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We characterize the correspondence between the twisted N ¼ 2 super-Yang-Mills theory and the
Baulieu-Singer topological theory quantized in the self-dual Landau gauges. While the first is based on an
on-shell supersymmetry, the second is based on an off-shell Becchi-Rouet-Stora-Tyutin symmetry. Because
of the equivariant cohomology, the twisted N ¼ 2 in the ultraviolet regime and Baulieu-Singer theories
share the same observables, the Donaldson invariants for 4-manifolds. The triviality of the Gribov copies in
the Baulieu-Singer theory in these gauges shows that working in the instanton moduli space on the twisted
N ¼ 2 side is equivalent to working in the self-dual gauges on the Baulieu-Singer one. After proving the
vanishing of the β function in the Baulieu-Singer theory, we conclude that the twisted N ¼ 2 in the
ultraviolet regime, in any Riemannian manifold, is correspondent to the Baulieu-Singer theory in the self-
dual Landau gauges—a conformal gauge theory defined in Euclidean flat space.
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I. INTRODUCTION

Throughout the 1980s, based on the self-dual Yang-Mills
equations introduced by A. Belavin et al. in their study of
instantons [1], S. K. Donaldson discovered and described
topological structures of polynomial invariants for smooth
4-manifolds [2–4]. The connection between the Floer
theory for 3-manifolds [5,6] and Donaldson invariants
for 4-manifolds with a nonempty boundary, i.e., that
assumes values in Floer groups, has led to Atiyah’s
conjecture [7,8]. In this conjecture, he proposed that the
Floer homology must lead to a relativistic quantum field
theory. This conjecture was the motivation for Witten’s
topological quantum field theory (TQFT) in four dimen-
sions, as Witten himself admits [8]. In Ref. [7], Atiyah
showed that Floer’s results [6] can be seen as a version of a
supersymmetric gauge theory. Answering Atiyah’s con-
jecture, Witten found a relativistic formulation of Ref. [7],
capable of reproducing the Donaldson polynomials in the
weak coupling limit of the twisted N ¼ 2 Super-Yang-
Mills (SYM) theory. This TQFT is commonly referred to as

the Donaldson-Witten theory (DW) in the Wess-Zumino
gauge [9].
In practice, TQFTs have the power to reproduce topo-

logical invariants of the basis manifold as observables. The
first one to obtain topological invariants from a quantum
field theory was A. S. Schwarz in 1978 [10]. He showed
that the Ray-Singer analytic torsion [11] can be represented
as a partition function of the Abelian Chern-Simons (CS)
action, which is invariant by diffeomorphisms. The
Schwarz topological theory was the prototype of Witten
theories in the 1980s. Indeed, the well-knownWitten paper,
in which he reproduces the Jones polynomials of knot
theory [12], is the non-Abelian generalization of Schwarz’s
results [10]. In this work, Witten is actually able to
represent topological invariants of 3-manifolds as the
partition function of the non-Abelian CS theory.
After Witten’s result [8], L. Baulieu and I. M. Singer

(BS) showed in Ref. [13] that the same topological
observables can be obtained from a gauge-fixed topological
action. In such an approach, the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry [14–16] plays a fundamental role. It is
not built through a linear transformation of a supersym-
metric gauge theory, like Witten’s TQFT. It is built through
a gauge-fixing procedure of a topological-invariant action,
in such a way that the BRST operator naturally appears as
nilpotent without requiring the use of equations of motion.
The geometric interpretation of the BS theory is that the
non-Abelian topological theory lies in a universal space
graded as a sum of the ghost number and the form degree,
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where the vertical direction of this double complex is
determined by the ghost number and the horizontal one is
determined by the form degree. In this space, the topo-
logical BRST transformations are written in terms of a
universal connection, and its curvature naturally explains
the BS approach as a topological Yang-Mills theory with
the same global observables of Witten’s TQFT.
From the physical point of view, the motivation to study

TQFTs comes from the mathematical tools of such theories,
capable of revealing the topological structure of field
theories that are independent of variations of the metric,
and consequently of the background choice. One of the
major obstacles to constructing a quantum theory of gravity
is the integration over all metrics. The introduction of a
topological phase in gravity would have the power tomake a
theory of gravity arise from a symmetry breaking mecha-
nism of a background independent topological theory1

[8,17]. On the other hand, we can investigate conformal
properties of field theories via topological models. In three
dimensions, for instance, the connection between the three-
dimensional Chern-Simons theory and two-dimensional
conformal theories is well known [12]. In four dimensions,
TQFTs are intimately connected with the AdS=CFT
correspondence [18,19]. More recently, motivated by string
dualities, a topological gravity phase in the early Universe
was proposed [20]. Such a phase could explain some puzzles
concerning early Universe cosmology.
The fact that DW theory at the UV regime and BS

theories share the same observables is a well-known result
in the literature [8,13,21–23]. In this paper, we characterize
the correspondence between DW TQFT and a conformal
BS gauge theory at quantum level. While Witten’s theory is
based on the twisted version of theN ¼ 2 super-Yang-Mills
theory, the mentioned conformal theory is based on the
Baulieu-Singer BRST gauge-fixing approach to a topo-
logical action [13]. In recent works [24–26], the existence
of an extra bosonic symmetry was proved in the case of
self-dual Landau gauges.2 This bosonic symmetry relates
the Faddeev-Popov and the topological ghost fields.
Together with the known vector supersymmetry [27] and
the vanishing three-level gauge propagator, one observes
that the BS theory at the self-dual Landau gauges is indeed
tree-level exact [26]. Essentially, the proof of this property
is diagrammatic with some help of algebraic renormaliza-
tion techniques [16]. This remarkable property inevitably
implies a vanishing β function, since it does not receive
quantum corrections. Nevertheless, an entire algebraic

proof was still lacking until now. It turns out that, for a
complete proof of the vanishing of the β function of the BS
theory in the self-dual Landau gauges, one extra property
must be considered: the fact that the Gribov copies are
inoffensive to the self-dual BS theory [28]. This property
establishes that the self-dual BS theory is conformal, as it
allows us to recover some discrete symmetries. The use of
these symmetries makes it possible to eliminate the
renormalization ambiguities discussed in Ref. [25]. With
this information, we were able to establish the correspon-
dence between self-dual BS theories (a conformal gauge
theory defined in Euclidean spaces) for any value of the
coupling constant and DW theory at the deep UV.
The paper is organized as follows. Section II contains an

overview of the main properties of DWand BS theories. We
introduce the main aspects of each approach, explaining
how each one is constructed from different quantization
schemes. As the quantum properties of the Witten’s TQFT
is well known in literature, we dedicate Sec. III to
discussing the quantum properties of the BS theory in
the self-dual Landau gauges. In Sec. IV, we analyze and
compare the corresponding β functions of each model, after
proving that the self-dual BS is conformal. Finally, in
Sec. V, we describe the quantum correspondence between
Witten and self-dual BS topological theories. Section VI
contains our concluding remarks.

II. TOPOLOGICAL QUANTUM
FIELD THEORIES

A topological quantum field theory on a smooth mani-
fold is a quantum field theory which is independent of the
metric on the basis manifold. Such a theory has no
dynamics nor local degrees of freedom and is only sensitive
to topological invariants which describe the manifold in
which the theory is defined. The observables of a TQFTare
naturally metric independent. The latter statement leads to
the main property of topological field theories, namely, the
metric independence of the observable correlation func-
tions of the theory,

δ

δgμν
hOα1ðφiÞOα2ðφiÞ � � �OαpðφiÞi ¼ 0; ð2:1Þ

with

hOα1ðφiÞOα2ðφiÞ � � �OαpðφiÞi

¼ N
Z

½Dφi�Oα1ðφiÞOα2ðφiÞ � � �OαpðφiÞe−S½φ�; ð2:2Þ

where gμν is the metric tensor, φiðxÞ are quantum fields,Oα

are the functional operators of the fields composing global
observables, S½φ� is the classical action, and N is the
appropriate normalization factor. A typical operator Oα is
integrated over the whole space in order to capture the

1We must say that the introduction of such a topological phase
is one of the intricate problems in topological quantum field
theories, since one should develop a mechanism to break the
topological symmetry.

2For simplicity, we will refer to the (anti-)self-dual Landau
gauges, defined by instantons and anti-instantons configurations,
see gauge condition (3.3.), only by the denotation self-dual
gauges.
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global structures of the manifold. Since there are no
particles, the only nontrivial observables are of global
nature [29,30].
As a particular result of (2.1), the partition function of a

topological theory is itself a topological invariant,

δ

δgμν
Z½J� ¼ 0; ð2:3Þ

insofar as Z½J� represents the expectation value of the
vacuum in the presence of a external source, Z½J� ¼ h0j0iJ.
As discussed in Ref. [31], if the action is explicitly
independent of the metric, the topological theory is said
to be of Schwarz type; otherwise, if the variation of the
action with respect to the metric gives a “BRST-like”-exact
term, one says the theory is of Witten type. More precisely,
because δ is an infinitesimal transformation that denotes the
symmetry of the action S which characterizes the observ-
ables of the model, then, if the following properties are
satisfied,

δOαðφiÞ ¼ 0; TμνðφiÞ ¼ δGμνðφiÞ; ð2:4Þ

where Tμν is the energy-momentum tensor of the model,

δ

δgμν
S ¼ Tμν; ð2:5Þ

and Gμν some tensor, the quantum field theory can be
regarded as topological. Obviously, in this case, Eq. (2.3) is
also satisfied, since the expectation value of the δ-exact
term vanishes3 [8,13]. In fact, by using (2.4) and (2.5), and
assuming that the measure ½Dφi� is invariant under δ,
δ

δgμν
hOα1ðφiÞOα2ðφiÞ � � �OαpðφiÞi

¼ −
Z

½Dφi�Oα1ðφiÞOα2ðφiÞ � � �OαpðφiÞTμνe−S

¼ hδ½Oα1ðφiÞOα2ðφiÞ � � �Oα2ðφiÞGμν�i
¼ 0: ð2:6Þ

In the above equation, we assumed that all Oα are metric
independent. Nevertheless, this is not a requirement of the
theory. It is also possible to have a more general theory in
which

δ

δgμν
Oα ¼ δQμν ≠ 0; ð2:7Þ

which preserves the topological structure of
δgμνhOα1 � � �Oαpi ¼ hδð� � �Þi ¼ 0 [31]. Analogously to the
BRSToperator, Eq. (2.6) only makes sense if the δ operator
is nilpotent.4

A. Donaldson-Witten theory

As mentioned in the Introduction, Witten constructed in
Ref. [8] a four-dimensional generalization of Ref. [7],
capable of reproducing the Donaldson invariants [2–4] in
the weak coupling limit. Such a construction can be
obtained from the twist transformation of the N ¼ 2
SYM. Let us quickly revise some important features of
such approach.

1. Twist transformation

The eight supersymmetric charges (Qi
α, Q̄j _α) of N ¼ 2

SYM theories obey the supersymmetry (SUSY) algebra

fQi
α; Q̄j _αg ¼ δijðσμÞα _α∂μ;

fQi
α; Qjαg ¼ fQ̄i

_α; Q̄j _αg ¼ 0; ð2:8Þ

where all indices ði; j; α; _αÞ run from 1 to 2. The indices
ði; jÞ denote the internal SUð2Þ symmetry of the N ¼ 2
SYM action, and ðα; _αÞ are Weyl spinor indices: α denotes
right-handed spinors, and _α denotes left-handed ones. The
fact that both indices equally run from 1 to 2 suggests the
identification between spinor and supersymmetry indices,

i≡ α: ð2:9Þ

The N ¼ 2 SYM action theory possesses a gauge group
symmetry given by

SULð2Þ × SURð2Þ × SUIð2Þ ×URð1Þ; ð2:10Þ

where SULð2Þ × SURð2Þ is the rotation group, SUIð2Þ is
the internal supersymmetry group labeled by i, and URð1Þ
is the so-called R-symmetry defined by the supercharges
(Qi

α, Q̄j _α), which are assigned eigenvalues (þ1, −1),
respectively. The identification performed in Eq. (2.9)
amounts to a modification of the rotation group,

SULð2Þ × SURð2Þ → SULð2Þ × SURð2Þ0; ð2:11Þ

where SURð2Þ0 is the diagonal sum of SURð2Þ and SUIð2Þ.
The twisted global symmetry of N ¼ 2 SYM takes the
form SULð2Þ × SURð2Þ0 × URð1Þ, with the corresponding
twisted supercharges

Qi
α → Qβ

α; Q̄iᾱ → Q̄α _α; ð2:12Þ3The nilpotent δ operator works precisely as a BRST operator,
and it is well known that expectation values of BRST-exact
terms vanish. For a further analysis concerning renormalization
properties, and the definition of physical observables, see
Refs. [14,16,32].

4In Donaldson-Witten theory, for instance, such an operator is
on-shell nilpotent, i.e., δ2 ¼ 0 by using the equations of motion.
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which can be rearranged as

1ffiffiffi
2

p ϵαβQαβ ≡ δ; ð2:13Þ

1ffiffiffi
2

p Q̄α _αðσμÞ _αα ≡ δμ; ð2:14Þ

1ffiffiffi
2

p ðσμνÞ _ααQ _αα ≡ dμν; ð2:15Þ

where we adopt the conventions for ϵαβ, ðσμÞα _α, and ðσμνÞ _αα
as the same as in Ref. [33]. The operator dμν is manifestly
self-dual due to the structure of σμν,

dμν ¼
1

2
εμνλρdλρ; ð2:16Þ

reducing to 3 the number of its independent components.
The operators δ, δμ, and δμν possess eight independent
components into which the eight original supercharges
ðQβα; Q̄α _αÞ are mapped. These operators obey the following
twisted supersymmetry algebra:

δ2 ¼ 0; ð2:17Þ

fδ; δμg ¼ ∂μ; ð2:18Þ

fδμ; δνg ¼fdμν; δg ¼ fdμν; dλρg ¼ 0; ð2:19Þ

fδμ; dλρg ¼ −ðεμλρσ∂σ þ gμλ∂ρ − gμρ∂λÞ: ð2:20Þ

The nilpotent scalar supersymmetry charge δ defines the
cohomology of Witten’s TQFT, as its observables appear as
cohomology classes of δ, which is invariant under a generic
differential manifold. It is implicit in the anticommutation
relation (2.18) the topological nature of the model, as it
allows us to write the common derivative as a δ-exact term.
The gauge multiplet of the N ¼ 2 SYM in Wess-Zumino

gauge is given by the fields

ðAμ;ψ i
α; ψ̄ i

_α;φ; φ̄Þ; ð2:21Þ

where ψ i
α is a Majorana spinor (the supersymmetric

partner of the gauge connection Aμ) and φ is a scalar
field, all of them belonging to the adjoint representation
of the gauge group. The twist transformation is defined by
the identification (2.9) and thus only acts on the fields
ðψ i

μ; ψ̄ i
μÞ, leaving the bosonic fields ðAμ;φ; φ̄Þ unaltered.

Explicitly, the twist transformation is given by the linear
transformations5

ψ i
β → ψαβ ¼

1

2
ðψ ðαβÞ þ ψ ½αβ�Þ; ð2:22Þ

ψ̄ i
_α → ψ̄α _α → ψμ ¼ ðσμÞα _αψ̄α _α; ð2:23Þ

together with

ψ ðαβÞ → χμν ¼ ðσμνÞαβψ ðαβÞ; ð2:24Þ

ψ ½αβ� → η ¼ εαβψ ½αβ�: ð2:25Þ

The twist consists of a mapping of degrees of freedom. The
field ψ̄α _α has four independent components as ðα; _αÞ ¼
f1; 2g and is mapped into the field ψμ that also has four
independent components of the path integral, as the Lorentz
index μ ¼ f1; 2; 3; 4g in four dimensions. In the other
mappings (2.22), (2.24) and (2.25), the same occurs, as the
symmetric part of ψαβ, i.e., ψ ðαβÞ has three independent
components mapped into the self-dual field χμν, and the
antisymmetric part, ψ ½αβ�, with only one independent
component, into η, a scalar field. We must note that
ðψμ; χμν; ηÞ are anticommuting field variables due to their
spinor origin.
Because it is a linear transformation, the twist simply

corresponds to a change of variables with trivial Jacobian
that could be absorbed in the normalization factor; in
other words, both theories (before and after the twist)
are perturbatively indistinguishable. Finally, twisting the
N ¼ 2 SYM action (SN¼2

SYM) [8,34], in flat Euclidean space,
we obtain the Witten four-dimensional topological Yang-
Mills action (SW),

SN¼2
SYM½Aμ;ψ i

α; ψ̄ i
_α;φ; φ̄� → SW ½Aμ;ψμ; χμν; φ̄;φ�; ð2:26Þ

where

SW ¼ 1

g2
Tr

Z
d4x

�
1

2
Fþ
μνFþμν−χμνðDμψν−DνψμÞþ

þηDμψ
μ−

1

2
φ̄DμDμφþ1

2
φ̄fψμ;ψμg

−
1

2
φfχμν;χμνg−

1

8
½φ;η�η− 1

32
½φ; φ̄�½φ; φ̄�

�
; ð2:27Þ

wherein Fþ
μν is the self-dual field6

Fþ
μν ¼ Fμν þ F̃μν; ðF̃þ

μν ¼ Fþ
μνÞ; ð2:28Þ

with F̃μν ¼ 1
2
ϵμναβFαβ, and, analogously,

5Notation: ΦðαβÞ ¼ Φαβ þΦβα and Φ½αβ� ¼ Φαβ −Φβα.

6Following Refs. [8,34], we are considering the positive sign,
that corresponds to anti-instantons in the vacuum. A similar
construction can be done for instantons, only by changing
the sign.

OCTAVIO C. JUNQUEIRA and RODRIGO F. SOBREIRO PHYS. REV. D 103, 085008 (2021)

085008-4



ðDμψν−DνψμÞþ ¼Dμψν−Dνψμþ
1

2
εμναβðDαψβ−DβψαÞ;

ð2:29Þ

with Dμ ≡ ∂μ − g½Aμ; ·� being the covariant derivative
in the adjoint representation of the Lie group G, with g
being the coupling constant. The Witten action7 (2.27)
possesses the usual Yang-Mills gauge invariance, denoted
by8

δYMgaugeSW ¼ 0: ð2:30Þ

The theory, however, does not possess gauge anomalies
[36]. The symmetry that defines the cohomology of the
theory, also known as equivariant cohomology, is the
fermionic scalar supersymmetry

δAμ ¼ −εψμ; δφ¼ 0; δφ̄¼ 2iεη; δη¼ 1

2
ε½φ; φ̄�;

δψμ ¼ −εDμφ; δχμν ¼ εFþ; ð2:31Þ

where ε is the supersymmetry fermionic parameter that
carries no spin, ensuring that the propagating modes of
commuting and anticommuting fields have the same
helicities.9 This symmetry relates bosonic and fermionic
degrees of freedom, which are identical—an inheritance of
the supersymmetric original action.10 The price of working
in Wess-Zumino gauge is the fact that, disregarding gauge

transformations, one needs to use the equations of motion
to recover the nilpotency of δ [30]. This characterizes the
DW theory as an on-shell approach. One can easily verify
that (see Ref. [8])

δ2Φ ¼ 0; for Φ ¼ fA;ψ ;φ; φ̄; ηg; ð2:32Þ
but

δ2χ ¼ equations of motion: ð2:33Þ

Considering the result of Eq. (2.33), hereafter, we will say
that the Witten fermionic symmetry is on-shell nilpotent.
This symmetry is associated to an on-shell nilpotent
“BRST charge,” Q, according to the definition of the δ
variation of any functional O as a transformation on the
space of all functionals of field variables, namely,

δO ¼ −iε · fQ;Og; such that Q2jon-shell ¼ 0: ð2:34Þ

To verify that Witten theory is valid in curved space-
times, it is worth noting that the commutators of covariant
derivatives always appear acting in the scalar field φ, like in
δTrfDμψν · χ̄μνg ¼ 1

2
Trð½Dμ; Dν�φ · χ̄μνÞ, so the Riemann

tensor does not appear, and the theory could be extended to
any Riemannian manifold. In practice, one can simply take

Z
d4x →

Z
d4x

ffiffiffi
g

p
; ð2:35Þ

in order to work in a curved spacetime. Such a theory has
the property of being invariant under infinitesimal changes
in the metric. This property characterizes the Witten model
as a topological quantum field theory. Such a feature is
verified by the fact that the energy-momentum tensor can
be written as the anticommutator

Tμν ¼ fQ; Vμνg; ð2:36Þ

which means that Tμν is an on-shell BRST-exact term,

Tμν ¼ δVμν; δ2jon-shell ¼ 0; ð2:37Þ

with

Vμν ¼
1

2
Tr

�
Fμσχν

σ þ Fνσχμ
σ −

1

2
gμνFσρχ

σρ

�

þ 1

4
gμνTrη½φ; φ̄�

þ 1

2
TrfψμDνφ̄þ ψνDμφ̄ − gμνψσDσφ̄g: ð2:38Þ

Equation (2.37) together with δSW ¼ 0 means that
Witten theory satisfies (on-shell) the second condition
displayed in Eq. (2.4), which allows us to say that SW

7Technically, the Witten action (2.27) is the four-dimensional
generalization of the nonrelativistic topological quantum field
theory [7], whose construction is based on the Floer theory for
3-manifolds M3D, in which the Chern-Simons action is taken as
a Morse function onM3D; see Floer’s original paper [5]. In a few
words, the critical points of CS action (WCS) yield the curvature
free configurations, as δWCS

δAa
i
¼ − 1

2
εijkFjk, where Fjk is the 2-form

curvature in three dimensions, which defines the gradient flows of
a Morse function; see Ref. [17]. In the supersymmetric formu-
lation of Ref. [7], the Hamiltonian (H) is obtained via the
“supersymmetric charges” dt and d�t , from the well-known
relation dtd�t þ d�t dt ¼ 2H, see Ref. [35], whereby dt ¼
e−tWCSdetWCS and d�t ¼ etWCSd�e−tWCS , for a real number t, with
d being the exterior derivative on the space of all connections A,
according to the transformation δAa

i ¼ ψa
i , and d� being its dual.

Before identifying the twist transformation, this formulation (in
four dimensions) was employed by Witten in his original paper
[12] to obtain the relativistic topological action (2.27).

8The typical Yang-Mills transformations of all fields are
implicit in this notation, where the gauge field transforms as
A0
μ ¼ S−1AμSþ S−1∂μS with S ∈ SUðNÞ.
9Precisely, the propagating modes of Aμ have helicities

ð1;−1Þ. For the propagating modes of ðφ; φ̄Þ, the helicities are
(0,0). And the fermionic fields ðη;ψ ; χÞ carry helicities
ð1;−1; 0; 0Þ.

10The action SW is also invariant under global scaling with
dimensions (1, 0, 2, 2, 1, 2) for ðA;φ; φ̄; η;ψ ; χÞ, respectively, and
preserves an additive U symmetry for the assignments
ð0; 2;−2;−1; 1;−1Þ. In the BRST formalism, the latter is
naturally recognized as ghost numbers, as we will see later on.
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automatically leads to a four-dimensional topological field
model. In other words,

δ

δgμν
ZW ¼

Z
DΦ

�
−

δ

δgμν
SW

�
expð−SWÞ

¼ −
1

g2

��
Q;

Z
M
d4x

ffiffiffi
g

p
Vμν

��
¼ 0; ð2:39Þ

as all expected values of a δ-exact term vanish. It remains to
know which kind of topological/differential invariants can
be represented by the Feynman path integral of Witten’s
TQFT. As we know, it will naturally reproduce the
Donaldson invariants for four-manifolds.

2. Donaldson polynomials in the weak coupling limit

An important feature of the twisted N ¼ 2 SYM is the
fact that the theory can be interpreted as quantum fluctua-
tions around classical instanton configurations. To find the
nontrivial classical minima, one must note that the pure
gauge field terms in SW are

SgaugeW ½A� ¼ 1

2
Tr

Z
d4xðFμν þ F̃μνÞðFμν þ F̃μνÞ; ð2:40Þ

which is positive semidefinite and only vanishes if the field
strength Fμν is anti-self-dual,

Fμν ¼ −F̃μν; ð2:41Þ

the same nontrivial vacuum configuration that minimizes
the Yang-Mills action in the case of anti-instantons fields.
Hence, Witten’s action has a nontrivial classical minima for
F ¼ −F̃ and Φother fields ¼ 0. Being precise, the evaluation
of the twisted N ¼ 2 SYM path integral computes quantum
corrections to classical anti-instantons solutions.
Another important property of Witten’s theory is the

invariance under infinitesimal changes in the coupling
constant. The variation of ZW with respect to g2 yields,
for similar reasons as in (2.39),

δg2ZW ¼ δg2

�
−

1

g2

�
hfQ; Xgi ¼ 0; ð2:42Þ

where

X ¼ 1

4
TrFμνχ

μν þ 1

2
TrψμDμφ̄ −

1

4
Trη½φ; φ̄�: ð2:43Þ

The Witten partition function, ZW , is independent of the
gauge coupling g2; therefore, we can evaluate ZW in the
weak coupling limit, i.e., in the regime of very small g2, in
which ZW is dominated by the classical minima.
The instanton moduli space Mk;N is defined to be the

space of all solutions to F ¼ F̃ for an instanton with a

giving winding number k and gauge group SUðNÞ. By
perturbing F ¼ F̃ nearby the solution Aμ via a gauge
transformation Aμ → Aμ þ δAμ, we obtain the self-duality
equation

DμδAν þDμδAν þ εμναβDαδAβ ¼ 0: ð2:44Þ

The solutions of the above equation are called zero
modes. Requiring the orthogonal gauge-fixing condition,11

DμAμ ¼ 0, one gets

DμðδAμÞ ¼ 0: ð2:45Þ

The Atiyah-Singer index theorem [37,38] counts the number
of solutions to Eqs. (2.44) and (2.45). In Euclidean space-
times, for instance, the index theorem gives, see Ref. [39],

dimðMÞ ¼ 4kN; ð2:46Þ

where the modes due to global gauge transformations of the
group were included. Looking at fermion zero modes, the χ
equation for SW gives

Dμψν þDνψμ þ εμναβDαψβ ¼ 0; ð2:47Þ

and from the η equation,

Dμψ
μ ¼ 0: ð2:48Þ

These are the same equations obtained for the gauge
perturbation around an instanton in the orthogonal gauge
fixing, so the number of ψ zero modes is also given by
Mk;N .

12 To get a nonvanishing partition function, Witten
assumed that the moduli space consists of discrete, isolated
instantons. Precisely, he assumed that the dimension of the
moduli space vanishes.13

In expanding around an isolated instanton, in the weak
coupling limit g2 → 0, the action is reduced to quadratic
terms,

11This condition is equivalent to the Landau gauge, as
DμAμ ¼ ∂μAμ. It is important to note that one can promote ∂μ

to Dμ in this case, in order to show that Aμ and ψμ obey the same
equations.

12As Witten himself admits in his paper [8], “this relation
between the fermion equations and the instanton moduli problem
was the motivation for introducing precisely this collection of
fermions.”

13Otherwise, a net violation of the Uð1Þ global symmetry
of SW occurs, and ZW vanishes due to the fermion zero modes;
see Refs. [8,40]. The dimension of the instanton moduli
spaces depends on the bundle, E, and the manifold, M. In the
SUð2Þ gauge theory, it can be written as dimðMÞ ¼
8kðEÞ − 3

2
ðχðMÞ þ σðMÞÞ, where kðEÞ is the first Pontryagin

(or winding) number of the bundle E and χðMÞ and σðMÞ are the
Euler characteristic and signature of M [38]. [For M ¼ R4,
χðR4Þ ¼ σðR4Þ ¼ 0.] Thus, one can choose a suitable E and
M in order to get a vanishing dimension, dimðMÞ ¼ 0.
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Sð2ÞW ¼
Z
M
d4x

ffiffiffi
g

p ðΦðbÞDBΦðbÞ þ iΨðfÞDFΨðfÞÞ; ð2:49Þ

where ΦðbÞ ≡ fA;φ; φ̄g are the bosonic fields and ΨðfÞ ≡
fη;ψ ; χg are the fermionic ones. The Gaussian integral over
all fields gives

ZW jg2→0 ¼
PfaffðDFÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðDBÞ

p ; ð2:50Þ

where PfaffðDFÞ is the Pfaffian of DF, i.e., the square root
of the determinant of DF up to a sign. The supersymmetry
relates the eigenvalues of the operators DB and DF. The
relation is a standard result in instanton calculus [41],
which yields

ZW jg2→0 ¼ �
Y
i

λiffiffiffiffiffiffiffijλij
p

2
; ð2:51Þ

with i running over all nonzero eigenvalues of DB ðDFÞ.
Therefore, for the kth isolated instanton, ZðkÞ

W ¼ ð−1Þnk ,
where nk ¼ 0 or 1 according to the orientation convention
of the moduli space (Donaldson proved the orientability of
the moduli space, i.e., that the definition of the sign of
PfaffðDFÞ is consistent, without global anomalies [4,8]). In
the end, summing over all isolated instantons,

ZW jg2→0 ¼
X
k

ð−1Þnk ; ð2:52Þ

which is precisely one of topological invariant for
4-manifolds described by Donaldson.
The other metric independent observables are con-

structed in the context of Eq. (2.7). These observables
can be generated by exploring the descent equations
defined by the equivariant cohomology, i.e., the supersym-
metry δ cohomology. For that, with Ui being the global
charge of the operator Oi (see footnote 10), it must be
understood that, for the observable

Q
iOi, dimðMÞ ¼P

i Ui.
14 The simplest δ-invariant operator, which does

not depend explicitly on the metric and cannot be written as
δðXÞ ¼ fQ; Xg (due to the scaling dimensions), is

W0ðxÞ ¼
1

2
Trφ2ðxÞ; UðW0Þ ¼ 4: ð2:53Þ

AlthoughW0 is not a δ-exact operator, taking the derivative
of W0 with respect of the coordinates, we find

∂
∂xμ W0 ¼ ifQ;Trφψμg; ð2:54Þ

which is δ exact. Using the exterior derivative, d, we can
rewrite (2.54) as

dW0 ¼ ifQ;W1g; ð2:55Þ

where W1 is the 1-form TrðφψμÞdxμ. A straightforward
calculation gives

dW1 ¼ ifQ;W2g; dW2 ¼ ifQ;W3g; ð2:56Þ

dW3 ¼ ifQ;W4g; dW4 ¼ 0; ð2:57Þ

with

W2 ¼ Tr

�
1

2
ψ ∧ ψ þ iφ ∧ F

�
; ð2:58Þ

W3 ¼ iTrψ ∧ F; ð2:59Þ

W4 ¼ −
1

2
TrF ∧ F; ð2:60Þ

where∧ is the wedge product; the total charge isU ¼ 4 − k
for eachWk; and φ, ψ , and F are 0-, 1-, and 2-forms onM,
respectively. F is the field strength in the p-form formal-
ism,15 defined in Eq. (2.73). Considering now the integral

IðγÞ ¼
Z
γ
Wk; ð2:61Þ

with γ being a k-dimensional homology cycle on M, we
have

fQ; Ig ¼
Z
γ
fQ;Wkg ¼ i

Z
γ
dWk−1 ¼ 0: ð2:62Þ

It proves that IðγÞ is δ-invariant and, then, a possible
observable. To be a global observable of the topological
theory, we just have to prove that IðγÞ is BRSTexact, which
can be immediately verified by taking γ as the boundary ∂β
and applying the Stokes theorem,

IðγÞ ¼
Z
∂β
Wk ¼

Z
β
dWk ¼ i

�
Q;

Z
β
Wkþ1

�
: ð2:63Þ

We conclude, from Eqs. (2.62) and (2.63), that IðγÞ are the
global observables of the model as their expectation values
produce metric independent quantities, i.e., topological
invariants for 4-manifolds. Finally, the general path integral
representation of Donaldson invariants in Witten’s TQFT
takes the form

14To construct topological invariants, the net U charge must
equal the dimension of the moduli space; see Refs. [8,17].

15For the definitions and conventions concerning the p-form
formalism used here, see Sec. II B 2.
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Zðγ1;…; γrÞ ¼
Z

DΦ
�Y

i

Z
γi

Wki

�
e−SW

¼
�Y

i

Z
γi

Wki

�
; ð2:64Þ

with moduli space dimension

dimðMÞ ¼
Xr
i

ð4 − krÞ: ð2:65Þ

One of the beautiful results is the appearing of W4 in the
descent equations. Up to a sign, the observable

Z
γ
W4 ¼ −

1

2

Z
γ
F ∧ F ð2:66Þ

is the Pontryagin action written in the formalism of
p-forms. The Pontryagin action, a well-known topological
invariant of 4-manifolds, naturally appears as one of the
Donaldson polynomials, with a trivial winding number in
this case, since UðW4Þ ¼ 0, and consequently the dimen-
sion of the moduli space vanishes.

B. Baulieu-Singer off-shell approach

Let us now turn to the main properties Baulieu-Singer
approach for TQFTs [13], which is based on an off-shell
BRST symmetry, built from the gauge fixing of an original
action composed of topological invariants.

1. BRST symmetry in topological gauge theories

The four-dimensional spacetime is assumed to be
Euclidean and flat.16 The non-Abelian topological action
S0½A� in four-dimensional spacetime representing the topo-
logical invariants is the Pontryagin action17

S0½A� ¼
1

2

Z
d4xFa

μνF̃a
μν; ð2:67Þ

which labels topologically inequivalent field configura-
tions, as S0½A� ¼ 32π2k, in which k is the topological
charge known as the winding number. We must note that
the Pontryagin action has two different gauge symmetries
to be fixed, these are:

(i) the gauge field symmetry,

δAa
μ ¼ Dab

μ ωb þ αaμ; ð2:68Þ

(ii) the topological parameter symmetry,

δαaμ ¼ Dab
μ λb; ð2:69Þ

where Dab
μ ≡ δab∂μ − gfabcAc

μ are the components
of the covariant derivative in the adjoint representa-
tion of the Lie group G; fabc are the structure
constants of G; and ωa, αaμ, and λa are the infini-
tesimal G-valued gauge parameters. As a conse-
quence of (2.69), the field strength also transforms
as a gauge field,18

δFa
μν ¼ −gfabcωbFc

μν þDab
½μ α

b
ν�: ð2:70Þ

The first parameter (ωa) reflects the usual Yang-Mills
symmetry of S½A�, whereas the second one (αaμ) is the
topological shift associated to the fact that S½A� is a
topological invariant, i.e., invariant under continuous
deformations. The third gauge parameter (λa) is due to
an internal ambiguity present in the gauge transformation
of the gauge field (2.68). The transformation of the gauge
field is composed by two independent symmetries. If the
space has a boundary, the parameter αaμðxÞ must vanish at
this boundary but not ωaðxÞ, which explains the internal
ambiguity described by (2.69) in which αaμðxÞ is absorbed
into ωaðxÞ, and not the other way around [13].
Following the BRST quantization procedure, the gauge

parameters present in the gauge transformations (2.68)–
(2.70) are promoted to ghost fields: ωa → ca, αaμ → ψa

μ, and
λa → φa; ca is the well-known Faddeev-Popov (FP) ghost;
ψa
μ is a topological fermionic ghost; and φa is a bosonic

ghost. The corresponding BRST transformations are

sAa
μ ¼ −Dab

μ cb þ ψa
μ;

sca ¼ g
2
fabccbcc þ φa;

sψa
μ ¼ gfabccbψc

μ þDab
μ φb;

sφa ¼ gfabccbφc; ð2:71Þ

from which one can easily check the nilpotency of the
BRST operator,

s2 ¼ 0; ð2:72Þ

by applying two times the BRST operator s on the fields.
Naturally, S0½A� is invariant under the BRST transforma-
tions (2.71). The nilpotency property of s defines the

16Throughout this work, we consider flat Euclidean spacetime.
Although the topological action is background independent, the
gauge-fixing term entails the introduction of a background.
Ultimately, background independence is recovered at the level
of correlation functions due to BRST symmetry [13,42,43].

17It is worth mentioning that the action S0½A� could encompass
a wide range of topological gauge theories. The Pontryagin action
is the most common case because it can be defined for all
semisimple Lie groups. Nevertheless, other cases can also be
considered. For instance, Gauss-Bonnet and Nieh-Yang topo-
logical gravities can be formulated for orthogonal groups [44].

18The antisymmetrization index notation here employed means
that, for a generic tensor, S½μν� ¼ Sμν − Sνμ.
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cohomology of the theory, which allows for the gauge
fixing of the Pontryagin action in a BRST-invariant fashion.
Furthermore, such a property is related to the geometric
structure of the off-shell BRST transformations in non-
Abelian topological gauge theories.

2. Geometric interpretation

To simplify equations in the following sections, we will
employ again the formalism of differential forms. In this
formalism, the fields c and φ are 0-forms, ψ is the 1-form
ψμdxμ, and F is the 2-form

F ¼ dAþ A ∧ A ¼ 1

2
Fμνdxμ ∧ dxν; ð2:73Þ

where A is the 1-form Aμdxμ, ∧ is the wedge productwhich
indicates that the tensor product is completely antisym-
metric, and d is the exterior derivative.19 With this, we can
then write the BRST transformations in the form

sA ¼ Dcþ ψ ;

sc ¼ 1

2
½c; c� þ φ;

sψ ¼ Dφþ ½c;ψ �;
sφ ¼ ½c;φ�: ð2:74Þ

The geometric meaning of the topological BRST trans-
formations of (2.74) is revealed from the definition of the
extended exterior derivative, d̃, as the sum of the ordinary
exterior derivative with the BRST operator,

d̃ ¼ dþ s; ð2:75Þ

and the generalized connection

Ã ¼ Aþ c: ð2:76Þ

By direct inspection, one sees that the BRST transforma-
tions can be written in terms of the generalized curvature20

F ¼ F þ ψ þ φ; ð2:77Þ

such that

F ¼ d̃ Ãþ 1

2
½Ã; Ã�; ð2:78Þ

with the Bianchi identity

D̃F ¼ d̃F þ ½Ã;F � ¼ 0: ð2:79Þ

Here, the space is graded as a sum of form degree and ghost
number, in which the BRST operator is the exterior
differential operator in the moduli space direction A=G,
where the gauge fields that differ by a gauge transformation
are identified. The whole space is then M ×A=G, with M
being a four-dimensional manifold. According to the
gauges worked out in this paper, M will be a Euclidean
flat space.
In the definition (2.76) and following equations, we are

adding quantities with different form degrees and ghost
numbers as though they were of the same nature.
Obviously, this is not being done directly. We must see
Eqs. (2.78) and (2.79) as an expansion in form degrees and
ghost numbers in which the elements with the same nature
on both sides have to be compared. The relevant cohomol-
ogy is defined by the cohomology of M ×A=G, d̃2 ¼ 0,
being valid without requiring equations of motion. Such a
geometric structure reveals the BRST off-shell character of
the BS approach.21 We will discuss in Sec. II B 5 how the
universal curvature F generates the same global observ-
ables of Witten theory, i.e., the Donaldson polynomials.

3. Doublet theorem and gauge fixing:
Baulieu-Singer gauges

Let us recall the doublet theorem [16], which will be
indispensable for fixing the gauge ambiguities without
changing the physical content of the theory. Consider a
theory that contains a pair of fields or sources that form a
doublet, i.e.,

δ̂X i ¼ Yi;

δ̂Yi ¼ 0; ð2:80Þ

where i is a generic index and δ̂ is a fermionic nilpotent
operator. The field (source) X i is assumed to be fermionic.
As the operator δ̂ increases the ghost number in one unity,
by definition, and if X i is an anticommuting quantity, Yi is
a commuting one. The doublet structure of ðX i;YiÞ in
Eq. (2.80) implies that such fields (or sources) belong to the
trivial part of the cohomology of δ̂. The proof is as follows.
First, we define the operators

19The exterior derivative operation in the space of smooth
p-forms, Λp, d∶Λp → Λpþ1, on a generic p-form ωp,
ωp ¼ ωi1;i2;…;ipdx

i1 ∧ dxi2 � � � ∧ dxip , is locally defined by

dωp ¼ ∂ωi1 ;i2 ;…;ip

∂xj dxj ∧ dxi1 ∧ dxi2 � � � ∧ dxip , with ωp being
a p-form and dωp being a (pþ 1)-form. It follows that the
exterior derivative is nilpotent, d2 ¼ 0, due to the antisymmetric
property of the indices. One assumes that s anticommutes with d,
fs; dg ¼ 0.

20The nature of φ as the “curvature” in the in instanton
moduli space direction is implicit in the BRST transformation
of the FP ghost, which can be rewritten in the geometric form
scþ 1

2
½c; c� ¼ φ.

21For a detailed study on the geometric interpretation of the
universal fiber bundle and its curvature, we suggest, for instance,
Refs. [21,45].
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N̂ ¼
Z

dx

�
X i

∂
∂X i

þ Yi
∂
∂Yi

�
; ð2:81Þ

Â ¼
Z

dxX i
∂
∂Yi

; ð2:82Þ

δ̂ ¼ Yi
∂

∂X i
; ð2:83Þ

which obey the commutation relations

fδ̂; Âg ¼ N̂; ð2:84Þ

½δ̂; N̂� ¼ 0; ð2:85Þ

where δ̂ is a nilpotent operator as it is fermionic, δ̂2 ¼ 0.
The operator N̂ is the counting operator. With △ being a
polynomial in the fields, sources, and parameters, the
cohomology of the nilpotent operator δ̂, as we know, is
given by the solutions of

δ̂△ ¼ 0; ð2:86Þ

which is not exact, i.e., which cannot be written in the form

△ ¼ δ̂Σ: ð2:87Þ

The general expression of △ is then

△ ¼ △̃þ δ̂Σ; ð2:88Þ

where △̃ belongs to the nontrivial part of the cohomology;
in other words, it is closed, δ̂ △̃ ¼ 0, but not exact,
△̃ ≠ δ̂ Σ̃. One can expand △ in eigenvectors of N̂,

△ ¼
X
n≥0

△n; ð2:89Þ

such that N̂△n ¼ n△n, where n is the total number of X i
and Yi in△n. Such an expansion is consistent as each△n is
a polynomial in X i and Yi, and δ̂△n ¼ 0 for ∀ n ≥ 1,
according to (2.80) and the commuting properties ofX i and
Yi. Finally, rewriting (2.89) as

△ ¼ △0 þ
X
n≥1

1

n
N̂△n; ð2:90Þ

and then using the commuting relation (2.84), we get

△ ¼ △0 þ δ̂

�X
n≥1

1

n
Â△n

�
; ð2:91Þ

which shows that all terms which contain at least one field
(source) of the doublet never enter the nontrivial part of the

cohomology of δ̂, being thus nonphysical—for a more
complete analysis, see for instance Refs. [16,46].
To fix the three gauge symmetries of the non-Abelian

topological theory (2.68)–(2.70), we introduce the three
BRST doublets

sc̄a ¼ ba; sba ¼ 0;

sχ̄aμν ¼ Ba
μν; sBa

μν ¼ 0;

sφ̄a ¼ η̄a; sη̄a ¼ 0; ð2:92Þ

where χ̄aμν and Ba
μν are (anti-)self-dual fields according to

the (negative) positive sign; see (2.95) below. The G-valued
Lagrange multiplier fields ba, Ba

μν, and η̄ have, respectively,
ghost numbers 0, 0, and −1, while the antighost fields c̄a,
χ̄aμν, and φ̄a have ghost numbers −1, −1, and −2. (For
completeness and further use, the quantum numbers of all
fields are displayed in Table I.)
Working in Baulieu-Singer gauges amounts to consi-

dering the constraints [13]

∂μAa
μ ¼ −

1

2
ρ1ba; ð2:93Þ

Dab
μ ψa

μ ¼ 0; ð2:94Þ

Fa
μν � F̃a

μν ¼ −
1

2
ρ2Ba

μν; ð2:95Þ

where ρ1 and ρ2 are real gauge parameters. In a few words,
beyond the gauge fixing of the topological ghost (2.94), we
must interpret the requirement of two extra gauge fixings
due to the fact that the gauge field possesses two inde-
pendent gauge symmetries. In this sense, condition (2.93)
fixes the usual Yang-Mills symmetry δAa

μ ¼ Dab
μ ωb, and

the second one (2.95) fixes the topological shift δAa
μ ¼ αaμ.

The (anti-)self-dual condition for the field strength (in the
limit ρ2 → 0) is convenient to identify the well-known
observables of topological theories for 4-manifolds (see
Ref. [17]) given by the Donaldson invariants [2,3], which
are described in terms of the instantons.
The partition functional of the topological action in BS

gauges (2.93) takes the form

ZBS ¼
Z

DcDc̄DψμDχ̄μνDBμνDφDφ̄Dηe−SBS ; ð2:96Þ

whereby

TABLE I. Quantum numbers of the fields.

Field A ψ c φ c̄ b φ̄ η̄ χ̄ B

Dim 1 1 0 0 2 2 2 2 2 2
Ghost no 0 1 1 2 −1 0 −2 −1 −1 0
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SBS ¼ S0½A� þ SBSgf ; ð2:97Þ

with SBSgf being the gauge-fixing action which belongs to trivial part of the cohomology, given by

SBSgf ¼ sTr
Z

d4x

	
χ̄μν

�
Fμν � F̃μν þ

1

2
ρ2Bμν

�
þ φ̄Dμψμ þ c̄

�
∂μAμ −

1

2
ρ1b

�


¼ Tr
Z

d4x

	
Bμν

�
Fμν � F̃μν þ

1

2
ρ2Bμν

�
þ χ̄μν

�
D½μψν� �

1

2
εμναβD½αψβ�

�

− χ̄μν½c; Fμν � F̃μν� þ ηDμψμ þ φ̄½ψμ;ψμ� þ φ̄DμDμφ − b

�
∂μAμ −

1

2
ρ1b

�
− c̄∂μDμc − c̄∂μψμ



: ð2:98Þ

A key observation is that, for ρ1 ¼ ρ2 ¼ 1, one can
eliminate the topological term S0½A�, i.e., the Pontryagin
action, by integrating out the field Bμν, such that

Tr

�
BμνðFμν þ F̃μνÞ þ

1

2
BμνBμν

�

→ TrfFμνFμν þ FμνF̃μνg: ð2:99Þ

In this case, we obtain a classical topological action which
is equivalent to a Yang-Mills action plus ghost interactions.
Such an action, however, does not produce local observ-
ables as the cohomology of the theory remains the same, as
we will discuss in more detail later in Sec. II B 5.
Another important property is that the Green’s functions

of local observables in (2.96) do not depend on the choice
of the background metric [13]. Let SgBS be an action with
metric choice gμν and Sgþδg

BS be the same action up to the
change of gμν into gμν þ δgμν. As the only terms depending
on the metric belong to the trivial part of cohomology, we
conclude immediately that SgBS and Sgþδg

BS only differ by a
BRST-exact term,

SgBS − Sgþδg
BS ¼ s

Z
d4x△ð−1Þ; ð2:100Þ

where △ð−1Þ is a polynomial of the fields, with ghost
number −1. It means that the expectation values of local
operators are the same if computed with a background
metric gμν or gμν þ δgμν,

δ

δgμν

�Y
p

OαpðφiÞ
�

¼ 0; ð2:101Þ

where OαpðφiÞ are functional operators of the quantum
fields φiðxÞ; see Eq. (2.6). An anomaly in the topological
BRST symmetry would break the above equation.
However, there is no 4-form with ghost number 1,

△
ð1Þ
4−form, defined modulo s- and d-exact terms which obeys

(cf. Ref. [13])

s△ð1Þ
4−form þ d△ð2Þ

3−form ¼ 0: ð2:102Þ

Therefore, radiative corrections which could break the
topological property (2.101) at the quantum level are not
expected. The formal proof of the absence of gauge
anomalies to all orders in the topological BS theory is
achieved by employing the isomorphism described in
Refs. [22,47].

4. Absence of gauge anomalies

The proof of the absence of gauge anomalies for the
Slavnov-Taylor identity,

SðSÞ ¼ 0; ð2:103Þ

consists in proving that the cohomology of S is empty. In
the equation above, S is the classical action for a given
gauge choice, and

S ¼
Z

d4xðsΦIÞ δ

δΦI ; ð2:104Þ

where ΦI represents all fields. As S is a Ward identity, in
the absence of anomalies, the symmetry (2.103) is also
valid at the quantum level, i.e., SðΓÞ ¼ 0, with Γ being the
quantum action in loop expansion. In Eq. (2.104), sΦI

represents the BRST transformation of each field ΦI . The
fields c̄, b, χ̄μν, Bμν, φ̄, and η̄ transform as doublets,
cf. Eq. (2.92). Changing the variables according to the
redefinitions

ψ → ψ 0 ¼ ψ −Dc;

φ → φ0 ¼ φ −
1

2
½c; c�; ð2:105Þ

the BRST transformations (2.74) are reduced to the doublet
transformations
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sA ¼ ψ 0;

sψ 0 ¼ 0;

sc ¼ φ0;

sφ0 ¼ 0: ð2:106Þ
It configures a reduced transformation inwhich the nonlinear
part of the BRST transformations in the Slavnov-Taylor
identity was eliminated. The complete transformation in
this space is given by the reduced operator

Sdoublet ¼
Z

d4xðsΦ0IÞ δ

δΦ0I ; ð2:107Þ

where Φ0 ¼ fA;ψ 0; c;φ0; c̄; b; χ̄μν; Bμν; φ̄; ηg, which is
composed of five doublets. It means that Sdoublet has
vanishing cohomology (H),

HðSdoubletÞ ¼ ⊘; ð2:108Þ

in other words, that any polynomial of the fieldsΦ0,△ðΦ0Þ,
which satisfies

Sdoubletð△ðΦ0ÞÞ ¼ 0; ð2:109Þ

belonging to the trivial part of the cohomology of Sdoublet
(see the doublet theorem in the previous section). The crucial
point here is the fact that the cohomology ofS in the space of
local integrated functionals in the fields and sources is
isomorphic to a subspace of HðSdoubletÞ. Consequently,
S has also vanishing cohomology [22,29,47],

HðSÞ ¼ ⊘: ð2:110Þ

The result (2.110) shows that there is no room for an
anomaly in the Salvnov-Taylor identity (2.103). All counter-
terms at the quantum level will belong to the trivial part of
cohomology, and the condition (2.102) for the existence of
an anomaly capable of breaking the topological property
(2.101) never occurs. Because of the algebraic structure of
the theory, Eq. (2.110) proves that allWard identities are free
of gauge anomalies, cf. Ref. [22]. As a consequence of this
result, the background metric independence is valid to all
orders in perturbation theory.
The second point, and not least, is the conclusion that the

BS theory has no local observables. Because of its
vanishing cohomology (2.110), all BRST-invariant quan-
tities must belong to the nonphysical (or trivial) part of the
cohomology of s, and the only possible observables are the
global ones, i.e., topological invariants for 4-manifolds.
Such observables are characterized by the cohomology of s
[29,48], in which the observables are globally defined in
agreement with the supersymmetric formulation of J. H.
Horne [49]. A simple way to identify theses observables is
accomplished by studying the cohomology of the extended

space M ×A=G, where the metric independent observ-
ables, known as Chern classes, are constructed in terms of
the universal curvature F (2.80). The Donaldson poly-
nomials are naturally recovered, characterized by the so-
called equivariant cohomology, which relates the BS
approach to Witten’s theory at the level of observables.

5. Equivariant cohomology and global observables

Witten’s topological theory is constructed without fixing
its remaining ordinary Yang-Mills gauge symmetry. The
theory is developed in the instanton moduli space A=G. A

generic observable of his theory, OðWÞ
αi , is naturally gauge

invariant under Yang-Mills gauge transformations,

sYMO
ðWÞ
αi ¼ 0; ð2:111Þ

where sYM is the nilpotent BRST operator related to the
ordinary Yang-Mills symmetry, i.e., without including the
topological shift, namely,

sYMAμ ¼ Dμc;

sYMΦadj ¼ ½c;Φadj�; ð2:112Þ

where Φadj is a generic field in adjoint representation. We
conclude that we can add an ordinary Yang-Mills gauge
transformation (in the A=G direction) to Witten fermionic
symmetry based on the “topological shift” δAμ ∼ ψμ,

δ → δeq ¼ δþ sYM; ð2:113Þ

in such a way that the descent equations for δ ∼ fQ; ·g will
remain the same; see (2.34) and (2.56)–(2.60). The operator
δeq is nilpotent when acting on gauge-invariant quantities
under Yang-Mills transformations, defining thus a coho-
mology in a space where the fields that differ by a Yang-
Mills gauge transformations are identified, known as
equivariant cohomology. Such a property indicates that
there is a link betweenWitten’s theory and the BS approach
in which the BRST operator, s, is naturally defined by
taking into account the topological shift and the ordinary
Yang-Mills transformation in a single formalism.
To prove the link between both approaches, we must

remember that the universal curvature in the space
M ×A=G is given by the sum F ¼ F þ ψ þ φ. The
difference between the on-shell BRST operator, s, and
the Witten fermionic symmetry, δ, for X ¼ ðF;ψ ;φÞ is of
the form

sX ¼ δXþ ½X; c�; ð2:114Þ

in other words, in the space of the fields ðF;ψ ;φÞ, s and δ
differ by an ordinary Yang-Mills transformation, as
ðF;ψ ;φÞ transform in the adjoint representation of the
gauge group. These fields are the only ones we need to
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obtain the Donaldson polynomials as the observables of the
BS theory, since in the spaceM ×A=G they are constructed
in terms of F . This allows for identifying the equivariant
operator with the BRST one, δeq ≡ s, according to the
construction of the observables in Witten’s and BS theories.
To understand the above statement, we must invoke the

nth Chern class, W̃n, defined in terms of the universal
curvature by

W̃n ¼ TrðF ∧ F ∧ � � � ∧ F|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

Þ; ð2:115Þ

where n ¼ f1; 2; 3;…g is the number of wedge products.
W̃n represents the most general observables of BS theory.22

The Weyl theorem [21] ensures that W̃n is closed with
respect to the extended differential operator d̃ ¼ dþ s
[13,50], i.e.,

d̃W̃n ¼ 0: ð2:116Þ

If we choose the first Chern class

W̃1 ¼ TrðF ∧ F Þ; ð2:117Þ

the expansion in ghost numbers of Eq. (2.116) yields

sTrðF ∧ FÞ ¼ dTrð−2ψ ∧ FÞ; ð2:118Þ

sTrðψ ∧ FÞ ¼ dTr

�
−
1

2
ψ ∧ ψ − φF

�
; ð2:119Þ

sTrðψ ∧ ψ þ 2φFÞ ¼ dTrð2ψφÞ; ð2:120Þ

sTrðψφÞ ¼ dTr

�
−
1

2
φφ

�
; ð2:121Þ

sTrðφφÞ ¼ 0; ð2:122Þ

which are the same descent equations obtained in (2.56)–
(2.60) following Witten analysis, only replacing δ (or δeq)
by s, proving that Baulieu-Singer and Witten’s topological

theories possess the same observables given by the
Donaldson invariants (2.64).
The fact that the observables in the BS approach are

naturally invariant under ordinary Yang-Mills symmetry
should not seem surprising, as the nth Chern class is Yang-
Mills invariant itself (2.115) since F transforms in the
adjoint representation of the gauge group. Equation (2.116)
provides a powerful tool to obtain Donaldson polynomials
for any ghost number. One must note that we do not have to
worry about with the independence of Faddeev-Popov
ghosts in order to construct the observables in the BS
approach. Although the gauge-fixed BS action has FP
ghosts due to the gauge fixing of the Yang-Mills ambiguity,
the ðc; c̄Þ independence of W̃n is a direct consequence of
the fact that the universal curvature of the space M ×A=G
does not depend on FP ghosts, but only on F, and the
ghosts ψ and φ.
In the weak coupling limit of the twisted N ¼ 2, the

observables of both theories are undoubtedly the same: the
topological Donaldson invariants [21–23]. We might ask if
the quantum behavior is also compatible, once BS and
Witten actions does not differ by a BRST-exact term,

SBS − SW ¼ ΣG ≠ sð� � �Þ: ð2:123Þ

The relation above does not depend on the gauge choice.
Consequently, we cannot say, in principle, that BS and
Witten partition functions are equivalent at quantum level,
since

ZBS ¼
Z

DΦe−SBS ¼
Z

DΦe−SW−ΣG ; ð2:124Þ

wherein ΣG is not s exact. At first view, ZBS ≠ ZW ¼R
DΦe−SW . The fact that ΣG ≠ sð� � �Þ opens the possibility

for both theories to have different quantum properties. The
one-loop exactness of twisted N ¼ 2 SYM β function, for
instance, is a well-known result in the literature [34]. We
will now analyze the Ward identities of the BS theory in
self-dual Landau gauges, in order to compare the quantum
properties of the DW and BS theories.

III. QUANTUM PROPERTIES OF BS THEORY
IN THE SELF-DUAL LANDAU GAUGES

In this section, we will summarize the quantum proper-
ties of BS theory in the self-dual Landau (SDL) gauges.23

Extra details can be found in Refs. [24–27,51].

22It is not possible to construct topological observables
using the Hodge product, as it is metric dependent. For this
reason, we never obtain Yang-Mills terms of the type
fTrðFμνFμνÞ;TrðFμνFνσFμ

σÞ; � � �g, without Levi-Civita tensors
in the internal product, in the place of metric tensors. Moreover,

the Wilson loop WðCÞ
P ¼ TrfPei

H
C
Aμdxμg is not an observable in

the non-Abelian topological BS case, as it is not gauge invariant
due to the topological shift symmetry. In any case, it does not
make sense to discuss confinement in the BS theory, as it is not
confining to any energy scale. Thence, the only possibilities for
topological invariants are the wedge products in W̃n.

23For simplicity, throughout the text, we will refer to the
Baulieu-Singer theory in the self-dual Landau gauges as self-dual
BS theory.
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A. Absence of radiative corrections

Working in the self-dual Landau gauges amounts to
considering the constraints [27]

∂μAa
μ ¼ 0; ð3:1Þ

∂μψ
a
μ ¼ 0; ð3:2Þ

Fa
μν � F̃a

μν ¼ 0: ð3:3Þ

Through the introduction of the three BRST doublets
described in Eq. (2.92), the complete gauge-fixed topo-
logical action in SDL gauges takes the form

S½Φ� ¼ S0½A� þ Sgf½Φ�; ð3:4Þ

with S0½A� standing for the Pontryagin action and

Sgf½Φ� ¼ s
Z

d4z

	
c̄a∂μAa

μ þ
1

2
χ̄aμνðFa

μν � F̃a
μνÞ þ φ̄a∂μψ

a
μ




¼
Z

d4z

	
ba∂μAa

μ þ
1

2
Ba
μνðFa

μν � F̃a
μνÞ þ ðη̄a − c̄aÞ∂μψ

a
μ þ c̄a∂μDab

μ cbþ

−
1

2
gfabcχ̄aμνcbðFc

μν � F̃c
μνÞ − χ̄aμν

�
δμαδνβ �

1

2
ϵμναβ

�
Dab

α ψb
β þ φ̄a∂μDab

μ φbþ

þ gfabcφ̄a∂μðcbψc
μÞ


: ð3:5Þ

This action possesses a rich set of symmetries; see Ref. [24] and Appendix. To control the nonlinearity of the Slavnov-
Taylor identity [Eq. (A1)] and the bosonic symmetry T [Eq. (A13)], we have to introduce external sources given by the
following three BRST doublets [27]:

sτaμ ¼ Ωa
μ; sΩa

μ ¼ 0;

sEa ¼ La; sLa ¼ 0;

sΛa
μν ¼ Ka

μν; sKa
μν ¼ 0: ð3:6Þ

The respective external action, written as a BRST-exact contribution preserving the physical content of theory, takes the
form

Sext ¼ s
Z

d4z

�
τaμDab

μ cb þ g
2
fabcEacbcc þ gfabcΛa

μνcbχ̄cμν

�

¼
Z

d4z

	
Ωa

μDab
μ cb þ g

2
fabcLacbcc þ gfabcKa

μνcbχ̄cμν þ τaμðDab
μ φb þ gfabccbψc

μÞ

þ gfabcEacbφc þ gfabcΛa
μνcbBc

μν − gfabcΛa
μνφ

bχ̄cμν

−
g2

2
fabcfbdeΛa

μνχ̄
c
μνcdce



; ð3:7Þ

with the corresponding quantum number of the external
sources displayed in Table II. Therefore, the full classical
action to be quantized is

Σ½Φ� ¼ S0½A� þ Sgf½Φ� þ Sext½Φ�: ð3:8Þ

The introduction of the external action does not break the
original symmetries, and the physical limit is obtained by
setting the external sources to zero [16].
One of the symmetries is of particular interest to us:

the vector supersymmetry described by Eq. (A12),
cf. Refs. [24,27]. By applying BRST-algebraic renormal-
ization techniques [16], and disregarding Gribov ambigu-
ities, it was proved in Ref. [24], with the help of Feynman
diagrams, that all two-point functions are tree-level exact,
as a consequence of the Ward identities of the model. In
particular, as a consequence of the vector supersymmetry

TABLE II. Quantum numbers of the external sources.

Source τ Ω E L Λ K

Dim 3 3 4 4 2 2
Ghost no −2 −1 −3 −2 −1 0

OCTAVIO C. JUNQUEIRA and RODRIGO F. SOBREIRO PHYS. REV. D 103, 085008 (2021)

085008-14



(A11), the gauge field propagator vanishes to all orders in
perturbation theory,

hAa
μðpÞAb

νðqÞi ¼ 0: ð3:9Þ
In Ref. [26], this result was generalized: not only are the
two-point functions of the self-dual BS theory tree-level

exact, but all n-point Green functions of the model do not
receive any radiative corrections. This is a direct conse-
quence of the null gauge propagator (3.9) together with
the vertex structure of the full action (3.8). Following the
Feynman rules notation of Ref. [26], we represent the
relevant propagators by

ð3:10Þ

The relevant vertices are represented by

ð3:11Þ

Using these diagrams, one identifies a kind of cascade effect in which the number of internal A legs always increases
when trying to construct loop Feynman diagrams, according to the diagram below,

ð3:12Þ

This makes it impossible to close loops without using the hAAi propagator,24 which vanishes by means of (3.9). Note that,
internally, the A leg always propagates to the vertex BAA. Looking at the full action (3.8), the only vertex which possesses A
legs is φ̄cψ . However, the φ̄ leg could only propagate to the vertex φ̄Aφ through hφ̄φi; the c leg could only propagate to c̄Ac
through hc̄ci; and the ψ leg propgates to the vertices χ̄Aψ , χ̄cA, or χ̄cAA through hψχ̄i (hη̄ψi is not considered because there
is no vertex η̄). All possible branches produce at least one remaining internal A leg, and the cascade effect is not avoided, as
represented by the diagrams

24The formal proof of this result can be found in Ref. [26].
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ð3:13Þ

The apparently only nonzero correlation functions are of
the type

hBBB…bbi ¼ hsχ̄BB…bbi ¼ hsðχ̄BB…bbÞi; ð3:14Þ

i.e., with external Ba
μν or ba fields. But (3.14) automatically

vanishes as it is BRST exact.
In a few words, using perturbative techniques, one sees

that the tree-level exactness of the BS in the self-dual
gauges is a consequence of the vector supersymmetry and
BRST symmetry.

B. Renormalization ambiguity

Once we have at our disposal all Ward identities, we are
able to construct the most general counterterm Σc that can
absorb the divergences arising in the evaluation of
Feynman graphs. Because of the triviality of the BRST
cohomology [24,27], Σc belongs to trivial part of the BRST
cohomology. The fact that the BS theory is quantum
stable is a well-known result in the literature [24,27,51].
Reference [24] introduced an extra nonlinear bosonic
symmetry that relates the topological ghost with the
Faddeev-Popov one (among other transformations involv-
ing other fields) through the transformation

δψa
μ ↦ Dab

μ cb; ð3:15Þ

described by the Ward identity T in Eq. (A13). Taking into
account this extra symmetry, from the multiplicative
redefinition of the fields, sources, and parameters of the
model,

Φ0 ¼ Z1=2
Φ Φ;

Φ0 ¼ fAa
μ;ψa

μ; ca; c̄a;φa; φ̄a; ba; η̄a; χ̄aμν; Ba
μνg;

J 0 ¼ ZJ J ; J ¼ fτaμ;Ωa
μ; Ea; La;Λa

μν; Ka
μνg;

g0 ¼ Zgg; ð3:16Þ

one proves the quantum stability of the BS theory in self-
dual gauges with only one independent renormalization
parameter, i.e., that the quantum action Γ≡ ΣðΦ0;J 0; g0Þ
at one loop is of the form

ΣðΦ0;J 0; g0Þ ¼ ΣðΦ;J ; gÞ þ ϵΣcðΦ;J ; gÞ; ð3:17Þ

with

Σc ¼ a
Z

d4xðBa
μνFa

μν − 2χ̄aμνDab
μ ψb

ν − gfabcχ̄aμνcbFc
μνÞ;

ð3:18Þ

whereby the resulting Z factors obey the system of equations

Z1=2
A ¼ Z−1=2

b ¼ Z−1
g ;

Z1=2
c̄ ¼ Z1=2

η̄ ¼ Z−1=2
ψ ¼ ZΩ ¼ Z−1=2

c ;

Z1=2
φ̄ ¼ Z−1=2

φ ¼ Zτ ¼ ZL ¼ Z−1
g Z−1

c ;

ZE ¼ Z−2
g Z−3=2

c ;

ZK ¼ Z−1
g Z−1=2

c Z−1=2
χ̄ ;

ZΛ ¼ Z−2
g Z−1

c Z−1=2
χ̄ ;

Z1=2
B Z1=2

A ¼ Z1=2
χ̄ Z1=2

c ¼ 1þ ϵa; ð3:19Þ

with the independent renormalization parameter denoted by
a. Because of the recursive nature of algebraic renormaliza-
tion [16], the results (3.19) show that the model is renorma-
lizable to all orders in perturbation theory.
From the algebraic analysis so far, we cannot prove that

Zg ¼ 1, as suggested by the tree-level exactness obtained
via the study of the Feynman diagrams. The system of
Z factors (3.19) is undetermined. As we can easily see, the
number of equations n and the number of variables z (the
Z factors) are related by z ¼ nþ 2, indicating that there is a
kind of freedom in the choice of two of the Z factors.
In Ref. [25], the origin of such an ambiguity was

explained: it is due to the absence of a kinetic gauge field
term out from the trivial BRST cohomology and due to the
absence of discrete symmetries involving the ghost fields.
The symmetries of the SDL gauges eliminate the kinetic
term of the Faddeev-Popov ghost in the counterterm, i.e.,

ZcZc̄ ¼ 1: ð3:20Þ

Moreover, from the gauge-ghost vertex (c̄Ac), which is also
absent in the counterterm, we achieve
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ZgZ
1=2
A ¼ 1: ð3:21Þ

The two relations (3.20) and (3.21) are decoupled; in other
words, only by determining Zc or Zc̄, we do not get any
information about Zg or ZA. As there are no kinetic terms
for the gauge field in the classical action (3.8), the
independent determination of ZA becomes impossible.
The same analysis can be performed for the bosonic and
topological ghosts; see Ref. [25].
Extra information is then required in order to determine

the system (3.19). In the ordinary Yang-Mills theories
(quantized in the Landau gauge), Zc ¼ Zc̄, which relies on
the discrete symmetry

ca → c̄a;

c̄a → −ca: ð3:22Þ

This condition, together with the Faddeev-Popov ghost
kinetic term, is sufficient to determine Zc and Zc̄. It is easy
to see that the action (3.8) does not obey such a symmetry.
Discrete symmetries between the other ghosts of topologi-
cal Yang-Mills theories (φa and φ̄a; ψa

μ and χ̄aμν) are also not
present in (3.8), which explains the second ambiguity. In
Witten’s theory, such an ambiguity will not appear by this
reasoning since Witten’s action contains discrete sym-
metries ensured by the time-reversal symmetry (3.22) in
Landau gauge, together with

φ → φ̄; φ̄ → φ;

ψμ → χμ; χμ → ψμ; ð3:23Þ

whereby the components of χμ are defined as

χ0 ≡ η; χi ≡ χ0i ¼
1

2
εijkχjk; ð3:24Þ

implying a “particle-antiparticle” relationship between c̄
and c, φ̄ and φ, and ψμ and χμ, as demonstrated in Ref. [52].
This ambiguity is also present in a generalized class of

renormalizable gauges [25]. In fact, one could relate this
ambiguity with the fact that all local degrees of freedom are
nonphysical (e.g., the gauge field propagator is totally
gauge dependent). In self-dual Landau gauges, where the
vector supersymmetry is present, the Feynman diagram
structure indicates that imposing Zc ¼ Zc̄ and Zφ ¼ Zφ̄ is
consistent with the model. Hence, the Z-factor system
(3.19) would naturally yield Zg ¼ 1, in accordance with the
absence of radiative corrections in this gauge choice.
However, without recovering the discrete symmetries
between the ghosts, such an imposition seems to be
artificial. As we will see later, the renormalization ambi-
guity can be solved in the SDL gauges, i.e., the discrete
symmetries can be reconstructed, due to the triviality
of the Gribov copies [28], which allows for a nonlocal

transformation with trivial Jacobian, capable of recovering
such symmetries.

IV. PERTURBATIVE β FUNCTIONS

Our aim in this section is to compare the DW and BS β
functions to prove that these topological gauge theories are
not completely equivalent at the quantum level and then
identify in which energy regimes the correspondence could
occur. The DW β function is well known [34,52], as we will
briefly describe. It still lacks the task of determining the
self-dual BS one to perform the comparison.

A. Twisted N = 2 super-Yang-Mills theory

In Ref. [52], the authors have computed the one-loop β
function of the DW theory. Later, the authors of Ref. [34]
employed the algebraic renormalization techniques to also
study DW theory and prove that the β function of twisted
N ¼ 2 SYM (βN¼2

g ) is one-loop exact. The reason is that the
composite operator Trφ2ðxÞ does not renormalize [34]. For
that, they considered the fact that the operator dμν, defined
in expression (2.15), is redundant [53]. Thence, the
definition of an extended BRST operator, namely,

S ¼ sYM þ ωδþ εμδμ; ð4:1Þ

could be employed. In expression (4.1), ω and εμ are global
ghosts, and δ and δμ were defined in Eqs. (2.13) and (2.14).
The relevant property of the operator S is that it is on-shell
nilpotent in the space of integrated local functionals, since

S2 ¼ ωεμ∂μ þ equations of motion: ð4:2Þ

We point out that this extended BRST construction
requires the equations of motion to obtain a nilpotent
BRST operator—a standard behavior of Witten’s theory,
representing a different quantization scheme of the BS
theory. Considering the nonrenormalization of Trφ2 and the
on-shell cohomology of the operator defined in Eq. (4.2),
the result is that the β function only receives contributions
to one-loop order and is given by

βN¼2
g ¼ −Kg3; ð4:3Þ

with K being a constant. The computation of βN¼2
g via

Feynman diagrams is performed in Ref. [52] by evaluating
the one-loop contributions to the gauge field propagator
[where the Landau gauge was used to fix the Yang-Mills
symmetry of Witten action (2.30)]. The behavior of one-
loop exactness of the N ¼ 2 β function had been usually
understood in terms of the analogous Adler-Bardeen
theorem for the Uð1Þ axial current in the N ¼ 2 SYM [9].
Despite the independence of the Witten partition func-

tion under changes in the coupling constant, the result (4.3)
should not be surprising. In the twisted version, we can see
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that the trace of the energy momentum is not zero but given
by (see Ref. [8])

gμνTμν ¼ Tr

�
DμφDμφ̄ − 2iDμηψ

μ þ 2iφ̄½ψμ;ψμ�

þ 2iφ½η; η� þ 1

2
½φ; φ̄�2�

�
; ð4:4Þ

meaning that SW is not conformally invariant under the
transformation

δgμν ¼ hðxÞgμν; ð4:5Þ

for an arbitrary real function hðxÞ on M. Nonetheless, the
trace of the energy-momentum tensor can be written as a
total covariant divergence,

gμνTμν ¼ Dμ½Trðφ̄Dμφ − 2iηψμÞ�; ð4:6Þ

which means that SW is invariant under a global rescaling of
the metric, δgμν ¼ wgμν, with w constant [8]. The N ¼ 2 β
function only vanishes if we take the weak coupling limit
g2 → 0,

βN¼2
g ðg2 → 0Þ ¼ 0: ð4:7Þ

In this limit, the possibility of loop corrections to the
effective action is eliminated, and the Donaldson poly-
nomials are reproduced as the observables of the theory.
There is no Ward identity, or a particular property of the
vertices and propagators of SW , capable of eliminating
these quantum corrections for an arbitrary energy regime—
this situation is distinct from the BS theory in the self-dual
Landau gauges.

B. Baulieu-Singer topological theory

As suggested by the tree-level exactness of the BS theory
in the self-dual Landau gauges, according to the analysis of
the Feynman diagrams performed in Sec. III, we will
formally prove that the self-dual BS theory is conformal.
Before proving the vanishing of the BS β function in this
gauge, we will first discuss the nonphysical character of the
coupling constant in this off-shell approach, since g is
introduced in the BS theory as a gauge parameter, in the
trivial part of the BRST cohomology.

1. Nonphysical character of the β function
in the off-shell approach

In Ref. [52], Brooks et al. argued that only one counter-
term is required in the on-shell Witten theory, specifically
for the Yang-Mills term TrF2

μν. In any case, the Donaldson
invariants are described by DW theory in the weak coupling
limit g2 → 0, where the theory is dominated by the classical
minima. On the other hand, it is evident that the BS theory

is distinct from Brooks et al. construction because their
methods are based on different BRST quantization
schemes, with different cohomological properties. We do
not expect a similar result in the BS theory. According to
the cohomology of the BS model, if the βBSg is not zero, we
should find that it is TrðFμν � F̃μνÞ2 rather than TrF2

μν

which is renormalized.25 In this way, the minima of the
effective action preserves the instanton configuration at the
quantum level, according to the global degrees of freedom
of the instantons, which defines the observables of the BS
theory—the Donaldson invariants.
A possible discrepancy between β functions for the BS

approach in different gauge choices cannot be attributed to
a gauge anomaly, since it is forbidden in these models due
to the trivial BRST cohomology [54], cf. Eq. (2.102). For
instance, if wewould have chosen the gaugeDab

μ ψb
μ ¼ 0 for

the topological ghost, with the covariant derivative instead
of the ordinary one, the vector supersymmetry would be
broken, and the gauge propagator would not vanish to all
orders anymore. In ordinary Yang-Mills theories, the β
function is an on-shell gauge-invariant physical quantity.
Nonetheless, in gauge-fixed BRST topological theories of
BS type, the coupling constant is nonphysical, introduced
in the trivial part of the cohomology, together with the
gauge-fixing action. In these terms, it is not contradictory
that the β function is gauge dependent as it computes the
running of a nonphysical parameter. We must observe that
the physical observables of the theory, the Donaldson
invariants, naturally do not depend on the gauge coupling.
So that, there is no inconsistency that the observables of
this kind of theory, described by topological invariants
(exact numbers) do not depend on the coupling constant,
and consequently on its running. Thence, g is an unob-
servable quantity.
As DW and BS theories possess the same observables,

we should then consider the instanton configuration not as a
gauge-fixing condition but as a physical requirement in
order to obtain the correct degrees of freedom that
correspond to the description of all global observables.
Furthermore, the Atiyah-Singer index theorem [37] deter-
mines the dimension of the instanton moduli space, in
which the Donaldson invariants are defined—see
Refs. [56,57] for some exact instanton solutions, whose
properties cannot be attributed to gauge artifacts.

2. Conformal structure of the self-dual gauges

To prove that the algebraic renormalization is in harmony
with the Feynman diagram analysis in the self-dual Landau
gauges, which shows that the BS model does not receive
radiative corrections in this gauge, we must invoke a result

25See Ref. [54], where Birmingham et al. employ the Batalin-
Vilkovisky algorithm [55]—a similar quantization to the BS
approach, i.e., with similar cohomological properties.
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recently published in Ref. [28]. In this work, it was
demonstrated that the Gribov ambiguities [58,59] are
inoffensive in the self-dual BS theory.26 The quantization
of this model in a local section of the field space where the
eigenvalues of the Faddeev-Popov determinant are positive
is equivalent to its quantization in the whole field space. In
other words, the introduction of the Gribov horizon does
not affect the dynamics of the BS theory in SDL gauges, as
its correspondent gap equation forbids the introduction of a
Gribov massive parameter in the gauge field propagator.
This result also suggests that the fiber bundle structure of
the BS theory is trivial [61].
Let us quickly recall the Gribov procedure in the

quantization of non-Abelian gauge theories [58,59]. It
essentially consists in eliminating remaining gauge ambi-
guities usually present in non-Abelian gauge theories,
known as Gribov copies, which are not eliminated in the
FP procedure [62,63]. In Yang-Mills theories, the FP
gauge-fixing procedure results in the well-known func-
tional generator

ZYM ¼ N
Z

DAj det½−∂μDab
μ �jδð∂μAμÞe−SYM

¼ N
Z

DADc̄Dce−ðSYMþSgfÞ; ð4:8Þ

whereby Sgf is thewell-known gauge-fixing action given by

Sgf ¼
Z

d4x

�
c̄a∂μDab

μ cb −
1

2α
ð∂μAa

μÞ2
�
: ð4:9Þ

In (4.9), the limit α → 0 must be taken in order to reach the
Landau gauge,

∂μAμ ¼ 0: ð4:10Þ

Consider a gauge orbit,27

AU
μ ¼ UAμU† −

i
g
ð∂μUÞU†; ð4:11Þ

withU ¼ e−igT
aθaðxÞjU ∈ SUðNÞ, with θaðxÞ being the local

gauge parameters of the non-Abelian symmetry and Ta

being the generators of the gauge group. The FP hypothesis
[62,63] is that there is only one gauge configuration in the
orbit (4.11) obeying the Landau gauge condition (4.10). In
his seminal work [58], V. N. Gribov demonstrated that this
hypothesis fails at the YM low-energy regime because one

can always find two configurations Ã and A obeying the
Landau gauge condition and yet being related by a gauge
transformation. At the infinitesimal level, the condition for a
configuration A to have a Gribov copy Ã is that the FP
operator develops zero modes through

−∂μDμθ ¼ 0; ð4:12Þ

with θa taken as an infinitesimal parameter, U ≈ 1 − θaTa.
Equation (4.12) is recognized as the Gribov copies equation
in the Landau gauge (and also in linear covariant gauges–see
Refs. [64–67]). Equation (4.12) can be seen as an eigenvalue
equation for the FP operator where θ is the zero mode of the
operator. In Landau gauge, this operator is Hermitian, and
thus its eigenvalues are real. For values of Aμ sufficiently
small, the eigenvalues of the FP operator will be positive, as
−∂2 only has positive eigenvalues.28 As Aμ increases, it will
attain a first zeromode (4.12). Such a region in which the FP
operator has its first vanishing eigenvalue is called Gribov
horizon (wee also Ref. [59]). Gribov’s proposal was to
restrict the path integral domain to the regionΩ (the Gribov
region) defined by

Ω ¼ fAa
μ; ∂μAμ ¼ 0;−∂D > 0g: ð4:13Þ

Such restriction ensures the elimination of all infinitesimal
copies and also guarantees that no independent field is
eliminated [68].
The implementation of the restriction to the Gribov

region Ω is accomplished by the introduction of a step
function Θð−∂DÞ in the Feynman path integral, which
leads to the well-known no-pole condition for the FP ghost
propagator hð∂DÞ−1i, which explodes at when a zero mode
is attained. The main result of introducing the restriction of
the Feynman path integral domain to the Gribov region is a
modified gluon propagator, due to the emergence of a
massive parameter for the gauge field, the so-called Gribov
parameter γ. In the presence of the Gribov horizon, the
gluon propagator takes the form

hAa
μðkÞAb

νðkÞi ¼ δabδðpþ kÞ k2

k4 þ γ4
PμνðkÞ; ð4:14Þ

where PμνðkÞ ¼ δμν − kμkν=k2, and γ is fixed by the gap
equation [60,69],

∂Γ
∂γ2 ¼ 0: ð4:15Þ

26The result was proved to be valid to all orders in perturbation
theory by making use of the Zwanziger’s approach [60] to the
Gribov problem [58].

27The gauge orbit is the equivalence class of gauge field
configurations that only differ by a gauge transformation,
representing thus the same physics according to the gauge the
gauge principle.

28In Abelian theories, such as QED, −∂2 is the “FP operator,”
and the copy equation only possesses trivial solutions in the
thermodynamic limit, meaning that the Gribov copies are
inoffensive in this case.
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According to Zwanziger’s generalization [60], the
gap equation above is valid to all orders in perturbation
theory—seeRefs. [70,71], inwhich the all-order proof of the
equivalence between Gribov and Zwanziger methods was
worked out. An important feature of the Gribov parameter is
that it only affects the infrared dynamics. The matching
between Gribov-Zwanziger theory and recent lattice data is
achieved through the introduction of two-dimensional con-
densates; see Ref. [72]. The introduction of the Gribov
horizon in the action explicitly breaks the BRST symmetry.
This is usually an unwanted result, as the BRST symmetry is
necessary to prove the unitarity, to ensure the renormaliz-
ability to all orders, and to define the physical gauge-
invariant observables of the theory [73–75]. This breaking,
however, brought to light the physical meaning of the
infrared γ parameter and its intrinsic nonperturbative char-
acter. One can prove that the BRST breaking is proportional
to γ2, in other words, the BRST symmetry is restored in the
perturbative regime. One says that the BRST symmetry is
only broken in a soft way, cf. Refs. [75–78]. Only more
recently, a universal, gauge-independent, (nonperturbative)
BRST-invariant way to introduce the Gribov horizon was
developed [66,67,79–81].
In the self-dual topological BS theory, it was proved in

Ref. [28] that all topological gauge copies associated to the
gauge ambiguities (2.68) and (2.69) are eliminated through
the introduction of the usual Gribov restriction, in which
the path integral domain is restricted to the region Ω—see
Eq. (4.13). Moreover, because of the triviality of the gap
equation, it was verified that the Gribov copies do not affect
the infrared dynamics of the self-dual BS theory because
γBS ¼ 0 is the only possible solution of the gap equation.29

Thus, no mass parameter seems to emerge in the BS theory,
preserving its conformal character at quantum level.
Specifically, the tree-level exactness in SDL gauges is
preserved. Such a behavior can be inferred from the
absence of radiative corrections, which ensures the semi-
positivity of all two-point functions. The FP ghost propa-
gator, for instance, reads

hc̄aðkÞcbðkÞi ¼ δab
1

k2
; ð4:16Þ

which is valid to all orders, demonstrating that the FP
operator will remain positive definite at quantum level,
consistent with the inverse of the FP propagator being
positive, thus proving that we are inside the Gribov region.
Moreover, the gauge two-point function remains trivial,
i.e., hAa

μðkÞAb
νðkÞi ¼ 0 to all orders.

Exploring the positive-definite-ness of the FP ghost
propagator, we are able to safely perform the following
shifts:

η̄a ↦ η̄a þ c̄a;

φb ↦ φb − gfcdeð∂νDbc
ν Þ−1∂μðcdψe

μÞ;

c̄a ↦ c̄a −
1

2
gfcdeχ̄dμνðF�Þeμνð∂νDca

ν Þ−1: ð4:17Þ

It is worth noting that these shifts generate a trivial
Jacobian. Calling 1

2
ρ1 ¼ α and 1

2
ρ2 ¼ β, and implementing

the BS gauge constraints (2.93) and (2.95), together with
∂μψμ ¼ 0, the final gauge-fixing action, integrating out the
auxiliary fields b and B in the action (2.98), is

Sgfðα; βÞ ¼
Z

d4x

	
−

1

2α
ð∂AÞ2 − 1

4β
F2
�




−
Z

d4x

	
ðη̄a − c̄aÞ∂μψ

a
μ þ c̄a∂μDab

μ cb

−
1

2
gfabcχ̄aμνcbðFc

μν � F̃c
μνÞ

− χ̄aμν

�
δμαδνβ �

1

2
ϵμναβ

�
Dab

α ψb
β

þ φ̄a∂μDab
μ φb þ gfabcφ̄a∂μðcbψc

μÞ


; ð4:18Þ

where F� ¼ F � F̃ and D�≡ðδμαδνβ−δναδμβ�ϵμναβÞDab
α .

The self-dual Landau gauges is recovered by setting α,
β → 0. Then, applying the shifts (4.17) on the action
Sgfðα; βÞ, one gets

Sshiftedgf ðα; βÞ ¼
Z

d4x

	
−

1

2α
ð∂AÞ2 − 1

4β
F2
�




−
Z

d4x

	
η̄a∂μψ

a
μ þ c̄a∂μDab

μ cb

− χ̄aμν

�
δμαδνβ �

1

2
ϵμναβ

�
Dab

α ψb
β

þ φ̄a∂μDab
μ φb



: ð4:19Þ

As the Jacobian of the shifts that performs Sgfðα; βÞ →
Sshiftedgf ðα; βÞ is trivial, the quantization of both actions are
perturbatively equivalent, cf. Ref. [34]. Such a Jacobian
only generates a number that can be absorbed by the
normalization factor. This shows that the discrete sym-
metries (3.22) and (3.23) (present in the Witten theory) can
be recovered, which naturally impose the relations

Zc ¼ Zc̄ and Zφ ¼ Zφ̄ ð4:20Þ
to be valid in the BS theory. Hence, combining (4.20) with
the Z-factor system (3.19), one obtains

29A similar situation occurs in the N ¼ 4 SYM, which
possesses a vanishing β function, indicating the conformal
structure of the self-dual BS. The absence of an invariant scale
makes it impossible to attach a dynamical meaning to the Gribov
parameter [82].
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Zg ¼ 1; ð4:21Þ

which proves that the algebraic analysis is in harmony with
the result obtained via the study of the Feynman diagrams
in the presence of the vector supersymmetry, i.e., that the
topological BS theory (following the self-dual Landau
gauges) is conformal, in accordance with the absence of
radiative corrections.
The algebraic renormalization and the Feynman diagram

analysis consist of two independent methods. In the loop
expansion, used to construct the diagrams in Sec. III A, we
expand around the trivial A ¼ 0 sector, i.e., around an
instanton with winding number zero. One may wonder if it
is physically relevant, thinking about the importance of
instanton configurations in the topological theory, in order
to construct the Donaldson invariants. Exactly the topo-
logical nature of the off-shell BS theory saves the day here.
Let us first remark that it is possible to write down a BRST-
invariant version of the Gribov restriction, that is, if γ were
to be nonzero, while preserving equivalence with the above
formalism30; see Refs. [66,79,81] for details. As already
reminded before, the topological partition function does not
depend on the coupling g. This means all observables can
be computed in the g → 0 limit. Expanding around a
nontrivial instanton background rather than around
A ¼ 0 would lead to corrections of the type e−1=g

2

into
the effective action, but the latter vanishes exponentially
fast once g → 0 is considered, which only represents a
liberty of the theory; i.e., it would not affect the global
observables (see [28]). As such, we can a priori work
around A ¼ 0, without losing the generality of the result,
which will be unaltered for a generic instanton background.

V. CHARACTERIZATION OF THE DW/BS
CORRESPONDENCE

We will characterize in this section the quantum corre-
spondence between the twisted N ¼ 2 SYM in the ultra-
violet regime and the conformal Baulieu-Singer theory in
the SDL gauges.

A. Quantum equivalence between DW
and self-dual BS theories

The result obtained in (4.21) in the SDL gauges proves
that the self-dual BS β function vanishes. This result is
completely different from the twisted N ¼ 2 SYM which
receives one-loop corrections, and possesses a nonvanish-
ing β function given by (4.3). The correspondence between
the BS and N ¼ 2 β-= functions occurs when we take the
weak coupling limit (g2 → 0) on the N ¼ 2 side. In this
limit, βN¼2

g → 0. On the BS side, however, the vanishing of
the β function is valid for an arbitrary coupling constant,
and not only for a weak coupling, with the conformal

property being a consequence of the vector supersymmetry
which forbids radiative corrections. In DW theory, such a
property is obtained by taking g2 → 0 as small as we want
(as long as g2 ≠ 0), as a consequence of the property that
shows that the observables of DW theory are insensitive
under changes of g. That is how Witten computed its
partition function that naturally reproduces the Donaldson
invariants for four manifolds, i.e., by eliminating the
influence of the vertices at g2 → 0, and taking only the
quadratic part of the action. The BS theory is also invariant
under changes of g, as it only appears in the trivial part of
the BRST cohomology, but the tree-level exactness is a
general property of the BS theory in self-dual Landau
gauges; i.e., it is valid for an arbitrary perturbative regime.
The characterization of the correspondence between the

twisted N ¼ 2 SYM and a conformal field theory is now
complete. The fact that the twistedN ¼ 2 SYM in the weak
coupling limit and the BS theory share the same global
observables is a well-known result in literature [22,23,83].
In the DW theory, the Donaldson invariants are defined by
the δ supersymmetry (2.31) according to the bidescent
equations encoded in (2.64). In the BS one, the same
bidescent equations appears, constructed from the nth
Chern class W̃n defined in terms of the universal curvature
in the extended space M ×A=G. Such an equivalence is
ensured by the equivariant cohomology that allows for the
replacement s → δ, as W̃n is invariant under ordinary
Yang-Mills transformations. We are now defining in which
energy regimes such an equivalence occurs when we
employ the self-dual Landau in the BS and are formally
proving the correspondence between the twistedN ¼ 2 and
a conformal gauge theory. The fact that the observables are
the same, as a consequence of the equivariant cohomology,
does not characterize the correspondence at quantum level
(we will provide a counterexample in the next section). The
correspondence between the DW and BS observables,
given by the equivalence

hODW
α1 ðφiÞODW

α2 ðφiÞ � � �ODW
αp ðφiÞig2→0

¼ hOBS
α1 ðφ0

iÞOBS
α2 ðφ0

iÞ � � �OBS
αp ðφ0

iÞiSDL; ð5:1Þ

is independent of the gauge choice. The field content that
defines the observables is the same in both theories,
φi ≡ φ0

i, since the observables are independent of the FP
ghosts (which appear in the gauge-fixed BS action). In a
few words, ODW

α ðφiÞ≡OBS
α ðφ0

iÞ, represented by the prod-
uct in Eq. (2.64). As demonstrated in Sec. II B 5, the BS
observables naturally do not depend on ðc; c̄Þ, due to the
invariance of W̃n under sYM (the Yang-Mills BRST
operator). The BS reproduces the Donaldson polynomials
only as a consequence of the structure of the off-shell
BRST transformations (2.71). Witten works exclusively in
the moduli space A=G, i.e., without fixing the gauge, its
observables being naturally independent of the FP ghost.30In the sense that all correlation functions will be identical.
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Another crucial point is that the gauge-fixing term in
which the FP ghosts are introduced in the self-dual BS
theory does not allow for the influence of Gribov copies.
For this reason, working in the moduli space, A=G in the
DW theory are completely correspondent to work in the BS
theory in SDL gauges for an arbitrary g, since γ4 ¼ 0.
Fixing the remaining YM gauge symmetry of Witten’s
action (2.30), instead of working in A=G, would not break
such a correspondence since the Gribov copies could
only affect the nonperturbative regime, being inoffensive
at the ultraviolet limit g2 → 0. The quantum equivalence is
illustrated by the agreement between the β functions,
βN¼2
g ðg2 → 0Þ ¼ βBSg ðgÞ ¼ 0.
Finally, because of the property of Witten’s theory

(2.35), which ensures that Witten’s theory can be extended
to any Riemannian manifold, the DW/BS correspondence
is characterized as follows: the twisted N ¼ 2 SYM at
g2 → 0, in any Riemannian manifold (that can be contin-
uously deformed into each other, including R4),31 defined
in the instanton moduli space A=G, is correspondent to the
topological BS theory in the self-dual Landau gauges in
Euclidean spaces, in an arbitrary perturbative regime. Such
a BS theory consists of a conformal field theory, where the
gauge copies are inoffensive in the infrared, since the
massive infrared parameter originated from the gauge
copies vanishes in this gauge—see Table III.
We emphasize that we use perturbative techniques to

prove the conformal property of the self-dual BS theory.
The fact that the self-dual BS theory in the strong limit
g2 → ∞ is also correspondent to Witten’s TQFT defined at
g2 → 0 can be conjectured by means of the cohomological
structure of the off-shell BRST symmetry. Changing g in
the BS theory is equivalent to adding a BRST-exact term in
the action; i.e., it is equivalent to performing a change in the
gauge choice. Moreover, the global observables of BS
theory, described by the Chern classes W̃n, do not depend
on the gauge choice, having only the power of reproducing

the Donaldson invariants for 4-manifolds. Also, the Gribov
ambiguities are irrelevant to the BS model (at least in the
self-dual Landau gauges), a property that should remain
valid at the strong regime.

B. Considerations about the gauge dependence
and possible generalizations

Because of the exact nature of the topological Donaldson
invariants, which are given by exact numbers, we can
consider the supposition that quantum corrections should
not affect the tree-level results and that the description
of the Donaldson invariants by the gauge-fixed BS
approach should not depend on the gauge choice.
Although intuitive, this argument is not sufficient or
complete. As a counterexample, we invoke the β function
obtained by Birmingham et al. in Ref. [54], in which the
Batalin-Vilkovisky (BV) algorithm [55] was employed.
Such a model possesses cohomological properties similar
to those in the BS theory. For a particular configuration of
auxiliary fields used in Ref. [54], the BV method recovers
the BS gauges with ρ1 ¼ ρ2 ¼ 0, together with the con-
straint Dμψμ ¼ 0—see Eq. (2.93). This constraint on the
topological ghost, with the covariant derivative instead of
the ordinary one, breaks the vector supersymmetry,
allowing for quantum corrections. Consequently, the β
function computed by Birmingham et al. is not zero. As
noted by the authors of Ref. [54], it is TrðFμν � F̃μνÞ2
rather than TrF2

μν which is renormalized, meaning that
the vacuum configurations are preserved. As expected, the
structure of the instanton moduli space, that defines the
Donaldson invariants, is not altered.
About the gauge dependence of the β function in off-

shell topological gauge models, see Sec. IV B 1. The
coupling constant in this model is nonphysical, belonging
to the trivial part of cohomology. Any change in the
unobservable coupling constant only leads to a BRST-
exact variation. The only observables are the global ones,
and we must expect that, for different gauge choices, the
global observables are not affected. According to the result
of Birmingham et al. in Ref. [54], it is possible to obtain
nontrivial quantum corrections without destroying the
topological properties of the underlying theory, preserving
the observables. Analogously, we can consider the pos-
sibility in which the fields could also be consistently

TABLE III. Characterization of the DW/BS correspondence.

Twisted N ¼ 2 SYM BS in self-dual Landau gauges

On-shell δ supersymmetry Off-shell BRSTþ vector supersymmetry
Donaldson invariants (δ) Donaldson invariants (s → δ)
g2 → 0 Arbitrary g
Any Riemannian manifold, gμν Euclidean spaces, δμν
A=G Gauge fixedjγ4Gribov ¼ 0

βN¼2
g → 0 βBSg ðgÞ ¼ 0

31This is the only requirement that guarantees that the observ-
ables of both sides are correspondent, as the conformal BS is
defined in Euclidean spaces. In the DW theory, spaces that can be
continuously deformed, one into the other, represent the same
Donaldson invariants for a class of manifolds, since a continuous
variation of the metric is equivalent to adding a δ-exact term to the
action, which does not alter the observables.
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renormalized, i.e., in such a way that the bidescent
equations, that define the Donaldson invariants, are not
altered. This reasoning shows that the renormalization of
topological gauge theories, consistent with the global
observables, is not a trivial issue.
The vector supersymmetry, that leads to the conformal

BS theory, is a particular symmetry of the self-dual Landau
gauge. One must note that ∂μAμ ¼ DμAμ, due to antisym-
metric property of fabc. To impose ∂μψμ ¼ 0 or Dμψμ ¼ 0

automatically preserves the instanton moduli space, where
Aμ and ψμ obey the same equations of motion, according to
the Atiyah-Singer theorem that correctly defines its dimen-
sion. The preservation of the instanton moduli space is then
the only requirement of the topological theory, being the
conformal property a particular feature of the self-dual
Landau gauges. The dimension of the instanton moduli
space should not depend on the gauge choice, being
protected by the Atiyah-Singer theorem.
The second generalization that can beworked out is in the

direction of developing a model in which the BS theory can
be constructed for a generic gμν. Again, any change on the
Euclidean metric to a generic one corresponds to the
addition of a BRST-exact term in the BS theory. This means
that such a variation can be interpreted as a change in the
gauge choice, and the previous discussion can be also
applied here. The vector supersymmetry is easily defined
in flat spaces. To reproduce the conformal properties of the
SDL gauges in Euclidean space for a generic gμν, we will
face the task of finding a class of metrics whose correspond-
ing action possesses a rich set of Ward identities (WI),
capable of reproducing the same effect of the self-dual
ones, see Appendix, given by the 11 functional opera-
torsWBS

I ≡ fS;Wμ;Wa
1;W

a
2;W

a
3;W

a
4;G

a
φ;Ga

1;G
a
2; T ;G3g.

Besides that, we will face another inconvenient task of
having to study the Gribov copies in curved spacetimes,
which is a highly nontrivial problem. The vanishing of the
Gribov parameter in the self-dual BS in Euclidean spaces
ensures that the DW/BS correspondence is valid for a
generic coupling constant on the BS side.

VI. CONCLUSIONS

We perform a comparative study between Donaldson-
Witten TQFT [8] and the Baulieu-Singer approach [13].
While DW theory is obtained via the twist transformation
of the N ¼ 2 SYM, BS theory is based on the BRST gauge
fixing of an action composed of topological invariants—see
Secs. II A and II B. Besides that, Witten’s theory is defined
by an on-shell supersymmetry, according to the fermionic
symmetry, see Eq. (2.31), whose associated charge is only
nilpotent if we use the equations of motion. Such a
symmetry defines the observables of the theory, given
by the Donaldson polynomials. The BS approach, in turn,
consists of an off-shell BRST construction, which enjoys
the topological BRST symmetry (2.71), whose observables

are also given by the Donaldson invariants, due to the
equivariant cohomology—defined by Witten’s fermionic
symmetry—which also characterizes the BS observables
that can be written as Chern classes for the curvature in the
extended space M ×A=G, where M is a Riemannian
manifold and A=G is the instanton moduli space; see
Sec. II B 5. Despite sharing the same observables, we note
that these theories do not necessarily have the same
quantum properties, as Witten and BS actions do not differ
by a BRST-exact term, cf. Eq. (2.123). In a few words, the
BRST quantization schemes of Witten’s and BS theories
are not equivalent.
In harmony with the quantum properties of BS approach

in the self-dual Landau gauges, see Sec. III, we formally
prove that the topological self-dual BS theory is conformal.
According to the Feynman diagram analysis performed in
Ref. [26], we proved the absence of quantum corrections in
the BS theory in the presence of the vector supersymmetry.
In Sec. IV B 1, we discussed the nonphysical character of
the coupling constant in the off-shell BS approach. Then, to
construct an algebraic proof that the self-dual BS is
conformal, we first solved the renormalization ambiguity
in topological Yang-Mills theories described in Ref. [25],
using a nonlocal transformation which recovers discrete
symmetries between ghost and antighost fields. Such
nonlocal transformations showed to be a freedom of the
self-dual BS theory due to the triviality of the Gribov copies
in the SDL gauges [28]; see Sec. IV B 2. As a consequence
of this triviality, using the Ward identities of the model—
together with the symmetry between the topological and
Faddeed-Popov ghosts introduced in Ref. [24]—and
employing algebraic renormalization techniques, we con-
clude that Zg ¼ 1, i.e., that the self-dual BS β function
indeed vanishes.
We observed that these theories do not possess the same

quantum structure, by comparing the β function of each
model; see Sec. IV. From this analysis, we characterized the
correspondence between the twisted N ¼ 2 SYM and BS
theories at quantum level, defining in which regimes such a
correspondence occurs; see Sec. V. In spite of having
distinct BRST constructions, we conclude that working in
the instanton moduli space A=G on the DW side is
completely equivalent to working in the self-dual
Landau gauges on the BS one, since the Gribov copies
do not affect its infrared dynamics. In a few words, the
twisted N ¼ 2 SYM in any Riemannian manifold (that can
be continuously deformed into M ¼ R4), in the weak
coupling limit g2 → 0, is correspondent to the BS theory
in the self-dual Landau gauges in an arbitrary perturbative
regime, which consists of a conformal gauge theory
defined in Euclidean flat space; see Table III. Such a
characterization could shed some light on the connection
between supersymmetry, topology, off-shell BRST sym-
metry, and non-Abelian conformal gauge theories in four
dimensions.
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APPENDIX: BS WARD IDENTITIES IN THE
SELF-DUAL LANDAU GAUGES

The BS action in the self-dual Landau gauges (3.8)
enjoys the following Ward identities:

(i) The Slavnov-Taylor identity, which expresses the
BRST invariance of the action (3.8),

SðΣÞ ¼ 0; ðA1Þ

where

SðΣÞ ¼
Z

d4z

	�
ψa
μ −

δΣ
δΩa

μ

�
δΣ
δAa

μ
þ δΣ
δτaμ

δΣ
δψa

μ
þ
�
φa þ δΣ

δLa

�
δΣ
δca

þ δΣ
δEa

δΣ
δφa

þ ba
δΣ
δc̄a

þ η̄a
δΣ
δφ̄a þ Ba

μν
δΣ
δχ̄aμν

þ Ωa
μ
δΣ
δτaμ

þ La δΣ
δEa þ Ka

μν
δΣ
δΛa

μν



: ðA2Þ

(ii) Ordinary Landau gauge fixing and the Faddeev-Popov antighost equation:

Wa
1Σ ¼ δΣ

δba
¼ ∂μAa

μ;

Wa
2Σ ¼ δΣ

δc̄a
− ∂μ

δΣ
δΩa

μ
¼ −∂μψ

a
μ: ðA3Þ

(iii) Topological Landau gauge fixing and the bosonic antighost equation:

Wa
3Σ ¼ δΣ

δη̄a
¼ ∂μψ

a
μ;

Wa
4Σ ¼ δΣ

δφ̄a − ∂μ
δΣ
δτaμ

¼ 0: ðA4Þ

(iv) The bosonic ghost equation,

Ga
φΣ ¼ Δa

φ; ðA5Þ

where

Ga
φ ¼

Z
d4z

�
δ

δφa − gfabcφ̄b δ

δbc

�
;

Δa
φ ¼ gfabc

Z
d4zðτbμAc

μ þ Ebcc þ Λb
μνχ̄

c
μνÞ: ðA6Þ

(v) The ordinary Faddeev-Popov ghost equation,

Ga
1Σ ¼ Δa; ðA7Þ
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where

Ga
1 ¼

Z
d4z

	
δ

δca
þ gfabc

�
c̄b

δ

δbc
þ φ̄b δ

δη̄c
þ χ̄bμν

δ

δBc
μν
þ Λb

μν
δ

δKc
μν

�

;

Δa ¼ gfabc
Z

d4zðEbφc −Ωb
μAc

μ − τbμψ
c
μ − Lbcc þ Λb

μνBc
μν − Kb

μνχ̄
c
μνÞ: ðA8Þ

(vi) The second Faddeev-Popov ghost equation,

Ga
2Σ ¼ Δa; ðA9Þ

where

Ga
2 ¼

Z
d4z

	
δ

δca
− gfabc

�
φ̄b δ

δc̄c
þ Ab

μ
δ

δψc
μ
þ cb

δ

δφc − η̄b
δ

δbc
þ Eb δ

δLc

�

: ðA10Þ

(vii) Vector supersymmetry,

WμΣ ¼ 0; ðA11Þ

where

Wμ ¼
Z

d4z

	
∂μAa

ν
δ

δψa
ν
þ ∂μca

δ

δφa þ ∂μχ̄
a
να

δ

δBa
να
þ ∂μφ̄

a

�
δ

δη̄a
þ δ

δc̄a

�

þ ð∂μc̄a − ∂μη̄
aÞ δ

δba
þ ∂μτ

a
ν

δ

δΩa
ν
þ ∂μEa δ

δLa þ ∂μΛa
να

δ

δKa
να



: ðA12Þ

(viii) Bosonic nonlinear symmetry,

T ðΣÞ ¼ 0; ðA13Þ

where

T ðΣÞ ¼
Z

d4z

	
δΣ
δΩa

μ

δΣ
δψa

μ
−

δΣ
δLa

δΣ
δφa −

δΣ
δKa

μν

δΣ
δBa

μν
þ ðc̄a − η̄aÞ

�
δΣ
δc̄a

þ δΣ
δη̄a

�

:

(ix) Global ghost supersymmetry,

G3Σ ¼ 0; ðA14Þ

where

G3 ¼
Z

d4z

	
φ̄a

�
δ

δη̄a
þ δ

δc̄a

�
− ca

δ

δφa þ τaμ
δ

δΩa
μ
þ 2Ea δ

δLa þ Λa
μν

δ

δKa
μν



: ðA15Þ

The last two symmetries are the new ones introduced in Ref. [24]. The nonlinear bosonic symmetry (vii) is precisely the
one discussed in Sec. III. B, see Eq. (3.15), which relates the FP and topological ghosts. We remark that the Faddeev-Popov
ghost equations (A7) and (A9) can be combined to obtain an exact global supersymmetry,

ΔGaΣ ¼ 0; ðA16Þ

where
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ΔGa ¼Ga
1 −Ga

2

¼
Z

d4zfabc
	
ðc̄b− η̄bÞ δ

δbc
þ φ̄b

�
δ

δη̄c
þ δ

δc̄c

�
þAb

μ
δ

δψc
μ
þ χ̄bμν

δ

δBc
μν
þcb

δ

δφcþΛb
μν

δ

δKc
μν
þ τbμ

δ

δΩc
μ
þEb δ

δLc



: ðA17Þ

We observe the similarity of Eq. (A16) with the vector supersymmetry (A11). It is also worth mentioning that, even
though the ghost number of the operator (A17) is −1, resembling an anti-BRST symmetry, it is not a genuine anti-BRST
symmetry—see, for instance, Ref. [84] for the explicit anti-BRST symmetry in topological gauge theories.
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