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We consider the photonic vortical effect, i.e., the difference of the flows of left- and right-handed photons
along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate
the effect are considered, both of which have already been tried in the literature: first, the standard thermal
field theory and, alternatively, Hawking-radiation-type derivation. In our earlier attempt to compare the two
approaches, we found a crucial factor of 2 difference. Here, we revisit the problem, paying more attention to
details of infrared regularizations. We find out that introduction of an infinitesimal mass of the vector field
brings the two ways of evaluating the chiral vortical effect into agreement with each other. Some
implications, on both the theoretical and phenomenological sides, are mentioned.
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I. INTRODUCTION

We will consider thermodynamics of media whose
constituents are massless particles of nonzero spin S.
The best-studied case is S ¼ 1=2, and, as a starting point,
we quote some results obtained for spin-1=2 constituents.
However, we are mainly interested in properties of photonic
media, consisting of left- and right-handed photons.
Recently, the number of papers devoted to this case has
also been growing; see, in particular, Refs. [1–9].
The chiral vortical effect was first evaluated by Vilenkin

[10], who considered gas of noninteracting spin-1=2
fermions in a rotating coordinate system. It was demon-
strated that there exists a current of the particle number
flowing along the vector of the angular velocity Ω⃗.
Numerically, in the case of a single right-handed Weyl
spinor, the current is given by

J⃗NðS ¼ 1=2Þ ¼
�
μ2R
4π2

þ T2

12

�
Ω⃗; ð1:1Þ

where μR is the chemical potential and T is the temperature.
The term with μ2R in the expression (1.1) is, in fact,
proportional to k2F, where kF is the radius of the Fermi
sphere (of massless chiral fermions). A microscopic der-
ivation of the current in terms of the Fermi sphere in all
details can be found in Ref. [11].
Nowadays, the literature on the chiral effects is huge, and

we cannot even briefly review the subject. Here, we
mention only the pioneering paper [12] which opened
the chapter on theory of the chiral effects in the regime of
strong coupling. It turns out that in the hydrodynamic
approximation and in the absence of dissipation one can
derive chiral effects without exploiting the noninteracting
gas approximation. Moreover, the magnitude of the chiral
effects is determined uniquely in terms of the correspond-
ing chiral anomaly of the fundamental theory underlying
the phenomenological hydrodynamic approach; for a
review, see Ref. [13].
In particular, in the case of the chiral vortical effect (1.1),

the term proportional to the chemical potential squared is
indeed related to the chiral anomaly. There is a simple
substitution which allows one to generate chiral hydro-
dynamic effects from the standard chiral anomaly [14]:
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eAα → eAα þ μuα; ð1:2Þ

where Aα is the electromagnetic potential, e is the charge of
the fundamental constituents, and uα is the 4-velocity of an
element of the medium. One can readily check that the
substitution (1.2) does reproduce the μ2R term in Eq. (1.1).
On the other hand, any field-theoretic interpretation of

the T2 term in Eq. (1.1) had been missing until the recent
paper [15], which relates it to the gravitational chiral
anomaly (for earlier attempts in the same direction, see
[16,17]). In the case of massless spin-1=2 particles inter-
acting with an external gravitational field, the anomaly
reads

∇μJ
μ
N ¼ 1

384π2
RμνκλR̃μνκλ; ð1:3Þ

where Rμνκλ is the Riemann tensor and
R̃μνκλ ¼ 1

2
ffiffiffiffi−gp ϵμνρσRκλ

ρσ .

To bridge (1.3) to the chiral vortical effect (1.1), one
exploits the construction similar to the one introduced first
to relate the Hawking radiation from a black hole to the
field-theoretic anomalies [18–20]. Namely, one considers a
space-time with a horizon. What is specific for the horizon
is that there is a flow of particles from the horizon and
absorption of the particles falling onto the horizon. One can
say there is a right-left asymmetry at the horizon. The rate
of the particle production at the horizon can be fixed in
terms of the anomalies of the field theory or of the
gravitational field on the horizon. In more detail, the
relevant anomaly looks as

∇μTμν ¼ −
c

96π

ϵναffiffiffiffiffijgjp ∂αR; ð1:4Þ

where ϵμα is the 2D antisymmetric tensor, c is the central
charge, and R is the Ricci scalar. On the other hand, far off
from the horizon, the flow of the particles can be compared
to the thermal radiation. It was demonstrated [18–20] that
the matching of the two expressions for the flow of the
particles reproduces the Hawking or Unruh temperature.
The calculation is to be performed for each spherical wave
separately and cumbersome technically.
The paper in Ref. [15] evaluates the chiral vortical effect

in a similar way. There is a significant simplification,
however. Namely, the metric introduced is not a solution of
the Einstein equations but rather imitates rotation of a fluid:

ds2 ¼ −fðzÞ ðdt −Ωr2dϕÞ2
ð1 −Ω2r2Þ þ 1

fðzÞ dz
2

þ dr2 þ r2ðdϕ −ΩdtÞ2
ð1 −Ω2r2Þ : ð1:5Þ

At large distances z, the function fðzÞ tends to unit, and the
metric (1.5) reduces to that of the flat space in cylindrical
coordinates:

ds2 → −dt2 þ dz2 þ dr2 þ r2dϕ2: ð1:6Þ

Integrating the rhs of Eq. (1.3), one evaluates the flow of
particles at large z which is to be identified with the chiral
thermal vortical effect, by the logic of the construction. The
translation from the field theory to the thermal physics is
achieved through the identification

ahorizon
2π

→ T; Ωhorizon → Ω; ð1:7Þ

where ahorizon and Ωhorizon are the gravitational acceleration
and angular velocity on the horizon, respectively while T
and Ω are the flat-space values of the temperature and of
angular velocity, respectively, as measured at large z.
See Eq. (1.5).
It was demonstrated [15] that in this way one reproduces

the T2 term in Eq. (1.1), which is an amusing success of the
modern ideas on the relation between gravitational accel-
eration and thermal physics.
In Ref. [8], it was suggested to extend the checks of the

theory [15] by considering quantum particles of higher spin
S. In particular,we concentrate on theS ¼ 1 case, or photons.
The corresponding gravitational anomaly was introduced in
Ref. [21]. Using the machinery just described, one can turn
the knowledge of the gravitational anomaly into a prediction
of the magnitude of the chiral vortical effect for photons.
Moreover, this prediction can be comparedwith the results of
direct calculations bymeans of various techniques within the
thermal field theory; see, in particular, [1–7].
There is a disagreement of a factor of 2 between the two

ways of evaluating the chiral vortical effect for photons [8].
Here, we revisit the problem of comparing various results
for the photonic vortical effect. The main point we are
emphasizing now is that the evaluation both of the
gravitational anomaly and of the chiral vortical effect
involve regularization procedures. For our pure theoretical
purposes, we need identical regularizations on both sides
(gravitational and flat-space ones). Our overall conclusion
here is that, in the sense indicated, there is no direct
contradiction between the two ways of evaluating the chiral
vortical effect for photons.

II. CHIRAL VORTICAL EFFECT IN
EQUILIBRIUM

A. Massless spin-1=2 particles

There are different ways of evaluating the chiral vortical
effect in the one-loop approximation. The most straightfor-
ward way is to find energy levels, evaluate the current for
each mode, and weight the results with the Fermi or Bose
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(whichever is relevant) distribution of the levels. In par-
ticular, this was the strategy adopted first in the pioneering
work in Ref. [10]. In this section, we review briefly the
evaluation of the photonic chiral effect in equilibrium. In
the next section, we comment on the applications of the
Kubo relations.
We begin with quoting the results obtained first in

Ref. [10] in the form most suitable for generalizations to
higher-spin cases. For the sake of normalization, let us
remind the reader that the energy density for a single Weyl
fermion in terms of Fermi distribution is written as

ρWeyl
F ¼ 1

8π3

Z þ∞

−∞
dϵð4πϵ3Þ

�
1

eβϵ þ 1
− θð−ϵÞ

�
: ð2:1Þ

The degree of freedom with a positive energy describes a
fermion polarized along its momentum. The second,
subtraction term in the rhs of Eq. (2.1) is introduced to
ensure vanishing of the density of the energy at T; μR ¼ 0.
Alternatively, the Fermi distribution (2.1) can be written in
terms of states with positive energies, which unifies
particles and antiparticles:

ρWeyl
F ¼ 2

1

8π3

Z
∞

0

dϵð4πϵ3Þ 1

eþβϵ þ 1
; ð2:2Þ

where we keep the overall factor of 2 in the rhs to emphasize
that there are two degenerate levels for each energy.
Now, the statistically averaged matrix element of the

vortical current can be represented in the following form
[10,15] convenient for interpretation:

JNðs ¼ 1=2Þ ¼ 1

4π2

Z þ∞

−∞
ϵ2dϵ

�
1

1þ eβðϵ−ðμRþΩ=2ÞÞ −
1

1þ eβðϵ−ðμR−Ω=2ÞÞ

�
; ð2:3Þ

where JN is written, as usual for the case of a single right-handed Weyl fermion, and we restore a nonvanishing chemical
potential, μR ≠ 0. Upon integration over the energy, Eq. (2.3) reduces to Eq. (1.1).
Comparing (2.3) and (1.1), we see that the vanishing of (1.1) at Ω → 0 is a consequence of the oddness of the current in

(2.3): JNð−ΩÞ ¼ −JNðΩÞ. If we consider another limit T → 0, then (2.3) will give [22]

JNðs ¼ 1=2Þ ¼ 1

12π2

�
θ

�
μR þ Ω

2

�����μR þΩ
2

����
3

− θ

�
μR −

Ω
2

�����μR −
Ω
2

����
3

þ θ

�
−μR þΩ

2

�����μR −
Ω
2

����
3

− θ

�
−μR −

Ω
2

�����μR þ Ω
2

����
3
�

¼ μ2R
4π2

Ωþ 1

48π2
Ω3: ð2:4Þ

The linear term in (2.4) matches (1.1) at T → 0.

The interpretation of Eq. (2.3) is straightforward. Indeed,
by introducing the rotation we remove the twofold degen-
eracy of all the levels and get two levels split by the energy
ΔE ¼ Ω. Indeed, in equilibrium, one introduces an effec-
tive interaction:

δĤeff ¼ −Ω⃗ · ˆM⃗; ð2:5Þ

where ˆM⃗ is the angular momentum operator for spin
S ¼ 1=2. Note that such an interpretation assumes that
the quantization is performed in cylindrical coordinates
[while Eq. (2.1) can be derived, say, in Cartesian coor-
dinates as well]. Therefore, the energy levels now corre-
spond to the states which have a definite projection of the
momentum on z axis pz and projection of the angular
momentum Lz.

B. Chiral photonic current

The notion of chirality for photons is well known.
Namely, the left- and right-handed polarized photons are

chiral states, since they correspond to a certain projection of
the spin of the photon on its momentum, Sp ¼ �1. The
chiral current, therefore, can be defined as

Kμ ¼ 1ffiffiffiffiffiffi−gp ϵμνρσAν∂ρAσ; ð2:6Þ

where Aμ is the vector potential of the electromagnetic field
and we also reserved for a nontrivial determinant g of the
metric tensor. The current (2.6) is defined in such a way that
the eigenvalues of the associated charge are indeed �1.
Note, however, that the current (2.6) is not gauge

invariant, and we should be careful to associate observables
only with a kind of gauge-invariant projections of Kμ. In
particular, a well-known example of such a gauge-invariant
observable is the charge corresponding to the current (2.6):

Qmagnetic helicity ¼
Z

d3xϵ0ijkAi∂jAk ¼
Z

d3xH⃗ · A⃗; ð2:7Þ

CHIRAL VORTICAL EFFECT FOR VECTOR FIELDS PHYS. REV. D 103, 085003 (2021)

085003-3



where H⃗ is the magnetic field. Then, under the gauge
transformation, δgaugeAi ¼ ∂iΛ, the variation of the mag-
netic-helicity charge density is given by

δgaugeðH⃗ · A⃗Þ ¼ H⃗ · ∇⃗Λ ¼ ∇⃗ðH⃗ΛÞ − ð∇⃗ · H⃗ÞΛ: ð2:8Þ

Here, ∇⃗ · H⃗ ¼ 0 by virtue of the equations of motion, while
the integral over d3x from the first term becomes a
boundary term and can be neglected. This completes the
proof that the Qmagnetic helicity is gauge invariant. Note that
the momentum space definition of the charge assumes
qi ≡ 0; q0 → 0 limiting procedure [where ðq0; qiÞ is the
4-momentum carried by the current].
Note also that the matrix element of the operator of the

magnetic-helicity charge, Q̂magnetic helicity, counts the differ-
ence between the numbers of right- and left-handed
photons nL;R:

�����
Z

d3xϵ0ijkAi∂jAk

����
	

¼ nR − nL: ð2:9Þ

In other words, the normalization of the chiral currents for
spins S ¼ 1=2; 1 is similar.
Now, to evaluate the photonic vortical effect, we need to

consider the spatial component K⃗ of the current (2.6).
Moreover, since we are interested in the physics of
equilibrium, we have to consider the static (or stationary)
limit with no time dependence. In the momentum space, as
is first emphasized by Ref. [17], we are interested in the
limiting procedure, q0 ≡ 0; qi → 0. Let us check that the
current K⃗ ¼ A0H⃗ − A⃗ × E⃗ is gauge invariant in this limit.
Under the gauge transformation,

δgaugeK⃗ ¼ ð∂0ΛÞH⃗ þ ð∇⃗ΛÞ × E⃗: ð2:10Þ

As a result, we get the local term proportional to

δgaugeK⃗ ∼ Λ · ð∂0H⃗ þ ∇⃗ × E⃗Þ;

which vanishes because of the equations of motion, plus
total derivatives which become boundary terms upon the
integration over the volume, or time.
In summary, the apparent gauge dependence of the chiral

photonic current does not imply, generally speaking, that
the chiral photonic current in equilibrium is gauge depen-
dent. Moreover, if we start with the matrix element of the
original axial current over a two-photon state, then

j5μ ¼ ðconstÞ qμ
q2

ϵαβγδeð1Þα kð1Þβ eð2Þγ kð2Þδ ; ð2:11Þ

where qμ is the 4-momentum carried in by the current and

eð1Þα , kð1Þα , eð2Þα , and kð2Þα are 4-vectors of polarization and

momentum of the two photons. The current j5μ is manifestly
Lorentz covariant and gauge invariant.
There is a reservation, however, that the problem

considered is infrared sensitive. In particular, considering
uniform rotation everywhere in the space is inconsistent
with finiteness of the speed of light; for a discussion, see,
for example, [6]. Thus, neglecting the boundary terms just
discussed above might be in conflict with some other
constraints on the behavior of the fields on the boundaries.
It might worth emphasizing that the current (2.6) is not a

Noether current and its conservation is not automatic:

∇μKμ ¼ 1

2
FαβF̃αβ; ð2:12Þ

where F̃μν ¼ 1
2
ffiffiffiffi−gp ϵμναβFαβ. However, on the mass shell, or

for the electromagnetic plane waves, the rhs of Eq. (2.12)
vanishes, and the current (2.6) is conserved for free
photons. What is even more fascinating, one can introduce
nontrivial dynamics through interaction of the photons with
external gravitational fields, and the chiral photonic current
is still (naively) conserved. We come back to discuss this
point further later.

C. Photonic vortical effect

After these preliminary remarks, we are set to consider a
direct, à la Vilenkin evaluation of the chiral vortical effect
for photons. There are no general reasons to believe that
such a calculation is less reliable than the showcase [10,15]
of spin-1=2 massless fermions. Probably, the naive expect-
ation would be that the final result for the photons is very
similar to Eq. (1.1), with some obvious changes (that is,
increasing the splitting, due to the rotation, between the
levels by a factor of 2, due to the spin of the photon, and
replacing the Fermi distribution by the Bose distribution).
The hard work of quantizing photons in cylindrical
coordinates, finding the levels and the corresponding wave
functions, and evaluating the magnetic-helicity current on
the modes has been done in Ref. [6], with the following
result:

jK⃗j ¼ 2=3
1

8π3

Z
∞

0

dϵð4πϵ2Þ
�

1

eþβðϵ−ΩÞ−1
−

1

eþβðϵþΩÞ−1

�
:

Almost everything looks like what we expected to find
naively except for the bald-faced overall factor of 2=3.
Thus, in the rest of this section, we will look for a
convincing interpretation of this factor. For further dis-
cussion of the relation between the cases of massless and
nearly massless photons, see also the Appendix.
We introduced the current Kμ, with an idea that it

provides us with a unique definition of the chirality of
the photon. However, it is actually well known that there
exist various currents which in the case of massless
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particles measure their spin or chirality; see [21] and
references therein.
The best-known spin-related 4-vector has been intro-

duced by Pauli and Lubanski [23,24]. This vector Γμ is
defined in the most general terms of the generators of the
Poincaré group:

Γμ ¼ ϵμνκλPνMκλ; ð2:13Þ

where Pν andMκλ are the generators of the coordinate shifts
and of the Lorentz rotations, respectively. For the one-
particle state of a massless field, p2 ¼ 0, of spin S, we have

Γμjpα; λi ¼ pμλjpα; λi; ð2:14Þ

where λ is the helicity λ ¼ �S. The helicity plays a crucial
role, because it determines the energy splitting induced by
the rotation. Indeed, we already quoted the expression (2.5)
for the effective interaction introduced in the statistical
physics to describe equilibrium. Once we quantize the
projection of the angular momentum onto the vector Ω⃗,
the energy induced by the effective interaction becomes
equal to

δE ¼ λΩ; ð2:15Þ

where λ is the helicity.
In view of this, it is useful to introduce a current jμhelicity,

such that the corresponding charge is equal to the helicity of
the one-particle states. The explicit expression for the
jμhelicity is

jμhelicity ¼
i
3!
ϵμνρσSνρσ; ð2:16Þ

where Sνρλ is the spin part of the density of the angular
momentum density in the Lagrangian formalism:

Sνρλ ¼
δL

δð∂νϕaÞ ðΣρ;λÞabϕb; ð2:17Þ

where ðΣρλÞ is the representation of the generators of the
Lorentz rotations on the fields ϕa:

ðΣρλÞab ¼ iðgρagλb − gρbgλaÞ: ð2:18Þ

The crucial point is that for one-particle massless states the
values of Kμ and of jμhelicity are proportional to each other
but are not identical. In particular, for a 4-vector field:

ðjμÞhelicity ¼
2

3
Kμ 4-vector field; ð2:19Þ

while in case of the Dirac field the matrix elements of the
currents jμhelicity and of Kμ coincide with each other.

Apparently, the factors of 2=3 in Eqs. (2.3) and (2.19) are
of pure geometric origin and related to each other. But at the
moment we are not aware of any clear derivation of such a
relation. Note also that these states do not coincide with the
propagating states. To construct a propagator in terms of the
equilibrium states, one needs to derive reexpansion of one
complete set of functions over the other set. A similar
recent analysis can be found in Ref. [25].
Coming back to our main problem of evaluating the

photonic vortical effect, our next step is the introduction of
the infrared regularization by a finite photon mass mγ ≠ 0.

III. FINITE PHOTON MASS

A. Chiral anomaly and infrared regularization

Introduction of mγ ≠ 0 is a logical step, within our
approach. Indeed, we are going to compare predictions for
the photonic vortical effect obtained in two different ways,
namely, in terms of the gravitational chiral anomaly for the
Kμ current and in terms of the statistically averaged matrix
element of the same current. As we remind the reader next,
a finite photon mass is introduced to regularize in the
infrared the gravitational anomaly [21]. Therefore, we are
invited to consider the statistical-theory approach at a finite
photon mass as well.
To substantiate the point, let us reiterate basic steps of

derivation of the photonic gravitational anomaly [21]. As
we already mentioned [see Eq. (2.12)], there is no con-
servation of the Kμ current off-mass shell. However, for
electromagnetic waves or on-mass shell, E⃗ · H⃗ ¼ 0 and the
current is conserved. It is only natural then that, upon
inclusion of interaction of photons with an external
gravitational field, we expect covariant conservation,
∇μKμ ¼ 0.
However, this “naive” expectation is to be checked

against the possibility of the existence of an anomaly.
To uncover the anomaly, one considers the matrix element
of transition of the Kμ current into two gravitons, in the
annihilation channel. If the gravitons are on the mass shell,
the matrix element is defined in terms of a single form
factor fðq2Þ:

h0jKμj2gi ¼ fðq2ÞqμRαβγδR̃αβγδ; ð3:1Þ

where qμ is the 4-momentum, carried in by the Kμ current.
The next step is to use dispersion relations to evaluate

fðq2Þ. The imaginary part Imfðq2Þ is given by tree graphs,
and, naively, it respects all the symmetries of the problem.
However, an attempt to explicitly evaluate the imaginary
part by means of the Cutkosky cutting rules reveals a
problem, because one of the propagators of intermediate
particles has a kinematic pole which—for all the particles
being massless—falls onto the physical region of integra-
tion. To regularize the calculation, one introduces then an
infinitesimal photon mass. As a result, Imfðq2Þ does not
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vanish but is proportional to the mass squared. The crucial
point is that the dispersive integral over Imfðq2Þ turns to be
saturated in the infrared and produces a factor m−2 so that
the real part of fðq2Þ is finite in the limit of the vanishing
mass. And finite Refðq2Þ represents the anomaly. As a
result,

Imfðq2Þ¼ lim
m2→0

�
1

128πq2
v2ð1−v2Þ ln1þv

1−v

�
¼ 1

96π
δðq2Þ;

ð3:2Þ

where v is the velocity of the intermediate photons in the
c.m. system.
Finally, the real part of fðq2Þ corresponding to (3.2) is

given by

h∇αKαi ¼ 1

96π2
RμνκδR̃μνκδ: ð3:3Þ

Equation (3.3) is nothing else but the photonic gravitational
anomaly.
At first glance, introducing an infinitesimal photon mass

seems to be a very controversial step. However, radiative
corrections associated, for example, with the bremsstrah-
lung in QED are typically infrared divergent. Commonly,
one introduces an infinitesimal photon mass mγ ≠ 0 to
regularize the infrared divergences. Then, the results
typically contain factors lnðEγ=mγÞ and, at face value,
are model dependent. The way out was found by Bloch and
Nordsieck, who showed that the probability of inclusive
processes depends on the energy resolution Δ which
replaces mγ in the log factors if Δ ≫ mγ. The final result
for inclusive processes does not depend then on mγ and
gauge invariant.
Following then Ref. [15] with the expressions (1.3) and

(3.3) in mind, we conclude that the photonic vortical
current is predicted to be

K⃗ ¼ J⃗Nðs ¼ 1Þ ¼ 4 ·
T2

12
Ω⃗; ð3:4Þ

or 4 times larger than that for massless spin-1=2 par-
ticles [8].
Turn now to the statistical-theory approach. Introduction

of a finite photon mass simplifies the evaluation of the
chiral vortical effect greatly. The reason is that, for massive
photons, we recover the factorization property which
makes Eq. (2.3) look so simple. Namely, we start with
noninteracting gas of massive photons in the absence of the
rotation. Each level is degenerated three times, since
projection of the spin of the massive photon is now
Sz ¼ �1, 0. Account for the rotation splits the levels so
that the energies now are ϵþΩ, ϵ, and ϵ −Ω. These energy
differences are readily calculable in the rest frame of the
massive photon and are invariant under the boosts along the

z axis. In the case of massless photons, there is no rest
frame for photons, and this makes the calculation much
more involved; for further comments, see, in particular, [9].
Thus, for massive photons but in the massless limit, the

vortical current is given by

jK⃗jmγ→0 ¼
1

8π3

Z
∞

0

dϵð4πϵ2Þ
�

1

eβðϵ−ΩÞ − 1
−

1

eβðϵþΩÞ − 1

�

¼ 4
T2

12
ΩþOðΩ2Þ; ð3:5Þ

in agreement with the prediction (3.4).
This coincidence of the results obtained in the case of

massive photons within the thermal field theory and via the
gravitational anomaly is our main result in these notes. In
view of this, we will check it against calculations of the
vortical effect by means of the Kubo relations.

B. Kubo-type relation in the case of massive photons

We are interested to evaluate the coefficient σV entering
the definition of the vortical current J5μ:

J5μ ¼ σV
2
ϵμνρσuν∂ρuσ; ð3:6Þ

where uμ is the 4-velocity of an element of the fluid. The
Kubo-type relation fixes the coefficient σV in terms of the
correlator between the spatial components of the current Ki

and the T0j component of the energy-momentum tensor
[1,2,16]:

lim
pk→0

hKi; T0jijω≡0 ¼ σVðS ¼ 1Þ i
2
ϵijkpk þOðp2Þ; ð3:7Þ

where pk is the momentum brought in by the current Ki,
Ki ¼ ϵiνρσAν∂ρAσ , and

T0j ¼ −ð∂kA0 − ∂0AkÞð∂kAj − ∂jAkÞ þm2
γA0Aj; ð3:8Þ

where Aμ is now the field describing massive photons.
The propagator of the massive vector field in the

momentum space is given by

hAμ; Aνi ¼
gμν −

qμqν
m2

γ

q2 −m2
γ
: ð3:9Þ

In the case of massless photons, the correlator (3.7) was
calculated in Refs. [1,2], with the result quoted above,
σVðS ¼ 1Þ ¼ T2=6. We are calculating now the change
in σVðS ¼ 1Þ due to mγ ≠ 0. It turns out that in the limit
mγ ≪ T there is a finite jump in the value of σVðS ¼ 1Þ
which stems from the cancellation of the factor m−2

γ in the
propagators (3.9) and of the factor m2

γ in the component
T0j; see Eq. (3.8).
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The final result is

σVðS ¼ 1; mγ ≠ 0Þ ¼ T2

3
: ð3:10Þ

This result is in full agreement with the expectations (3.4)
based on the gravitational anomaly and with the evaluation
(3.5) of the vortical effect within the statistical approach for
massive photons.

C. Vector meson chirality and baryon polarization

One may ask whether the chirality of massive vector
particles has any phenomenological implications. The
answer is provided by the relation of axial charge to the
average polarization of baryons which is the way to
implement the quark-hadron duality in this problem [26]
which may be realized in both kinetic [27] and hydro-
dynamic [28] calculations. There is a natural explanation of
the fact the Λ̄ polarization is larger than that of Λ as the
same (C-even) chiral charge is distributed between the
smaller number of particles. For a quantitative description
of the effect, it is mandatory [29] to take into account the
axial charge carried by K� mesons. Therefore, their
chirality is implicitly present here. The role of the numeri-
cal factors studied here depends on the assumptions on the
distribution of chirality or axial charge between baryons
and mesons and remains to be studied.
It is interesting whether meson chirality can affect the

measured tensor polarization of vector mesons [30]. One
should stress that, contrary to baryon polarization, it is a P-
even quantity and may emerge due to the product of quark
polarizations as well as due to their spin correlations [31]:

ρ00 ¼
1 − TrjjðCÞ þ Tr⊥ðCÞ

1þ 3TrðCÞ ; ð3:11Þ

where enter the parallel and orthogonal to quantization axis
components of tensor C:

Cij ¼ hPq
i P

q̄
j i ¼ hPq

i ihPq̄
j i þ hPq

i P
q̄
j i − hPq

i ihPq̄
j i; ð3:12Þ

containing contributions of average quark polarizations and
(boldfaced) correlations. The relative smallness of the first
term is implied by its relation to squared baryon polariza-
tion and squared vorticity [32] so that the terms probing the
entanglement of quark spins may play the dominant role.
At the same time, the role of squared vorticity may be

overtaken by the square (and higher even powers) of the
magnetic field [33,34]. The emerging longitudinal polari-
zation is related [35] to the conductivity in the magnetic
field [36,37] and supports its growth.
Let us finally note that vector (related to chirality) and

tensor polarizations are mixed in the positivity constraints
and invariants of density matrix [38,39], providing another
possible direction of experimental investigations.

IV. DISCUSSION AND CONCLUSIONS

As is noticed in Ref. [8], knowing the gravitational chiral
anomaly and following the logic of Ref. [15], one can
predict the value of the chiral vortical effect for any spin S
of the massless constituents:

σVðSÞ ¼
T2

12
ð−1Þ2S4ð2S3 − SÞ; ð4:1Þ

where σV is defined in Eq. (3.6). Note that there are no free
parameters in this prediction.
Alternatively, one can calculate σV within the framework

of the thermal field theory and, in this sense, test Eq. (4.1).
First, and with great success, the prediction (4.1) was tested
in the original paper [15] in the case of massless spin-1=2
constituents. This case is remarkable for the fact that
σVðS ¼ 1=2Þ was evaluated in a few ways within the
statistical approach, and the value σVðS ¼ 1=2Þ ¼
T2=ð12Þ is well established and noncontroversial.
Proceeding to the case S ¼ 1 [1–9], we notice σVðS ¼ 1Þ

obtained in the literature [1,2] on the basis of the Kubo
relation differs from (4.1) by a factor of 2. Moreover,
these results themselves are not without controversy—see
[1–9]—which is not easy to resolve. Finally, consideration
of the limit of large spin S apparently brings Eq. (4.1) to a
qualitative disagreement with the thermal field theory.
It is on this background that we have to appreciate the

significance of the new observation that for a massive
vector field there is full agreement of results for σVðS ¼ 1;
mγ ≠ 0Þ obtained within the field-theoretic and statistical
approaches.
As is mentioned above, the main argument against the

duality between the statistical and anomaly-based
approaches is an apparent conflict between the predictions
for the chiral vortical effect obtained within the two
frameworks in the limit of large spin S. The finding that
in the case of the vector field introduction of a finite mass
mγ ≠ 0 brings the consequences from the Kubo-type
relation and from the anomaly into agreement with each
other does not settle by itself the issue of the violation of the
duality for large spin S. However, increasing spin S
generically makes the theory more and more dependent
on details of the infrared regularization [8]. In particular,
the rotational vacuum becomes unstable at spin S ≥ 3=2.
This infrared instability does not affect directly the deri-
vation [40] of the gravitational anomaly. However, begin-
ning with S ¼ 3=2, one has to assume that the infrared
issues are settled somehow without changing prediction
(4.1) which, in the language of the thermal field theory, is
expected to be saturated by contribution of high energies of
the order of the temperature.
The results for the chiral vortical effect obtained atmγ≠0

make the validity of this extra assumption more question-
able. Indeed, we have demonstrated that introduction of
mγ ≪ T results in a finite jump in the value of σVðS ¼ 1Þ.
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Explicit evaluation of σV in the case of S ¼ 3=2 becomes a
crucial step to be made. (For a recent discussion of the
theory of massless charged spin-3=2 particles, see [41]).
We conclude this section with a remark on possible

phenomenological implications of the evaluation of
σVðS ¼ 1Þ. The point is that in the case of superfluidity
the chiral vortical effect can be manifested through polari-
zation or spin of heavy particles (for details and references,
see [42,43]). In particular, in the case of superfluidity, the
average value of the vortical current hJ⃗5i is equal to the spin
density carried by the cores of the vortices, which, in turn,
is equal to the spin density carried by heavy particles
hσ⃗heavyi [44,45]:

hJ⃗5i ≈ hσ⃗heavyi: ð4:2Þ

In view of the low viscosity of the quark-gluon plasma,
such a relation might work well in the case of heavy-ion
collisions [45]. Usually, the relation (4.2) is used in the case
of spin-1=2 constituents and applied to hyperons, as heavy
particles. Since σVðS ¼ 1Þ ¼ 4σVðS ¼ 1=2Þ, one can
speculate that the contribution of heavy mesons is not less
important than the contribution of hyperons.
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APPENDIX: MASSLESS VS NEARLY MASSLESS
PHOTON

In the main body of the paper, we considered the cases
of strictly massless photons and of photons with

infinitesimally small mass. The predictions for the photonic
vortical effect differ by a finite factor of 2=3; see Eq. (2.13).
Nevertheless, it is rather obvious that the two results are
absolutely consistent with each other. To appreciate this, we
should be more careful to formulate the question to be
answered.
Let us start with no rotation. Then, depending on

whether mγ is strictly zero or small, we have
energy densities which differ from each other by a factor
of 2=3:

ργðmγ ≡ 0Þ ¼ 2
1

8π3

Z
∞

0

dϵð4πϵ3Þ 1

eβϵ − 1
;

ργðmγ ≠ 0Þ ¼ 3
1

8π3

Z
∞

0

dϵð4πϵ3Þ 1

eβϵ − 1
: ðA1Þ

If we switch on the effect of the rotation, the number of
levels is not changed. Moreover, the distribution between
the levels with Lz ¼ þ1; 0;−1 apparently is the same for
massless photons and photons with infinitesimal mass
(i.e., mγ ≪ TÞ. For this reason, the factor of 2=3 which
reflects the difference in the total number of levels goes
through to the final answer for the chiral vortical effect.
Thus, the factor of 2=3 in Eq. (2.13) reflects so to say
renormalization of the total amount of thermal energy
stored in the system.
On the technical side, we argued that the simple,

“factorized” form of distribution of levels is valid for
massive particles and is not valid for strictly massless
particles. This is in accord with the theoretical expectations.
The difference between massive and strictly massless
cases goes back to the fact that for massive particles the
4-momentum vector is orthogonal to the Pauli-Lubanski
vector while for strictly massless cases the two vectors are
parallel to each other; for a related discussion, see [9].
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