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We study a false vacuum decay in a two-dimensional black hole spacetime background. The decay rate
in the case that a nucleation site locates at a black hole center has been calculated in the literature. We
develop a method for calculating the decay rate of the false vacuum for a generic nucleation site. We find
that the decay rate becomes larger when the nucleation site is close to the black hole horizon and coincides
with that in Minkowski spacetime when the nucleation site goes to infinity.
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I. INTRODUCTION

The vacuum in the standard model of particle physics
(SM) confirmed by the discovery of a Higgs boson [1,2]
might be metastable depending on the top quark mass,
which has been yet completely fixed experimentally. The
metastable false vacuum state must decay into the true
vacuum [3–5]. Since the lifetime of the false vacuum in a
flat spacetime is much longer than the age of the Universe
[6], it is believed that there is no apparent inconsistency in
the SM. However, there might have been primordial black
holes in the early Universe. Therefore, it is necessary to
know the decay rate of the false vacuum in the presence
of black holes. Indeed, Hiscock pointed out that the black
hole makes the lifetime of the false vacuum shorter [7].
Recently, it is shown that the lifetime of the Higgs vacuum
is less than the age of the Universe in the presence of the
small black holes [8–13]. Considering the Hawking evapo-
ration of black holes, small black holes would be ubiqui-
tous in the early Universe. Thus, the Higgs vacuum might
be unstable. If so, we need to go beyond the SM, namely,
the instability suggests a new physics at the energy scale
higher than the TeV scale [13–21].
It should be noticed that there are two points to be

clarified in previous computations of the decay rate of the
false vacuum with black holes. First, in [7–12], the back-
reaction of the false vacuum decay to spacetime geometry
is taken into account, and the black hole spacetime changes
after tunneling. The validity of such a quantum gravita-
tional picture is not apparent at least in the period around
the electroweak phase transition. Second, no one has
considered cases where a nucleation site of a true vacuum
is away from the black hole (Fig. 1). This is because there is
a difficulty in investigating the false vacuum decay in the
presence of a black hole. Indeed, the black hole breaks the
translation symmetry, and hence the dominant bubble shape
away from a black hole is not spherical anymore. Note that
it is worth investigating bubble nucleation away from black

holes because the process is relevant to the estimation of
gravitational waves from bubble collisions [22]. In fact, the
presence of black holes would change the nucleation rate,
and we need to take into account collisions between black
holes and bubbles on top of the bubble collisions.
In this paper, as a first step, we consider the false vacuum

decay in a two-dimensional black hole. To resolve the first
issue, we take a semiclassical approach and consider the
vacuum decay in a fixed black hole spacetime. As to the
second issue, we consider two-dimensions where we can
develop a new method by extending the formulation in
[23,24] to calculate the decay rate. Using numerical calcu-
lations, we find the decay rate of the false vacuum is
enhanced in the presence of a black hole in two-dimensions.
The decay rate becomes larger when the nucleation site is
close to the black hole horizon and coincides with that in
Minkowski spacetime when the nucleation site goes to
infinity.
The organization of the paper is as follows. In Sec. II,

we briefly review how to calculate a decay rate of a false
vacuum in Minkowski spacetime. Then, we introduce a
new method for calculating a nucleation rate of a bubble
nucleated at the center of a black hole and compare with

FIG. 1. A bubble formation away from a black hole is depicted.
The black region is the black hole, the shaded region is the true
vacuum, and the other are the false vacuum.
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previous researches. In Sec. III, we calculate the decay rate
of the false vacuum for which nucleation site locates at a
generic point. We find the fitting formula for a bubble
formation that yields the decay rate through a bubble
nucleation away from the black hole. For comparison,
we also study the case of a four-dimensional spacetime by
taking annular bubbles and show that the decay rate is also
enhanced as in the case of a two-dimensional spacetime. Of
course, the bubble with such a shape is not the dominant
one in four-dimensions, but it is useful to see the tendency
of the false vacuum decay in the presence of black holes.
The final section is devoted to a conclusion.

II. NUCLEATION AT THE CENTER
OF A BLACK HOLE

In this section, we calculate a decay rate for a false
vacuum decay when the nucleation site locates at the center
of a black hole. Recently, this rate has been investigated in
[8] by using Israel junction conditions [25] to treat the
dynamics of the bubble. In this paper, we use the fixed
background. Hence, instead of the junction conditions,
we extend a method for treating the dynamics of the bubble
in Minkowski spacetime [23,24] to a two-dimensional
Schwarzschild black hole spacetime.

A. False vacuum decay in Minkowski spacetime

Here, we briefly summarize the false vacuum decay in
Minkowski spacetime. Let us consider the following
action:

S ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþUðϕÞ

�
; ð1Þ

where the potential UðϕÞ has two local minima (Fig. 2).
In this paper, we take these minima as follows:

UðϕþÞ ¼ 0; Uðϕ−Þ ¼ −ε < 0; where ϕþ < ϕ−:

ð2Þ

Here, ε is the difference of the energy density between the
true and the false vacuum.
We can calculate the decay rate of the false vacuum Γ as

follows [3]:

Γ ¼ Ae−B where B ¼ Idecay − Ifalse; ð3Þ

where Idecay is the classical Euclidean action for the vacuum
decay process, and Ifalse is that of the false vacuum. In this
setup, Ifalse vanishes, and what we have to calculate is
Idecay. The prefactor A includes quantum corrections [4].
We focus on the leading contribution B in this paper. In a
two-dimensional Minkowski spacetime, the exponent B is
given by (see Appendix A),

B ¼ πσ2

ε
; ð4Þ

where σ is the surface tension of the bubble wall.

B. False vacuum decay in black hole spacetime

Now, we move on to the black hole spacetime. We want
clarify the effect of a black hole on the false vacuum decay
process. The metric of the black hole is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ where fðrÞ ¼ 1 −
2GM
r

; ð5Þ

where M is the black hole mass and r is the absolute value
of a spatial position from the center. Here, we assumed the
reflection symmetry with respect to r. As we will see later,
this assumption is necessary to recover the decay rate in
the Minkowski spacetime when one takes GM → 0.
The geometry is equivalent to the two-side black hole,
namely, the two-dimensional Kruskal-Szekeres spacetime.
Note that such treatment is specific to a two-dimensional
case because of the absence of angular coordinates. The
choice of the Schwarzschild spacetime or the Kruskal-
Szekeres spacetime brings far-reaching physical conse-
quences as shown in [26]. Now we put the bubble radius
r ¼ RðtÞ and divide the action into three parts,

S ¼ Sþ þ S− þ Swall; ð6Þ

where Swall, Sþ, and S− are contributions from the wall,
outside the bubble, and inside the wall, respectively.
Assuming that ϕ is static and homogeneous both inside
and outside of the bubble, S� can be easily calculated as

FIG. 2. The potential UðϕÞ with two local minima is plotted.
The left zero point is the false vacuum, and the right zero point is
denoted as ϕ1. The true vacuum ϕ− has a negative energy −ε.
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Sþ þ S− ¼ 2ε

Z
dtðRðtÞ − rhÞ; ð7Þ

where rh ≡ 2GM is a gravitational radius of the black hole.
Since there is no matter inside the black hole, the volume
of the black hole is subtracted. To calculate Swall, we need
several steps. First, using the spatial reflection symmetry,
the action can be written as

S¼ 2

Z
dt
Z

∞

0

dr

�
1

2
fðrÞ−1ð∂tϕÞ2−

1

2
fðrÞð∂rϕÞ2−UðϕÞ

�
:

ð8Þ

Second, the tangent and normal vector of the wall is
given by

vμk ¼
ð1; _RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðRÞ − fðRÞ−1 _R2
q ; vμ⊥ ¼ ðfðRÞ−1 _R; fðRÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðRÞ − fðRÞ−1 _R2
q ;

ð9Þ

where a dot denotes a derivative with respect to the time.
Defining the following derivative operators:

∂k ≡ vμk∂μ; ∂⊥ ≡ vμ⊥∂μ; ð10Þ

we obtain

S ¼ −2
Z

dt
Z

∞

0

dr

�
1

2
ð∂⊥ϕÞ2 −

1

2
ð∂kϕÞ2 þ UðϕÞ

�
:

ð11Þ

We are now in a position to use the thin-wall approximation
[3](see Appendix A for more details). We envisage the
situation that the energy is concentrated in the thin wall of
the bubble and assume that

∂kϕ ≪ ∂⊥ϕ: ð12Þ

Thus, Swall can be approximated as

Swall ¼ −2
Z

dt
Z
wall

dr

�
1

2
ð∂⊥ϕÞ2 þ UðϕÞ

�
: ð13Þ

The equation of motion is given by

∂2⊥ϕ ¼ dUðϕÞ
dϕ

: ð14Þ

Integrating this equation from the outside of the bubble to
the wall, we obtain

1

2
ð∂⊥ϕÞ2jwall ¼ UðϕÞjwall: ð15Þ

Then Swall can be calculated as

Swall ¼ −2
Z

dt
Z
wall

dr

�
1

2
ð∂⊥ϕÞ2 þUðϕÞ

�

¼ −2
Z

dt
Z
wall

drð∂⊥ϕÞ2

¼ −2
Z

dt
Z

ϕ−

ϕþ
dϕ

dr
dϕ

ð∂⊥ϕÞ2: ð16Þ

In the thin wall approximation, we can deduce the relation,

dϕ
dr

∼
∂⊥ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðRÞ − fðRÞ−1 _R2
q : ð17Þ

Therefore, we obtain

Swall ¼ −2
Z

dt
Z

ϕ−

ϕþ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q

≡ −2σ
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q
; ð18Þ

where σ is the tension of the bubble wall [see (A17)],

σ ¼
Z

ϕ−

ϕþ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞ

p
: ð19Þ

Finally, we obtain the following effective action:

S ¼
Z

dt

�
2εðRðtÞ − rhÞ − 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q �
: ð20Þ

With the Wick rotation t ¼ −iτ, the effective Euclidean
action reads

I ¼ −iS

¼
Z

dτ
h
−2εðRðτÞ − rhÞ þ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ fðRÞ−1R02

q i
;

ð21Þ

where a prime denotes a derivative with respect to an
Euclidean time τ.
Let us evaluate the decay rate of the false vacuum. The

dynamics of the bubble wall in the Lorentzian spacetime
can be deduced from the Hamiltonian derived from the
action (20) as

HL ≡ _R
∂L
∂ _R − L ¼ 2σfðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðRÞ − fðRÞ−1 _R2
q − 2εðR − rhÞ:

ð22Þ

Since the initial energy vanishes, from the energy con-
servation law, we have

FALSE VACUUM DECAY IN A TWO-DIMENSIONAL BLACK … PHYS. REV. D 103, 085009 (2021)

085009-3



HL ¼ 0: ð23Þ

From this, we obtain the following equation:

_RðtÞ2 ¼ −fðRÞ2
��

σ

ε

�
2 fðRÞ
ðR − rhÞ2

− 1

�
≡ −VðRÞ: ð24Þ

Performing the Wick rotation t ¼ −iτ, we can also obtain
the Euclidean equation,

R0ðτÞ2 ¼ VðRÞ: ð25Þ

In Fig. 3, we plotted the effective potential VðRÞ for various
masses of black holes. The left zero point of VðRÞ
corresponds to the location of the black hole horizon:
R ¼ rh. The right zero point of VðRÞ is an initial position of
the bubble wall: R ¼ Rð0Þ. After the tunneling, the bubble
wall appears at Rð0Þ and expands rapidly.
First, we calculate the decay rate in the case of a

Minkowski spacetime and check the consistency with
the known result (4). From (25), we can derive an equation
for the Minkowski spacetime,

R0ðτÞ2 ¼
�
σ

ε

�
2 1

R2
− 1: ð26Þ

With the initial condition _Rð0Þ ¼ R0ð0Þ ¼ 0, we obtain

RðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 − τ2

q
; ð27Þ

where R0 ≡ σ=ε. Note that the initial radius R0 is the
same as that derived in Appendix A. Substituting this
solution into the Euclidean action (21) and integrating over
−R0 < τ < R0, we obtain the exponent,

B ¼
Z

R0

−R0

dτ
�
−2εRþ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02

p �

¼
Z

R0

−R0

dτð−2εðR2
0 − τ2Þ12 þ 2σR0ðR2

0 − τ2Þ−1
2Þ

¼ 2σR0

Z
π

0

dθcos2θ

¼ πσ2

ε
≡ Bflat: ð28Þ

This coincides with the result of (4).
Now, for the Schwarzschild spacetime, the exponent B is

given by

FIG. 3. The effective potentials for GM=R0 ¼ 0.0, 0.08, 0.15,
and 0.25, where R0 ¼ σ=ε.

FIG. 4. The exponent B for a bubble is plotted. Here, Bflat is that
of the Minkowski spacetime and R0 ≡ σ=ε.

FIG. 5. The normalized exponent B for a four-dimensional
bubble is plotted. In this case, Bflat is that of the four-dimensional
Minkowski spacetime, and we used R0 ≡ 3σ=ε.
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B ¼
Z

β
dτ
h
−2εðRðτÞ − rhÞ þ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ fðRÞ−1R02

q i
;

ð29Þ

where β is the period of the solution of (25). We numeri-
cally evaluated B and plotted it in Fig. 4. It turns out that the
black hole makes the decay rate Γ ¼ A expð−BÞ smaller
than that in the Minkowski spacetime.
The present formulation can be extended to the four-

dimensional spacetime as shown in Appendix B. In this
case, the decay rate is enhanced for small black holes
(Fig. 5). This is consistent with the result in [8]. Thus, we
have shown that the qualitative behavior of the decay rate
depends on the dimensions when the nucleation site is
located at the center of a black hole.

III. NUCLEATION AT A GENERIC LOCATION

In this section, we consider the decay rate of the false
vacuum when the nucleation site is located outside a black
hole. There are two bubble walls, which are represented by

r ¼ PðtÞ; QðtÞ where rh < PðtÞ < QðtÞ: ð30Þ

In the previous section, we used the reflection symmetry to
reduce the dynamics of two walls in both sides of the black
hole to the dynamics of a single wall. In this section,
however, we have to treat these two walls independently
because of the lack of symmetry in the case of the bubble
nucleation outside a black hole.
Let us investigate the dynamics of the bubble walls. Let

us consider the following action:

S ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþUðϕÞ

�
: ð31Þ

The metric is the same as (5). As in the last section, we can
derive the effective action as follows:

S ¼
Z

dt

�
εðQðtÞ − PðtÞÞ − σ

X
R¼P;Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q �
:

ð32Þ

We have to follow the dynamics of two walls using a
Hamilton formulation because it is difficult to obtain
effective potentials from the energy conservation law. In
a Lorentzian formalism, the Hamiltonian is given by

HL ≡ X
R¼P;Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ þ fðRÞ2π2LR

q
−εðQðtÞ − PðtÞÞ; ð33Þ

where πLR is the Lorentzian canonical conjugate momen-
tum for PðtÞ orQðtÞ. The Hamilton equations of motion are
as follows:

_RðtÞ ¼ fðRÞ2πLRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ þ fðRÞ2π2LR

p ; ð34Þ

_πLRðtÞ ¼∓ ε −
rh
2R2

σ2 þ 2fðRÞπ2LRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ þ fðRÞ2π2LR

p ; ð35Þ

where R is either P or Q. For the second equation, the
minus sign is for P, and the other is for Q. From energy
conservation law, we obtain

HL ¼ 0: ð36Þ

To make an analytic continuation, we choose the boundary
conditions at the turning point as follows:

_Pð0Þ ¼ _Qð0Þ ¼ 0: ð37Þ

From (34), there are two choices for the wall of P;
πLPð0Þ ¼ 0 or Pð0Þ ¼ rh, and we choose the former to
consider a bubble away from the black hole. Taking into
account PðtÞ < QðtÞ, the initial condition for the wall
position Q must be πLQð0Þ ¼ 0. Then, the two initial
conditions read

πLPð0Þ ¼ πLQð0Þ ¼ 0: ð38Þ

From HL ¼ 0 and πLRð0Þ ¼ 0, we also obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðPð0ÞÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðQð0ÞÞ

p
−
ε

σ
ðQð0Þ − Pð0ÞÞ ¼ 0: ð39Þ

Hence, one constant of integration is left in solutions of
Eqs. (34) and (35). The single parameter determines the
location where the bubble appears. Therefore, from (34),
(35), (38), and (39), the Lorentzian dynamics of the bubble
wall can be solved.
In an Euclidean region, the effective action reads

I¼
Z

dτ
�
−εðQðτÞ−PðτÞÞþσ

X
R¼P;Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞþfðRÞ−1R02

q �
:

ð40Þ

The Hamiltonian in this case is given by

HE ≡ X
R¼P;Q

ð−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ − fðRÞ2π2ER

q
þ εðQðτÞ − PðτÞÞ;

ð41Þ

where πER is the Euclidean canonical conjugate momentum
for PðτÞ or QðτÞ. The Hamilton equations of motion are as
follows:
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R0ðτÞ ¼ fðRÞ2πERffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ − fðRÞ2π2ER

p ; ð42Þ

π0ERðτÞ ¼ �εþ rh
2R2

σ2 − 2fðRÞπ2ERffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fðRÞ − fðRÞ2π2ER

p : ð43Þ

To perform analytic continuation from the Euclidean
solution into the Lorentzian solution, we choose the
conditions at the transition point,

πEPð0Þ ¼ πEQð0Þ ¼ 0; ð44Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðPð0ÞÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðQð0ÞÞ

p
−
ε

σ
ðQð0Þ − Pð0ÞÞ ¼ 0: ð45Þ

Therefore, from (42), (43), (44), and (45), the Euclidean
dynamics of the bubble wall can be deduced.

A. A consistency check

To check the consistency, we calculate the decay rate of
the false vacuum in the Minkowski spacetime (4). The
Euclidean Hamilton equations of motion (42) and (43)
become

R0ðτÞ ¼ πERffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − π2ER

p ; ð46Þ

π0ERðτÞ ¼ �ε: ð47Þ

These equations can be solved easily under the initial
conditions πERð0Þ ¼ 0,

RðτÞ ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 − τ2

q
þ CR; ð48Þ

where CR is a constant of integration and R0 ≡ σ=ε.
From (45), we see

CP ¼ CQ ≡ C ¼ PðτÞ þQðτÞ
2

: ð49Þ

Then, the constant C represents the center of the bubble.
Thus, the exponent B is given by

B ¼
Z

R0

−R0

dτ

�
−εðQðτÞ − PðτÞÞ þ σ

X
R¼P;Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02

p �

¼
Z

R0

−R0

dτ

�
−2ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 − τ2

q
þ 2σ

τ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 − τ2

p �

¼ πσ2

ε
¼ Bflat: ð50Þ

This is the same result as (4).

B. Decay rate for a generic nucleation site

Now, we are in a position to calculate the decay rate for
generic cases. In the absence of a black hole, PðτÞ andQðτÞ

FIG. 6. The trajectories of bubble walls for real and imaginary
time (t > 0, τ < 0) are plotted for Pð0Þ=R0 ¼ 0.5. From the top
to the bottom, we took the mass GM=R0 ¼ 0.0, GM=R0 ¼ 0.1
and GM=R0 ¼ 0.2, respectively. The vertical dotted line repre-
sents a location of the black hole horizon.
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have the same period. However, it is not true in the presence
of a black hole (Fig. 6). This does not matter because
the two walls contribute to the Euclidean action (40)
independently.
First, we have numerically solved the dynamics of

bubble walls. In Fig. 6, the trajectories of bubble walls
for various masses of black holes with a specific initial
locations of bubbles are plotted. We analytically continue
Lorentzian solutions (t > 0) and Euclidean solutions
(τ < 0) at t ¼ τ ¼ 0. After a bubble nucleation (t ¼ 0),
the bubble wall P falls into black hole horizon, and the
other wall Q goes to infinity at the speed of light in
Schwarzschild spacetime. In the Minkowski case, the
trajectories of P and Q are symmetric. While, when the
nucleation point of P is close to the horizon, the trajectories
become asymmetric in the black hole cases. In the presence
of a black hole, the Euclidean trajectories PðτÞ andQðτÞ are
not connected with each other. Our analysis is legitimate
under the thin-wall approximation. From the field theory
point of view, however, it is natural to think the bounce
solution is a smooth function in the Euclidean time. The
discontinuity might stem from either the thin-wall approxi-
mation or the absence of the symmetry. In order to fix this
issue, we need a field theoretical treatment of the vacuum
decay process. We leave the issue for future.
For the Schwarzschild black hole spacetime, the expo-

nent B is given by

B ¼
Z

βP
dτ
�
εPðτÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðPÞ þ fðPÞ−1P02

q �

þ
Z

βQ
dτ
�
−εQðτÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðQÞ þ fðQÞ−1Q02

q �
; ð51Þ

where βR denotes the period of RðτÞ. We calculate the
exponent B numerically and find that the black hole
enhances the decay rate for nucleation process of a bubble
(Fig. 7). The decay rate is largest at the horizon and
asymptotically approaches the result of Minkowski space-
time as the nucleation point goes to infinity. Note that small
black holes make the decay rates larger [8–12].
We shall find a fitting formula for the solutions. Notice

that, in the absence of a black hole, the solutions (48) can be
written as

ðRðτÞ − CRÞ2 þ τ2 ¼ R2
0: ð52Þ

In order to find a fitting formula, we take the ansatz in the
Euclidean region,

ðRðτÞ − CÞ2
ðRð0Þ − CÞ2 þ

τ2

τ�2R
¼ 1; ð53Þ

where τ�R is the half period of solutions and C ¼ Pðτ�PÞ ¼
Qðτ�QÞ. We put these two parameters as follows:

τ�R ¼ σ

ε

�
1þ aR

rh
Pð0Þ

�
; ð54Þ

C ¼ Pð0Þ þ σ

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rh
Pð0Þ

r
; ð55Þ

where aR are fitting parameters calculated by least squares
method. In the absence of a black hole, we should take the
limits rh → 0 or Pð0Þ → ∞. Using these ansatze, the decay
rate (51) can be evaluated as

B ¼
Z

τ�P

−τ�P
dτ
�
εPðτÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðPÞ þ fðPÞ−1P02

q �
þ
Z

τ�Q

−τ�Q
dτð−εQðτÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðQÞ þ fðQÞ−1Q02

q
Þ

¼ τ�P

"
ε

��
2 −

π

2

�
Cþ π

2
Pð0Þ

�
þ σ

Z
π

0

dθ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðPÞ þ fðPÞ−1

�
C − Pð0Þ

τ�P

�
2

cot2θ

s #

þ τ�Q

"
−ε

��
2 −

π

2

�
Cþ π

2
Qð0Þ

�
þ σ

Z
π

0

dθ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðQÞ þ fðQÞ−1

�
Qð0Þ−C

τ�Q

�
2

cot2θ

s #
; ð56Þ

where we performed the transformation of a variable
τ ¼ τ�R cos θ in the integral. The decay rate obtained from
a fitting formula shows a good agreement with the
numerical calculation (Fig. 8). Thus, the fitting formula (53)
is a good approximation for the dynamics of the bubble
wall in the black hole spacetime.
After an analytic continuation of the Euclidean sol-

ution (53), we obtain a deformed solution in the

Lorentzian region. Since we have fitted the solution in
the Euclidean region, it is difficult to capture the feature
that the bubble wall P falls into the black hole as is seen
in Fig. 6.

C. Discussion

What we wanted to reveal is the effect of a black hole
on the decay rate of the false vacuum in four-dimensions.
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In this subsection, we discuss a four-dimensional false
vacuum decay.
As we already mentioned, it is not easy to solve the

nucleation process in four dimensions. As a modest first
step, we consider the annular bubble in a four-dimensional
black hole spacetime (Fig. 9). We extended the formulation
in two-dimensions to four dimensions in Appendix B.
Apparently, the annular bubble (Fig. 9) does not describe a
dominant process of the false vacuum decay, and this
configuration may not be a solution of field equation of
motion. However, it is useful to see the tendency of
gravitational effects on the decay process in a four-
dimensional black hole spacetime.
From numerical calculations, we see the black hole also

enhances the decay rate of the false vacuum even in four
dimensions (Fig. 10). Therefore, it is expected that the
black hole also enhanced the decay rate of the false vacuum
through the dominant bubble nucleation process in a four-
dimensional black hole spacetime.

FIG. 8. The exponent B calculated by the fitting formula. Left: Plots for Pð0Þ=R0 ¼ 1.0. aP ∼ 0.169553 and aQ ∼ 0.301097. Right:
Plots for Pð0Þ=R0 ¼ 0.1. aP ∼ −0.909407 and aQ ∼ 0.0454321.

FIG. 7. The exponent B for generic bubbles. Left: Plots for Pð0Þ=R0 ¼ 0.001, 0.01, 0.1, 1.0, 10.0. Black hole radii are normalized by
each Pð0Þ. Right: Plots for GM=R0 ¼ 0.001, 0.01, 0.1, 1.0. Initial positions of P are normalized by each 2GM.

FIG. 9. An annular bubble is depicted. The black region is a
black hole and the shaded region is the true vacuum and the other
are the false vacuum.
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IV. CONCLUSION

We studied the false vacuum decay in a two-dimen-
sional black hole spacetime. In particular, we considered
the cases the bubble nucleates at a generic point in the
black hole spacetime. We developed a method for
calculating the decay rate in a fixed Schwarzschild black
hole spacetime by extending the formulation in [23,24].
Using numerical calculations, we showed that the black
hole enhances the decay rate when the nucleation occurs
outside of the black hole. The decay rate is maximized
near the horizon and reduces to the one for a Minkowski
spacetime at infinity. This is natural because away from
the horizon the spacetime asymptotically approaches the
Minkowski spacetime. Our finding indicates that it is
worth investigating the decay rate of the false vacuum in a
four-dimensional black hole spacetime in order to discuss
gravitational waves from bubbles collisions and black
hole bubble collisions [22].
For future work, it is interesting to apply our method to

other O(3) symmetric spacetimes such as Schwarzschild-de
Sitter black holes or charged black holes. We expect that the
cosmological constant make the decay rate larger and the
charge affects oppositely as in the previous works [8,10].
It is challenging to study the false vacuum decay in a four-
dimensional black hole spacetime because the bubble
outside the black hole horizon breaks the symmetry of
the spacetime. It is also intriguing to consider rotating black
holes [27].
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APPENDIX A: N-DIMENSIONAL BUBBLE IN
MINKOWSKI SPACETIME

In this Appendix, we derive the decay rate in a
N-dimensional Minkowski spacetime based on [3].
Let us consider the following action:

S ¼ −
Z

dNx

�
1

2
∂μϕ∂μϕþUðϕÞ

�
; ðA1Þ

where the potential UðϕÞ has two local minima (Fig. 2).
For simplicity, we take these minima as follows:

UðϕþÞ ¼ 0; Uðϕ−Þ ¼ −ε < 0; where ϕþ < ϕ−:

ðA2Þ

In this setup, Ifalse vanishes and we only have to treat Idecay.
Performing the Wick rotation t ¼ −iτ, we obtain the
following Euclidean action:

I ¼ −iS ¼
Z

dτdN−1x

�
1

2
∂μϕ∂μϕþ UðϕÞ

�
: ðA3Þ

From this Euclidean action, the equation of motion for ϕ is
derived as

ð∂2
τ þ ΔN−1Þϕ ¼ dUðϕÞ

dϕ
; ðA4Þ

where ΔN−1 is the Laplacian for a (N-1)-dimensional
Euclidean space. To derive a solution which contributes
to a vacuum decay, we impose the following boundary
conditions:

ϕjτ¼�∞ ¼ ϕþ; ðA5Þ

ϕjjx⃗j¼þ∞ ¼ ϕþ; ðA6Þ

∂ϕ
∂τ

				
τ¼0

¼ 0: ðA7Þ

Next, we assume O(N) symmetry so that ϕ depends only on
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ jx⃗j2

p
. Then, (A3), (A4), (A5), (A6), and (A7)

become

I ¼ TN

Z
dρρN−1

�
1

2

�
dϕ
dr

�
2

þUðϕÞ
�
; ðA8Þ

d2ϕ
dρ2

þ N − 1

ρ

dϕ
ρ

¼ dUðϕÞ
dϕ

; ðA9Þ

ϕð∞Þ ¼ ϕþ; ðA10Þ

dϕð0Þ
dρ

¼ 0; ðA11Þ

FIG. 10. The exponent B for a four-dimensional annular bubble
is plotted for Pð0Þ=R0 ¼ 1.0. We normalized B by the action B0

for an annular bubble in the four-dimensional Minkowski
spacetime.
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where TN is the surface area of a unit sphere. The solutions
satisfying the boundary conditions (A10) and (A11) is
called the bounce solution [3].
Let us now show the existence of the bounce solution.

There is a zero point of UðϕÞ between ϕþ and ϕ−, and we
write it as ϕ1. Since the Euclidean energy monotonously
decreases,

d
dρ

�
1

2

�
dϕ
dρ

�
2

−U

�
¼ −

N − 1

ρ

�
dϕ
dρ

�
2

≤ 0; ðA12Þ

ϕ will undershoot at ϕþ when ϕð0Þ ≤ ϕ1. If ϕð0Þ is very
close to ϕ−, the equation of motion (A9) can be linearized
as follows:

�
d2

dρ2
þ N − 1

ρ

d
dρ

− μ2
�
ðϕ − ϕ−Þ ¼ 0; ðA13Þ

where μ2 ≡ d2Uðϕ−Þ=dϕ2. The solution is given by

ϕðρÞ − ϕ− ¼ 2
N−2
2 Γ

�
N
2

�
ðϕð0Þ − ϕ−Þ

IN−2
2
ðμρÞ

ðμρÞN−2
2

; ðA14Þ

where ΓðNÞ is the gamma function, and IN is the modified
Bessel function of the first kind. If we put ϕð0Þ sufficiently
close to ϕ−, ϕ will stay around ϕ− for long time ρ.
However, the damping force which is proportional to
1=ρ can be neglected at large ρ, and ϕ will overshoot at
ϕþ. Therefore, there must be intermediate initial position
ϕð0Þ for which ϕ just comes to rest at ϕþ after the infinite
time ρ.
From the above argument, ϕðρÞ of the bounce solution

stays near ϕ− for a long time ρ ¼ R and goes quickly to ϕþ.
Let us consider the behavior of ϕ near ρ ¼ R. For ρ ∼ R, we
can neglect the damping force, and the equation of motion
becomes

d2ϕ
dχ2

¼ dUðϕÞ
dϕ

; ðA15Þ

where χ ≡ ρ − R. This equation has the following solution:

χ ¼
Z

ϕw dϕffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞp : ðA16Þ

The action for this solution is given by

Iwall ¼
TN

2

Z
wall

dχðχ þ RÞN−1
��

dϕw

dχ

�
2

þUðϕwÞ
�

¼ TNRN−1
Z

ϕ−

ϕþ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞ

p
≡ TNRN−1σ; ðA17Þ

where σ is the surface tension of the bubble. Then the
bounce solution is as follows:

ϕðρÞ ¼
8<
:

ϕ− for ρ ≪ R

ϕwðρ − RÞ for ρ ∼ R

ϕþ for ρ ≫ R

: ðA18Þ

The region where ϕ ¼ ϕ− is called bubble. To obtain the
decay rate, we assume that R is sufficiently larger than the
wall width of the bubble. This approximation is called
the thin-wall approximation. Then, after substituting (A18)
into (A8), we can divide the Euclidean action into three
parts,

I ¼ Iþ þ I− þ Iwall; ðA19Þ

where Iþ (I−) denotes outside (inside) of the bubble, and
Iwall is the contribution of the bubble wall. Using (A17),
we obtain

I ¼ −VNRNεþ TNRN−1σ; ðA20Þ

where VN is the volume of a unit sphere. Taking the
variation with respect to R,

δI
δR

¼ TNð−RN−1εþ ðN − 1ÞRN−2σÞ ¼ 0; ðA21Þ

we obtain R ¼ ðN − 1Þσ=ε≡ R0. Note that the thin-wall
approximation can be stated quantitatively as follows:

μσ

ε
≫ 1: ðA22Þ

We finally obtain the exponent B,

B ¼ I ¼ π
N
2σ

ΓðN
2
þ 1Þ

�ðN − 1Þσ
ε

�
N−1 ≡ Bflat; ðA23Þ

where we write down VN and TN explicitly. This is an
extension of the result in [3] to a N-dimensional Minkowski
spacetime.

APPENDIX B: N-DIMENSIONAL EFFECTIVE
ACTION

In this Appendix, we extend the effective actions (20)
and (32) to a N-dimensional spacetime. In both cases, we
assume O(N-1) symmetry for the spatial configuration of a
scalar field. Note that an annular bubble is assumed for a
generic nucleation. We can take the same method as the
two-dimensional cases to derive the effective actions in
N-dimensional spacetime. The action (20) is extended to
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S ¼
Z

dt
�
εVN−1ðRðtÞN−1 − rN−1

h Þ − σTN−1RðtÞN−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q �
; ðB1Þ

and the action (32) is also extended to

S ¼
Z

dt

�
εVN−1ðQðtÞN−1 − PðtÞN−1Þ − σTN−1

X
R¼P;Q

RðtÞN−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ − fðRÞ−1 _R2

q �
; ðB2Þ

where VN is the volume of a N-dimensional unit sphere and TN is the surface area of that. From these actions, the dynamics
of the bubbles can be derived, and we can calculate the decay rate by imposing the same boundary conditions as those in
two-dimensional spacetime.
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