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We find new exact solutions of the Abelian-Higgs model coupled to general relativity, characterized by a
nonvanishing superconducting current. The solutions correspond to pp-waves, AdS waves, and Kundt
spaces, for which both the Maxwell field and the gradient of the phase of the scalar are aligned with the null
direction defining these spaces. In the Kundt family, the geometry of the two-dimensional surfaces
orthogonal to the superconducting current is determined by the solutions of the two-dimensional Liouville
equation, and in consequence, these surfaces are of constant curvature, as it occurs in a vacuum. The solution
to the Liouville equation also acts as a potential for theMaxwell field, which we integrate into a closed-form.
Using these results, we show that the combined effects of the gravitational and scalar interactions can confine
the electromagnetic field within a bounded region in the surfaces transverse to the current.
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I. INTRODUCTION

A very important step toward a deep understanding of a
classical field theory is a proper understanding of its
classical solutions. For a generic field theory, this may
seem an insurmountable task since the space of solutions
are infinite-dimensional, nevertheless, for general relativity
(GR), important classification schemes are available which
allow defining classes of solutions, contributing to the
understanding of their potential realization in nature [1].
One of the most relevant field theory (both at the

classical and quantum level) is the Abelian-Higgs model
(the Maxwell-Ginzburg-Landau theory) which can describe
successfully many important semiclassical features of
superconductors (see [2,3] for detailed reviews: in the
following, we will consider the relativistic version of the
theory). A further important phenomenological implication
of this theory is the presence of vortices discovered by
Abrikosov, Nielsen and Olesen in [4,5]. These are some of
the many reasons why the minimal coupling of the Abelian-
Higgs model with GR has been deeply investigated (see [3]
and references therein). Moreover, a no-hair theorem was

proved in [6], which can be circumvented for horizons
pierced by a vortex both in the static case [7], as well as for
stationary black holes [8], and for planar AdS black holes
[9]. In the holographic setup, this system allows construct-
ing holographic superconductors, where near the horizon of
a black hole the scalar acquires a vev [10–13], which can be
understood as arising due to an instability triggered by a
violation of the effective Breitenlohner-Freedman bound
[14] in the AdS2 near horizon geometry of extremal
Reissner-Nordström black hole. Finally, this system also
finds applications in the holographic description of super-
fluidity (see, e.g., [13,15,16]). Given the relevance of this
field theory, it is of uttermost importance to continue
shedding light on the structure of its space of solutions.
This paper is devoted to such a task. In the present
manuscript, we will study, with analytic methods, the
gravitational consequences of the presence of a super-
conducting current in the Einstein-Maxwell-Ginzburg-
Landau theory.
Of course, one may wonder why to insist on finding

analytic solutions if these equations can be solved numeri-
cally. Indeed, numerical techniques were already available
in the literature of the eighties and nineties to analyze these
configurations in the gravitating Abelian-Higgs model (see
[3] and references therein). Despite this, there are indis-
putable arguments that strongly suggest that, whenever it is
possible, we should strive for analytic solutions. For
example, much of what we currently know about black
hole physics in GR, and instantons and monopoles in
gauge theories arose from a careful study of the available
analytic solutions like the Kerr solution in the former and
non-Abelian monopoles and instantons in the latter.
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Consequently, an analytic tool to analyze the gravitational
effects of superconducting currents in the model relevant to
our present study can greatly enlarge our understanding of
this system. Second and more concretely, our analysis
discloses a nice mechanism that, at least in principle, can
confine the electromagnetic field in the two-dimensional
surfaces orthogonal to the superconducting currents.
One may think that pursuing an analytic approach in this

nonlinear system is hopeless. Nevertheless, the methods
developed in [17–22] to propose a proper ansatz, allowed to
construct analytic gauged solitons in the gauged Skyrme
model thanks to a suitable choice of variables which
enables to partially decouple the field equations. These
were extended in [23] to include the minimal coupling with
GR and here we show that they are suitable to analyze
Einstein-Maxwell-Ginzburg-Landau theory, as well.
In Sec. II, we present the model and describe properties

of the superconducting current supporting the solutions of
the following sections. In Sec. III, we construct the pp-
wave as well as the AdS-wave solutions and for the latter, in
a particular case, we can integrate the whole system in
an explicit, closed manner. Section IV is devoted to the
construction of the Kundt solutions, characterized by the
existence of a null, geodesic, congruence that is not
covariantly constant but has vanishing optical scalars.
The Liouville equation naturally emerges in the constant
u, v sector and we obtain nontrivial solutions for both, the
positive and negative cosmological constant value. Finally,
we provide some conclusions in Sec. V.

II. THE MODEL

The gravitating Abelian-Higgs model is described by the
action

S½g;Ψ; A� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

4
FμνFμν

−DμΨðDμΨÞ⋆ − VðΨÞ
�
; ð1Þ

where g is the determinant of the metric, R is the Ricci
tensor scalar, Λ the cosmological constant, and we have set
16πG ¼ 1. The scalar field Ψ is complex, and Ψ⋆ denotes
its complex conjugate. The electromagnetic field strength is
given by Fμν ¼ ∂μAν − ∂νAμ, with Aμ the electromagnetic
potential. In (1), we have introduced the gauge covariant
derivative of the field with charge q and its conjugate with
charge −q as

DμΨ ¼ ∂μΨþ iqAμΨ;

ðDμΨÞ⋆ ¼ ∂μΨ⋆ − iqAμΨ⋆; ð2Þ
and hereafter ∇μ denotes the covariant derivative con-
structed with the Christoffel symbol. In the Abelian-Higgs
model, the self-interacting potential VðΨÞ of the complex
scalar field is given by

VðjΨjÞ ¼ λðΨΨ⋆ − ν20Þ2; ð3Þ

where ν0 is a real constant and λ > 0. The field equations
that follows from varying the action (1) are

Rμν −
1

2
gμνRþ Λgμν ¼ Tμν; ð4aÞ

∇μFμν ¼ Jν; ð4bÞ

∇μ∇μΨþ iq∇μAμΨþ 2iqAμ∇μΨ

− q2AμAμΨ −
∂

∂Ψ⋆ VðjΨjÞ ¼ 0: ð4cÞ

The stress-energy tensor Tμν is the sum of two
contributions

Tμν ¼ TðAÞ
μν þ TðΨÞ

μν ; ð5Þ

associated to the Maxwell and the scalar field, respectively,
given by

TðAÞ
μν ¼ 1

2

�
FμαFν

α −
1

4
gμνFαβFαβ

�
; ð6Þ

TðΨÞ
μν ¼ 1

2
ðDμΨðDνΨÞ⋆ þDνΨðDμΨÞ⋆

− gμνðDαΨðDαΨÞ⋆ þ VðΨÞÞÞ: ð7Þ

In (4b), the particle number current is given by

Jμ ¼ iqððDμΨÞ⋆Ψ −DμΨΨ⋆Þ: ð8Þ

In the following, we focus on two new families of
independent solutions to this model. First, we construct
new charged pp-waves and (A)dS waves and show that they
are controlled by an integrable system. Then, inspired by an
extension of these solutions we will construct new charged
spacetimes that contain a two-dimensional sector whose
conformal factor leads to the Liouville equation in two
dimensions. Wewill see that this function plays the role of a
potential and source of the Maxwell equation and the
remaining Einstein equations, respectively.
Before proceeding with the construction of the exact

solutions, a few remarks are in order regarding the
persistent character of the Uð1Þ currents. In [24] the deep
and consequential idea of superconducting strings was
proposed. This idea (which was further generalized, for
instance, in [25–48] and references therein) shed light on
the highly nontrivial gravitational effects of superconduct-
ing currents. These references partly motivated the present
analysis to build the simplest possible analytic example of
gravitational fields sourced by currents with the character-
istics listed here below. As far as the present analysis is
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concerned, the relevant features of the Uð1Þ persistent
current [24] for our construction are

(i) The Uð1Þ current (whose gravitational effects are
under examination) should survive even in the limit
of zero gauge potential.

(ii) The corresponding residual current Jð0Þμ (in the limit
Aμ ¼ 0) should have the form

Jð0Þμ ¼ Γ∂μΩ; ð9Þ

where Γ is a function which cannot vanish every-
where while the function Ω is defined only modulo
2π: Ω ∼Ωþ 2π.

As far as the function Γ is concerned, the simplest case
corresponds to Γ ¼ cte: in the following, we will consider
configurations in which this option is realized. While for
the function Ω, we will consider configurations in which
the fact that Ω is defined only modulo 2π is manifest. In
particular, from Eqs. (11) and (27) below it is clear that the
functionΩ is defined only modulo 2π and that the current is
proportional to ∂μΩ.

III. PP AND AdS WAVES

In order to simplify the presentation of the new solutions
obtained in this section, we separate the analysis of the
Λ ¼ 0 case, from that with nonvanishing Λ.

A. pp-waves

The metric for a pp-wave in Brinkmann coordinates
reads

ds2 ¼ −Fðu; x; yÞdu2 − 2dudvþ dx2 þ dy2: ð10Þ

This geometry is characterized by possessing a covariantly
constant vector ∂v, which being nontwisting, is orthogonal
to the two-dimensional, planar hypersurface spanned by the
coordinates ðx; yÞ. In vacuum, Einstein equations imply
that the wave profile Fðu; x; yÞ can be separated as an
arbitrary function of the coordinate u, times a harmonic
function on ðx; yÞ. On the other hand, these spacetimes are
consistent with the backreaction produced for example by a
conformal source [49]. Metrics of the form (10) also play
an important role in holography since they emerge, for
example, as supersymmetric configurations by taking a
suitable Penrose limit of the AdS5 × S5 solution of
Type-IIB SUGRA [50].
Here, in the context of the gravitating Abelian-Higgs

model (1), we focus on the spontaneously broken phase,
but maintaining the phase of the scalar turned on, and we
impose that both, the gradient of the scalar ∂μψ as well as
the gauge field Aμ, to be aligned with the covariantly
constant vector ∂v that defines the pp-wave (10). This kind
of strategy to decouple the field equations describing
gauged solitons in the low energy limit of QCD, minimally

coupled to Maxwell equations, has been introduced
in [17–23]. These conditions lead to

ψ ¼ ρeiΩðuÞ; and A ¼ aðu; x; yÞdu; ð11Þ

A2 ¼ ∇μAμ ¼ A · ∇ψ ¼ 0; ð12Þ

which have also been useful in the construction of static and
rotating solutions in vector Galileon theories [51].
Under these circumstances, considering a constant value

of ρ ¼ ν0 ¼ cte, we obtain an effective system of equations
given by

Gμν ¼
1

2
FμλFλ

ν −
1

8
gμνF2

þ ρ2½∇μΩ∇νΩþ qðAμ∇νΩþ Aν∇μΩÞ þ q2AμAν�;
ð13Þ

∇μFμν ¼ 2qρ2∇νΩþ 2q2ρ2Aν; ð14Þ

and the Klein-Gordon equation is automatically satisfied
when ρ is constant. As expected, on the spontaneously
broken phase, the vector field Aμ acquires a mass which can
be read from (14) leading to

m2
A ¼ 2q2ρ2: ð15Þ

Defining ωðuÞ ¼ ∂uΩðuÞ, one can show that the whole
system for the gravitating Abelian-Higgs model, in this
sector reduces to the following two equations

� ∂2

∂x2 þ
∂2

∂y2
�
aðu; x; yÞ − 2qρ2ðqaðu; x; yÞ þ ωðuÞÞ ¼ 0;

ð16Þ
� ∂2

∂x2þ
∂2

∂y2
�
Fðu;x;yÞ−

� ∂
∂xaðu;x;yÞ

�
2

−
� ∂
∂yaðu;x;yÞ

�
2

−2ρ2ðqaðu;x;yÞþωðuÞÞ2¼ 0: ð17Þ

Remarkably, we have arrived to an integrable system.
The equation (16) is a screened Poisson equation for the
gauge field component aðu; x; yÞ, which can be integrated
in terms of a convolution of the Green function for this
operator and the source ωðuÞ, which is the phase of
the complex scalar field. Clearly, the effective mass of
the vector field mA given in (15) is responsible for the
screening. Once this equation is integrated, Eq. (17) trans-
forms into a Poisson equation for the pp-wave profile
Fðu; x; yÞ, which again, can be integrated using the
corresponding Green function.
Notice that one may want to remove the phase ωðuÞ by a

gauge transformation ψ → ψe−iqξðxμÞ and Aμ → Aμ þ ∂μξ.
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This can be achieved locally, but since the phase depends
on the null direction u, in order to remove it, one must in
general implement a large gauge transformation. Such
transformations can modify the global interpretation of
the solution, thus we prefer not to remove ωðuÞ.

B. (A)dS waves

In this case the spacetime takes the form

ds2 ¼ l2

x2
ð−Fðu; x; yÞdu2 − 2dudvþ dx2 þ dy2Þ; ð18Þ

where we have defined Λ ¼ −3=l2, with l the AdS radius.
These Siklos spacetimes correspond to a conformal trans-
formation of the pp-wave (10). Now, the field equations
reduce to:

x4
� ∂2

∂x2 þ
∂2

∂y2
�
aðu; x; yÞ

− 2x2l2qρ2ðqaðu; x; yÞ þ ωðuÞÞ ¼ 0; ð19Þ
� ∂2

∂x2 þ
∂2

∂y2 −
2

x
∂
∂x

�
Fðu; x; yÞ

−
x2

l2

�� ∂
∂x aðu; x; yÞ

�
2

þ
� ∂
∂y aðu; x; yÞ

�
2
�

− 2ρ2ðqaðu; x; yÞ þ ωðuÞÞ2 ¼ 0: ð20Þ

In the presence of the cosmological term, the Maxwell
equation (19) is not an autonomous equation anymore,
nevertheless it can be integrated and leads to

aðu;x;yÞ¼ωðuÞ
�
x1=2ðAðyÞxνþBðyÞx−ν

þðC1JνðcxÞþC2YνðcxÞÞðC3ecyþC4e−cyÞÞ−
1

q

�
;

ð21Þ
where Jν and Yν are the Bessel functions of the first and
second kind, respectively, AðyÞ and BðyÞ are arbitrary
linear functions of y and Ci¼1;…;4 and c are integration
constants. We have also defined

ν ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8l2q2ρ2

q
: ð22Þ

Even though we have been able to integrate the Maxwell’s
equation in a closed form, for nonvanishing constants Ci,
the metric profile Fðu; x; yÞ cannot be integrated in a closed
manner. To move forward, we therefore setC1 ¼ C2 ¼ 0 as
well as AðyÞ ¼ A0 and BðyÞ ¼ B0. Under these conditions
the electromagnetic field (21) reduces to

aðu; x; yÞ ¼ ωðuÞ
�
x1=2ðA0xν þ B0x−νÞ −

1

q

�
; ð23Þ

and the AdS-wave profile reads,

Fðu; x; yÞ ¼ ωðuÞ2
�
ðD1ehxð1 − hxÞ þD2e−hxð1þ hxÞÞðD4 sinðhyÞ þD5 cosðhyÞÞ

þ 1

8

�
E1 þ E2x3 þ

1

l2

�
A2
0

ð1þ 2νÞ
ð3þ 2νÞ x

3þ2ν þ B2
0

ð2ν − 1Þ
ð2ν − 3Þ x

3−2ν
���

: ð24Þ

Here again,D1;…;5, h and E1;2 are integration constants. We
can see that the effect of the charge on the function
Fðu; x; yÞ induces a quite nontrivial profile.
Before finishing this section, it is interesting to notice

that the expression for ν in (22) can be written in terms of
the effective mass of the vector field on the broken phase,
mA given in (15), as

2ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
A

m2
BF

s
; ð25Þ

where m2
BF ¼ −ð2lÞ−2 is the Breitenlohner-Freedman

bound for a spin 1 field on AdS4. Therefore, as expected,
the x dependence of Eq. (23) is reminiscent of that for a
massive vector on AdS (see, e.g., equation (25)–(26)
of [52]).

IV. KUNDT SPACES IN THE
ABELIAN-HIGGS MODEL

Let us consider now consider an extension of the
pp-wave ansatz, given by

ds2 ¼ ðfðx; yÞ þ f0vþ Λv2Þdu2 − 2dvdu

þ eβhðx;yÞðdx2 þ dy2Þ; ð26Þ

where u ¼ tþ w, v ¼ t − w is a null coordinate, x, y, w are
Cartesian-like coordinates, and f0 and β are arbitrary
constants. This spacetime belongs to the Kundt family
since it can be checked that the null congruence generated
by ∂v is not covariantly constant, but nevertheless it has
vanishing expansion, shear, and twist.
The techniques developed in [17–22] are particularly

suitable to analyze gravitating solitons whose metrics have
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the form in Eq. (26) (see the analysis in [23]). Again, the
complex scalar field adopts a harmonic dependence in u,
and with a constant amplitude, given by

ΨðxμÞ ¼ ν0eiΩðuÞ; ΩðuÞ ¼ u: ð27Þ

We also assume that the Maxwell field has the following
form

A ¼ Auðx; yÞdu; Auðx; yÞ ¼
aðx; yÞ − 1

q
: ð28Þ

With this ansatz, the Klein-Gordon (4c) is automatically
satisfied, while Maxwell equations reduce to

� ∂2

∂x2 þ
∂2

∂y2 − 2q2ν20e
βhðx;yÞ

�
aðx; yÞ ¼ 0: ð29Þ

The only nontrivial Einstein field equations (4a) for this
configuration are

� ∂2

∂x2 þ
∂2

∂y2
�
hðx; yÞ ¼ −

2Λ
β

eβhðx;yÞ; ð30aÞ

� ∂2

∂x2 þ
∂2

∂y2
�
fðx; yÞ ¼ −ρðx; yÞ; ð30bÞ

with

ρðx; yÞ ¼ 2ν20e
βhðx;yÞa2ðx; yÞ

þ 1

q2

��∂aðx; yÞ
∂x

�
2

þ
�∂aðx; yÞ

∂y
�

2
�
: ð31Þ

Equation (30) correspond to a Liouville equation for hðx; yÞ,
namely the conformal factor of the two-dimensional space
spanned by the coordinates ðx; yÞ in the metric (26), and a
Poisson equation for the function fðx; yÞ. Thus, as it happens
in [23] in the case ofEinstein-Maxwell coupled to a nonlinear
sigma model, the present ansatz allows a useful partial
decoupling of the field equations. In particular, Eq. (30a)
allows a direct integration for hðx; yÞ. This equation actually
implies that the induced metric on the u; v ¼ constant
surfaces is of constant curvature Λ, as it occurs in vacuum
[1]. Then, once hðx; yÞ is known, one can solve theMaxwell
equation in Eq. (29) for aðx; yÞ since it reduces to a
Schrödinger-like equation in which eβhðx;yÞ plays the role
of the potential. Eventually, once hðx; yÞ and aðx; yÞ are both
known, one can solve the remaining equation, Eq. (30b)
for fðx; yÞ, since the source term ρðx; yÞ is explicitly
known once hðx; yÞ and aðx; yÞ determined. This hierarchi-
cal decoupling is the key of the strategy developed in
[17–22]. Therefore, following this logic, we start considering
the general solution of (30a), given by [53,54]

eβhðx;yÞ ¼ 4

Λ
g0ðzÞḡ0ðz̄Þ

ðgðzÞḡðz̄Þ þ 1Þ2 ; if Λ > 0; ð32aÞ

eβhðx;yÞ ¼ −
4

Λ
g0ðzÞḡ0ðz̄Þ

ðgðzÞḡðz̄Þ − 1Þ2 ; if Λ < 0; ð32bÞ

where gðzÞ is any meromorphic function of z ¼ xþ iy, with
at most simple poles, and dg=dz ≠ 0 for all z in a simply
connected domain. On the other hand, since the coordinates
x, y are Cartesian, the Poisson equation possesses the
particular solution [55]

fðx; yÞ ¼ 1

2π

Z
∞

−∞

Z
∞

−∞
ρðx̄; ȳÞ ln

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x̄Þ2 þ ðy − ȳÞ2
p �

× dx̄dȳ: ð33Þ

As mentioned, the Liouville equation on hðx; yÞ, implies
that the manifold spanned by the coordinates ðx; yÞ is of
constant curvature Λ. Therefore, locally, there is always a
change of coordinates that allows rewriting themetric (26) as

ds2 ¼ ðfðμ;ϕÞ þ f0vþ Λv2Þdu2 − 2dvdu

þ dμ2

1 − Λμ2
þ μ2dϕ2: ð34Þ

In these coordinates, the equation for the electromagnetic
field aðr; θÞ reads

d2aðμ;ϕÞ
dμ2

þ ð1 − 2Λμ2Þ
μð1 − Λμ2Þ

daðμ;ϕÞ
dμ

−
2q2ν20aðμ;ϕÞ
ð1 − Λμ2Þ

þ 1

μ2ð1 − Λμ2Þ
d2aðμ;ϕÞ

dϕ2
¼ 0: ð35Þ

The general solution to this equation is

aðμ;ϕÞ ¼
X
m

am sin ðmϕþ δmÞGmðμÞ; ð36Þ

where the function GmðμÞ can be integrated in terms of
Legendre functions. Here am and δm are integration
constants.
For theΛ < 0 case, settingΛ ¼ −1, the radial coordinate

μ goes from ½0;∞½, and the solution for GmðμÞ which is
nondivergent as μ → ∞ reads

GΛ<0
m ðμÞ

¼ μ−
1
2
ð1þ2νÞ

2F1

�
−
m
2
þ ν

2
þ 1

4
;
m
2
þ ν

2
þ 1

4
;1þ ν;−μ−2

�
;

ð37Þ

where 2F1 stands for the Gauss hypergeometric function
and ν was defined in (22). In this case the two-dimensional
surfaces at u; v ¼ constant are hyperbolic spaces with
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origin at μ ¼ 0. Even though the behavior at μ → ∞ is
regular, these solutions have a singular behavior near the
center μ ¼ 0 of the hyperbolic space, since near such point,
one can see that

GΛ<0
m ðμÞ ¼ Aμmð1þOðμÞÞ þ Bμ−mð1þOðμÞÞ; ð38Þ

and one can see that both constant A, B are always
nonvanishing. In spite of this behavior, one can check that
the curvature invariants R; RαβγδRαβγδ, Rαβ

γδRγδ
τσRτσ

αβ are
actually constant, therefore there is no singular backreac-
tion on the geometry. Interestingly, the equation for Gm in
this case can be written as a Schrödinger-like equation of
the form

−
d2GmðsÞ

ds2
þ 2q2ν20
sinh2ðsÞGmðsÞ ¼ −m2GmðsÞ; ð39Þ

where we have introduced the inversion μ ¼ ðsinhðsÞÞ−1
which maps the range μ ∈ ð0;∞Þ to s ∈ ð∞; 0Þ. This is a
Schröedinger-like equation in a generalized Pöschl-Teller
potential, which belongs to a class of exactly solvable,
shape invariant potentials [56,57]. The potential being
positive, clearly implies that there cannot be solutions that
are regular at both boundaries of the domain s ∈ ð∞; 0Þ,
which is consistent with the asymptotic expansion of (37)
around μ ¼ 0 presented in (38). Nevertheless, as also
mentioned above, the backreaction on the geometry of
this Maxwell field is regular.
When Λ > 0, the range of the μ-coordinate in (34) is

μ ∈� − 1; 1½. Setting Λ ¼ 1 in this case, and defining
μ ¼ sinðθÞ, leads to the following solution

GΛ>0
m ¼ sinjmjðθÞ2F1

�jmj
2

−
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8q2ν20

q
þ1

4
;

jmj
2

þ1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8q2ν20

q
þ1

4
;1þjmj;sin2ðθÞ

�
; ð40Þ

which is regular at the poles located at θ ¼ 0 and θ ¼ π.
Finally, it is also instructive to see explicitly how these

cases emerge from a suitable choice of the arbitrary
function gðzÞ of the general solution of the Liouville
equation in (32) and (32a). For concreteness, let us focus
on the case with negative cosmological constant, normal-
ized as Λ ¼ −1, namely the case corresponding to
Eq. (32a). Choosing gðzÞ ¼ z and ḡðz̄Þ ¼ z̄ in (32a) leads
to the following metric for the Kundt spaces

ds2 ¼ ðfðx; yÞ þ f0vþ Λv2Þdu2 − 2dvdu

þ 4ðdx2 þ dy2Þ
ð1 − ðx2 þ y2ÞÞ2 ; ð41Þ

which after the change of coordinates

x ¼ μ−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2
q

− 1
�
cosðϕÞ;

y ¼ μ−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2
q

− 1
�
sinðϕÞ; ð42Þ

leads to the metric

ds2 ¼ ðfðx; yÞ þ f0vþ Λv2Þdu2 − 2dvdu

þ dμ2

1þ μ2
þ μ2dϕ2; ð43Þ

that we have used in (34) and (35).

V. CONCLUSIONS

We have constructed three new families of analytic
solutions of the gravitating Abelian-Higgs model, charac-
terized by a nonvanishing superconducting current. The
first two families of solutions correspond to exact gravi-
tational waves: pp and (A)dS waves. In these families
the null vector characterizing both the pp-wave and the (A)
dS-wave is aligned with the superconducting current. Then,
we have studied a class of solutions that belong to the
family of Kundt spaces, and as in vacuum, the two-
dimensional geometry of the surfaces orthogonal to the
superconducting currents is determined by the two-
dimensional Liouville equation. Such surfaces can have
either positive or negative Gaussian curvature depending on
the sign of the cosmological constant.1 This sector pos-
sesses a remarkable property: the arbitrary analytic function
characterizing the solution of the two-dimensional
Liouville equation (which determines the geometry of two-
dimensional surfaces transverse to the superconducting
current) can be chosen in such a way that the corresponding
Maxwell equations reduce consistently to a Schrödinger-
like equation in a generalized Pöschl-Teller potential.
Requiring suitable boundary conditions for the Maxwell
field within this sector, for a negative cosmological con-
stant, the combined effects of the gravitational and scalar
interactions can confine the electromagnetic field within a
bounded region of the surfaces transverse to the current
itself. This result opens the interesting possibility to analyze
the properties of test electromagnetic fields propagating
within these families of analytic solutions of the Abelian-
Higgs model using the well known properties of the Pöschl-
Teller potential [57]. We hope to come back on this feature
in the future.
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