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We consider a timelike geodesics in the background of rotating Einstein-Born-Infeld (EBI) black hole to
examine the horizon and ergosphere structure. The effective potential that governs the particle’s motion in
the spacetime and the innermost stable circular orbits (ISCO) is also studied. A qualitative analysis is
conducted to find the redshifted ultrahigh center-of-mass (CM) energy as a result of a two-particle collision
specifically near the horizon. The recent Event Horizon Telescope (EHT) triggered a surge of interest in
strong gravitational lensing by black holes, which provide a new tool comparing the black hole lensing in
general relativity and alternate gravity theories. Motivated by this, we also discussed both strong and weak-
field gravitational lensing in the space-time discretely for a uniform plasma and a singular isothermal
sphere. We calculated the light deflection coefficients ā and b̄ in the strong field limits, and their variance
with the rotational parameter a for different plasma frequency as well as in vacuum. For EBI black holes,
we found that plasma’s presence increases the photon sphere radius, the deflection angle, the deflection
coefficients ā, b̄, the angular positions and the angular separation between the relativistic images. It is also
shown that with increasing spin the impact of plasma on a strong gravitational lensing becomes smaller as
the spin parameter grows in the prograde orbit (a > 0). For extreme black holes, the strong gravitational
effects in the homogenous plasma are similar to those of in a vacuum. We investigate strong gravitational
lensing effects by supermassive black holes Sgr A* and M87*. Considering rotating EBI black holes as the
lens, we find the angular position of images for Sgr A* and M87* and observe that the deviations of the
angular position from that of the analogous Kerr black hole are not more than 2.44 μas for Sgr A* and
1.83 μas for M87*, which are unlikely to get resolved by the current EHT observations.
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I. INTRODUCTION

The existence of black holes has remained a subject of
interest ever since Einstein discovered their presence in the
Universe with general relativity’s theory. The black holes
were believed to form when the matter in space experienced
a cataclysmic collapse and eventually reduced to a singular
point, where both the density and curvature of the space-
time approach to infinity. However, this theory could not
convince the presence of black holes on observational level,
because of this misconception Roger Penrose proposed the
cosmic censorship conjecture, which assuredly denies

the existence of the naked singularities. According to the
latter theory the event horizon is an integral part of the
singularity. Theoretical beliefs are whatsoever incomplete
unless backed up by the observational results, therefore the
probe to visualize a black hole has recently become
possible in 2019 by the Event Horizon Telescope (EHT)
collaboration [1,2].
Penrose unveiled that the black holes can also serve as an

energy source to the matter in its surroundings [3]. Quite a
lot lately, Bandos, Silk, and West (BSW) explored that the
Kerr black holes could provide a platform to the accelerated
particles for a collision to obtain a ultrahigh energy near the
horizon [4]. Up till now, an extensive research has been
done in analogy to the BSW mechanism for different
gravities [5–14]. In some of the noteworthy articles [15–21]
the authors studied the BSW effect in backgrounds of
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Kerr-Newman, Hořava-Lifshitz, five-dimensional Kerr
black hole, Bardeen space-time, Kerr-de Sitter and Kerr–
anti-de Sitter black holes, correspondingly. Considering the
Kerr spacetime, Harada [22] investigated the CM energies
resulting from a collision between two particles in the
ISCO. Although the controversial arguments still exist
about the naked singularities, nevertheless Patil and
Joshi researched the CM energies in the surroundings of
naked singularities [23,24] and surprisingly, succeeded to
achieve a large amount of energy near the singularities.
Later on, Stuchlík et al. explored ultrahigh energy colli-
sions in the vicinity of Kehagias-Sfetsos gravity [25]. Most
recently, the CM energy generated in various spacetimes
are addressed in the articles [26–29].
The black hole gravity allows several paranormal astro-

physical activities in its surroundings, wherein gravitational
lensing is one of them. Assuming a strong-field regime
Virbhadra and Ellis analysed the null-geodesics in [30],
which in fact made an unprecedented contribution to the
exploration of black holes with a unique approach. The
authors also extended their work for naked singularities in
[31]. Bozza et al. employed analytical technique in [32,33]
to study the properties of strong-field lensing. Furthermore,
some of the interesting additions which analyzed this
specific field efficiently are provided in [34–44]. So far,
this event has been studied by many astrophysicists
predominantly for the black holes surrounded by a plasma,
however, Bisnovatyi-Kogan and Tsupko have played a
significant role in the investigations [45–48]. In accordance
with the aforesaid analysis references [49–62] yield com-
pelling details for various gravitational spacetimes.
In this paper our main interest is to examine the timelike

and null geodesics in the rotating Einstein-Born-Infeld (EBI)
spacetime to retrace the BSW effect along with the strong
and weak-field gravitational lensing, respectively. Before the
EBI gravity came into acknowledgment, it was Born and
Infeld [63] who primarily introduced the nonlinear electro-
magnetic field in the classical electrodynamics which was
afterwards coupled with the general relativity by Hoffmann
[64] to obtain a spherically symmetric solution for the
gravitational field of an electrically charged object. The
EBI gravity received well acclaim when the BornInfeld type
actions appeared consecutively [65–67] in the light of low
energy string theory. We can get a productive understanding
of the EBI spacetime from the research articles [68–79],
regarding its optimal solution and distinct features.
The rest of our paper is structured as follows. Sec. II

incorporates the analysis of generic features of the black hole
mainly the horizons and the ergosphere region. In Sec. III
the effective potential in tandem with the center-of-mass
energy of collision between two identical particles is
thoroughly examined. Section IV sheds light on the gravi-
tational lensing phenomenon in a strong-field regime dis-
tinctively for the vacuum and plasma backgrounds along
with the corresponding observables. Section V renders an

elaborate analysis of the deflection angle caused by the
deviation of photons in a weak-field approximation consid-
ering two separate cases of the medium surrounding the
black hole, i.e., a uniform plasma and a singular isothermal
sphere. Finally, in Sec. VI we summarize the main results.

II. GEODESIC OF ROTATING EBI BLACK HOLES

The action which leads to the field equations of EBI
gravity is obtained when the gravitational field is coupled to
a nonlinear Born-Infeld electrodynamics [63] in (3þ 1)
dimensions [64] reads

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ LðF Þ

�
; ð1Þ

where R is the scalar curvature and g ¼ det jgμνj. The
Lagrangian LðF Þ is defined as

LðF Þ ¼ β2

4πG

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2F

β2

s !
: ð2Þ

F ¼ 1
4
FμνFμν, Fμν indicates the electromagnetic field

tensor. The symbol β is the Born-Infeld parameter, equal
to the maximum value of electromagnetic field intensity.
The Einstein field equations and the electromagnetic field
equations are constructed out of (1), respectively, as

Rμν −
1

2
gμνR ¼ kTμν; ð3Þ

∇μðFμνL;F Þ ¼ 0: ð4Þ

The energy-momentum Tμν reads

Tμν ¼ Lgμν − FμηF
η
ν: ð5Þ

L;F represents the partial derivative of L with respect
to F . The spacetime of a static and spherically symmetric
compact object with mass M and a nonlinear electromag-
netic source in the EBI postulated theory has been fore-
mostly investigated by Hoffmann [64]. The metric for EBI
space-time is expressed as [69–72]

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼
�
1 −

2GM
r

þQ2ðrÞ
r2

�
; ð6Þ

whereas, Q2ðrÞ is a unique composition of the black hole’s
charge Q, the Born-Infeld parameter β and r.
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Q2ðrÞ ¼ 2β2r4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2ðrÞ

q �

þ 4Q2

3
F

�
1

4
;
1

2
;
5

4
;−ξ2ðrÞ

�
; ð7Þ

here, F denotes the Gauss hypergeometric function and the

parameter ξ2ðrÞ is characterized by Q2

β2r4. The rotating EBI

metric is obtained by applying the Newman-Janis algorithm
[80] to static spherical metric (6). The gravitational field of
a rotating EBI black hole in the Boyer Lindquist coor-
dinates is described by the line element [81],

ds2 ¼ −
�
Δ − a2 sin2 θ

ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2 θ
�
ρ2 þ a2 sin2 θ

�
2 −

Δ − a2 sin2 θ
ρ2

��
dϕ2

− 2a sin2 θ

�
1 −

Δ − a2 sin2 θ
ρ2

�
dtdϕ; ð8Þ

with Δ¼ r2−2Mrþa2þQ2ðrÞ and ρ2 ¼ r2 þ a2 cos2 θ.
The term a refers to the spin of the black hole. The behavior
of metric (8) is typical of a rotating charged source [81]
and the limit a → 0 is the corresponding metric (6).
The imposition of certain specific restrictions on QðrÞ
and β leads to regenerate some well-known gravities.
The Kerr-Newman gravity is obtained when β → ∞ and
QðrÞ ¼ Q (Q ≠ 0) and the solution of the Kerr black hole’s
is recovered when β → 0 [82]. Furthermore, for a static EBI
metric one can conveniently obtain the Schwarzschild and
the Reissner-Nordström cases by setting Q ¼ 0 and
β → ∞, respectively. The black hole’s core where gravity
tends to infinity (curvature singularity) exists at ρ ¼ 0 and
M ¼ Q ≠ 0. Since 0 < Q < 1 and β can take any positive
real value, therefore we shall keep our discussion compact
by considering the particular case Q ¼ β in most of the
forthcoming context to get a better understanding of the
EBI spacetime.

A. Horizons and ergosphere

The EBI gravity is investigated to possess the horizon
structure and the ergosphere region, likewise the other
rotating black holes. We aim to examine the properties of
the above indicated features depending on the charge Q
and the Born-Infeld parameter β [18,83]. The radii of the
Cauchy horizon r−H and the event horizon rþH are attained by
Δ ¼ 0, the coordinate singularity. The black hole turns out
to be an extremal black hole when the two horizons
coincide for a specific critical spin parameter a ¼ aE,
whereas a < aE refers to a nonextremal black hole with
two distinct horizons. Figure 1 shows the behavior of
horizons by varying the spin parameter a for fixed Q ¼ β.
A naked singularity is also seen to exist when a > aE,

because no horizon appears in that particular case.
Moreover, the black hole admits two static limit surfaces
r−sls and rþsls, which are the positive real roots of equation
gtt ¼ 0. The region, i.e., rþsls < r < rþH connotes the ergo-
sphere region and it’s boundary rþsls is called the quantum
ergosphere. To evaluate the horizons and the static limit
surfaces of the EBI black hole, we shall carry out the
numerical computation of Δ ¼ 0 and gtt ¼ 0, by taking the
series expansion of (7) up to order Oð 1

β5
Þ, given as below

Q2ðrÞ ≈ 2β2r4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2ðrÞ

q �

þ 4Q2

3

�
1 −

1

10
ξ2ðrÞ þ 1

24
ξ4ðrÞ

�
: ð9Þ

Figure 2 shows the evolution of the horizons and ergo-
sphere region for a rotating EBI gravity. With the gradual
charge supplement the typical ergosphere transforms con-
siderably to a prolate shape unless the charge reaches a
critical point QE, where the two surfaces merge into one
and eventually vanishes for Q > QE. In Fig. 3 the ergo-
sphere is illustrated for the spin parameter a which is
equivalent to the critical spin parameter, a ≈ aE. It is
observed that the area becomes larger for the greater values
of a, therefore an accelerating charged black hole has a
more prolate ergosphere [84]. Tables I and II hold specific
data regarding the radii of the horizons and the static
limit surfaces rþsls for various charge Q and Born-Infeld β
parameters. An overview of the data for a fixed Born-Infeld
parameter β with a regular charge increment manifest a
uniform decrease for each of the rþH and rþsls, however, the
Cauchy horizon rather has an absolute-counter effect. On
the other hand, scaling up the β parameter for a specified Q
reduces the radii of both the horizons along with the rþsls.
Overall, least size radii are detected in case of the Kerr-
Newman gravity. The influence of charge on the ergosphere
region is significant as compared to the β parameter.

III. PARTICLE ACCELERATION NEAR
EBI BLACK HOLES

In this section we made an inclusive analysis to probe the
acceleration of particles in the EBI gravity background.
We shall precisely study the CM energy produced due to a
two-particle collision near the horizon considering an
extremal and a non-extremal charged black hole. We put
forth the scenario where two nonrelativistic particles
initially located at infinity fall freely toward the black hole
and ultimately encounter a massive collision near the
horizon. Here, we made a unique choice for the collision
point because particles falling in from infinity appear with
an infinite blueshift at the horizon and hence are considered
to produce an arbitrarily large amount of energy [4].
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We consider motion of a timelike particle with a rest
mass m0 in the equatorial plane θ ¼ π=2 where the polar
velocity, _θ becomes zero. The generalized momenta of the
particle in the spacetime of a rotating charged black hole is
expressed in the form,

Pt ¼ gtt_tþ gtϕ _ϕ; ð10Þ

Pϕ ¼ gϕϕ _ϕþ gtϕ_t; ð11Þ

where Pt and Pϕ are the constants of motion. Basically, the
two quantities Pt and Pϕ correspond to the particles energy

E and the angular momentum L, respectively, acting along
the axis of symmetry. The overdot denotes differentiation
with respect to the proper time τ. The equations of motion of
a massive particle are calculated from (10), (11) along with
the normalization condition uμuμ ¼ −m2

0, given as below

_t ¼ 1

r2

�ða2 þ r2Þ
Δ

ðEða2 þ r2Þ − aLÞ þ aðL − aEÞ
�
; ð12Þ

_ϕ ¼ 1

r2

�
a
Δ
ðEða2 þ r2Þ − aLÞ þ ðL − aEÞ

�
; ð13Þ

FIG. 1. Plot showing the behavior of Δ with respect to r for different values of Q ¼ β. The case a ¼ aE corresponds to an extremal
black hole.
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FIG. 3. Plot showing the variation of the shape of ergosphere for a ≈ aE (extremal black hole) in xz-plane with parameters Q=M ¼ β,
for a rotating EBI black hole.

FIG. 2. Plot showing the variation of the shape of ergosphere for a rotating charged black hole in xz-plane with a fixed spin parameter
a ¼ 0.7 and for various chargeQ and Born-Infeld parameters β. The blue and the black lines correspond, respectively, to the static limit
surfaces and horizons.

PARTICLE ACCELERATION AROUND ROTATING EINSTEIN- … PHYS. REV. D 103, 084057 (2021)

084057-5



_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaL − ða2 þ r2ÞEÞ2 − Δðm2

0r
2 þ ðL − aEÞ2Þp

r2
:

ð14Þ

Theþ and − signs of (14) refer respectively, to the outgoing
and incoming geodesics. In order to understand the motion
of the test particle in the vicinity of EBI gravity thoroughly
we must evaluate the effective potential, which is straight-
forwardly worked out using (14).

1

2
_r2 þ Veff ¼ 0; ð15Þ

Veff ¼ −
ðaL − ða2 þ r2ÞEÞ2 − Δðm2

0r
2 þ ðL − aEÞ2Þ

2r4
:

ð16Þ

When an accelerated particle reaches the black hole, it can
most probably continue its motion in the spacetime gravity.
In Fig. 4 the effective potential is shown by varying the
angular momentum of the incoming test particle for a fixed
Q ¼ β. It is viewed that the potential barrier rises for the
larger values of L interpreting that a boosted particle can
quickly start circling the black hole. Also, the feasibility of a
particle’s motion in the black hole surroundings is increased
if the electric field intensity attains its maximum strength.
The magnitude of a particle’s momentum plays a vital role
to perceive its geodesics in the gravitational space-time.
Thus one may get the critical value of the angular momen-

tum from (12) when r → rEH, i.e., Lc ¼ ða2þðrEHÞ2ÞE
a . Figure 5

gives a comprehensible demonstration of the geodesics in
EBI space-time. The particle with L < Lc is always captured

by the black hole gravity and falls exactly at the horizon if
L ¼ Lc, however, when L > Lc the geodesics never fall into
the black hole. The solution to the simultaneous equations
∂rVeff ¼ ∂2

rVeff ¼ 0 defines the innermost stable circular
orbit rISCO of the particle [85–91]. Figure 6 illustrates the
rISCO for a static nonrotating EBI gravity by varying the
Born-Infeld parameter and charge Q of the black hole. It is
observed that the radius of the orbits becomes smaller as β
andQ increases, however the decrease is seen to be relatively
higher in case of the black hole’s charge. More precisely
we can say that the charge of the EBI black hole besides its
infinite gravity significantly enhances its ability to grasp the
incoming particle in its vicinity and by increasing the
amount of charge the ISCO as a result comes closer to
the black hole. This behavior is reminiscent of what has been
investigated for the Kerr-Newman spacetime in [92].

A. Near Horizon collision

Now we analyze the ultrahigh energy produced as a
result of a two-particle collision near the horizon of EBI
black hole. We consider particles with the same massm0 and
different four-velocities u1 and u2. The CM energy Ec:m: of
collision between two particles at the radial coordinate r is
given by the following expression [4],

Ec:m: ¼ m0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gμνu1μu2ν

p
: ð17Þ

By substituting (12)–(14) in the above mentioned energy
frame we get

E2
c:m:

2m0
2
¼ −

K
r2Δ

; ð18Þ

TABLE I. The values of the horizons of a rotating EBI black hole with a ¼ 0.5. The Kerr-Newman case is shown by β → ∞.

β ¼ 0.4 β ¼ 0.6 β ¼ 0.8 β ¼ 1 β → ∞

Q r−H rþH r−H rþH r−H rþH r−H rþH r−H rþH
0.4 0.5945 1.7686 0.4977 1.7684 0.4403 1.7683 0.4012 1.7682 0.2319 1.7681
0.5 0.7000 1.7086 0.5851 1.7078 0.5174 1.7075 0.4717 1.7074 0.2929 1.7071
0.6 0.8085 1.6285 0.6746 1.6265 0.5969 1.6256 0.5451 1.6252 0.3755 1.6245
0.7 0.9289 1.5197 0.7728 1.5154 0.6849 1.5132 0.6275 1.5121 0.4901 1.5099
0.8 1.1001 1.3452 0.8984 1.3503 0.7985 1.3443 0.7378 1.3404 0.6683 1.3316

TABLE II. The values of the outer static limit surface and event horizon of a rotating EBI black hole with a ¼ 0.5 and θ ¼ π
2

(δge ¼ rþsls–r
þ
H). The Kerr-Newman case is shown by β → ∞.

β ¼ 0.4 β ¼ 0.6 β ¼ 0.8 β ¼ 1 β → ∞

Q rþH rþsls δge rþH rþsls δge rþH rþsls δge rþH rþsls δge rþH rþsls δge

0.4 1.7686 1.9168 0.1482 1.7684 1.9167 0.1483 1.7683 1.9166 0.1483 1.7682 1.9166 0.1484 1.7681 1.9165 0.1484
0.5 1.7086 1.8669 0.1583 1.7078 1.8664 0.1586 1.7075 1.8663 0.1588 1.7074 1.8662 0.1588 1.7071 1.8660 0.1589
0.6 1.6285 1.8022 0.1737 1.6265 1.8010 0.1745 1.6256 1.8006 0.1750 1.6252 1.8004 0.1752 1.6245 1.8000 0.1755
0.7 1.5197 1.7192 0.1995 1.5154 1.7167 0.2013 1.5132 1.7156 0.2024 1.5121 1.7151 0.2030 1.5099 1.7141 0.2042
0.8 1.3452 1.6111 0.2659 1.3503 1.6063 0.2560 1.3443 1.6038 0.2595 1.3404 1.6025 0.2621 1.3316 1.6000 0.2684
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where K is given as below,

K ¼ −2r4 þ 2r3 − r2ð2a2 þQ2ðrÞ − L1L2Þ − 2a2rþ 2r½aðL1 þ L2Þ − L1L2� þQ2ðrÞða − L1Þða − L2Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 − aL1Þ2 − Δ½r2 þ ða − L1Þ2�

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 − aL2Þ2 − Δ½r2 þ ða − L2Þ2�

q
: ð19Þ

FIG. 4. In the upper panel, effective potential is plotted as a function of r for different values of angular momentum with a fixed spin
parameter a ¼ 0.5. In the lower panel, Veff is plotted as a function of r for different values of charge parameter with the corresponding
fixed parameters, spin a ¼ 0.5 and angular momentum L ¼ 0.5.

FIG. 5. The variation of _r with respect to the radial coordinate for an extremal black hole. In the left panel Q ¼ β ¼ 0.3 and
aE ¼ 0.954915061906 and in the right panel Q ¼ β ¼ 0.7 and aE ¼ 0.72132723117.
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In our discussion, the participating particles have the
same intrinsic identities and are mainly distinguished by
their angular momenta L1 and L2. Here, for the sake of
simplicity, we shall take the conserved energies E1=m0 ¼
E2=m0 ¼ 1. It is worth mentioning that an arbitrarily high
amount of energy is obtained when the test particle
approaching the back hole has the critical angular momen-
tum Lc [18,93]. The limiting values of the angular
momentum along with the corresponding spin parameters
and the horizons for the extremal and nonextremal EBI
space-time are presented, respectively, in the Tables III, IV.
The Ec:m: generated as a result of collision near the horizon
of an extremal black hole for different values of Q ¼ β is
shown in Fig. 7. Quite similar to a charged Kerr-Newman
gravity [15], the CM energy instantaneously diverges near
the EBI horizon whenever the incoming particle is
equipped with the critical parameters of the motion, on
the other hand, the particles admitting L < Lc contribute
only a finite Ec:m:. Nonetheless, if we consider a collision in
a nonextremal space-time background, we attain a limited
Ec:m: irrespective of the event’s location, see Fig. 8.

IV. STRONG-FIELD LENSING

In this section we shall focus on the strong deflection
limit of EBI black hole in the equatorial plane (θ ¼ π=2),
i.e., both the observer and the source are limited to the
equatorial plane. Also, to proceed further we introduce the
following dimensionless variables

x →
r
2M

; t →
t

2M
; a →

a
2M

; q →
Q
2M

;

β →
β

2M
; ð20Þ

The metric (8) accordingly reduces to the form

ds2 ¼ −AðxÞdt2 þ BðxÞdx2 þ CðxÞdϕ2 − 2DðxÞdtdϕ;
ð21Þ

where

AðxÞ ¼ Δ − a2

x2
; ð22Þ

FIG. 6. The inner most stable circular orbits by varying the Born-Infeld parameter β and charge Q for a static nonrotating EBI black
hole.

TABLE III. The limiting values of the angular momentum for
different extremal cases of a rotating EBI black hole.

Q β QðrÞE aE rEH L1 L2

0 0 0 1 1 −4.82843 2
0.2 0.2 0.19792 0.98021707 1.00141 −4.80013 2.00327
0.3 0.3 0.296864 0.95491506 1.00304 −4.76386 2.0085
0.4 0.4 0.39579 0.91832659 1.00512 −4.71127 2.01845
0.5 0.5 0.494701 0.86903103 1.00751 −4.64012 2.03709
0.6 0.6 0.593595 0.80470045 1.01008 −4.54673 2.07259
0.7 0.7 0.692477 0.72132723 1.01274 −4.42477 2.1432

TABLE IV. The limiting values of the angular momentum for
different nonextremal cases of a rotating EBI black hole.

Q β a r−H rþH L1 L2

0.2 0.2 0.9 0.663948 1.38792 −4.74224 2.56572
0.3 0.3 0.8 0.632149 1.52037 −4.64939 2.78645
0.4 0.4 0.7 0.638054 1.59260 −4.54509 2.93519
0.5 0.5 0.6 0.653747 1.62586 −4.42765 3.04241
0.6 0.6 0.5 0.674623 1.62645 −4.29465 3.11902
0.7 0.7 0.3 0.686800 1.65050 −4.04668 3.33159
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BðxÞ ¼ x2

Δ
; ð23Þ

CðxÞ ¼ x2 þ a2
�
2 −

Δ − a2

x2

�
; ð24Þ

DðxÞ ¼ a

�
1 −

Δ − a2

x2

�
; ð25Þ

and Δ ¼ x2 þ a2 − xþ q2ðxÞ.

q2ðxÞ ≈ 2β2x4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2ðxÞ

q �

þ 4q2

3

�
1 −

1

10
ξ2ðxÞ þ 1

24
ξ4ðxÞ

�
: ð26Þ

We assume that the spacetime is filled with a non-
magnetized cold plasma whose electron plasma frequency
depends on the radius coordinate. We consider the medium
to be homogenous but dispersive such that refractive index
is constant in space but depends on the wave frequency.
The gravitational deflection angle, in this case, is different
from the vacuum and depends on the photon frequency.
Synge developed the general relativistic geometrical optics
in a curved spacetime in a dispersive medium with the
reflective index’s angular isotropy. In the subsequent
analysis we shall take into consideration a static homo-
geneous plasma in the gravitational field with a refractive
index n obtained by Synge [94]

n2 ¼ 1þ pαpα

ðpβuβÞ2
; ð27Þ

FIG. 7. The center-of-mass energy Ec:m dependence of the radial coordinate r for an extremal black hole for various Q ¼ β values.

FIG. 8. The center-of-mass energy Ec:m dependence of the radial coordinate r for a nonextremal black hole. In the left panel a ¼ 0.8
and in the right panel a ¼ 0.3.
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pα and uβ indicate the four-momentum and four-velocity of
the massless particle. One may retrieve the vacuum case
when n ¼ 1. We define a specific form of the refractive
index n for a precise analysis [45,46]

n2 ¼ 1 −
ω2
e

½ωðxiÞ�2 : ð28Þ

Here, ωe is the plasma electron frequency and ωðxiÞ is the
photon frequency depending on the spatial coordinates xi

detected by a distant observer. The light can propagate
through the plasma medium if and only if the inequality,
ω2 > ω2

e is satisfied. The plasma frequency admits the
following analytic expression

ω2
e ¼

4πe2NðxiÞ
m

¼ KeNðxiÞ; ð29Þ

where e, m and NðxiÞ are the charge, mass and number
density of the electron, respectively [51]. The Hamiltonian
for the photon around the EBI black hole surrounded by
plasma has the following form

Hðxi; piÞ ¼
1

2
ðgikpipk þ ω2

eÞ ¼ 0; ð30Þ

where gij is the contravariant metric tensor. Using Eq. (30),
the Hamiltonian differential equations which are given by

dxi

dλ
¼ ∂H

∂pi
;

dpi

dλ
¼ −

∂H
∂xi ; ð31Þ

give two constants of motion which are energy E and
angular momentum L of the photon. The conserved
quantities E and L, attain the form

E ¼ −pt ¼ ω L ¼ pϕ: ð32Þ

We introduce notation L̃ and Ẽ, by considering a homo-
geneous plasma with ωe ¼ constant, as

Ẽ ¼ −pt

ωe
¼ ω

ωe
L̃ ¼ pϕ

ωe
: ð33Þ

The first order geodesic equation in the equatorial plane in
terms of Ẽ and L̃ reduce to the following form

_t ¼ ωeðẼCðxÞ − L̃DðxÞÞ
AðxÞCðxÞ þDðxÞ2 ;

¼ ωe

x2

�ða2 þ x2Þ
Δ

ðẼða2 þ x2Þ − aL̃Þ þ aðL̃ − aẼÞ
�
;

ð34Þ

_ϕ ¼ ωeðẼDðxÞ þ L̃AðxÞÞ
AðxÞCðxÞ þDðxÞ2 ;

¼ ωe

x2

�
a
Δ
ðẼða2 þ x2Þ − aL̃Þ þ ðL̃ − aẼÞ

�
; ð35Þ

_x2 ¼ ω2
e

BðxÞðAðxÞCðxÞ þDðxÞ2Þ ðẼ
2CðxÞ − 2L̃ẼDðxÞ

− L̃2AðxÞ − ðAðxÞCðxÞ þDðxÞ2ÞÞ;

¼ ω2
e

x4
½ðaL̃ − ða2 þ x2ÞẼÞ2 − Δðx2 þ ðL̃ − aẼÞ2Þ�: ð36Þ

With the condition _xjx¼x0 ¼ 0, Eq. (36) can be solved for L̃
to give

˜Lðx0Þ ¼
−ẼDðx0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx0ÞGðx0Þ þ Ẽ2Dðx0Þ2

p
Aðx0Þ

ð37Þ

Gðx0Þ ¼ Ẽ2Cðx0Þ − ðAðx0ÞCðx0Þ þDðx0Þ2Þ; ð38Þ

which solves to

˜Lðx0Þ ¼
aẼða2 þ x20 − ΔÞ − x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − Δþ Ẽ2x2ÞΔ

p
a2 − Δ

:

ð39Þ

The photon traveling close to the black hole encounters
a turning points at _x ¼ 0, and at radius x0 ¼ xm, the
deflection angle becomes infinitely large. The radius xm
is the photon sphere radius and is the largest solution of the
equation

ðG0ðx0ÞAðx0Þ − A0ðx0ÞGðx0ÞÞ
þ 2L̃ẼðA0ðx0ÞDðx0Þ − Aðx0ÞD0ðx0ÞÞ ð40Þ

In Fig. 9, we present the variation of photon sphere with the
black hole spin parameter in vacuum and in different
plasma medium. The presence of the medium can increase
the photon sphere radius. In the case of a > 0 (prograde
orbit), the photons tend to come closer to the black hole
compared to a < 0 (retrograde orbit). Especially for the
extreme values of a, the photon sphere radius in the plasma
medium tends to be same as in the vacuum for prograde
orbits.
Bozza [33,95] developed the method to find the deflec-

tion angle suffered by the light on its way from the source
to observer and is given by

αDðx0Þ ¼ ITðx0Þ − π; ð41Þ

Here, ITðx0Þ is the total azimuthal angle, which on using
Eq. (35) and Eq. (36) takes the form
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FIG. 9. Plot showing the variation of photon sphere radius xm with black hole spin parameter a in different plasma medium. Ẽ ¼ ∞
corresponds to vacuum.

FIG. 10. Plot showing the behavior of strong lensing coefficients ā, b̄, and um as a functions of a, q for different values of Ẽ.
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ITðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðxÞAðx0Þ

p ðẼDðxÞ þ L̃AðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞ2 þ AðxÞCðx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; x0Þ

p ; ð42Þ

Pðx; x0Þ ¼ GðxÞAðx0Þ −Gðx0ÞAðxÞ þ 2ẼL̃ðAðxÞDðx0Þ
− Aðx0ÞDðxÞÞ: ð43Þ

As the photon approaches the black hole, x decreases
from infinity to x0 and increases again from x0 to infinity as
it recedes away. Due to symmetries in space-time, the total
change in the azimuthal angle is just twice the change from
x0 to infinity. If the black hole were not present the total
change in the azimuthal angle is π. Thus deflection angle is
accordingly zero. The deflection angle increases as x0
approaches xm and diverges logarithmically at x0 ¼ xm.
Following the method developed by Bozza [33], we can

have the deflection angle in SDL as

αDðuÞ ¼ ā log

�
u
um

− 1

�
þ b̄þOðu − umÞ: ð44Þ

The details of the calculation can be found in the
Appendix A. The lensing coefficients ā and b̄ are smaller
in vacuum than in the plasma, both decreasing with a just
like the Kerr black hole (see Fig. 10). The critical impact
parameter, i.e., where the deflection angle diverges, for a
fixed values of parameters increases as the frequency of the
plasma increases (see Fig. 11).

A. Observables

A geometrical relationship called the lens equation is set
up between the observer, the source, and the lens to discuss
the strong gravitational lensing by a black hole. In [96–98]
there is no requirement for flat background or any condition
on the positioning of observer or source, however, to
establish a better connection between the models and the
observations to get the more clear physical picture we will
assume some approximations in the lens equation. The

most important and reasonable is the asymptotic approxi-
mation, i.e., both observer and the source should be in
flat spacetime and are not affected by the lens’ curvature
effects. It allows us to take all the distance measurements
using Euclidean geometry. The asymptotic approximation
also considers that the source and observer should be far
enough from the lens, and for further implication, the
source should lie behind the lens. Even cases of source
lying at the back of observer or between observer and lens,
which is called retrolensing have been studied.
The geometrical configuration for gravitational lensing

constitutes a light source S, an observer O and a black hole
L that acts as a lens and lies between the source and
observer. The photons emitted by the source is deviated by
the black hole and reach the observer. The observer sees
the source’s image at an angle θ from the optical axis OL,
whereas, the source is at an angular position of β from OL.
The emission direction and the detection direction make
an angle αDðθÞ, which is called the deflection angle. The
closest approach distance x0 is different than the impact
parameter u as long as the deflection angle is not vanishing.
Several lens equations, which principally differ from each
other for different choices of variables, were introduced
however in [99], the author gave a detailed comparison of
varying lens equation and suggested that Ohanian lens is
the best approximate lens equation. Using the coordinate
independent Ohanian lens equation [100] which connects
the source and observer positions as

ξ ¼ DOL þDLS

DLS
θ − αDðθÞ; ð45Þ

ξ is the angle between the lens-source direction and the
optical axis. DOL is the observer-lens distance and DLS is
the lens-source distance. The angle ξ and β are related by

DOL

sinðξ − βÞ ¼
DLS

sin β
: ð46Þ

FIG. 11. Plot showing the behavior of deflection angle with the impact parameter for different values of a, q, and β for different values
of Ẽ. The points on the horizontal line correspond to the impact parameter at which deflection angle diverges.
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The lensing effects are most evident when all the objects are
almost aligned. It is the case when the relativistic images
are most prominent. So we study the case when the angles
β, ξ, and θ are minimal. However, if a ray of light emitted
by the source S follow multiple loops around the black hole
before reaching the observer, α must be very close to a
multiple of 2π. Replacing αDðθÞ by αDðθÞ − 2nπ ¼ Δαn,
with n ∈ N and 0 < Δαn ≪ 1, we can rewrite Eq. (45) for
small values of β, ξ, and θ using Eq. (46) as,

β ¼ θ −
DLS

DOL þDLS
Δαn: ð47Þ

Given the angular position of source β and the distances of
observer and source from the black hole, one can calculate
the image positions using Eq. (47). The deflection angle
increases as the light ray trajectory get closer to the event
horizon, such that for a particular value of u, the light form
loops around the black hole resulting in αDðθÞ > 2π. With
further decreasing impact parameter, the light ray winds
several times around the black hole before escaping to the
observer. Finally, for critical impact parameter, correspond-
ing to the closest distance xm, the deflection angle diverges.
For each loop of the light geodesic, there is a particular
value of impact parameter at which light reaches the
observer from the source. So infinite sequence of images
will be formed on each side of the lens. Equation (44) with
αDðθn0Þ ¼ 2nπ leads to

θn
0 ¼ um

DOL
ð1þ enÞ; ð48Þ

where

en ¼ e
q−2nπ

p : ð49Þ
Here, n is the number of loops followed by the photons
around the black hole. The deflection angle is expanded
around θn

0 as:

αDðθÞ ¼ αDðθn0Þ þ
∂αDðθÞ
∂θ

				
θn

0

ðθ − θn
0Þ þOðθ − θn

0Þ:

ð50Þ

On using (48) and setting Δθn ¼ ðθ − θn
0Þ we obtain

Δαn ¼ −
āDOL

umen
Δθn: ð51Þ

Finally the lens equation (47) becomes

β ¼ ðθn0 þ ΔθnÞ þ
DLS

DOL þDLS

�
āDOL

umen
Δθn

�
: ð52Þ

The second term in the above equation is very small
as compared to the third term, there by neglecting it,
we get

θn ¼ θn
0 þDOL þDLS

DLS

�
umen
āDOL

ðβ − θn
0Þ
�
: ð53Þ

The above equation, for β > 0, determines images only on
the same side of the source (θ > 0). To obtain the images on
the opposite side, one can solve the same equation with the
source placed at −β. Finally using Eq. (53), we obtain full
set of primary (þβ) and secondary images (−β).
If the outermost image can be separated from the inner

packed one, we can have following observables as

θ∞ ¼ um
DOL

; ð54Þ

s ¼ θ1 − θ∞ ≈ θ∞ðeb̄−2π
ā Þ; ð55Þ

Here, θ∞ is the angular position acquired by the set of
images in the limit n → ∞ or in other words angular
radius of photon sphere. s is the angular separation between
outermost image (n ¼ 1) and innermost packed images
(n ¼ 2; 3; 4…∞).
The EHT using VLBI technique, released the first image

of supermassive black hole M87* in the center of nearby
elliptical galaxy. The image (shadow) is an asymmetric
emission ring with diameter of 42� 3 μas and indicated
mass of the black hole ð6.5� 0.7Þ × 109 M⊙. This offers a
new tool to test black hole in the strong field regime.
Motivated by this we consider the supermassive black
holes Sgr A* in our galactic center and M87* in nearby
galaxy Messier 87 as lens for numerical estimation of
observables. The masses and distances from earth accord-
ing to the latest observational data for Sgr A* [101] are
M ¼ 4.3 × 106 M⊙, DOL ¼ 8.35 Kpc and for M87* [102]
are M ¼ ð6.5� 0.7Þ × 109 M⊙, DOL ¼ ð16.8� 0.8Þ Mpc
respectively. We have tabulated the strong lensing coef-
ficients ā, b̄, um and the observables angular position of
innermost image θ∞ and separation between the first image
and the inner packed ones s in Table V. For comparisons,
we have estimated these values for the Schwarzschild black
hole and Kerr-Newman black hole and found that the
angular position and angular separation for EBI black hole
are larger. In Table VI, we have calculated the deviation
of the coefficients and observables of the EBI black hole
from the Kerr black hole for fixed value of spin parameter
(a ¼ 0.3) and found that in case of EBI black hole the
images are formed closer to the optical axis but are more
packed than the Kerr black hole. The deviation of angular
positions can reach a maximum value of 2.5 μas for Sgr A*
and 1.8 μas for M87*, which with the current observational
facilities is impossible to resolve. From the plots in
Figs. 12 and 13 it can be immediately followed that
angular separation s increases but angular position (θ∞)
decreases with spin parameter a. It is worth noting that both
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angular separation and angular position increase in the
presence of plasma than in vacuum. Also, for fixed values
of a and Ẽ, both angular position and angular separation
decreases with charge q.

V. WEAK-FIELD LENSING

In this section we review the effects of gravitational lensing
in the background of EBI black hole surrounded by a plasma
considering a weak-field approximation defined as follows,

gαβ ¼ ηαβ þ hαβ; ð56Þ

where ηαβ and hαβ specify the Minkowski metric and
perturbation metric, respectively.

ηαβ ¼ diagð−1; 1; 1; 1Þ;
hαβ ≪ 1; hαβ → 0 under xα → ∞;

gαβ ¼ ηαβ − hαβ; hαβ ¼ hαβ: ð57Þ

We follow the notion in [57] by taking into account the weak-
field approximation and weak plasma strength for
the photon propagation along z axis to get the angle of
deflection,

TABLE V. Estimates for lensing observables and strong lensing coefficients for the black hole Sgr A* and M87 for different values of
a, q, and Ẽ. Rs ¼ 2GM=c2 is the Schwarzschild radius.

Sgr A* M87* Lensing coefficients

a q β Ẽ θ∞ (μas) s (μas) θ∞ (μas) s (μas) ā b̄ um=Rs

0.0 0.0 0.0 ∞ 26.3299 0.0329518 19.782 0.0247572 1.0000 −0.40023 2.59808

0.0 0.10 0.10 1.2 40.8014 0.136406 30.6547 0.102484 1.14818 −0.262399 4.02604
0.10 0.10 1.4 33.8068 0.0768462 25.3996 0.0577357 1.08896 −0.344909 3.33586
0.10 0.10 2.0 28.8801 0.0465492 21.6981 0.0349731 1.0372 −0.386451 2.84972
0.10 0.10 ∞ 26.1546 0.033707 19.6504 0.0253245 1.0042 −0.398845 2.58079

0.0 0.25 0.25 1.2 39.4685 0.151685 29.6533 0.113963 1.17496 −0.251322 3.89452
0.25 0.25 1.4 32.6493 0.0864492 24.5299 0.0649506 1.11551 −0.336246 3.22164
0.25 0.25 2.0 27.8451 0.052903 20.9204 0.0397468 1.06329 −0.379309 2.74759
0.25 0.25 ∞ 25.1872 0.0385673 18.9235 0.0289762 1.02991 −0.392364 2.48532

0.1 0.10 0.10 1.2 38.0561 0.194843 28.5922 0.146388 1.24476 −0.282442 3.75516
0.10 0.10 1.4 31.3725 0.114023 23.5706 0.0856672 1.18444 −0.37017 3.09565
0.10 0.10 2.0 26.6578 0.0715111 20.0284 0.0537274 1.13104 −0.413689 2.63043
0.10 0.10 ∞ 24.0469 0.0530149 18.0668 0.0398309 1.09672 −0.425657 2.37281

0.1 0.25 0.25 1.2 36.58 0.222988 27.4831 0.113963 1.28608 −0.276002 3.6095
0.25 0.25 1.4 30.0954 0.132432 22.6111 0.0994979 1.22571 −0.367598 2.96964
0.25 0.25 2.0 25.5194 0.0841841 19.1731 0.0632488 1.17203 −0.414005 2.5181
0.25 0.25 ∞ 22.9847 0.062994 17.2688 0.0473283 1.1375 −0.427547 2.268

0.3 0.10 0.10 1.2 31.565 0.494733 23.7153 0.3717 1.61897 −0.444896 3.11465
0.10 0.10 1.4 25.6834 0.318908 19.2963 0.239601 1.55668 −0.548617 2.53428
0.10 0.10 2.0 21.5156 0.218539 16.165 0.164192 1.49933 −0.598094 2.12304
0.10 0.10 ∞ 19.1999 0.172071 14.4252 0.129279 1.4616 −0.6079 1.89454

0.3 0.25 0.25 1.2 29.4773 0.638265 22.1467 0.479538 1.82734 −0.720304 2.90865
0.25 0.25 1.4 23.8921 0.428647 17.9505 0.322049 1.77993 −0.873316 2.35753
0.25 0.25 2.0 19.9254 0.307738 14.9703 0.231208 1.74127 −0.978784 1.96612
0.25 0.25 ∞ 17.7162 0.251906 13.3104 0.189261 1.72008 −1.03261 1.74813

TABLE VI. Deviation of the lensing observables of EBI black holes from Kerr black hole by taking Sgr A* and M87* as lens, where
δX ¼ XKerr − XEBI.

Sgr A* M87* Lensing coefficients

a q β Ẽ δθ∞ (μas) δs (μas) δθ∞ (μas) δs (μas) δā δb̄ δum=Rs

0.3 0.25 0.25 1.2 2.4438 −0.163407 1.83607 −0.12277 −0.231673 0.288928 0.24114
0.25 0.25 1.4 2.09623 −0.124046 1.57493 −0.0931977 −0.247045 0.340692 0.206844
0.25 0.25 2.0 1.85985 −0.100026 1.39733 −0.075151 −0.266229 0.398848 0.183519
0.25 0.25 ∞ 1.73419 −0.088959 1.30292 −0.0668363 −0.283155 0.444148 0.17112
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FIG. 12. Plot showing the behavior of strong lensing observables as a function of a, for different values of q, β, and Ẽ for SgrA*.

FIG. 13. Plot showing the behavior of strong lensing observables as a function of a, for different values of q, β, and Ẽ for M87*.
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α̂i ¼
1

2

Z
∞

−∞

�
h33;i þ

ω2

ω2 − ω2
e
h00;i −

Ke

ω2 − ω2
e
N;i

�
dz:

ð58Þ

Note that, the α̂i < 0 and α̂i > 0 indicate the deflection toward
and away from the central object, respectively.
In the last expression the values of ωe and n are set to
limitations at infinity and ωð∞Þ ¼ ω. At large r, the black
hole metric could be approximated to [45].

ds2 ¼ ds20 þ
�
2M
r

−
Q2ðrÞ
r2

�
dt2 þ

�
2M
r

−
Q2ðrÞ
r2

�
dr2;

ð59Þ

where ds20 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ. In the
Cartesian coordinates the components hαβ can be written as

h00 ¼
�
Rg

r
−
Q2ðrÞ
r2

�
;

hik ¼
�
Rg

r
−
Q2ðrÞ
r2

�
nink;

h33 ¼
�
Rg

r
−
Q2ðrÞ
r2

�
cos2 x; ð60Þ

where Rg ¼ 2M, cos x ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
.

We apply the approximation β → ∞ to the series expansion of
Q2ðrÞ (9),

Q2ðrÞ ¼ Q2 −
2Q4

15r4β2
: ð61Þ

Using the abovementioned expressions in the formula (58) one
can compute the light deflection angle for a black hole in
plasma in terms of the impact parameter b, given as below

α̂b ¼
Z

∞

−∞

b
2r

�
∂r

��
Rg

r
−
Q2ðrÞ
r2

�
cos2x

�

þ ∂r

�
Rg

r
−
Q2ðrÞ
r2

�
ω2

ω2 − ω2
e
−

Ke

ω2 − ω2
e
∂rN

�
dz;

ð62Þ

A. Uniform plasma

Now, we discuss the light deflection in the presence of a
uniform plasma, thereby considering ωe as a constant
quantity and taking in the approximation 1 − n ≪ ωe

ω . As
a result ∂rN vanishes and the angle of deflection takes the
form

α̂uni ¼ −
�

ω2

ω2 − ω2
e

��
πQ2

2b2
−

πQ4

8b6β2
−
Rg

b

�

−
�
πQ2

4b2
−

πQ4

48b6β2
−
Rg

b

�
: ð63Þ

The upper panel of Fig. 14 illustrates the angle of deflection
as a function of the impact parameter. On varying the
charge for a fixed β, the angle of deflection executes
two opposite behaviors depending on the value of β. The
deviation of photons is larger as the value of Q decreases
when allotted with a comparatively larger β, hence, α̂uni
is maximum for Q ¼ 0, which basically refers to the
Schwarzschild gravity. It is noticed that by increasing β
for a fixed chargeQ the results are consistent, and the angle
of deflection reduces in any case.

B. Singular isothermal sphere

We shall now examine the photon deflection by the black
hole surrounded by a singular isothermal sphere, which
was modeled in [103,104] and has up till now played an
important part to explore the lens’s property of the galaxies
and clusters. The density distribution has the form

ρðrÞ ¼ σ2v
2πr2

; ð64Þ

where σ2v is a one-dimensional velocity dispersion. The
concentration of the plasma has the form

NðrÞ ¼ ρðrÞ
κmp

; ð65Þ

where mp is the proton mass and κ is a nondimensional
coefficient which is related to the dark matter contribution.
Utilizing (29), (64), (65) the plasma frequency takes the
form

ω2
e ¼ KeNðrÞ ¼ Keσ

2
v

2πκmpr2
: ð66Þ

The angle of deflection using the latter particulars can be
conveniently computed as below [45],

α̂SIS ¼
ω2
cR2

g

ω2b2

�
1

2
−
3Q2

8b2
þ 7Q4

64b6β2
þ 2Rg

3bπ

�

−
�
3πQ2

4b2
−

7πQ4

48b6β2
−
2Rg

b

�
; ð67Þ

we get ω2
c which is another plasma constant and has the

following analytic expression.

ω2
c ¼

σ2vKe

2κmpR2
g
: ð68Þ
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The lower panel of Fig. 14 shows the angle of deflection
α̂SIS as a function of the impact parameter considering a
black hole veiled by a singular isothermal sphere. The
results obtained for distinctQ and β values, altogether share
a common thread with the uniform plasma case, but,
however the angle of deflection is relatively smaller as
by the black hole surrounded with a uniform plasma, i.e.,
α̂uni > α̂SIS, see details in [105].

VI. CONCLUSION

In this paper we constructed an insightful discussion
regarding the rotating black hole’s structure, center-of-mass
energy and gravitational lensing in Einstein-Born-Infeld
gravity. It is searched out that the radii of the event
horizons, the static limit surfaces and ISCOs experience
a uniform decrease as the strength of black hole’s charge
intensifies but the Cauchy horizon on the contrary, exhibits
an increase. Furthermore, our investigation ensures the
BSWeffect in the EBI space-time, henceforth the center-of-
mass energy diverges near the horizon just like the other
charged rotating black holes, in our case we specifically
considered the Kerr-Newman black hole.
The gravitational lensed photons considering a uniform

plasma and a singular isothermal sphere are also part of
the context. Unfortunately due to extinction of radiation in
the vicinity of galactic center, the observation of relativ-
istic images is an uphill task. In addition, the radiation
from the accreting materials badly influences the obser-
vation of these images. Compared to the weak lensing,
these obstacles are even bigger for the strong lensing.

For relativistic images to be more prominent, the lens
components (the source, the observer, and the lens) should
be highly aligned. A suitable source for the strong lensing
could be a supernova but the probability of it to be aligned
with the lens and observer is extremely small. Despite this,
there is no doubt that observation of relativistic images
would be one of the most important discovery in the field
of astronomy and would have immense implication for
general relativity and relativistic physics, one of which is
that it could provide a test for general relativity in the
strong field regime.
In this paper it is interpreted that the photons deviate at a

larger angle when a uniform plasma walls in the black hole.
The light deflection coefficients ā and b̄, in the strong field
limits, and their variance with the rotational parameter a
for different plasma frequency as well as in vacuum are
calculated. The effect of plasma result in the increase of the
photon sphere radius, the deflection angle and the strong
deflection coefficients ā and b̄ as compared to the Kerr-
Newman black hole. The lensing observables angular
positions and the angular separation between the relativistic
images show similar behavior. It is also shown in the paper
that with increasing spin the impact of plasma on strong
gravitational lensing becomes smaller as the spin parameter
increases in the prograde orbit (a > 0) especially for the
case of an extreme black hole, the strong gravitational
effects in the homogenous plasma are the same as the case
in vacuum for a > 0. Also, in our analysis, the EBI gravity
has sustained the regularity of a charged black hole
effectively in all aspects. In reality, the plasma can be
significantly nonuniform in the close vicinity of compact

FIG. 14. Deflection angle α̂b as a function of the impact parameter b for different chargeQ and Born-Infeld β values for fixed ω2
e

ω2 ¼ 0.5
(upper panel). Deflection angle α̂SIS as a function of the impact parameter b for different charge Q and Born-Infeld β values for fixed
ω2
c

ω2 ¼ 0.5 (lower panel).
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objects like black holes. Such cases, though complicated,
will be considered in our later research.
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APPENDIX: A CALCULATING DEFLECTION
ANGLE IN STRONG DEFLECTION LIMIT

In this section we describe the details of calculation for
the deflection angle in strong deflection limit by EBI black
hole using the approach discussed in [32]. The metric
for EBI black hole when both observer and source are in
equatorial plane is given by

ds2 ¼ −AðxÞdt2 þ BðxÞdx2 þ CðxÞdϕ2 − 2DðxÞdtdϕ;
ðA1Þ

where

AðxÞ ¼ Δ − a2

x2
; ðA2Þ

BðxÞ ¼ x2

Δ
; ðA3Þ

CðxÞ ¼ x2 þ a2
�
2 −

Δ − a2

x2

�
; ðA4Þ

DðxÞ ¼ a

�
1 −

Δ − a2

x2

�
; ðA5Þ

and Δ ¼ x2 − 2Mxþ a2 þ q2ðxÞ,

q2ðxÞ ≈ 2β02x4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2ðxÞ

q �
;

þ 4q2

3

�
1 −

1

10
ξ2ðxÞ þ 1

24
ξ4ðxÞ

�
; ðA6Þ

Here x is in the unit of Schwarzschild radius. Using
Eq. (35), Eq. (36) we have

dϕ
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðxÞAðx0Þ

p ðẼDðxÞ þ L̃AðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞ2 þ AðxÞCðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; x0Þ

p ; ðA7Þ

Pðx; x0Þ ¼ GðxÞAðx0Þ −Gðx0ÞAðxÞ þ 2ẼL̃ðAðxÞDðx0Þ
− Aðx0ÞDðxÞÞ; ðA8Þ

where x0 is the distance of closest approach to the black
hole. The deflection angle will be

αDðx0Þ ¼ 2

Z
∞

x0

dϕ
dx

dx − π ≡ ITðx0Þ − π: ðA9Þ

To solve the integral (A9), we define a variable

z ¼ 1 −
x0
x
; ðA10Þ

such that the integral (A9) reduces to

ITðx0Þ ¼
Z

1

0

Rðz; x0Þfðz; x0Þdz; ðA11Þ

with the functions

Rðz; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðxÞAðx0Þ

p ðẼDðxÞ þ L̃AðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞ2 þ AðxÞCðxÞ

p ; ðA12Þ

fðz; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx0Þ − AðxÞ
CðxÞCðx0Þ

q ; ðA13Þ

where x ¼ x0
1þz. Taking Taylor expansion of the expression

under the square root in Eq. (A13) we have

f0ðz; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðx0Þzþ ηðx0Þz2
p ; ðA14Þ

where

ζðx0Þ ¼
x0

Cðx0Þ
½C0ðx0ÞAðx0Þ − A0ðx0ÞCðx0Þ�; ðA15Þ

ηðx0Þ ¼
1

2Cðx0Þ2
½2x0Cðx0ÞðAðx0ÞC0ðx0Þ − A0ðx0ÞCðx0ÞÞ

þ 2x20ðCðx0ÞA0ðx0ÞC0ðx0Þ − Aðx0ÞC0ðx0Þ2Þ
− x20Cðx0ÞðCðx0ÞA00ðx0Þ − Aðx0ÞC00ðx0ÞÞ�: ðA16Þ

The radius of photon sphere xm is given by solving
ζðx0Þ ¼ 0. In the integral (A11) Rðz; x0Þ is regular every-
where but as x0 ¼ xm, ζðx0Þ ¼ 0 and fðz; x0Þ ≈ 1=z, which
diverges as z → 0. Thus we separate the integral (A11) into
two parts as

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; ðA17Þ

where

IDðx0Þ ¼
Z

1

0

Rð0; xmÞf0ðz; x0Þdz; ðA18Þ

is the divergent part and regular part is
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IRðx0Þ ¼
Z

1

0

ðRðz; x0Þfðz; x0Þ

− Rð0; xmÞf0ðz; x0ÞÞdz: ðA19Þ

For EBI black hole Eq. (A18) can be solved analytically to

IDðx0Þ ¼ −
Rð0; xmÞffiffiffiffiffiffiffiffiffiffiffi

ηðx0Þ
p log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðx0Þ þ ηðx0Þ

p þ ffiffiffiffiffiffiffiffiffiffiffi
ηðx0Þ

p
ffiffiffiffiffiffiffiffiffiffiffi
ηðx0Þ

p
�

þOðx0 − xmÞ; ðA20Þ

and the regular term can be solved numerically as

IRðx0Þ ¼ IRðxmÞ þOðx0 − xmÞ: ðA21Þ

By expanding the Eq. (A15) and Eq. (A16) about xm, the
deflection angle in SDL becomes

αDðx0Þ ¼ −a log
�
x0
xm

− 1

�
þ bþOðx0 − xmÞ; ðA22Þ

where

a ¼ Rð0; xmÞffiffiffiffiffiffiffiffiffiffiffiffi
ηðxmÞ

p ; ðA23Þ

b ¼ −π þ IRðxmÞ: ðA24Þ

The impact parameter can be expressed as

u ¼ L̃ðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2 − 1

p : ðA25Þ

We can write the deflection angle in terms of impact
parameter by expanding Eq. (A25) around xm as,

αDðuÞ ¼ −ā log
�

u
um

− 1

�
þ b̄þOðu − umÞ; ðA26Þ

where the strong deflection coefficients are

ā ¼ a
2
; ðA27Þ

b̄ ¼ bþ ā log

�
ηðxmÞGðxmÞ

um
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2 − 1

p
AðxmÞðẼDðxmÞ þ L̃AðxmÞÞ

�
;

ðA28Þ

um ¼ −ẼDðxmÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxmÞGðxmÞ þ Ẽ2DðxmÞ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2 − 1

p
AðxmÞ

: ðA29Þ
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