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New solutions of relativistic wave equations are obtained in a unified manner from generating functions
of spinorial variables. The choice of generating functions as Gaussians leads to representations in the form
of generalized fractional Fourier transforms. Wave functions satisfying the Dirac, Maxwell, and Weyl
equations are constructed by simple differentiations with respect to spinorial arguments. In the simplest
case, one obtains Maxwell and Dirac hopfion solutions.
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I. INTRODUCTION

The aim of this work is to describe a new universal tool
in the study of the solutions of Weyl, Maxwell, and Dirac
equations. This tool is used here to derive a large family of
solutions of these equations. The essential role is played by
the generating function ϒðη; η�jxÞ, which in a simple form
encodes the information about the solutions of Weyl and
Maxwell equations, and by the function ϒðη; η�; ζ; ζ�jxÞ,
which encodes the information about the solutions of the
Dirac equation. Solutions of relativistic wave equations are
obtained by the differentiation of generating functions with
respect to their spinorial arguments η and ζ.
The generating functions have the form of generalized

fractional Fourier transforms. Fractional Fourier transform
(sometimes also called the Fresnel transform) was intro-
duced a long time ago by Condon [1]. However, its
numerous applications in optics, in signal processing, in
image compression, in computed tomography, and other
fields began after thework ofNamias [2]. The generalization
of the fractional Fourier transform to spinorial variables
extends its range of applications. It enables one to obtain
analytic localized solutions of relativistic wave equations
with an ever increasing degree of complexity. The term
localized here has the followingmeaning. The probability to
find the particle outside the sphere of a fixed radius tends to
zero when the scaling parameter a tends to zero. Of course,
the localization can be achieved only around t ¼ 0 because
all solutions of wave functions describing particles evolving
in free space undergo dispersion. As a result, the mean
square radius is a quadratic function of time [3,4],

hr2it ¼ Aþ Bt2: ð1Þ
Therefore, in the remote past and future, the extension of
every wave packet is arbitrarily large.

The generating functions introduced here depend on
complex parameters: the components of the relativistic
spinors and their complex conjugates. These generating
functions have interesting properties on their own because
they form representations of the full 15 parameter con-
formal group for Weyl and Maxwell equations and of the
inhomogeneous Poincaré group for the Dirac equation. Our
method of generating solutions is particularly useful for the
construction of knotted solutions with intricate topological
properties. As special cases one obtains the solutions
describing the Dirac [4] and Maxwell [5–7] hopfions.
The main mathematical ingredients in this work are two-

component spinors and four-component bispinors appear-
ing as arguments of the functions that generate solutions of
Weyl, Maxwell, and Dirac equations. These solutions are
obtained as the derivatives of the generating functions with
respect to their spinorial arguments. Of course, spinors and
bispinors also appear as the wave functions in spacetime.
Our notation is a slight modification of that used in [8–10],
and it is summarized in Appendix A.
The formalism based on spinors is particularly well

suited to describe the solutions of relativistic wave equa-
tions because it is often directly connected with topological
properties of these solutions. These properties, in many
cases, [6,7] involve Hopf fibration [11]. This subject, in the
case of the electromagnetic field, has been thoroughly
studied (see a recent review [12]). The spinorial represen-
tation introduced in the present work gives a unified
framework to describe also the solutions of other relativistic
wave equations.

II. MASSLESS PARTICLES: WEYL AND
MAXWELL EQUATIONS

Let us consider an arbitrary complex functionϒðη; η�Þ of
a two-component spinor ηA and its complex conjugate η _A.
The space of these functions becomes a representation of*birula@cft.edu.pl
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the conformal group after the introduction of the 15 group
generators. The generators of translations Pμ, rotations and
special Lorentz transformations Mμν, special conformal
transformations Kμ, and dilation D are (ℏ ¼ 1, c ¼ 1):

Pμ ¼ −∂ _Agμ
_AB∂B; ð2aÞ

Mμν ¼
i
2
ðηASμνAB∂B − η _ASμν _A

_B∂ _BÞ; ð2bÞ

Kμ ¼ ηAgμA _Bη
_B; ð2cÞ

D ¼ 1

2i
ðηA∂A þ η _A∂ _AÞ; ð2dÞ

where ∂A ¼ ∂=∂ηA and ∂ _A ¼ ∂=∂η _A. This representation
has a close connection with twistors [13–15], but this line
of investigation will not be pursued here.
The generators of translations are of special significance

because with their help one can construct from the function
ϒðη; η�Þ a complete field defined at all spacetime points xμ.
To this end, ϒðη; η�Þ is represented as a four-dimensional
Fourier integral over the spinorial variables,

ϒðη;η�Þ¼
Z

d2κd2κ� exp ½−iðκAηAþη _Aκ _AÞ�ϒ̃ðκ;κ�Þ: ð3Þ

The integration variables are the real and imaginary parts of
both components of the spinor κ. The translation operators
acting on the spinorial integral (3) produce an integral in the
form of a multidimensional fractional Fourier transform
since the exponent has both the quadratic and the linear part
in the integration variables,

ϒðη; η�jxÞ ¼ expð−iPμxμÞϒðη; η�Þ

¼
Z

d2κd2κ� exp ½−iκ _Agμ
_ABκBxμ�

× exp ½−iðκAηA þ η _Aκ _AÞ�ϒ̃ðκ; κ�Þ: ð4Þ

This function satisfies four Schrödinger-like equations,

i∂μϒðη; η�jxÞ ¼ Pμϒðη; η�jxÞ: ð5Þ

For every choice of ϒ̃ðκ; κ�Þ, which guarantees the con-
vergence of the integral and for all values of the spinorial
parameters η and η�, the generating function ϒðη; η�jxÞ
satisfies the d’Alembert equation,

ð∂2
t − ΔÞϒðη; η�jxÞ ¼ 0; ð6Þ

because the derivative ∂μ produces κ _Agμ
_ABκB under the

integral and this is a lightlike vector. Negative energy
solutions are obtained by the translation expðiPμxμÞ. The
general solution is a superposition of positive and negative

energy contributions but choosing only one sign at a time
simplifies the formulas.
The generation of the solutions of Maxwell equations

from a solution of the d’Alembert equation has been
known already to Whittaker [16]. This method was for-
mulated in the spinorial framework by Penrose [17]. In both
of these constructions, the Maxwell field is built from
second derivatives with respect to spacetime variables.
Therefore, these methods are closely related to Hertz
potentials. In contrast, the generation of the solutions of
Weyl and Maxwell equations from our spinorial generating
functionϒðη; η�jxÞ is quite different because it involves the
derivatives with respect to the auxiliary spinorial argument
ηA. Derivatives with respect to the components of spinors
also appear but in an entirely different role in the solutions
of the massless wave equations expressed in terms of
Penrose transforms [18].
The first derivative is a solution of the Weyl equation,

ϕCðxÞ ¼ i∂Cϒðη; η�jxÞ; gμ _EC∂μϕCðxÞ ¼ 0: ð7Þ

The second derivative is a solution of the Maxwell
equations,

ϕCDðxÞ¼−∂C∂Dϒðη;η�jxÞ; gμ _EC∂μϕCDðxÞ¼ 0: ð8Þ

Both equations follow from the algebraic relation:

gμ _ECκ _Agμ
_ABκBκC ¼ 2κ _Aϵ

_A _EϵBCκBκC ¼ 0; ð9Þ

applied to the derivatives of the spinorial transform (4).
The wave equation (8) is equivalent to Maxwell equations
upon the following identification of the components of
ϕCDðxÞ with the components of the Riemann-Silberstein
(RS) vector [3]:

Fx¼ϕ11−ϕ00; Fy¼−iðϕ11þϕ00Þ; Fz¼2ϕ01¼2ϕ10:

ð10Þ

It follows from these relations that positive/negative fre-
quency solutions of Maxwell equations F�ðxÞ have the
following spinorial representation:

F�ðr; tÞ ¼
Z

d2κd2κ�

2
64

κ21 − κ20
−iκ21 − iκ20
2κ0κ1

3
75

× exp ½∓iκ _Agμ
_ABκBxμ�ϒ̃�ðκ; κ�Þ: ð11Þ

General solutions are sums of positive and negative
frequency solutions. It is shown in the next section that
the spinorial representation through the Hopf fibration is
directly related to the Fourier representation that is com-
monly used in physical applications. The alternative
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representation based on the Penrose transform [18] does not
have this property.

III. SPINORIAL REPRESENTATION AND
THE HOPF FIBRATION

The Hopf fibration [11] is a decomposition of the three-
dimensional sphere into linked circles: the fibers. Every
fiber corresponds to one point on the two-dimensional
sphere. In the Hopf construction the spheres are para-
metrized in terms of the Cartesian coordinates subjected to
the condition that the radius of the sphere is fixed. The
mapping of the points in the three-dimensional sphere ξi
onto the points in the two-dimensional sphere ki was
defined by Hopf as follows:

kx ¼ 2ðξ1ξ3 þ ξ2ξ4Þ; ky ¼ 2ðξ2ξ3 − ξ1ξ4Þ;
kz ¼ ξ21 þ ξ22 − ξ23 − ξ24: ð12Þ

In order to introduce the physical interpretation, the
symbols in these formulas are different than those used
by Hopf. The relations invented by Hopf preserve the
length. The 3D sphere of unit radius is mapped onto the 2D
sphere of unit radius since k2xþk2yþk2z¼ðξ21þξ22þξ23þξ24Þ2.
The connection of the Hopf fibration with spinors is
revealed when the parameters ξi are identified with the
real and imaginary parts of the spinor components
κ0 ¼ ξ1 þ iξ2, κ1 ¼ ξ3 þ iξ4.
The physical content of the Hopf formula (12) is best

described with the help of Pauli matrices, and it has the
form of the relation between spinors κ and the lightlike
wave vectors: kμ ¼ κ _Ag

μ _ABκB. The space components of the
wave vector are the Hopf parameters kx, ky, kz. The fibers
are formed by those spinors that differ only by an overall
phase factor eiφ. This phase factor is not uniquely defined.
One may choose, for example, the phase of the upper spinor
component. In this case φ ¼ arctanðξ2=ξ1Þ. With this
choice, the relations (12) can be inverted,

ξ1¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kzþk

p
cosφffiffiffi

2
p ; ξ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kzþk

p
sinφffiffiffi

2
p ;

ξ3¼
kx cosφ−ky sinφffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffi

kþkz
p ; ξ4 ¼

ky cosφþkx sinφffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
kþkz

p ; ð13Þ

where k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

q
. The relation between the spinorial

representation (11) and the Fourier representation of the
electromagnetic field represented by theRS vector [3,19,20],

Fðr; tÞ ¼
Z

d3k

ð2πÞ3=2

2
64
−kxkz þ ikky
−kykz − ikkx

k2x þ k2y

3
75

× ½fþðkÞeik·r−iωt þ f�−ðkÞe−ik·rþiωt�; ð14Þ

is obtained by the change of variables. The integration,
with respect to two components of the spinor in (11), is
equivalent to the integration over the three components
of the wave vector and an additional integration with respect
to the phase φ. The Jacobian of the transformation
ξi → fkx; ky; kz;φg is equal to 1=8k and the integral (11)
expressed in terms of new variables coincides with (14),
provided we make the following identification:

fþðkÞ ¼
�
π

2

�
3=2

Z
2π

0

dφ
e2iφϒ̃þðk;φÞ
kðkx − ikyÞ

; ð15aÞ

f�−ðkÞ ¼
�
π

2

�
3=2

Z
2π

0

dφ
e2iφϒ̃−ðk;φÞ
kðkx − ikyÞ

: ð15bÞ

Even though the spinorial representation and the Fourier
representation are equivalent, the spinorial representation is
much easier to use in the derivation of various hopfionlike
solutions.

IV. THE HOPFION FAMILY OF SOLUTIONS
OF WEYL AND MAXWELL EQUATIONS

A simple choice of ϒ̃ðκ; κ�Þ that leads to the analytic
solution is a Gaussian,

ϒ̃ðκ; κ�Þ ¼ exp ð−κ _Ag
_AB
μ κBaμÞ; ð16Þ

where aμ is any complex vector. Without loss of generality,
one may assume that aμ is a real vector because the
imaginary part of aμ can be eliminated by a shift of the
origin of the coordinate system. From now on it is assumed
that the coordinate system is chosen in such a way that
aμ ¼ fa; 0; 0; 0g, although in some formulas the full vector
aμ will appear. In order to guarantee the convergence
of the integrals, it is assumed that a > 0. In this case the
integration can be easily done and after dropping the
irrelevant factor π2, one obtains,

ϒðη; η�jxÞ ¼ DðxÞ exp ð−iDðxÞηAgμA _Bðxμ − iaμÞη _BÞ;
ð17Þ

where DðxÞ ¼ ððaþ itÞ2 þ x2 þ y2 þ z2Þ−1. This simple
calculation shows the advantage of using the spinorial
representation. The evaluation of the corresponding inte-
grals in the Fourier representation would have been much
more complicated. This method of generating solutions is
applicable also to wave equations for higher spins. In
particular, the gravitational waves in linearized gravity are
described by fourth derivatives of the generating function.
The solutions of Weyl and Maxwell equations obtained

from function (17) by differentiation, according to the
formulas (7) and (8), have the form:
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ϕCðxÞ ¼ DðxÞ exp ð−ηAψAðxÞÞψCðxÞ; ð18Þ

ϕCDðxÞ ¼ DðxÞ exp ð−ηAψAðxÞÞψCðxÞψDðxÞ; ð19Þ

where

ψAðxÞ ¼ DðxÞgμA _Bη
_Bðxμ − iaμÞ: ð20Þ

These formulas contain arbitrary parameters ηA and η _A. By
differentiating (18) and (19) (or integrating with any
function of these parameters), with respect to ηA and/or
η _A, one still obtains solutions of the wave equations.
One may check by a direct calculation that not only for

the exponential functions appearing in (18) and (19) but for
all functions hðψðxÞÞ, the spinors

ϕCðxÞ ¼ DðxÞh1ðψðxÞÞψCðxÞ; ð21Þ

ϕCDðxÞ ¼ DðxÞh2ðψðxÞÞψCðxÞψDðxÞ ð22Þ

are solutions of the wave equations (7) and (8). One obtains
in this way a large class of solutions of Weyl and Maxwell
equations controlled by an arbitrary complex function of
the two components of ψAðxÞ.
Incidentally, one obtains a realization of the de Broglie

idea of fusion [21] by choosing h2ðψðxÞÞ ¼
h1ðψðxÞÞh1ðψðxÞÞ. Indeed, it looks like “photons are made
of two neutrinos” because the photon wave function [apart
from the factor DðxÞ] is a product of neutrino wave
functions, ϕAB ¼ DðxÞ−1ϕAϕB.
The simplest hopfion solutions of the Weyl equation are

obtained from (21) when hðψÞ ¼ −i and by choosing either
η _A ¼ f1; 0g or η _A ¼ f0; 1g. Note that

ϕ1
AðxÞ ¼ ½DðxÞ�2

�
tþ
xþ

�
; ϕ2

AðxÞ ¼ ½DðxÞ�2
�
x−
t−

�
; ð23Þ

where t� ¼ t� z − ia and x� ¼ x� iy.
Owing to the appearance of the product of spinors in

(22), the electromagnetic field given by this formula is null;
both field invariants vanish, i.e., E2 − B2 ¼ 0 and
E · B ¼ 0. Null fields play a special role in electromag-
netism. They possess intriguing topological properties [7].
The simplest solutions are obtained from formula (22) by
choosing the same spinors, ψA, as for the Weyl equation.
The two closely related RS vectors constructed from these
spinors, according to formulas (10) and (22), are:

F1
H ¼ ½DðxÞ�3

2
64

t2þ − x2þ
iðt2þ þ x2þÞ
−2tþxþ

3
75; ð24aÞ

F2
H ¼ ½DðxÞ�3

2
64

−t2− þ x2−
iðt2− þ x2−Þ
−2x−t−

3
75: ð24bÞ

The first formula coincides with Eq. (23) of [20]. The
electric and magnetic field vectors (i.e., the real and
imaginary parts of FH) describe the simplest knotted
solutions of Maxwell equations: the hopfion. It was
discovered by Synge [5], who interpreted it as “an
electromagnetic model of a material particle.” Its intricate
topological properties were discovered by Rañada [6], who
found the connection with Hopf fibration. The hopfion
solution can be obtained in many different ways, even from
a simple Fourier integral [20]. However, a method of choice
to obtain also other solutions with even more intricate
topological properties is the Bateman construction [7,22].
Bateman discovered that if two complex functions of
spacetime variables αðx; y; z; tÞ and βðx; y; z; tÞ obey the
condition

∇α ×∇β ¼ ið∂tα∇β − ∂tβ∇αÞ; ð25Þ

then the vector FB ¼ ∇α ×∇β is a (null) solution of
Maxwell equations.
The Bateman construction is mentioned here because

there is a direct connection between the spinorial method
and this construction. Namely, the two components of the
spinor (20) can be used as α and β in the Bateman
construction because they obey the condition (25). The
RS vector obtained from the Bateman construction differs
only by the factor −i from the one obtained from (10) and
(24a). All solutions with intricate topological properties,
analyzed in [7], can be obtained from the formula (22) by
choosing the function hðψAÞ in the form hðψAÞ ¼
ðψ0ðxÞÞpðψ1ðxÞÞq, where p and q are relatively prime
integers.
The solutions of the Weyl and Maxwell equations (21)

and (22) have one common feature. In both cases we find
for all choices of the function h the same lightlike four-
vector lμ ¼ ψ _Ag

μ _ABψB characterizing the solution. The
current jμ for the solutions of the Weyl equation and the
energy-momentum tensor Tμν for the solutions of the
Maxwell equations are built from lμ,

jμ ¼ jDðxÞh1ðψðxÞÞj2lμðxÞ; ð26aÞ

Tμν ¼ jDðxÞh2ðψðxÞÞj2lμðxÞlνðxÞ: ð26bÞ

The properties of the vector lμðxÞ underscore the con-
nection with Hopf fibration. Namely, integral lines of
velocity v ¼ l=l0 form linked circles, as shown in Fig. 1,
which is a characteristic feature of Hopf fibration.
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V. MASSIVE PARTICLES: DIRAC EQUATION

The standard Dirac equation,

ðiγμ∂μ −mÞΨðxÞ ¼ 0; ð27Þ

is converted in the Weyl representation [23] of γ matrices,

γμ ¼
� 0 gμ

A _B

gμ _AB 0

�
; ΨðxÞ ¼

�
ϕAðxÞ
χ _AðxÞ

�
; ð28Þ

into the following set of two equations for two-component
spinors:

igμ _AB∂μϕBðxÞ¼mχ _AðxÞ; igμA _B∂μχ
_BðxÞ¼mϕAðxÞ: ð29Þ

Due to the presence of two spinors in these equations, the
generating function ϒ should have two spinorial argu-
ments. The appearance of mass calls for some modifica-
tions of the spinorial formalism. The following spinorial
integral, patterned after the integral (4) for the solutions of
the d’Alembert equation, produces positive energy solu-
tions of the Klein-Gordon equation,

ϒðη; η�; ζ; ζ�jxÞ ¼
Z

d2κd2κ�d2λd2λ� exp ½−iðκAηA þ η _Aκ _A þ λAζA þ ζ _Aλ
_AÞ� exp ½−iðκ _Agμ

_ABκB þ λAgμ _Bλ
_BÞxμ�

× δðκAλA þ κ _Aλ
_A −mÞδðiðκ _Aλ

_A − κAλ
AÞÞϒ̃ðκ; κ�; λ; λ�Þ; ð30Þ

because the action of the d’Alembertian produces, under
the integral sign, the following expression:

κ _Ag
μ _ACκCλ

AgμA _Bλ
_B ¼ 4κAλ

Aκ _Aλ
_A: ð31Þ

The presence of the δ-functions enables one to replace this
expression by m2, resulting in the Klein-Gordon equation,

ð∂2
t − Δþm2Þϒðη; η�; ζ; ζ�jxÞ ¼ 0: ð32Þ

Negative energy solutions are obtained by reversing the
sign of xμ. In full analogy with the massless case, the
solutions of the Dirac equation are obtained from (30) by
differentiation with respect to spinorial parameters ηC and
ζ _C. The Dirac bispinor ΨðxÞ has the form

ΨðxÞ ¼
� i∂Aϒðη; η�; ζ; ζ�jxÞ
ið _Aϒðη; η�; ζ; ζ�jxÞ

�
; ð33Þ

where ∂A ¼ ∂=∂ηA and ð _A ¼ ∂=∂ζ _A.
In order to obtain explicit formulas for the solutions, we

must choose the function ϒ̃ðκ; κ�; λ; λ�Þ in such a way that
the integrations can be performed.

VI. THE HOPFION FAMILY OF SOLUTIONS
OF THE DIRAC EQUATION

The existence of similar representations of the solutions
of Maxwell and Dirac equations enables one to define
a map between these solutions. Namely, by choosing
ϒ̃ðκ; κ�; λ; λ�Þ as a product of functions appearing in (4),

ϒ̃ðκ; κ�; λ; λ�Þ ¼ ϒ̃1ðκ; κ�Þϒ̃2ðλ; λ�Þ; ð34Þ

one establishes a direct relation between solutions of
Maxwell and Dirac equations. To every pair of solutions
of Maxwell equations there corresponds a solution of
the Dirac equation. In particular, it is tempting to choose
ϒ̃ðκ; κ�Þ in the Gaussian form because this choice corre-
sponds to the Maxwell hopfion:

ϒ̃1ðκ; κ�Þ ¼ exp ½−κ _Agμ
_ABκBaμ�; ð35aÞ

ϒ̃2ðλ; λ�Þ ¼ exp ½−λAgμA _Bλ
_Baμ�: ð35bÞ

In order to do the calculations, the integral representa-
tions of the δ-functions are introduced into the formula (30),

FIG. 1. Linked circles: the trademark of the Hopf fibration. The
lines of velocity plotted here are obtained by solving the set of
differential equations drðλÞ=dλ ¼ vðrðλÞÞ for different initial
conditions.
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ϒðη; η�; ζ; ζ�jxÞ ¼
Z

dudv
Z

d2κd2κ�d2λd2λ� exp ½−iðκAηA þ η _Aκ _A þ λAζA þ ζ _Aλ
_AÞ�

× exp ½−ðκ _Agμ
_ABκB þ λAgμA _Bλ

_BÞðaμ þ ixμÞ� exp ½−iuðκAλA þ λ _Aκ _A −mÞ� exp ½−vðκAλA − λ _Aκ _AÞ�;
ð36Þ

where ϒ̃ðκ; κ�; λ; λ�Þwas replaced by the product of functions (34) and the irrelevant factor ð2πÞ2 was omitted. The integral,
with respect to the spinorial variables, again has the form of the fractional Fourier transform. This integral can be evaluated,
and we are left with an integral with respect to u and v,

ϒðη; η�; ζ; ζ�jxÞ ¼
Z

dudv eimu½Dðu; vjxÞ�2 exp ½−Dðu; vjxÞððηAgμA _Bη
_B þ ζ _Agμ

_ABζBÞðaμ þ ixμÞÞ�

× exp ½−Dðu; vjxÞð−iuðηAζA þ ζ _Aη
_AÞ − vðηAζA − ζ _Aη

_AÞÞ�; ð37Þ

where Dðu; vjxÞ ¼ ½u2 þ v2 þ ðaμ þ ixμÞðaμ þ ixμÞ�−1.
This integral cannot be evaluated for arbitrary values of the spinorial parameters η and ζ. However, the expansion in

powers of these parameters leads to integrals that can be explicitly evaluated. The simplest examples are the Dirac hopfions
obtained by a different method in [4]. The corresponding bispinorsΨH are obtained from formula (37) by evaluating second
derivatives of ϒ at the origin. The following four solutions of the Dirac equation are:

ðB
� ∂Aϒ

ð _Aϒ

�
0

¼
Z

dudv eimu½Dðu; vjxÞ�3
� −ðvþ iuÞδBA
gμ

_ABðaμ þ ixμÞ

�
¼ πm2

4

� δBAK1

gμ
_ABðaμ þ ixμÞK2

�
; ð38aÞ

∂ _B

� ∂Aϒ

ð _Aϒ

�
0

¼
Z

dudv eimu½Dðu; vjxÞ�3
� gμA _Bðaμ þ ixμÞ

ðv − iuÞδ _A
_B

�
¼ πm2

4

� gμA _Bðaμ þ ixμÞK2

δ _A
_B
K1

�
; ð38bÞ

where Kn are expressed in terms of the Macdonald functions Kn ¼ KnðmsÞ=sn and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ itÞ2 þ x2 þ y2 þ z2

p
. The

arguments of ϒ and Kn are omitted.
Choosing both values of the index _B and both values of the index B, we obtain four Dirac hopfions corresponding to

formulas (7) and (8) of [4] taken for the lowest values of the index l. Higher order derivatives evaluated at the origin all
give analytic solutions of the Dirac equation expressed in terms of Macdonald functions of increasing order. The
integral lines of the current shown in Figs. 2 and 3 represent the solutions of the following three coupled differential
equations:

FIG. 2. The knotted lines of the current j ¼ Ψ̄γΨ for the solutions of the Dirac equation Ψ2, Ψ4, Ψ6, and Ψ8 listed in Appendix B. The
initial conditions are the same in all cases: x0 ¼ 1, y0 ¼ 0.3, z0 ¼ 0, and a ¼ 1. The distances are measured in electron Compton wave
length and the size of the box is 3.

IWO BIALYNICKI-BIRULA PHYS. REV. D 103, 085001 (2021)

085001-6



drðλÞ
dλ

¼ jðrðλÞ; tÞ: ð39Þ

These figures were generated from the formulas in
Appendix B in the simplest case, when t ¼ 0. The lines
of the current depend strongly on the initial conditions, as
shown in Fig. 3. All analytical calculations and plots were
done with Mathematica [24].

VII. CONCLUSIONS

Maxwell, Weyl, and Dirac equations play a fundamental
role in relativistic quantum mechanics. The practically
unlimited collection of new analytic solutions of these
equations described here may help to understand better the
intricate quantum properties of relativistic particles. The
spinorial representation described here is particularly well
suited in the analysis of solutions with intricate topological
properties connected with Hopf fibration. The representa-
tion of the wave functions as derivatives, with respect to
spinorial variables, makes their transformation properties
transparent. Of course, it would also be possible to generate
new solutions by evaluating consecutive derivatives of
some simple solution with respect to spacetime variables.
However, this leads to highly complicated expressions.
Already the second derivative of the simplest solution (B2)
produces a formula that is difficult to analyze because it is
much more complicated than the expression (B5) obtained
by evaluating the seventh derivative with respect to spi-
norial variables.
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APPENDIX A: SPINORS AND SPIN TENSORS

The two components of the spinor are labeled [9] with 0
and 1. Spinors with upper and lower indices are connected
by the spinorial metric tensor ϵ,

ϕA¼ϵABϕB; ϕA¼ψBϵBA; ϵAB¼ϵAB¼
�
0 1

−1 0

�
: ðA1Þ

Repeated indices imply summation over two values of the
index. Under rotations and Lorentz transformations spinors
are transformed by the unimodular matrices SAB,

0ϕA ¼ SABϕB; 0ϕA ¼ −SABϕB: ðA2Þ

The minus sign in the second formula is a consequence of
the antisymmetry of the metric tensor, and it implies the
invariance of the scalar product 0ϕA

0ψA ¼ ϕAψ
A.

There are two inequivalent two-dimensional representa-
tions of the Lorentz group: the spinors ϕA and complex-
conjugate spinors ϕ _A. Dotted indices signify complex
conjugation, ϕ _A ¼ ðϕAÞ�. The dotted spinors are trans-
formed with the use of complex conjugate matrices,

0ϕ _A ¼ S _A
_Bϕ _B; S _A

_B ¼ ðSABÞ�: ðA3Þ

Spinors with several indices transform as products of
spinors, for example,

0ϕ _AB ¼ S _A
_CSDBϕ _BD: ðA4Þ

An important role is played by spin tensors—objects
with tensorial and spinorial indices. There are four of them:
gμ _AB, gμA _B, S

μν
A
B, and Sμν _A

_B. They may all be expressed in
terms of the Pauli matrices σi and the 2 × 2 unit matrix I,

g0 _AB ¼ I ¼ g0A _B; gi _AB ¼ σi ¼ −giA _B; ðA5aÞ

SμνAB ¼ 1

2
ðgμA _Cg

ν _CB − gνA _Cg
μ _CBÞ: ðA5bÞ

Spin tensors are invariant under the simultaneous
Lorentz transformations of vector and spinor indices.

FIG. 3. Strong dependence on the initial conditions. The lines of the current are plotted for the same solution Ψ4 as in Fig. 2 but for
different initial conditions for one of the coordinates, x0 ¼ f0.25; 0.6; 0.1; 1.25g.
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APPENDIX B: FOUR SELECTED SOLUTIONS

Selected solutions of the Dirac equation are obtained by evaluating the following derivatives of the generating function:

Ψ2 ¼ ð0
�∂Aϒ

ð _Aϒ

�
0

; Ψ4 ¼ ð0ð_0ð1
�∂Aϒ

ð _Aϒ

�
0

; Ψ6 ¼ ∂0∂ _0∂1∂ _1ð_1
�∂Aϒ

ð _Aϒ

�
0

; Ψ8 ¼ ∂ _0∂1∂ _1ð0ð0ð_0ð_1
�∂Aϒ

ð _Aϒ

�
0

: ðB1Þ

All derivatives are to be taken at the origin. There was no special reason to choose these particular derivatives. All
nonvanishing derivatives give distinct solutions:

Ψ2 ¼
m2π

4
fK1; 0; it−K2;−ixþK2g; ðB2Þ

Ψ4 ¼
m3π

24
f−ix−K2; it−K2; 2x−t−K3; ððaþ itÞ2 − x2 − y2 þ z2ÞK3g; ðB3Þ

Ψ6 ¼
m4π

96
fx−t−K3;−ððaþ itÞ2 − x2 − y2 þ z2ÞK3; 4ix−K3=m − ix−ðx2 þ y2ÞK4; 4itþK3=mþ t−t2þK4g; ðB4Þ

Ψ8 ¼
m5π

960
fxþt−ððaþ itÞ2 − x2 − y2 þ z2ÞK5;−2x2þt2−K5; ixþt2−K4; ix2−t−K4g: ðB5Þ
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