, one finds
reports concluding that the Unruh effect is preserved—in
the sense that thermality emerges—but that Unruh’s tem-
perature acquires a correcting factor. In another class, one
learns that the Unruh effect gets destroyed altogether as
thermality is lost beyond a certain energy/frequency thresh-
old determined by the minimal length/cutoff frequency
imposed. In Ref. [45], for example, it was found, based on
Bogoliubov transformations, that a GUP-inspired modifi-
cation to the commutation relations still implies an Unruh
temperature albeit one modified by a factor that is quadratic
in the acceleration a of the observer. In Ref. [46], on the
other hand, Wightman’s function is combined with the
generalized proper-time proposal of Ref. [47] to arrive at a
different dependence of Unruh’s temperature on a (from
which a constraint on the concept of maximal acceleration
was suggested). Very important also is that in these
references the mass of the detected Rindler particles does
not seem to affect the results. In Ref. [48], yet another
expression for Unruh temperature in terms of acceleration a
is obtained based on the so-called extended uncertainty
principle, which introduces the notion of minimal momen-
tum through a modified time-energy uncertainty relation.
Instead of making use of modified dispersion relations,

Agullo et al. used a modified Wightman’s function in
Ref. [49] to compute the power spectrum, which was found
to be thermal only up to a certain frequency scale that
depends on the minimal length introduced inside the
deformed Wightman’s function (see also Ref. [50]). On
the other hand, using the Unruh-DeWitt detector method
combined with a specific dispersion relation for the mass-
less photons, it was found in Ref. [51] that the power
spectrum of the detected modes of the Rindler particles
deviates from the Planck spectrum by a frequency-
dependent factor such that only a limited range of the
original vacuum frequencies yields a positive spectrum (see
also Ref. [52]). In Ref. [53], the Unruh effect was examined
by using Wightman’s function extracted from a deformed
propagator as implied by minimal length. It was found
there that the Unruh effect disappears as thermality is
also lost, to be recovered only for accelerations a of the
observer below a threshold fixed by the minimal length.

Similarly, using the particle detector approach, it was
found in Refs. [54,55] that the Unruh effect disappears
exponentially as the proper time of the detector (observer)
exceeds a certain threshold fixed by the parameter κ within
a κ-Minkowski spacetime [56,57] in which the commuta-
tion relations of the quantum field are deformed as well. In
Ref. [58], the effect on Unruh radiation of a superluminal
dispersion relation with a very specific form has been
investigated using Wightman’s function. It was concluded
that the Unruh effect remains a low energy phenomenon
as the correction to thermality is inversely proportional to
the square of the cutoff scale in the modified dispersion
relation.
Now, it turns out that the approach based on the Unruh-

DeWitt pointlike detector can also be viewed as a relativ-
istic Doppler shift calculation [37,59–62]. Although such a
point of view is extremely intuitive, it has not been much
mentioned in the literature regarding the Unruh effect, and
never discussed regarding the case of modified dispersion
relations. Nevertheless, one of the advantages of the
approach is to provide an intuitive picture for the Unruh
effect by showing that the latter is deeply rooted in classical
physics as well (see also Refs. [63–65]). Another advantage
of the approach is to naturally provide a description of the
effect in terms of spontaneous and induced emissions of
particles by the detector leading to a thermal spectrum
thanks to Einstein’s detailed balance equation for systems
in thermal equilibrium [66]. We thus propose in this paper
to examine the influence of modified dispersion relations
on the Unruh effect by analyzing the spectrum perceived by
an accelerated observer, as the former is shaped by the
relativistic Doppler shift caused by the accelerated motion
of the latter. The approach has one more advantage of being
very general as it easily works for an arbitrary dispersion
relation of the field under consideration. Furthermore, it
provides a precise and a very clear intuitive picture of
why there might be a loss of thermality in the detected
spectrum. The superiority of the approach over the
Bogoliubov transformations method when dealing with
arbitrary dispersion relations or the minimal length via the
GUP consists also in the fact that these imply a modifi-
cation of the equations of motion of the field and its
propagator (see, e.g., Refs. [67–69]), rendering thus
Bogoliubov transformations very difficult to extract.
The appearance of the Unruh effect as a result of the

relativistic Doppler shift of the vacuum fluctuations has
been very pedagogically exposed, and in much greater
detail, in Ref. [70]. In the latter reference, the authors
started by applying the approach to classical plane waves
and then showed how the procedure easily adapts to
quantized fields. For massless scalar fields, the method
gives back the usual Planck spectrum and Unruh temper-
ature. For massless spin-1

2
fields, the method gives back the

Fermi-Dirac spectrum [42,70]. Thus, because the approach
yields the same results as the Bogoliubov transformations
and Wightman’s function approaches for the case of
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massless fields, it never seemed necessary to apply the
approach to the case of massive fields or, more generally,
to the case of fields obeying arbitrary dispersion relations.
It is, however, well known that one does not recover a
thermal spectrum with massive fields based on the Unruh-
DeWitt detector method. This is in contrast to what the
Bogoliubov transformations-based approach seems to sug-
gest. The fundamental reason behind this fact, as elabo-
rately explained in Ref. [42], is deeply rooted in the
“thermalization theorem,” extracted from the Bogoliubov
transformations, as opposed to the “Rindler noise” asso-
ciated with the pointlike detector approach. As we shall see,
the relativistic Doppler shift calculation readily allows one
to clearly see why the Unruh-DeWitt detector method
does not yield a thermal spectrum in the massive case.
Moreover, the procedure is easier to apply—both formally
and conceptually—to arbitrary dispersion relations thanks
to its very intuitive nature.
The remainder of this paper is structured as follows. In

Sec. II, we expose the intuitive feature of the relativistic
Doppler shift approach by applying it to classical plane
waves obeying an arbitrary dispersion relation. We show
how and why the Planck spectrum is lost when the
dispersion relation of the waves departs from the massless
case. In Sec. III, we discuss briefly how to apply the
approach to quantized fields obeying an arbitrary disper-
sion relation. In Sec. IV, we examine in detail the
experimental implications of our results and their possible
validation using the recently successful experimental setup
described in Ref. [71]. The more involved calculations in
this paper are gathered in the two Appendixes A and B. We
conclude this paper with a brief summary.

II. CLASSICAL FIELDS

The first goal of this section is to acquire some intuition
for the relativistic Doppler shift method by applying the
latter to the case of classical plane waves. The other goal
is to derive the useful equations that can be adopted to
quantum fields and that we shall adopt in Sec. IV for an
eventual experimental test. We shall therefore examine
here the spectrum detected by an accelerating observer
by working out the phase shift caused by the motion of
the latter on classical plane waves obeying an arbitrary
dispersion relation.
First, recall that for a particle of massm, of energy E, and

of three-momentum p, the usual relativistic dispersion
relation reads E2 ¼ p2c2 þm2c4. The simplest example
of a modified dispersion relation for massless particles,
often encountered in the literature, has the form E2 ¼
p2c2 þ βfðpÞ, where the parameter β determines the
energy scale at which such a modification becomes relevant
(see Ref. [72] for examples of nonrelativistic versions).
For the sake of generality, we shall consider here an
arbitrary dispersion relation of the form E ¼ fðPÞ, inside
which a nonzero mass might be included. In order to be

able to work with waves, however, we have to consider
instead an arbitrary relation between the angular frequency
ω and the wave vector k, which might be extracted from
the momentum p and energy E thanks to general expres-
sions of the form ω ¼ f0ðE;pÞ and k ¼ f1ðE;pÞ, respec-
tively [72].1 Thus, a general modified dispersion relation
might be taken to be of the form ω ¼ fðkÞ for a regular
and smooth function f. For the massless nondeformed
case, such a dispersion relation reduces to the linear relation
ω ¼ jkj. As the generality of our approach is already
guaranteed by the arbitrary function f, we shall assume
isotropy and consider only the one-dimensional case for
which the results become more transparent and free from
extra unnecessary transverse terms.
Let us therefore consider a one-dimensional classical

plane wave obeying the dispersion relation, ω ¼ ωðkÞ, for
an arbitrary dependence of the angular frequency ω on the
wave number k. As we require that the modified dispersion
relation reduces to a standard one at low energies and still
guarantee a positive ω for high energies, we assume that
ωðkÞ ≥ k for classical and quantum fields. Therefore, at any
given point in Minkowski spacetime, the phase of a plane
wave obeying such a dispersion relation and moving in
either the negative or positive direction, respectively, is of
the form, eiϕ�ðt;xÞ ¼ ei½ωðkÞt�kx�. Let us then examine how
this phase becomes affected by the motion of an accel-
erating observer and what phase the latter would observe by
following the same steps exposed in Ref. [70].
First, the Minkowski time t and position x are related to

the proper time τ of an observer moving, say, in the positive
x direction, with constant acceleration a, by the following
Rindler coordinate transformation:

tðτÞ ¼ sinh aτ
a

; xðτÞ ¼ coshaτ
a

: ð1Þ

Therefore, substituting these expressions for x and t inside
the above expression of the phase in Minkowski spacetime,
we find the effective phase detected by the observer to be of
the form

eiϕ�ðτÞ ¼ exp

�
i

�
ωðkÞ � k

2a
eaτ −

ωðkÞ ∓ k
2a

e−aτ
��

: ð2Þ

Before we examine the resulting detected spectrum as it
arises from this expression of the effective phase, a couple
of important remarks concerning (i) our use of plane waves
and (ii) our assignment of the hyperbolic motion (1) to the
accelerating observer are in order here.
The first remark concerns our use of plane waves with

a modified dispersion relation. Since our plane waves
exhibit a four-momentum that obeys modified dispersion

1For ease of notation, we shall set in this section the Planck
constant ℏ as well as the speed of light c to unity.
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relations, these plane waves are taken to be solutions of
modified wave equations in the case of classical waves
and solutions of modified field equations of motion in
the case of free quantum fields [40,67–69,73–77]. The
modified wave equations being linear, the plane wave
solutions are always guaranteed to exist provided only
that one requires that the contraction pμxμ between position
and momentum remains linear, i.e., pμxμ ¼ p0x0 þ pixi

[30,73]. It is, actually, such a requirement that allows one to
have linear modified Lorentz transformations in position
space even though such transformations are nonlinear in
momentum space [73,78,79]. In addition, it is such a
requirement that leads to the elegant interpretation of the
modified dispersion relations in terms of an energy-
dependent spacetime metric as “seen” by a quantum
particle thanks to the existence of a modified qua-
dratic invariant [73,78], i.e., the so-called gravity’s
rainbow [30].
On the other hand, minimal length, as implied by a

noncommutativity of the position and momenta operators,
still allows one to expand a quantum field as usual in terms
of plane waves weighted by creation and annihilation
operators [80]. If, however, one decides to replace plane
waves by the so-called “maximal localization states” of the
GUP-modified commutation relations [17,81,82], then one
would lose any trace of the Planck spectrum in this
approach because of the loss of a meaningful separation
between the position x of the observer and the position
expectation value hx̂i in the field expansion. Indeed, one
would then associate with the field phases of the form [83]

exp fi½ωðkÞt� hx̂iffiffi
β

p tan−1ð ffiffiffi
β

p
kÞ�g. This expression of the

phase does not allow the emergence of the Planck spectrum
because of the lack in it of a symmetry between the position
and time coordinates. Such a symmetry is indeed required
to give rise to the crucial term e−πΩ=2a, as we shall see in
detail shortly.
The second remark concerns our assignment of a hyper-

bolic motion of the form (1) to the observer. In fact, one
should recall that such a description of the motion in terms
of the proper time τ of the observer is obtained based on
the usual Lorentz transformations. Being interested here
instead in waves and fields that obey modified dispersion
relations, which automatically violate Lorentz invariance,
one might wonder what allows us to keep using Lorentz
boosts. The reason behind assigning such a hyperbolic
motion to our observer is that we assume the latter’s tra-
jectory to be independent of the fields and particles he/she is
supposed to detect. The observer—like a detector—is taken
here to be a macroscopic object that is not altered by the
quantum fluctuations of the background spacetime inside
which it propagates. This is unlike the quantumparticles and
fields whose modified dispersion relations are precisely due
to their interaction with the background spacetime [30,73]
(see also Ref. [72] for an interpretation in terms of

an induced particle species-dependent pseudo-Finslerian
geometry). It must be noted in this regard that suchmodified
Lorentz transformations cannot actually be consistently
applied to bound systems of particles as the latter may
exceed the Planck mass leading to the so-called “soccer-ball
problem” [84]. Therefore, while the waves/fields obey
modified Lorentz transformations, the observer’s position
and time coordinates ðx; tÞ displayed in Eq. (1)—at which
the “onboard sensor” is located, independently of the
waves/fields hitting it—still obey the usual Lorentz trans-
formations. This is the natural approach which is consistent
with a Lorentz transformation that applies to a passive
observer moving along the usual macroscopic trajectory
while being hit by random waves/fields, regardless of when
or where the latter have been created and where they are
coming from.
If, instead, one is interested in finding the spectrum of the

waves (or the vacuum fluctuations) as seen by the observer
under the influence of the waves/fields themselves—which
are thus used as probes for the spacetime location of the
observer—then one has to use the deformed Lorentz
transformations, not the linear ones. In other words, one
takes in this case Lorentz transformations to be active
transformations in the sense that the detected waves/fields
are monitored by the observer from the moment of their
creation to the moment of their detection. While such an
approach does not square well with the picture of an
observer moving independently of the background and
randomly hit by these waves/fields, it is, nevertheless, very
instructive to examine such a possibility, as we do it in
detail in Appendix B. Although it is much easier to
anticipate in such a case that the detected spectrum would
never be Planckian—due to the combination of highly
nonlinear modified Lorentz transformations with modified
dispersion relations backreacting on the transformations—
the approach based on a macroscopic observer obeying the
usual Lorentz transformations provides results that are
physically much richer as we shall see now.
To get the shape of the spectrum as detected by the

accelerating observer, we Fourier transform the τ-dependent
phase (2) using an arbitrarily chosen angular frequency Ω
among the continuous spectrum of frequencies accessible to
the observer. As the transform consists of evaluating the
integral, g�ðΩÞ ¼

Rþ∞
−∞ eiΩτeiϕ�ðτÞdτ, we are going to per-

form the change of variable eaτ ¼ y. Such a Fourier trans-
form then simplifies greatly and reduces to

g�ðΩÞ ¼
1

a

Z
∞

0

y�ν−1e�iðξy−η
yÞdy: ð3Þ

Here, we have distinguished the spectrum gþðΩÞ of the left-
movingmodes from the spectrum g−ðΩÞ of the right-moving
ones. We have also set, for convenience,
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ν¼ i
Ω
a
; ξ¼ωðkÞþk

2a
; η¼ωðkÞ−k

2a
: ð4Þ

To evaluate integral (3), it is actually more practical to
split the exponential function into the complex sum of a
cosine and a sine function [see Eq. (A1) of Appendix A].
In fact, the integral then becomes easier to evaluate by
using the tables of integrals given in Ref. [85]. Thus, the
expressions of the Fourier amplitudes g�ðΩÞ in each wave
are given in terms of the modified Bessel function KνðzÞ
[85] in the following form,

g�ðΩÞ ¼
2ei

πν
2

a

�
η

ξ

��ν
2

K�νð2
ffiffiffiffiffi
ξη

p
Þ: ð5Þ

The amplitudes g�ðΩÞ have thus been found in terms of the
modified Bessel function KνðzÞ, but could also be

expressed in terms of the first Hankel’s function Hð1Þ
ν ðzÞ

by using the well-known link (A2) between these two
functions [85]. The expression in terms of the modified
Bessel function KνðzÞ will allow us to easily find an
approximation for g�ðΩÞ when ξη is very large, whereas

the expression in terms of Hankel’s function Hð1Þ
ν ðizÞ will

allow us to find an approximation for g�ðΩÞ when ξη is
very small.
Now, we already see from this result that, in contrast to

what one finds when the simple dispersion relation ω ¼ k
holds (valid for massless particles), the spectrum that
emerges for an arbitrary dispersion relation cannot be
Planckian anymore. In fact, for the latter to show up the
final expression of the spectrum (5) should display the term
ΓðνÞ which leads to the famous denominator (e2πΩ=a − 1)
which is characteristic of the Planck spectrum.2

In order to search for any hidden Planckian spectrum
inside our result (5), we are going to dissect the latter by
examining the two extreme cases of ξη ≫ 1 and ξη ≪ 1.
These would represent, respectively, cases of small and
large accelerations a compared to the angular frequency ω.
However, we should keep in mind that the case ξη ≫ 1
could also arise for any finite acceleration a of the observer
as long as the dispersion relation of the plane wave departs
greatly from the linear dispersion relation ω ¼ k of mass-
less particles. In other words, the case ξη ≫ 1 could also
arise for arbitrary accelerations a but with very large
deformations of the dispersion relation ω ¼ k. Similarly,
the case ξη ≪ 1 could also arise for any finite acceleration

a with small deformations of the dispersion relation, i.e., as
long as the dispersion relation of the wave becomes very
close—but not identical—to the linear dispersion rela-
tion ω ¼ k.
We shall discuss now the two cases separately by using

the general infinite series expansion of Hankel’s function

Hð1Þ
ν ðzÞ valid for any complex argument z.

A. Small accelerations and/or large deformations

For small accelerations a compared to the angular
frequency ω of the wave and/or for large departures from
the linear dispersion relation ω ¼ k, we have ξη ≫ 1.
Using the large-argument expansion of the modified
Bessel function (A3), we find the following approximations
at the lowest order in 1=ξη,

g�ðΩÞ ≈
e−

πΩ
2a

a

ffiffiffiffiffiffiffiffiffi
πffiffiffiffiffi
ξη

p
r �

η

ξ

��iπΩ
2a

e−2
ffiffiffiffi
ξη

p
: ð6Þ

We clearly see from this expression that there is no way
for the Planck spectrum, i.e., for the factor ΓðνÞ, to be
recovered by squaring the amplitudes g�ðΩÞ and their
complex conjugates. In fact, taking the squared magnitude
of g�ðΩÞ we find the following unique result for both
amplitudes g�ðΩÞ,

jg�ðΩÞj2 ≈
π

a2
ffiffiffiffiffi
ξη

p e−
πΩ
a e−4

ffiffiffiffi
ξη

p
: ð7Þ

These amplitudes are exponentially decreasing and the
usual denominator (e2πΩ=a − 1), characteristic of the Planck
spectrum, is clearly missing for any η.
The natural physical interpretation of this result is as

follows. For small accelerations of the observer and/or large
deformations of the dispersion relation, the relativistic
Doppler shift that affects the original frequencies ω of
the plane waves is not sufficient to give the latter the shape
of the Planck distribution. In other words, in contrast to the
linear case ω ¼ k, the relativistic Doppler shift of the
original spectrum of the plane waves becomes in this case
overwhelmed and completely veiled behind the nonlinear-
ity of the deformed dispersion relation.

B. Large accelerations and/or small deformations

For large accelerations a compared to the specific
angular frequency ω and/or for small deformations of
the dispersion relation, we have ξη ≪ 1. First, using the
relation (A2) between the modified Bessel function KνðzÞ
and Hankel’s function Hð1Þ

ν ðizÞ we easily reexpress the
amplitudes (5) in terms of the latter. Then, using the
small-argument expansion (A5) of Hankel’s function,
we arrive at the following approximation at the leading
order in ξη,

2When the dispersion relation reduces to the linear one ω ¼ k,
expression (5) is, of course, not valid anymore for in this case
η ¼ 0 and expression (5) becomes ill defined. For this special
case, integral (3) reduces to g�ðΩÞ ¼

R
∞
0 y�ν−1e�iξydy. This is, in

fact, the integral that leads to the usual Planckian spectrum as it is
proportional to ΓðνÞ, which gives rise, thanks to the property
(A6), to 1= sinhðiπνÞ, from which, in turn, one obtains the crucial
term 1=ðe2πΩ=a − 1Þ by using the definition (4) of ν.
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g�ðΩÞ ¼
iπ
a

�
η

ξ

��ν
2

ei
π
2
ðν�νÞHð1Þ

�νð2i
ffiffiffiffiffi
ξη

p
Þ

≈
e
iπν
2

a
½Γð∓ νÞη�ν þ Γð�νÞξ∓ν�: ð8Þ

In the first line, the factor e
iπ
2
ðν�νÞ cancels of course from the

amplitude g−ðΩÞ. By computing the square of the magni-
tudes from this expression, we find the following unique
result for both amplitudes g�ðΩÞ,

jg�ðΩÞj2≈
2e−

πΩ
a

a2

����Γ
�
iΩ
a

�����2
�
1þcos

�
2θ−

Ω
a
lnðξηÞ

��
: ð9Þ

To arrive at the expression in the square brackets
we have used the fact that for the purely imaginary
parameter ν, we have the identity Reð½ΓðνÞ�2ðξηÞ−νÞ¼
jΓðνÞj2 cos½2θ−Ω

a lnðξηÞ�, where θ ¼ argΓðνÞ. Therefore,
for large accelerations of the observer and/or large defor-
mations of the dispersion relation the spectrum reads

jg�ðΩÞj2 ≈
8π

aΩðe2πΩ
a − 1Þ cos

2

�
θ −

Ω
2a

lnðξηÞ
�
: ð10Þ

The Planck spectrum is thus recovered with a specific
correcting factor. If we were to interpret the last expression
in terms of the Unruh effect, we would conclude that
the observer should detect a slightly deformed thermal
spectrum with an Unruh temperature given by T ¼ a=2π.3

This can be interpreted physically as follows. For large
accelerations of the observer and/or small deformations of
the dispersion relation the relativistic Doppler shift of each
original angular frequency ω of the plane waves is large
enough that deviations of the plane waves from the linear
dispersion relation ω ¼ k have no noticeable effect on the
global shape of the resulting spectrum. The latter then takes
the same form as the one obtained for the case of the linear
dispersion relation except for a minor correcting factor
which is closer to unity toward the higher-frequency side of
the spectrum. Yet, it is clear that the multiplicative factor
cos2½θ − Ω lnðξηÞ=2a� in Eq. (10) is frequency dependent
and thus does deform the global shape of the detected
spectrum toward the lower-frequency side of the latter.
Nevertheless, we can still extract an “apparent” Unruh
temperature with a specific frequency-dependent correction
as follows.
For large accelerations and low frequencies making

Ω ≪ a, the argument θ of the function ΓðνÞ can be
approximated to the third order in Ω=a by

θ ≈
π

2
−
Ωγ
a

−
�
Ωγ
a

�
3
�
1

6
þ π2

12γ2

�
; ð11Þ

where γ is the Euler-Mascheroni constant [85]. Therefore,
the multiplicative factor cos2½θ −Ω lnðξηÞ=2a� in formula
(10) can be approximated up to the third order in Ω=a as
well. Then, factoring out from such an approximation the
Ω-independent term, the deviation from the usual Planck
spectrum takes the following form,

jg�ðΩÞj2 ≈
2πΩ

a3ðeΩ
T − 1Þ

�
2γ þ ln

�
ω2 − k2

4a2

��
2

; ð12Þ

where we have introduced in the denominator the following
apparent Unruh temperature,

T≈
a
2π

�
1þ

�
Ω
a

�
2

×
4π2γ−12γ2 lnω2−k2

4a2 −6γln2 ω
2−k2
4a2 − ln3 ω

2−k2
4a2

24γþ12 lnω2−k2
4a2

�
: ð13Þ

The power spectrum is clearly frequency dependent and
expression (13) could be identified with a genuine temper-
ature only for the low frequenciesΩ of the spectrum. It does
not only depend on the probed frequency Ω, but it depends
even on the frequency ωðkÞ of the particular wave that has
been Doppler shifted. As we shall see in the next two
sections, these results and interpretations still hold when
the procedure is correctly applied to quantized fields and to
waves on a water surface.

III. QUANTIZED FIELDS

Let us now discuss the relativistic Doppler shift
calculation approach for an observer accelerating in a
Minkowski vacuum, i.e., by taking into account the
fluctuations of a quantum field, which we shall take here
to be a scalar and neutral quantum field for simplicity.
As mentioned in the Introduction, the approach based on

the linear dispersion relation ω ¼ k has also been success-
fully applied to the case of a quantum fermion field in
Ref. [70]. The conclusion drawn in that reference was that
the Fermi-Dirac distribution arises naturally as a relativistic
Doppler shift effect provided that one takes into account the
behavior of spinors under Lorentz boosts. Indeed, the only
difference from the scalar field case is the additional Fermi-
Walker transport of the fermion field that one has to
perform to take into account the effect of the different
observer’s instantaneous velocities on the phase of the
detected spinor field during motion. The crucial multipli-
cative factor 1= coshðiπνÞ that gives rise to the Fermi-Dirac
distribution, rather than the factor 1= sinhðiπνÞ, then
emerges naturally [70]. Given that such an extra factor
is added as a multiplicative factor that is independent of the

3For convenience, we also set in the rest of this paper the
Boltzmann constant kB equal to unity.
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dispersion relation, our conclusions in this section con-
cerning the scalar field will remain valid for the case of the
fermion field. In other words, the conditions we find for
the appearance of the Planck distribution in the case of the
scalar field will also be valid for the appearance of the
Fermi-Dirac distribution in the case of a fermion field.
Now, the intuition and the physical picture we gained in

the previous section concerning the distinction between
small/large accelerations and deformations of the linear
dispersion relation by dealing with classical waves will
constitute a great input here. In addition, however, a richer
physical picture and interpretation are now involved as the
procedure invokes not just a varying relativistic Doppler
shift but also creation of quanta caused by the accelerated
motion of the observer.
Indeed, in order to be consistent with what we just

did for classical waves, we need to Fourier transform
only the phases that accompany the operators ak and a†k
in the mode expansion of quantum fields, rather than
Fourier transforming the whole quantum field operator
itself. As a consequence, the random phases of the
Minkowski vacuum fluctuations become automatically
Doppler shifted from the point of view of the accelerating
observer. One then only needs to compute the squared
magnitudes of the resulting Fourier-transformed phases.
With this way of proceeding, one is guaranteed to recover
the results of Sec. II, where we dealt with classical waves.
It is indeed clear that this way of applying the approach
will just take one through all the steps taken in Sec. II,
starting from Eq. (2) and all the way to the very last results
(10) and (13).
Thus, with the result (7) valid also for the case of

quantized fields, we conclude that the observer would not
detect any thermal spectrum of particles for small accel-
erations of his/her motion and/or large departures of the
dispersion relation of such detected particles from the
massless case. Similarly, from Eq. (10) we conclude that
a thermal spectrum of particles would be detected for large
accelerations of the observer and/or small departures of the
dispersion relations of the detected particles from the
massless case. Finally, with the result (13) we conclude
that the detected spectrum of particles would look like a
deformed Planck spectrum with which an apparent
Unruh temperature can be associated. Such an apparent
temperature is, in turn, different from the familiar Unruh
temperature found for massless particles and can only be
interpreted as an apparent temperature with a correction
term that is frequency dependent.
A more elaborate and pedagogical presentation of the

fundamental difference between Fourier transforming only
the phases that accompany the operators ak and a†k in the
mode expansion of quantum fields and Fourier transform-
ing the whole quantum field operator itself will be
presented elsewhere. A link of the present approach with
the Unruh-Dewitt detector method will then be presented
there as well.

IV. IMPLICATIONS ON THE EXPERIMENTALLY
ACCESSIBLE CLASSICAL ANALOG

OF THE UNRUH EFFECT

Until very recently, no experimental observation of the
Unruh effect was possible. The obvious reason being that
the Unruh temperature, as given by Eq. (13) after setting
in the latter ω ¼ k and restoring to it the fundamental
constants, becomes T ¼ ℏa=ð2πckBÞ. Such an expression
implies that even an acceleration as large as 1020 m=s2

would only produce a temperature which is even smaller
than the 2.7 K of the ambient cosmic microwave back-
ground filling the Universe. Therefore, if one is not even
able to detect such a thermal effect with experimentally
accessible accelerations one can never hope for being able
to test the deviations from thermality we derived here.
Fortunately, there have been many proposals in the

literature to get around the technological limitations
imposed on any attempt to observe the Unruh effect by
focusing, instead, on attempts to observe a classical analog
of the effect [71,86–90]. Accessible laboratory accelera-
tions of the observer/detector are indeed sufficient for the
effect to arise in this case. As is already well known
[42,64,91–93], the Unruh effect (and its deviation from
thermality as we have seen in Sec. II) are not limited to the
quantum fields of the Minkowski vacuum. The effect, and
the deviations therefrom we derived here, extend to
classical waves as well. All we would need then to test
experimentally the results we derived here is any kind of
waves with a specific dispersion relation that departs from
linearity. The setup proposed and realized in Ref. [71] is, in
this regard, what would best suit our needs.
The principle behind such a setup is to replace the

vacuum fluctuations of Minkowski spacetime by the
gravity waves on the surface of water subject to white
noise. A laser beam is to be emitted perpendicularly toward
the surface of the water to detect the ripples that play the
role of vacuum fluctuations [71]. By making such a laser
beam translate horizontally with a constant acceleration, the
laser spot traveling along the water surface, together with a
camera recording the height of the illuminated spot of the
water surface, would play the role of a Rindler observer
(see Ref. [71] for a description of the actual experiment).
What makes such an experimental setup ideal for our
present investigation is that one can easily modify the
dispersion relation of the waves simply by adjusting the
depth of the water in the container. For a gravity wave of
wavelength λ in shallow water of depth h, such that
h < 0.05λ, the dispersion relation of the wave becomes
linear and takes the form ωðkÞ ¼ k

ffiffiffiffiffiffiffi
gh

p
, where g is the

gravitational acceleration at the location of the experiment
[94]. However, for deep water, such that h > λ=2, the
dispersion relation of the wave is nonlinear and it takes the
form ωðkÞ ¼ ffiffiffiffiffiffi

gk
p

. The waves’ phase velocity cp and
group velocity cg in the case of deep water are then given
by cp ¼ ffiffiffiffiffiffiffiffiffi

g=k
p

and cg ¼ cp=2, whereas for the case of
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shallow water both velocities become identical and reduce
to the constant

ffiffiffiffiffiffiffi
gh

p
. Therefore, to achieve an analog of a

Rindler observer in deep water, we only need to take cp to
be the limiting speed in lieu of the speed of light c in
vacuum. Given that the experiment is performed with
standing waves, the smallest wave number is k ¼ π=L,
where L is the size of the container [71]. Therefore, the
limiting speed of the laser beam will be taken here to
be c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

gL=π
p

.
Let us denote by Aðx; tÞ the amplitude of the ripples

traveling on the water surface along the x axis. We shall
now adapt to our case the analysis presented in Ref. [71]
for the case of a linear dispersion relation of the water
waves. However, before introducing noise into the water
ripples as done in Ref. [71], let us first consider a pure
monochromatic plane wave traveling on the water surface
with a wave number k. For such a vibration mode, the
boundary conditions imposed by the water container give
rise to a standing wave that we can write in the form [71]

Ak ¼
1ffiffiffiffiffiffiffiffiffiffi
ωðkÞp e−iωðkÞt sinðkxÞ: ð14Þ

In accordance with Ref. [71], we have normalized
this standing wave so that ðAk1; Ak2Þ ¼ δðk1 − k2Þ,
where ðAk1; Ak2Þ ¼ i

R ðA�
k1∂tAk2 − Ak2∂tA�

k1Þdx is the
time-invariant scalar product for modes obeying the wave
equation. Expressing the phase in the standing wave (14)
in terms of the proper time τ of the observer using
the expression (2) we derived above, and then Fourier
transforming the result with an arbitrary angular frequency
Ω using the prescription (3), we arrive at the following
expression,

hAkðΩÞA�
kðΩÞi ¼

1

4ωðkÞ jgþðΩÞ − g−ðΩÞj2

¼ 1

4ωðkÞ ½jgþðΩÞj
2 þ jg−ðΩÞj2

− g�þðΩÞg−ðΩÞ − gþðΩÞg�−ðΩÞ�: ð15Þ

Here, the functions g�ðΩÞ are now given by

g�ðΩÞ ¼
c
a

Z
∞

0

y�ν−1e�iðξyþη
yÞdy; ð16Þ

and the parameters ν, ξ, and η are given by

ν¼ i
Ωc
a
; ξ¼ kc2−ωðkÞc

2a
; η¼ kc2þωðkÞc

2a
: ð17Þ

For later convenience, we have restored here the constant c
to our parameters. Note also the slight difference in forms.
The exponential in integrals (16) involves the sum ξyþ η

y,
whereas the exponential in integrals (3) involves the

difference ξy − η
y. These differences are due to having

assigned, in accordance with Ref. [71], the phase factor
e−iωt instead of eiωt. Also, the parameters ξ and η are
switched here. Nevertheless, both parameters are still
positive, as can be seen by plugging into the parameter
ξ our expressions of ωðkÞ for the water waves.
Integrals (16) are evaluated in Eqs. (A8) and (A9) of

Appendix A. It is already evident from those expressions
that, as with expression (5), the term ΓðνÞ which would
lead to (e2πΩc=a − 1) in the denominator is missing. The
result (15) clearly shows that, even for a monochromatic
plane wave on the water surface, there is no trace of a
Planck spectrum for arbitrary accelerations a and
dispersion relations ωðkÞ. Moreover, we see that now
there are, in addition, the interference terms g�þðΩÞg−ðΩÞ
and gþðΩÞg�−ðΩÞ due to the reflected wave from the
boundary. This interference will further affect the detected
spectrum. However, as we saw in Sec. II, one can still probe
limiting cases in the search for traces of the Planck
spectrum. Therefore, in analogy with Eq. (9) of Sec. II,
we expect that the only way to recover the Planck spectrum
would be to have ξη ≪ 1, which is equivalent to a large
acceleration a and/or a small departure from linearity of the
dispersion relation. The latter condition can be realized
experimentally by adjusting the depth of the water in the
container. For ξη ≫ 1, however, we see from the expan-
sions in Eq. (A10) that the Planck spectrum has no chance
to emerge.
Given that it is easier to experimentally control the

acceleration a of the laser beam than to adjust the depth
of the water and the degree of departure from linearity
of ωðkÞ, we shall consider here the case of large
accelerations. For that to be achieved, we need and
acceleration such that a ≫ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2c4 − ω2c2

p
. Given that

the wave number is conditioned by k ¼ mπ=L [71], for
any positive integer m, we deduce that for the case of deep
water the acceleration of the laser beam need only satisfy
a ≫ 1

2
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þp

. These are indeed easily achievable
accelerations in the lab. In what follows, we shall avoid the
degenerate case m ¼ 1 for which ξ ¼ 0 and ω ¼ kc.
Inserting now the result (A8) for the first integral in

Eq. (16), and then using the expansion (A11) ofHð1Þ
ν ðzÞ for

z ≪ 1, we easily obtain the amplitude gþðΩÞ for ξη ≪ 1.
Similarly, inserting the result (A9) for the second integral in

Eq. (16), and then using the expansion (A12) ofHð2Þ
ν ðzÞ for

z ≪ 1, we obtain the amplitude g−ðΩÞ for ξη ≪ 1. The
result at the leading order in ξη is the following unified
expression,

g�ðΩÞ ≈
c
a
½e−iπν

2 Γð∓ νÞη�ν þ e
iπν
2 Γð�νÞξ∓ν�: ð18Þ

This result allows us to compute the various terms inside
the square brackets in Eq. (15). We find
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hAkðΩÞA�
kðΩÞi ≈

2πc

ωaΩðe2πΩc
a − 1Þ

�
e
πΩc
a sin

�
θ −

Ωc
a

ln η

�

− sin

�
θ −

Ωc
a

ln ξ

��
2

: ð19Þ

This result is similar to expression (10), but with a
correction term in which the parameters η and ξ are
now “disentangled,” and an overall multiplying factor
of 1=ω emerges. This is due to the extra deformation of
the Planck spectrum caused by the interference with the
reflected wave.
Similarly to what we did for expression (10), we can

probe the low-frequency region of the spectrum. For large
accelerations and low frequencies such that Ωc ≪ a, the
correction term in Eq. (19) can be expanded in the ratio
Ωc=a. As we are not looking for any apparent Unruh
temperatures here, we shall keep only terms up to the
second order inΩc=a inside the correcting factor. We arrive
at the following approximate expression,

hAkðΩÞA�
kðΩÞi ≈

2πΩ
a3ðe2πΩc

a − 1Þ
gL2ffiffiffiffi
m

p : ð20Þ

This correction depends on the probed frequencyΩ and can
easily be measured experimentally in the laboratory as the
integer m just counts the number of harmonics of the
monochromatic wave traveling on the water surface.
We are now going to examine the case of water waves

permeated with white noise and follow step by step the
analysis conducted in Ref. [71]. Therefore, we should now
express the amplitude Aðx; tÞ as a superposition of modes
Ak with coefficients αk encoding the noise in the ripples,

Aðx; tÞ ¼
Z

∞

0

ðαkAk þ α�kA
�
kÞdk: ð21Þ

The mode amplitudes αk represent Gaussian noise of
uniform strength I, with the following averages: hαki ¼ 0

and hαk1α�k2i ¼ I
2
δðk1 − k2Þ [71]. This is specifically

what guarantees the emergence of a delta function in the
frequency for the detected Doppler-shifted noise. Now,
inserting the expression (14) into the expansion (21) and
using the result (16), we extract the Fourier-transformed
mode expansion as follows,

ÃðΩÞ ¼
Z

∞

0

dk

2i
ffiffiffiffiffiffiffiffiffiffi
ωðkÞp ðαk½gþðΩÞ − g−ðΩÞ�

þ α�k½g̃−ðΩÞ − g̃þðΩÞ�Þ: ð22Þ

Here, the amplitudes g̃�ðΩÞ stand for the expressions (5)
derived in Sec. II. Of course, in those expressions,
the parameter η should be taken with its absolute value
jηj since for the water waves we are considering here, we
have kc2 > ωðkÞc.

The total detected noise can be found by computing
hÃðΩ1ÞÃ�ðΩ2Þi [71]. For the case of a linear dispersion
relation, such a calculation yields a Planckian spectrum
accompanied by δðΩ1 − Ω2Þ. This is rendered possible
for two reasons. The first is the linearity in the relation
ωðkÞ ¼ k

ffiffiffiffiffiffiffi
gh

p
. The second is that the amplitudes g�ðΩÞ

yield simply a factor of sin½θ − Ωc
a lnðkc2=aÞ� [71]. These

two facts lead to the appearance of the following trans-
formed αðΩÞ in the integral (22),

αðΩÞ ∼
Z

∞

0

αkdk
k

sin

�
θ −

Ωc
a

ln

�
kc2

a

��
: ð23Þ

This integrated mode amplitude has been shown in detail in
Ref. [71] to be a Gaussian as well, in the sense that one still
has the averages hαΩi ¼ 0 and hαΩ1

α�Ω2
i ¼ I

2
δðΩ1 −Ω2Þ.

In our case, however, what we have is not only a
nonlinear dependence on k in the denominator because
of ωðkÞ but also a nonlinear dependence on k inside the
functions g�ðΩÞ, which do not yield a simple sine function
of ln k. Moreover, this holds even for the case of large
accelerations and/or small deviations of the dispersion
relation from linearity. We see this by plugging the
expression (18) inside the first term multiplying αk in
the integral (22). We get

αðΩÞ ∼
Z

∞

0

αkdkffiffiffi
k

p
�
e
πΩc
2a sin

�
θ −

Ωc
a

ln η

�

þ e
−πΩc
2a sin

�
θ −

Ωc
a

ln ξ
��

: ð24Þ

When recalling that inside the parameters η and ξ there hide
nonlinear functions of k as well, it is evident that even the
Gaussian structure guaranteed in the linear case by the
transformed αðΩÞ is lost here.
We thus clearly see the effect of noise on the detected

spectrum when dispersion relations are allowed. For the
case of large accelerations and/or small deviations of the
dispersion relation from linearity, each monochromatic
mode leads to a slight deviation from the Planck spectrum
as given in Eq. (19). But, when all possible modes are
combined into a Gaussian noise, thermalization is simply
destroyed. Neither the large-acceleration regime nor the
small deviations from linearity could then help restore the
thermal spectrum.

V. SUMMARY

We adapted the relativistic Doppler shift derivation of
the Unruh effect to the case of a classical plane wave as
well as to the case of a quantized field when both obey
a modified dispersion relation of the form ω ¼ ωðkÞ. The
larger the difference ωðkÞ − k, the larger the deviation of
the dispersion relation from linearity one witnesses. We
saw that the resulting general power spectrum of the
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detected waves/particles does not display any Planck-like
pattern. As a result, we had to take into account the
acceleration of the observer and the degree of deviation
from linearity of the dispersion relation by distinguishing
the two different cases of (i) small accelerations and/or
large deviations and (ii) large accelerations and/or small
deviations. In addition, we found that the approach applies
successfully to the classical case and to the quantum
case alike.
Among the many advantages of the approach is that one

easily gains an intuitive explanation for the disappearance
of the Planck spectrum for small accelerations and/or
large deviations of the dispersion relation from linearity.
The reason is that the relativistic Doppler shift in that case
gives rise to a smothered Planck spectrum due to the great
deviation of the dispersion relation from linearity. In
contrast, for large accelerations and/or small deviations
from linearity of the dispersion relation, an asymptotic
Planckian-like spectrum emerges, to which one might
associate an apparent Unruh temperature. The intuitive
reason being that, although not a purely Planckian spec-
trum, one can regard the latter as so provided that one
accepts assigning to it a frequency-dependent temperature,
which one might thus call an apparent Unruh temperature.
Another advantage of this approach is that it is so flexible

that it easily accommodates the use of modified Lorentz
transformations. Indeed, as we discussed in Sec. II and as
we saw in detail in Appendix B, it is possible to combine
within this approach waves/fields with modified dispersion
relations together with modified Lorentz transformations.
The result is again physically very transparent and very
intuitive in that it shows clearly how the nonlinearity of the
dispersion relations spoils the Planck spectrum.
Yet, another advantage of the approach, mathematical in

nature, is twofold. First, it is clear that to use Wightman’s
functions one needs first to relate the dispersion relation of
the field to the deformation of the two-point functions of
the time and space parameters Δτ and Δx, respectively
[49]. Second, as we argued in the Introduction, the
Bogoliubov transformation approach cannot be relied on
either as (i) it heavily depends on the equations of motion of
the deformed field and (ii) it only leads to the thermal-
ization theorem, which is already incapable of distinguish-
ing even the massless case from the massive case [42].
Finally, as a prospect for an experimental test of our

results, we have examined in detail the possibility of using
gravity waves as an analog substitute for the vacuum
fluctuations of Minkowski spacetime. The role of the
detector would be played by a light spot made by a laser
beam emitted downward perpendicularly toward the water
surface. We examined two cases, the case of a pure
monochromatic standing wave and the case of standing
waves permeated with white noise. In the first case,
thermality emerges corrected for large accelerations of
the detector. In the second case, thermality is destroyed

no matter what acceleration the detector has as long as the
dispersion relation deviates from linearity. Our analysis
thus showed great promise for experimentally testing the
deviations from thermality we predicted here for waves
with a dispersion relation. As we argued in Sec. IV, that
goal is easily achievable when using waves on a water
surface, for both the acceleration of the detector and the
dispersion relation of such waves are easily accessible and
easily adjustable experimentally.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referee for the
pertinent comments and insightful remarks that improved
our manuscript. This work is supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant (No. RGPIN-2017-05388).

APPENDIX A: EVALUATING INTEGRALS (3)
AND (16) AND FINDING THEIR VARIOUS

EXPANSIONS

In this Appendix we gather the main identities that were
useful in the text and we give detailed calculations leading
to the various formulas found in the text.
We start by displaying the two useful integrals involving

a power function and a trigonometric function [85],

Z
∞

0

yν−1cos

�
ξy−

η

y

�
dy¼2

�
η

ξ

�ν
2

Kνð2
ffiffiffiffiffi
ξη

p
Þcosπν

2
;

Z
∞

0

yν−1 sin

�
ξy−

η

y

�
dy¼2

�
η

ξ

�ν
2

Kνð2
ffiffiffiffiffi
ξη

p
Þsinπν

2
: ðA1Þ

In these integrals, both parameters ξ and η are assumed to
be positive, which is the case in Sec. II where we deal
with classical and quantum fields. Multiplying the second
line by i and adding it to the first yields the result (5)
displayed in Sec. II. Next, we have the following relation
between the modified Bessel function KνðzÞ and Hankel’s

function Hð1Þ
ν ðzÞ (valid for a complex number z such that

−π < arg z ≤ π=2):

KνðzÞ ¼
iπ
2
e
iπν
2 Hð1Þ

ν ðizÞ: ðA2Þ

On the other hand, the useful series expansions for the
functionsKνðzÞ andHð1Þ

ν ðzÞ are given as follows. For large-
magnitude arguments, jzj ≫ 1, we use the series expansion
for the Bessel function [85] and then terminate the series at
the zeroth order in z as follows,

KνðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�Xn−1
m¼0

ð2zÞ−mΓðνþmþ 1
2
Þ

m!Γðν −mþ 1
2
Þ þOðz−nÞ

�

≈
ffiffiffiffiffi
π

2z

r
e−z: ðA3Þ
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For small-magnitude arguments, jzj ≪ 1, we find the series

expansion for Hankel’s function Hð1Þ
ν ðzÞ by combining the

series expansions of Bessel’s first and second kind
functions JνðzÞ and YνðzÞ, respectively, and then using

Hð1Þ
ν ðzÞ ¼ JνðzÞ þ iYνðzÞ [85]. From such a combination,

we easily deduce indeed the following infinite series,

Hð1Þ
ν ðzÞ¼

X∞
m¼0

ð−1Þmz2mþν

m!22mþν

�
1þ icotðπνÞ
Γðmþνþ1Þ−

ið2zÞ2ν cscðπνÞ
Γðm−νþ1Þ

�
:

ðA4Þ

For small-magnitude arguments, jzj ≪ 1, we may terminate
this infinite series in m at the zeroth order to arrive at the

following approximation for Hð1Þ
ν ðizÞ:

Hð1Þ
ν ðizÞ ≈ ei

πν
2 zν

2ν

�
1þ i cotðπνÞ
Γð1þ νÞ −

ið2izÞ2ν cscðπνÞ
Γð1 − νÞ

�

≈ −
ie−i

πν
2

π

�
Γð−νÞ

�
z
2

�
ν

þ ΓðνÞ
�
z
2

�
−ν
�
: ðA5Þ

In the second step we have used the trigonometric identities
cosðixÞ ¼ cosh x and −i sinðixÞ ¼ sinh x which hold for
any real number x. In addition, we have also used the
following two properties of the gamma function for a
complex argument z and a purely imaginary argument ix,
respectively [85]:

Γð1þ zÞ ¼ zΓðzÞ; jΓðixÞj2 ¼ π

x sinhðπxÞ : ðA6Þ

We need now to evaluate integrals similar to those
in Eq. (A1), but which involve cosðξy þ η=yÞ and
sinðξy þ η=yÞ, respectively. Such integrals can also
be evaluated using the table of integrals in Ref. [85]
(see p. 480):

Z
∞

0

yν−1 cos

�
ξyþ η

y

�
dy

¼ −π
�
η

ξ

�ν
2

�
JνðzÞ sin

πν

2
þ YνðzÞ cos

πν

2

�
;

Z
∞

0

yν−1 sin

�
ξyþ η

y

�
dy

¼ π

�
η

ξ

�ν
2

�
JνðzÞ cos

πν

2
− YνðzÞ sin

πν

2

�
: ðA7Þ

Here, z stands for 2
ffiffiffiffiffi
ξη

p
and the functions JνðzÞ and YνðzÞ

are, respectively, Bessel’s first and second kind functions.
Multiplying the second line in Eq. (A7) by i and adding it to

the first line, and then using Hð1Þ
ν ðzÞ ¼ JνðzÞ þ iYνðzÞ and

Hð2Þ
ν ðzÞ ¼ JνðzÞ − iYνðzÞ [85], yields

Z
∞

0

yν−1eiðξyþ
η
yÞdy ¼ iπei

πν
2

�
η

ξ

�ν
2

Hð1Þ
ν ð2

ffiffiffiffiffi
ξη

p
Þ; ðA8Þ

Z
∞

0

y−ν−1e−iðξyþ
η
yÞdy ¼ −iπeiπν2

�
η

ξ

�
− ν

2

Hð2Þ
−ν ð2

ffiffiffiffiffi
ξη

p
Þ: ðA9Þ

As these integrals directly involve Hankel’s functions

Hð1Þ
ν ðzÞ and Hð2Þ

ν ðzÞ rather than Bessel’s function KνðzÞ,
we need to find the series expansions of the former for both
jzj ≪ 1 and jzj ≫ 1. Using the series expansions for JνðzÞ
and YνðzÞ as given in Ref. [85], we find the following series
expansions for jzj ≫ 1:

Hð1Þ
ν ðzÞ¼

ffiffiffiffiffi
2

πz

r
eiðz−πν

2
−π
4
Þ
�Xn−1
m¼0

imΓðνþmþ1
2
Þ

ð2zÞmm!Γðν−mþ1
2
ÞþOðz−nÞ

�

≈
ffiffiffiffiffi
2

πz

r
eiðz−πν

2
−π
4
Þ;

Hð2Þ
ν ðzÞ¼

ffiffiffiffiffi
2

πz

r
eiðπν2þπ

4
−zÞ
�Xn−1
m¼0

ð−iÞmΓðνþmþ1
2
Þ

ð2zÞmm!Γðν−mþ1
2
ÞþOðz−nÞ

�

≈
ffiffiffiffiffi
2

πz

r
eiðπν2þπ

4
−zÞ: ðA10Þ

For jzj ≪ 1, we already have the expansion (A5) for

Hð1Þ
ν ðizÞ, which for a real argument z leads to

Hð1Þ
ν ðzÞ≈−

ie−
iπν
2

π

�
e
−iπν
2 Γð−νÞ

�
z
2

�
ν

þe
iπν
2 ΓðνÞ

�
z
2

�
−ν
�
:

ðA11Þ

For Hð2Þ
ν ðzÞ, we find the following expansion when z ≪ 1:

Hð2Þ
ν ðzÞ¼

X∞
m¼0

ð−1Þmz2mþν

m!22mþν

�
1− icotðπνÞ
Γðmþνþ1Þþ

ið2zÞ2ν cscðπνÞ
Γðm−νþ1Þ

�

≈
ie

iπν
2

π

�
e
iπν
2 Γð−νÞ

�
z
2

�
ν

þe−
iπν
2 ΓðνÞ

�
z
2

�
−ν
�
: ðA12Þ

APPENDIX B: WORKING WITH DEFORMED
LORENTZ TRANSFORMATIONS

In this Appendix we examine the case of observers
(detectors) using the waves/fields they are hit by as probes
of their spacetime location, requiring, as a consequence,
the use of deformed Lorentz transformations when com-
puting the perceived phase ϕðτÞ. Now, given the multitude
of proposals introduced in the literature for modified
dispersion relations and their corresponding modified
Lorentz transformations, we shall not consider here every
single model introduced in the literature, but focus instead
on the very general model reported in Ref. [79].
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For a particle of angular frequency ωðkÞ and wave
number k relative to an inertial frame, the modified
Lorentz transformation for time in 1þ 1 dimensions is
given by [79]

t0 ¼ fðpÞ
fðp0Þ

0
B@ t − kk0

ωω0 vxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k02

ω02 v2
q

1
CA: ðB1Þ

Here, p is the momentum of the particle in the original
frame and fðpÞ is an arbitrary function that relates the
angular frequency to the energy of the particle: ω ¼ EfðpÞ.
The transformed quantities p0, ω0, and k0 represent the
properties of the particle in a frame moving with instanta-
neous velocity vðtÞ. From this expression we extract the
relation between the element of the proper time dτ in terms
of dt as follows:

dτ ¼ fðp0Þ
fðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k02v2

ω02

s
dt: ðB2Þ

Next, by using the transformation of the position [79],

x0 ¼ fðpÞ
fðp0Þ

0
B@ x − ωk0

kω0 vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k02

ω02 v2
q

1
CA; ðB3Þ

we easily find the formula for the transformation of
velocities, from which, in turn, we deduce the relation
between the acceleration dv=dt in the rest frame of the
laboratory and the constant proper acceleration a in the
instantaneous rest frame of the observer. The result is

a ¼ fðpÞ
fðp0Þ

ωk0

kω0
dv=dt

ð1 − k02
ω02 v2Þ3=2

: ðB4Þ

By integrating this equation after taking the initial con-
dition v ¼ 0 at t ¼ 0, we extract the velocity v in terms of
the proper acceleration a and the time t as follows:

vðtÞ ¼ fðp0Þ
fðpÞ

kω0

ωk0
atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2ðp0Þ
f2ðpÞ

k2

ω2 a2t2
q : ðB5Þ

Substituting this result into Eq. (B2) and integrating, after
taking the initial condition τ ¼ 0 at t ¼ 0, allows us to find
the time t in terms of the proper time τ and then the position
x in terms of the proper time τ as well. We find

tðτÞ ¼ ωfðpÞ
kfðp0Þ

sinh ðakτ=ωÞ
a

;

xðτÞ ¼ ωω0fðpÞ
kk0fðp0Þ

cosh ðakτ=ωÞ
a

: ðB6Þ

Finally, substituting these expressions of tðτÞ and xðτÞ
inside the phase eiϕ�ðt;xÞ ¼ ei½ωðkÞt�kx� of Minkowski space-
time, we find the effective phase detected by the observer to
be of the form

eiϕ�ðτÞ ¼ exp

�
ifðpÞω
fðp0Þ

�
ωk0 � ω0k
2akk0

eakτ=ω

−
ωk0 ∓ ω0k
2akk0

e−akτ=ω
��

: ðB7Þ

Let us keep in mind here that both angular frequencies ωðkÞ
and ω0ðk0Þ in this expression depend nonlinearly on their
respective wave numbers k and k0 in the original and new
frames, respectively.
To get the shape of the spectrum as detected by the

accelerating observer, we Fourier transform the τ-dependent
phase (B7) using an arbitrarily chosen angular frequency Ω
among the continuous spectrum of frequencies available to
the observer. Once again, as the transform consists of
evaluating the integral, g�ðΩÞ ¼

Rþ∞
−∞ eiΩτeiϕ�ðτÞdτ, we

are going to perform the change of variable eakτ=ω ¼ y.
The Fourier transform then takes the form

g�ðΩÞ ¼
1

a

Z
∞

0

y�ν−1e�iðξy−η
yÞdy: ðB8Þ

Here, we have distinguished the spectrum gþðΩÞ of the left-
movingmodes from the spectrum g−ðΩÞ of the right-moving
ones. We have also set, for convenience,

ν¼ i
ωΩ
ak

; ξ¼ωfðpÞ
fðp0Þ

ωk0 þω0k
2akk0

; η¼ωfðpÞ
fðp0Þ

ωk0−ω0k
2akk0

:

ðB9Þ
To evaluate integral (B8) we follow the same steps as
described in Sec. III. As this integral is identical to integral
(3), we find again that the amplitudes are given in terms of
the modified Bessel function KνðzÞ by

g�ðΩÞ ¼
2ei

πν
2

a

�
η

ξ

��ν
2

K�νð2
ffiffiffiffiffi
ξη

p
Þ: ðB10Þ

The important difference, however, is that now the exponent
ν that is responsible for giving rise to the Planck spectrumvia
the crucial term e−πΩ=2a (emerging from the factor eiπν=2 in
this expression) is replaced here by the term e−πωΩ=2ak. The
detected angular frequencyΩ is thus never isolated from the
waves’ phasevelocityωðkÞ=k. As a consequence, the Planck
spectrum can never be “purified” from the effect of the
nonlinear dispersion relation of the detected waves—no
matter how large the acceleration a is or how close to
linearity the dispersion relation is—as long as the latter is not
exactly linear as in the massless case.
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