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We examine the post-Newtonian limit of the minimal exponential measure (MEMe) model presented in
[J. C. Feng, S. Carloni, Phys. Rev. D 101, 064002 (2020)] using an extension of the parameterized post-
Newtonian (PPN) formalism which is also suitable for other type-I minimally modified gravity theories.
The new PPN expansion is then used to calculate the monopole term of the post-Newtonian gravitational
potential and to perform an analysis of circular orbits within spherically symmetric matter distributions.
The latter shows that the behavior does not differ significantly from that of general relativity for realistic
values of the MEMe model parameter q. Instead the former shows that one can use precision measurements
of Newton’s constant G to improve the constraint on q by up to 10 orders of magnitude.
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I. INTRODUCTION

A recent article [1] introduced a class of generalized
coupling theories (GCTs), the simplest of which was
termed the minimal exponential measure (MEMe) model.
These are modified theories of gravity that do not introduce
new dynamical degrees of freedom; rather, they modify the
interaction between spacetime and matter in a manner that
preserves the Einstein equivalence principle (all matter is
minimally coupled to an effective spacetime geometry).
According to the classification scheme of [2–4], GCTs and
the MEMe model are type-I minimally modified gravity
(MMG) theories, since they only have two dynamical
degrees of freedom and admit an Einstein frame (in the
sense that the theories may be rewritten as general relativity
[GR] with a modified source). While it was shown in [1]
that the dynamical behavior of the MEMe model differs
significantly from GR under the conditions present in the
early Universe and within a matter distribution, the MEMe
model reduces to GR in a vacuum—in this respect, the
MEMe model is qualitatively similar to the Eddington-
inspired Born-Infeld (EiBI) theory [5]. However, the
predictions of the MEMe model differ from those of GR
within a matter distribution and in its coupling to matter.
The purpose of the present article is to determine the degree
to which these differences can be measured in the post-
Newtonian limit.

Modified gravity theories, i.e., those that attempt to go
beyond GR, have been extensively studied for at least three
motivations: (i) to understand or solve mysteries in cos-
mology such as the origins of dark energy, dark matter, and
inflation; (ii) to help develop the theory of quantum gravity;
and (iii) to understand GR itself. Regarding (iii), even if GR
is the genuine description of gravity in our Universe for a
certain range of scales, the only way to prove it exper-
imentally or observationally is to constrain possible devia-
tions from GR by experiments or observations. In this
regard, it is useful to have a universal parameterization of
possible deviations from GR. For Solar System scales, the
so-called parameterized post-Newtonian (PPN) formalism
proved to be particularly useful. The standard PPN for-
malism includes ten parameters to parameterize deviations
from GR and covers a wide range of gravitational theories
beyond GR [6]. However, there is no guarantee that the
standard PPN formalism can be applied to all modified
gravity theories. For example, in gravitational theories
without the full diffeomorphism invariance, one cannot,
in general, adopt the standard PPN gauge and thus may
have to introduce additional PPN potentials or parameters
(see e.g., [7]). The MEMe model we consider here also
requires an extension of the standard PPN formalism for a
different reason: the nontrivial matter coupling inevitably
generates potentials that are not included in the standard
PPN formalism. These potentials are not only relevant in
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themselves, but they are also necessary to compute the
standard ten PPN parameters.1

In this article, we shall construct an extension of the PPN
formalism appropriate for a subclass of type-I MMG and
GCTs based on additional PPN potentials. We will then
focus on the MEMe model, finding that one must add to the
PPN metric a single new potential, which we denoteΨ, and
some additional counterterms. All of the counterterms are
proportional to the pressure, mass density, and energy
density for a fluid, so they vanish outside matter sources.
This is, however, not the case for Ψ. Hence the PPN
parameters for the MEMe model in the case of a test
particle in an external field agree with those of GR except
for the coefficient associated with Ψ.
In the context of the MEMe model, we find that the

effects of the potential Ψ can be absorbed into the
Newtonian potential outside a matter distribution. This
result suggests that the modification to the matter couplings
can in the post-Newtonian limit be reinterpreted as a
density-dependent modification of the gravitational con-
stant G. Comparing with [9], we argue that current
laboratory methods can improve the constraint on the
(single) parameter q in the MEMe model by 10 orders
of magnitude over the speed of light constraint discussed
in [1].
We also study circular orbits in the presence of spheri-

cally symmetric matter distributions and compare the
predictions of the MEMe model with GR. Our findings
suggest that in most astrophysical systems, the presence of
a dilute matter distribution does not significantly affect the
motion of matter in the MEMe model.
This paper is organized as follows. First, we review the

MEMe model and GCTs in Sec. II. We then discuss the
Newtonian limit in Sec. III and develop the PPN formalism
for the MEMe model in Sec. IV. Afterward, in Sec. V we
consider to post-Newtonian order the monopole term for
the MEMe model and discuss how constraints on the
variation of the effective gravitational constant may be used
to constrain the parameter q in the MEMemodel. Finally, in
Sec. VI we compare the behavior of circular orbits within a
spherically symmetric matter distribution in the MEMe
model to that of GR. Section VII is then devoted to a
summary of the paper and some discussions.

II. GENERALIZED COUPLING THEORIES
AND THE MEME MODEL

Generalized coupling theories are defined by an action of
the form [1]

SGC ¼
Z

d4x

�
1

2κ
ðR − 2½Λ − λð1 − FÞ�Þ ffiffiffiffiffiffi

−g
p

þ Lm½ϕ; g··�
ffiffiffiffiffiffi
−g

p �
; ð1Þ

where the metric gμν is assumed to have the form

gμν ¼ ΞðA·
·ÞAμ

αAν
βgαβ; ð2Þ

and the function F ¼ FðA:
:Þ is chosen so that in a vacuum

Aμ
α ¼ δμ

α is an extremum of the action. Upon varying the
action with respect to the metric and remembering that Aμ

α

is independent of gμν, one obtains field equations of the
form

Gμν þ ½Λ − λð1 − FÞ�gμν ¼ κΞjA:
:jĀα

μĀβ
νTαβ; ð3Þ

ðδμα − Aμ
αÞfνα ¼ Ξ2jA:

:j
�
TαβgμðαĀβÞ

ν þT
1

2Ξ
∂Ξ
∂Aμ

ν

�
; ð4Þ

where Āα
μ is the inverse of Aμ

α and fνα ¼ fναðA:
:Þ.

The MEMe model, discussed at length in [1], is a simple
example of a generalized coupling theory. The MEMe
model is defined by the following action:

S½ϕ; g··; A:
:� ¼

Z
d4x

�
1

2κ
½R − 2Λ̃� ffiffiffiffiffiffi

−g
p

þ
�
Lm½ϕ; g··� −

λ

κ

� ffiffiffiffiffiffi
−g

p �
; ð5Þ

where κ ≔ 8πG and the Jordan-frame metric gμν is defined
(with A ≔ Aσ

σ) as

gμν ¼ eð4−AÞ=2Aμ
αAν

βgαβ; ð6Þ

and Λ̃ ¼ Λ − λ, with Λ being the observed value of the
cosmological constant. Unless stated otherwise, indices are
raised and lowered using the metric gμν and gμν. Defining
the parameter

q ≔
κ

λ
; ð7Þ

the equation of “motion” for Aμ
α takes the following form:

Aβ
α − δβ

α ¼ q½ð1=4ÞTAβ
α −Tβνgαν�; ð8Þ

where Tμν is the energy-momentum tensor defined by
the functional derivative of

R
Lm½ϕ; g··� ffiffiffiffiffiffi−gp

d4x and
T ≔ gμνTμν. Here, we assume qT ≠ 4. Since Eq. (8) is
an algebraic equation for Aμ

α, the tensor Aμ
α does not

introduce additional dynamical degrees of freedom. The
trace of Eq. (8) implies A ¼ Aσ

σ ¼ 4. The gravitational
equations are (setting A ¼ 4)

1From the bottom-up point of view, the ten PPN parameters are
in principle independent. (Note, however, that there is one
relation that is expected to hold for all reasonable theories
[8].) On the other hand, from the top-down point of view, once
a specific theory of modified gravity is fixed, then the PPN
parameters are written in terms of the parameters of the theory.
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Gμν þ ½Λ − λð1 − jA:
:jÞ�gμν ¼ κjA:

:jĀα
μĀβ

νTαβ; ð9Þ

where Āα
μ is the inverse of Aμ

α as already explained and
jA:

:j ¼ detðA:
:Þ. One may see from the form of Eq. (9) that

the MEMe model admits an Einstein frame in the sense of
[2], making this a type-I MMG. Here, the operating
definition for an Einstein frame is a choice of variables
in which a theory is recast as GR with a modified source,
which may involve additional degrees of freedom. We
define the Jordan frame as a choice of variables in which
matter is minimally coupled to the metric tensor. In the
MEMe model, it is the frame in which matter is coupled to
the metric tensor gμν. We should stress however that,
despite some similarities, these frames are not related to
the well-known conformal transformations in modified
gravity. The choice of frame is important also because it
specifies the worldlines of free-falling test particles: since
matter is minimally coupled to the Jordan-frame metric,
one expects that small clumps of matter follow the world-
lines of test particles as defined by the Jordan-frame
metric.2 For this reason, the Jordan frame is the most
physically relevant choice.
Equation (8) can be solved exactly for a single perfect

fluid. The dual (lowered-index) fluid four-velocity uμ is
constructed from the gradients of the potentials, so it is
appropriate to regard uμ to be the metric-independent fluid
variables. The energy-momentum tensor for the fluid takes
the form

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð10Þ

the Jordan-frame trace of which is T ¼ 3p − ρ. Note that,
while gμνuμuν ¼ −1, gμνuμuν ≠ −1. It is useful also to
define a dual four-velocity vector which is normalized
with respect to the Einstein-frame metric gμν. Defining
ε ≔ gμνuμuν, one can obtain such a four-velocity (defining
uμ ≔ gμνuν):

Uμ ≔ uμ=
ffiffiffiffiffiffi
−ε

p
; ð11Þ

where uμ ¼ gμνuν, and it follows that uμuν ¼ −εUμUν.
Since the MEMe model admits two metric tensors gμν

and gμν, one should be careful when raising and lowering
the indices of the four-velocity—while the (dual) vector uμ
is the lowered index Jordan-frame four-velocity, the raised
index Jordan-frame four-velocity uμ is defined as the
following:

uμ ≔ gμνuν; ð12Þ

which is in general not equal to uμ. One may obtain a
simple relationship between the respective raised and
lowered components of the Jordan-frame fluid four-
velocity uμ and uν by first noting that Aμ

αuα ∝ uμ and
Āα

μuα ∝ uμ; it follows that uμ ∝ uμ (where uμ ¼ gμνuν).
One may then write uμ ¼ auμ, where a is some factor. Now
recall that uμuμ ¼ ε, and since uμuμ ¼ uμuμgμν ¼ −1, one
can show that a ¼ −1=ε and obtain the result

uμ ¼ −εuμ; ð13Þ

Uμ ¼ ffiffiffiffiffiffi
−ε

p
uμ: ð14Þ

It follows that uμuμ ¼ 1=ε, and UμUν ¼ −εuμuν.
Given the following ansatz for Aμ

α:

Aμ
α ¼ Yδμα − εZUμUα; ð15Þ

one can easily solve Eq. (8), with the result

Y ¼ 4ð1 − pqÞ
4 − qð3p − ρÞ ;

Z ¼ −
qðpþ ρÞ½4 − qð3p − ρÞ�

4ðqρþ 1Þ2 ;

ε ¼ −
16ðqρþ 1Þ2

½4 − qð3p − ρÞ�2 : ð16Þ

The inverse Āα
μ ¼ ½δμα þ εZðY þ εZÞ−1UμUα�=Y has a

similar form. The gravitational equation (9) takes the form

Gμν ¼ κTμν; ð17Þ

where Tμν is the effective energy-momentum tensor in the
Einstein frame defined by

Tμν ¼ ðτ1 þ τ2ÞUμUν þ τ2gμν; ð18Þ

and

τ1 ¼ jA:
:jðpþ ρÞ − τ2;

τ2 ¼
jA:

:jðpq − 1Þ þ 1

q
−
Λ
κ
; ð19Þ

with the following expression for the determinant:

jA:
:j ¼ detðA:

:Þ ¼ 256ð1 − pqÞ3ðqρþ 1Þ
½4 − qð3p − ρÞ�4 : ð20Þ

So far, the gravitational field equations (3), (9), and (17)
are written as dynamical equations for the metric tensor gμν.
One can in principle attempt to reexpress the field equations
in terms of the metric gμν. This can be done by solving

2One should keep in mind that since Aβ
α ¼ δβ

α in a vacuum,
the Einstein- and Jordan-frame metrics coincide in the absence of
matter.
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Eq. (6) for gμν and inserting the resulting expression into
the Einstein tensor to obtain an expression for the gravi-
tational field equations in the Jordan frame. In this case
the resulting field equation will contain derivatives up the
second order of the tensor Aμ

α. We do not report here the
form of such an equation which is rather long. However, we
wish to highlight this feature of the Jordan-frame field
equations as it is relevant for the following discussion on
the distinction between the MEMe model and other
modified gravity theories and also the extension of the
PPN formalism that we will present in the next section.
It is perhaps appropriate to summarize here some

properties and features of the MEMe model. The tensor
Aμ

α is an auxiliary field satisfying an algebraic equation (8),
so it does not contain additional dynamical degrees of
freedom. The MEMe model therefore does not introduce
dynamical instabilities beyond those already present in
general relativity (such as Jeans instability). However, if
one imagines the coupling tensor Aμ

α to be a coarse-grained
description for dynamical degrees of freedom, then one can
treat the term containing λ ¼ κ=q in Eq. (5) as a potential;
in that case, the requirement that the solutions be dynami-
cally stable suggests that λ < 0. The parameter λ may be
interpreted as a vacuum energy for the matter fields, and a
negative vacuum energy is expected for matter models
motivated by string theory and supersymmetry [10]. At
energy scales close to λ, the Jordan-frame metric (and Aμ

α)
becomes degenerate, which is compatible with the general
expectation that the vacuum energy corresponds to the scale
at which the effective spacetime geometry breaks down. On
the other hand, the gravitational metric remains well
behaved in this limit, with Eq. (9) reducing to the
Einstein field equations for a de Sitter or anti–de Sitter
vacuum with effective cosmological constant −λ; this
property has been used in [1] to show that the MEMe
model qualitatively exhibits inflationary behavior in the
early Universe for λ < 0.
The reader may note that the MEMe model superficially

resembles other modified gravity theories that can be
interpreted as a modification of the gravitational coupling,
such as scalar-tensor theory or disformal theories [11–15].
Indeed, as pointed out in [1], the Jordan metric gμν may be
viewed as a type of vector disformal transformation [13].
However, the difference here is that the MEMe model,
being an MMG, does not introduce additional dynamical
degrees of freedom; the components of the tensor Aμ

α can
be expressed directly in terms of the fluid quantities ρ, p, uμ
and the metric. As discussed in [16], the addition of an
auxiliary field in a gravitational theory will generically
produce terms involving derivatives of the energy-momen-
tum tensor in the field equations. While the MEMe model
evades this problem in the Einstein frame, the derivatives of
Aμ

α present in the Jordan-frame equations discussed in the
preceding paragraph will by way of Eq. (8) generate terms
containing up to second-order derivatives of Tμν. The

standard PPN formalism is not equipped to handle such
terms, and in the following sections, we propose and
develop methods for dealing with this obstacle.

III. NEWTONIAN LIMIT OF THE
MEME MODEL

It is helpful to first consider the Newtonian limit of the
MEMe model. In doing so, we will assume that q is at most
of order one. Such a choice is motivated by the values
that we have found for the modulus of q in [1]. This
assumption, combined with the smallness assumption on ρ
that is made in the Newtonian and post-Newtonian analy-
sis, implies that in our calculation we have at most
qρ ∼OðϵÞ, where ϵ ¼ 1=c2.
Our primary aim in this section is to identify and study

the Newtonian potential in the MEMe model. We begin by
expressing Eq. (17) in the form

Rμν ¼ 8πG

�
Tμν −

1

2
gμνT

�
; ð21Þ

where T ¼ gαβTαβ.
In an appropriately chosen coordinate system (see also

Chap. 4 of [6,17] for further discussion), the (0,0) compo-
nent becomes

R00 ≈ 4πGT00; ð22Þ

where we have used the fact that in the Newtonian limit

Tij

T00

≪ 1: ð23Þ

From Eq. (19), and taking into account the fact that in our
approximation detðAÞ ≈ 1, we obtain

T00 ≈ ρ; ð24Þ

so that, defining R00 ¼ ΔΦE (with Δ being the Laplacian),

ΔΦE ¼ 4πGρ: ð25Þ
However, from an operational point of view, an acceler-
ometer would measure the Newtonian limit of the Jordan-
frame metric gμν. Such a potential would be related to ΦE

by the relation

ΦJ ¼ ΦE þ CΔΦE: ð26Þ
In the case of MEMe, the coefficient C is given by

C ¼ 3q
16πG

: ð27Þ

In order to preserve the traditional notation we will from
this point on work in terms of a potential U satisfying an
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equation of the same form as Eq. (25). While it is
convenient to work in terms of a potential satisfying
Eq. (25), one should keep in mind that the physically
relevant potential is ΦJ, which we will relate to U as we
develop the extended PPN formalism in the next section.
The expression for ΦJ in Eq. (26) brings up a potential

conceptual difficulty. If ρ has a sharp discontinuity, as one
might expect at the boundary of a star, the gradient of ΦJ
can be large—a similar difficulty has been identified in the
qualitatively similar EiBI theory [18]. However, a large
gradient in ΦJ implies a strong gravitational force, which
would lead to a rearrangement of matter. One would expect
this gravitational backreaction on the matter distribution to
drive the system away from large gradients in ΦJ (similar
arguments [19] have been made for the corresponding
difficulty in EiBI—see also [20]).

IV. EXTENDED PPN FORMALISM

Naively, one might expect that the PPN formalism
applied to generalized coupling theories in the Einstein
frame yields a set of PPN parameters which are the same as
those of general relativity. In theMEMemodel, for instance,
the theory is identical to GR if the energy-momentum tensor
Tμν as defined in Eq. (18) has the perfect fluid form.
However, as established in [1], the Jordan-frame metric is
the physically relevant metric, since it is the metric which
couples directly to matter. Moreover, the microscopic
description of matter is specified by the action of matter
fields minimally coupled to the metric in the Jordan frame
and thus gives the equation of state of the matter fluid in the
Jordan frame. It is therefore appropriate to introduce the
PPN potentials and parameters in the Jordan frame. On the
other hand, it is more convenient to perform most of the
computations in the Einstein frame. Notice that the dis-
tinction between the two frames concerns only physical
systems in which matter sources play important roles, and
therefore it does not concern the correction to e.g., celestial
mechanics on Solar System scales.
It may be helpful to provide a brief overview of our

procedure, which we first develop for a more general class
of modified gravity theories and generalized coupling
theories and then apply to the MEMe model. We first
attempt to apply the PPN formalism to the Jordan-frame
metric, but we find that to avoid higher-order derivatives of
the PPN potentials in the field equations, counterterms
must be added to the Jordan-frame metric. We then express
the Einstein-frame metric in terms of Jordan-frame varia-
bles so that we can use the simpler field equation (17) in the
PPN analysis.

A. Standard PPN formalism

We follow the conventions of [6] with the post-
Newtonian bookkeeping [with the mass density being
defined as ρ ≔ ρð1þ ΠÞ]:

U ∼ v2 ∼ p=ρ ∼ Π ∼OðϵÞ; ð28Þ

so that the velocity components vi are of order Oðϵ1=2Þ. It
should be mentioned that vi, which are raised components
of the three-velocity in the Jordan frame, do not correspond
directly to the components of uμ but to the raised index
four-velocity uμ in the Jordan frame. Recall that the
distinction between uμ and uμ is necessary because there
are two metric tensors in generalized coupling models. The
components of uμ have the explicit form

u ¼ ðu0;u0v⃗Þ; ð29Þ

where v⃗ is the coordinate three-velocity of the fluid in the
Jordan frame with components vi. In terms of Jordan-frame
fluid quantities, one may use Eqs. (14) and (18) to write the
source of the gravitational field equation (17) as follows:

Tμν ¼ −εðτ1 þ τ2Þuμuν þ τ2gμν: ð30Þ

Following [6] (and the coordinate conventions therein),
we introduce the conserved rest mass density ρ� which is
defined according to the following formula:

ρ� ≔
ffiffiffiffiffiffi
−g

p
u0ρ ¼ jA:

:j ffiffiffiffiffiffi
−g

p
u0ρ: ð31Þ

Given ρ�, one may then define the following PPN
potentials by the differential relations3:

ΔU ¼ −4πGρ�; ð32Þ

ΔVi ¼ −4πGρ�vi; ð33Þ

ΔWi ¼ −4πGρ�vi þ 2∂i∂tU; ð34Þ

ΔΦ1 ¼ −4πGρ�v2; ð35Þ

ΔΦ2 ¼ −4πGρ�U; ð36Þ

ΔΦ3 ¼ −4πGρ�Π; ð37Þ

ΔΦ4 ¼ −4πGp; ð38Þ

and the following potentials by integral relations:

Φ6 ¼ G
Z

ρ�0
½v⃗ · ðx⃗ − x⃗0Þ�2
jx⃗ − x⃗0j3 d3x0; ð39Þ

3We point out to the reader that while the PPN formalism in [6]
is equivalent to that of [17], the definitions of the PPN potentials
have changed (though the PPN parameters are the same); where
the PPN potentials in [17] are defined with respect to ρ, the PPN
potentials in [6] are defined with respect to ρ�. This change results
in a change in the coefficients in front of the potentials Φ1 andΦ2

in Eq. (46) for the metric component g̃00.
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ΦW ¼ G
ZZ

ρ�0ρ�00
x⃗ − x⃗0

jx⃗ − x⃗0j3 ·
�
x⃗0 − x00

jx⃗0 − x00j
�
d3x0d3x00;

−
ZZ

ρ�0ρ�00
x⃗ − x⃗0

jx⃗ − x⃗0j3 ·
�
x⃗ − x00

jx⃗0 − x00j
�
d3x0d3x00: ð40Þ

In the standard PPN formalism, the metric tensor is
expanded as follows:

g
00
¼−1þ2U−2βU2þð2γþ1þα3þζ1−2ξÞΦ1

þ2ð1−2βþ ζ2þξÞΦ2þ2ð1þζ3ÞΦ3

þ2ð3γþ3ζ4−2ξÞΦ4− ðζ1−2ξÞΦ6−2ξΦW; ð41Þ

g
0j
¼ −

1

2
ð4γ þ 3þ α1 − α2 þ ζ1 − 2ξÞVj

−
1

2
ð1þ α2 − ζ1 þ 2ξÞWj; ð42Þ

g
ij
¼ ð1þ 2γUÞδij: ð43Þ

The metric is inserted into the field equations and
expanded to PPN order OðϵÞ; one then matches terms
proportional to each of the potentials in Eqs. (32)–(40) to
obtain the PPN coefficients.

B. Extended PPN formalism

The procedure outlined in the preceding section does not
suffice for certain classes of modified gravity theories. For
instance, one might imagine in four dimensions a rather
general theory of the form (use of the Cayley-Hamilton
theorem has been employed on the rhs):

Rμ
ν þ eμν ¼ A1ðT::ÞTμ

ν þ A2ðT:
:ÞTμ

αTα
ν

þ A3ðT:
:ÞTμ

αTα
βTβ

ν þ BðT:
:Þδμν; ð44Þ

where eμν contains additional geometric or gravitational
terms, Tμ

ν is the energy-momentum tensor, and AiðT:
:Þ

and BðT:
:Þ are scalar functions that are polynomials in

scalar invariants of Tμ
ν up to third order. Examples of such

a theory include the EiBI [5] or the braneworld model of
[21]. We also note that Eq. (44) is also a subcase of the
gravitational field equation given in [16].
We consider a class of type-I MMG theories in which the

source terms in the Einstein frame can be written exclu-
sively in terms of the energy-momentum tensor so that
eμν ¼ 0. Expanding the rhs of Eq. (44) to post-Newtonian
order, one has a term proportional to ρ2; however, the PPN
expression for the Ricci tensor does not contain any term
that can absorb such a term. One may remedy this by
adding a term to g

00
(41) of the form4

2νΨ, where Ψ is a
Oðϵ2Þ potential defined by the following:

ΔΨ ≔ −4πG2ρ�ρ ¼ −4πG2ρ�2 þOðϵ3Þ: ð45Þ

We note here that unlike the standard PPN potentials, this
additional potential Ψ is dimensionful—since the metric
components must be dimensionless, it follows that the
associated parameter ν must also be dimensionful. We
attribute this to the fact that the coefficient for the ρ2 term
which appears in the PPN expansion of (44) introduces an
additional scale into the theory. Later, we shall see this
explicitly when applying this extended PPN formalism to
the MEMe model.
We now turn to the case of generalized coupling theories

as described by Eqs. (1) and (2). For an appropriate choice
of reference frame, the extended PPNmetric for the Jordan-
frame metric would take the form (note the addition of the
term 2νΨ in g̃00)

g̃00 ¼ −1þ 2U − 2βU2 þ ð2γ þ 1þ α3 þ ζ1 − 2ξÞΦ1

þ 2ð1 − 2β þ ζ2 þ ξÞΦ2 þ 2ð1þ ζ3ÞΦ3

þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − ðζ1 − 2ξÞΦ6 − 2ξΦW

þ 2νΨ; ð46Þ

g̃0j ¼ −
1

2
ð4γ þ 3þ α1 − α2 þ ζ1 − 2ξÞVj

−
1

2
ð1þ α2 − ζ1 þ ξÞWj; ð47Þ

g̃ij ¼ð1þ 2γUÞδij: ð48Þ

However, one still encounters a difficulty when attempt-
ing to apply the standard PPN analysis to Eq. (9). As
discussed earlier, the gravitational field equations in the
Jordan frame will contain up to second-order derivatives
of Tμν. It follows that the direct application of the PPN
form to the Jordan-frame metric will introduce terms
involving second derivatives of the fluid potentials
and four-velocity, but the standard PPN formalism and
the extended formalism encapsulated in Eqs. (46)–(48)
are incapable of absorbing these terms. To see this,
consider the following expression for the Einstein-frame
metric gμν:

gμν ¼ Ξ−1Āα
μĀβ

νgαβ: ð49Þ

From Eq. (4), the tensor Āα
μ and the factor Ξ ¼ ΞðA:

:Þ
depend on ρ�, Π and p, and we assume gαβ takes the usual
PPN form given in Eqs. (46)–(48). Upon expanding the
Ricci tensor for gμν as given by (49) into Eq. (9), one will
obtain terms containing derivatives of ρ�, Π and p, which

4Here, we follow the conventions of [6]. If one wishes to use
those of [17], one should instead add a term of the form νΨ°,
where Ψ° is defined similarly to Ψ but with ρ instead of ρ�.
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cannot be absorbed by remaining terms in Eq. (44) if
eμν ¼ 0.5

To eliminate these additional terms, we can add counter-
terms to the metric components g̃μν given in Eqs. (46)–(48)
and then choose coefficients such that Eq. (49) does not
contain the quantities ρ�, Π and p. In general, the counter-
terms take the following form:

g00 ¼ g̃00 þ c0ΔU þ c1ΔΦ1 þ c2ΔΦ2 þ c3ΔΦ3

þ c4ΔΦ4 þ cΨΔΨþ cwΔΦW; ð50Þ

g0j ¼ g̃0j þ dVΔVj þ dWΔWj; ð51Þ

gij ¼ g̃ij þ e0ΔUδij; ð52Þ

where we restrict to terms of order g00 ∼Oðϵ2Þ,
g0j ∼Oðϵ3=2Þ, and gij ∼OðϵÞ. At this stage, one may
collect terms of order ϵ in g00 which yields the
Newtonian potential in the Jordan frame:

ΦJ ¼ U þ ðc0=2ÞΔU; ð53Þ

consistently with what was obtained in (26). We then
choose the coefficients c0−4;Ψ;w, dV;W and e0 so that the
Einstein-frame metric takes the desired form:

g00 ¼ −1þ 2U − 2βU2 þ ð2γ þ 1þ α3 þ ζ1 − 2ξÞΦ1

þ 2ð1 − 2β þ ζ2 þ ξÞΦ2 þ 2ð1þ ζ3ÞΦ3

þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − ðζ1 − 2ξÞΦ6 − 2ξΦW

þ 2νΨ; ð54Þ

g0j ¼ −
1

2
ð4γ þ 3þ α1 − α2 þ ζ1 − 2ξÞVj

−
1

2
ð1þ α2 − ζ1 þ 2ξÞWj; ð55Þ

gij ¼ ð1þ 2γUÞδij; ð56Þ

where again we restrict to terms of order g00 ∼Oðϵ2Þ,
g0j ∼Oðϵ3=2Þ, and gij ∼OðϵÞ. The reader should keep in
mind here that all of the potentials in this expression are
those appearing in Eqs. (46)–(48), which are defined with
respect to Jordan-frame fluid quantities. Therefore this
expression is not a PPN expansion of the Einstein-frame

metric—rather, one should think of Eqs. (54)–(56) as the
Einstein-frame metric expressed in terms of (PPN
expanded) Jordan-frame quantities.
It is worth mentioning at this point that to post-

Newtonian order, the metric gμν retains the form expected
for the PPN gauge in the sense that the spatial components
gij do not acquire cross terms. It should also be mentioned
that we are in fact working in a PPN gauge since g̃ij is
diagonal and depends strictly on the potentials (32)–(40)—
from Chap. 4 of [6], we expect that a non-PPN gauge will
introduce an additional potential. To clarify, one first
chooses the gauge in which g̃μν has the form given in
Eqs. (46)–(48); after the gauge is chosen, the set of
counterterms in Eqs. (50)–(52) for gμν is sufficient to
characterize the PPN expansion.
The proposed modification to the PPN parameterization

has been motivated by necessity; without these modifica-
tions, one cannot apply the PPN formalism to a class of
type-I MMGs and GCTs whose equations of motion can be
written in the form of Eq. (44) (with eμν ¼ 0), including the
MEMe model. Though we have provided here a prelimi-
nary discussion regarding the theoretical interpretation for
the new potential Ψ, it is perhaps appropriate to also
understand the physical interpretation ofΨ and the counter-
terms in a phenomenological context. We will attempt to
address this point in later sections by studying the net effect
of these quantities on some post-Newtonian systems in the
MEMe model.

C. MEMe model coefficients

We now apply the extended PPN formalism described
above to the MEMe model. First, we note that in Eq. (49),
Ξ ¼ 1 for the MEMe model [compare Eqs. (2) and (6) and
recall thatA ¼ 4 on shell].We then demand that theEinstein-
frame metric gμν has the form given in Eqs. (54)–(56), and
upon comparison with Eq. (49) for the MEMe model, one
obtains the following values for the coefficients of the
counterterms:

c0 ¼
3q
8πG

; c1 ¼
5q

16πG
; c2 ¼ −

3ð3γ þ 2Þq
8πG

;

c3 ¼
3q
8πG

; c4 ¼
3q
8πG

; cΨ ¼ 21q2

64πG2
; ð57Þ

e0 ¼
q

8πG
; cw ¼ 0; dV ¼−

q
2πG

; dW ¼ 0: ð58Þ

The expression for the Einstein-frame metric gμν in
Eqs. (54)–(56) is then substituted into Eq. (17), and we
find that all of the standard PPN parameters are exactly the
same as that of general relativity (γ ¼ β ¼ 1, all others
zero). However, the new parameter ν, which has the value
ν ¼ 0 in general relativity, has the following value in the
MEMe model:

5One might suppose that eμν contains terms with derivatives of
ρ�, Π and p, which can cancel the additional terms introduced by
Ξ and Āα

μ. Derivatives of ρ�, Π and p correspond to higher-order
(>2) derivatives of the potentials, which correspond to higher-
order derivatives of the metric—one then has a higher-order
theory of gravity, which (excluding frame-dependent theories
like Hořava-Lifshitz gravity [22] and a certain class of type-II
MMG theories [23–26]) generically suffers from Ostrogradskian
instability [27,28].
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ν ¼ 3q
2G

: ð59Þ

As anticipated by our remarks in the preceding section,
the parameter ν corresponds to the scale q ¼ 1=λ that
appears in the MEMe model.

V. MONOPOLE TERM FOR PPN POTENTIALS

A. General analysis

We will now investigate the physical effects of the
modification of the PPN monopole term associated with
Ψ. We begin by assuming that the matter distribution is
compact and static (so that vi ¼ 0) and consider what
happens outside the matter distribution. One may then
define an effective gravitational potential in the following
manner:

Φ ≔
1

2
ð1þ g00 þ 2βU2Þ: ð60Þ

Outside a matter distribution, the counterterms vanish—
recall that outside of a matter distribution, the Einstein-
and Jordan-frame metrics coincide. For a theory with
no preferred location effects (ξ ¼ 0), the effective gravita-
tional potential takes the form (we set vi ¼ 0 so that
Φ1 ¼ Φ6 ¼ 0)

Φ ¼ U þ 2β2Φ2 þ β3Φ3 þ 3β4Φ4 þ νΨ; ð61Þ

where (following the reasoning in Chap. 40 of [29])

β2 ≔
1

2
ð1 − 2β þ ζ2Þ;

β3 ≔ 1þ ζ3;

β4 ≔ γ þ ζ4: ð62Þ

Note that up to an overall factor of 2, Φ consists of all
terms in g00 such that ΔΦ can be written as an algebraic
function of ρ, Π, p, and U up to fourth order in ϵ. We
consider the case where the gravitational theory is fully
conservative, with the parameter choices α1 ¼ α2 ¼ α3 ¼
ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0 (in addition to ξ ¼ 0); one has
β2 ¼ ð1 − 2βÞ=2, β3 ¼ 1, and β4 ¼ γ.
We now consider the multipole expansion for the

Newtonian potential:

ΦðxÞ ¼
Z

Gρeðx0Þ
jx − x0j d

3x0; ð63Þ

where ρe is an effective energy density given by

ρe ¼ ρ�½1þ 2β2U þ β3Πþ 3β4p=ρ� þ νGρ�: ð64Þ

The monopole moment is given by

ΦðxÞ ¼ GM
r

þOðr−2Þ; ð65Þ

where

M ≔
Z

ρeðx0Þd3x0: ð66Þ

The definition given in Eqs. (64) and (66) is motivated by
Eq. (40.4) in [29]; it is in fact identical in the limit ν → 0.
For the case of a stationary spherical massWi ¼ Vi ¼ 0,

A¼Φ1¼0. Making use of the fact that ρ2e ¼ ρ�2 þOðϵ3Þ,
and keeping only the monopole terms, the metric to post-
Newtonian order is [cf. Eq. (40.3) of [29] ]

g00 ¼ −1þ 2GM
r

−
2βG2M2

r2
; ð67Þ

g0j ¼ 0; ð68Þ

gij ¼
�
1þ 2γGM

r

�
δij: ð69Þ

It follows that for a spherically symmetric matter
distribution, the additional PPN potential can be absorbed
into the mass, as one might have expected. This suggests
that outside of a spherically symmetric matter distribution,
the effects of the additional potential Ψ cannot be disen-
tangled from the other potentials.
To distinguish the effects of the potential Ψ and

parameter ν, one should consider the internal structure of
the source. In particular, if one has a detailed model for the
source itself, it may be possible to disentangle the effects of
the parameter ν from the total mass of a spherical source. To
see how one might distinguish the effects of an additional
potential Ψ, we consider a given matter distribution and
split the mass M into two parts: one which depends on the
original PPN parameters and one which depends on the
new parameter ν. Defining the potential

Φ̄ ≔ Φ − νΨ ð70Þ

and defining ρ̄e ≔ ρe − νGρ�ρ, one has the result

Φ̄ðxÞ ¼ GM̄
r

þOðr−2Þ; ð71Þ

where the mass defined with respect to the original PPN
potentials takes the form

M̄ ≔
Z

ρ̄eðx0Þd3x0: ð72Þ

Now we consider the standard multipole expansion for
the new PPN potential:
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ΨðxÞ ¼
Z

G2ρ�ðx0Þρðx0Þ
jx − x0j d3x0: ð73Þ

Now ρ�ρ ¼ ρ̄2e þOðϵ3Þ. The monopole moment is
given by

ΨðxÞ ¼ G2μ2

r
þOðr−2Þ; ð74Þ

where

μ2 ≔
Z

ρ�ðx0Þρðx0Þd3x0 ¼
Z

ρ̄eðx0Þ2d3x0 þOðϵ3Þ: ð75Þ

The relationship between M̄ and μ2 is sensitive to the
internal structure of the source. For instance, if one
considers the following Gaussian profile for ρ̄e:

ρ̄eðxÞ ¼
M̄

ð ffiffiffiffiffiffi
2π

p
σÞ3 exp

�
−

r2

2σ2

�
; ð76Þ

then one has for μ2

μ2 ¼ M̄2

8π3=2σ3
: ð77Þ

Note that μ2 depends on the size σ for the source.
Motivated by the Gaussian expression, one can use Eq. (77)
as a parameterization for the internal structure of the source,
with σ being a parameter which represents a characteristic
length scale for the source. It follows that6

M ¼ M̄ þ ν
GM̄ρ̄C
6

ffiffiffi
π

p ; ð78Þ

where ρ̄C ≔ 3M̄=4πσ3 is the compactness of the source.
Given some matter distribution, the mass M̄ is the post-
Newtonian mass in the GR limit ν → 0 for the MEMe
parameter choice.

B. MEMe model analysis

It should be mentioned that this dependence on the
compactness is only apparent when a detailed description
of matter is taken into account. Since MEMe coincides with
GR outside matter sources, the inertial mass outside the
source is equivalent to the gravitating mass M. It follows
that one can only compute the difference between the GR
value M̄ and the MEMe value M when computing the
gravitating mass directly from the density. To understand
this difference, consider lowering a particle with a small

mass m into a matter distribution satisfying the distribution
in (76). We consider this process in the Einstein frame
since the gravitating massM in the MEMe model is defined
in this frame. The gravitational binding energy between
the particle and the matter distribution is given by
m½Φ − βU2� ¼ m½Φ̄ − βU2 þ νΨ�, where

ΨðxÞ ¼ G2M̄ρ̄C
6

ffiffiffi
π

p erfðrσÞ
r

: ð79Þ

As discussed in [1], a stability argument suggests that
q < 0, which in turn suggests ν < 0. Since ΨðxÞ > 0, the
gravitational binding energy of the particle within a matter
distribution is decreased in the MEMe model compared to
GR. This result indicates that in the MEMe model, the
gravitating mass of an object outside matter sources is less
than the sum of its parts due to a weakening of the
gravitational binding energy. If the inertial mass and the
gravitating mass of an object in a vacuum are the same, then
one may then place constraints on the parameter ν by
measuring the mass of an object, disassembling it into its
constituent parts, and measuring the mass of the individual
components.

C. Constraints on the MEMe model

One can in principle place a constraint on the parameter ν
without requiring the equivalence of inertial and gravitating
masses. To see this, first note that one can interpret Eq. (78)
as resulting from a dependence in the effective gravitational
constant on the compactness ρ̄C of the source. For a source
mass M̄ and the Gaussian profile one has the following
expression for the effective gravitational constant:

Geff ¼ G0

�
1þ νG0ρ̄C

6
ffiffiffi
π

p
�
: ð80Þ

Recent experiments [9] with spherical stainless steel
(SS 316) source masses, which have a density of
∼7.87 × 103 Kg=m3, constrain Newton’s constant to a
fractional uncertainty of about 3 × 10−5. While the experi-
ment in [9] alone cannot place a constraint on ν, one might
imagine a variation of the experiment in which the spherical
source masses can be disassembled into thick spherical
shells. If the same experiment is performed for each
shell individually and then again for the fully reassembled
source mass, one can search for differences in the effective
gravitational constant—such differences are evidence of a
weakening or strengthening of the gravitational binding
energy when masses are brought together. Assuming that
fractional uncertainties similar to those of [9] can be
achieved, one can in principle constrain ν up to a value
on the order of ν ∼ 10−7 m3=Kg, or 10−24 m3=J, in units
of inverse energy. This in turn can place a strong constraint
on q:

6We note that a σ-dependent shift in the mass was seen in a
different model obtained from considering quantum corrections
to the gravitational potential to post-Newtonian order—see
Eq. (2.74) of [30] and also the approach in [31].
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jqj ⪅ 10−24 m3=J: ð81Þ

which is 10 orders of magnitude stronger than the speed
of light constraint (jqj < 2 × 10−14 m3=J) in [1], though
still 12 orders of magnitude weaker than scales correspond-
ing to the inverse of the highest energy densities
(∼14 GeV=fm3 ≈ 2.2 × 1036 J=m3) probed in accelerator
experiments to date [32,33] and 26 orders of magnitude
weaker than that from a TeV-scale breakdown.

VI. LAPLACIAN COUNTERTERMS AND ORBITS

A. Circular orbits for conservative theories

We focus now on the effect of the Laplacian counter-
terms in the modified PPN metric (50)–(52) on circular
geodesics in the post-Newtonian limit. For simplicity, we
assume that matter sources are spherically symmetric and
stationary, so that Vi ¼ 0, Wi ¼ 0, Φ1 ¼ 0, and Φ6 ¼ 0.
We also consider a conservative theory, which corresponds
to the choice α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0 in
the original PPN analysis of [6]. The line element then has
the form (dΩ2 being the line element on the unit two-
sphere)

ds2 ¼ fdt2 þ hðdr2 þ r2dΩ2Þ: ð82Þ

To simplify the analysis, we neglect internal energy
density and internal pressure. The functions f and h take
the following forms:

f ¼ −1þ 2U − 2U2 þ c0ΔU − 2Φ2 þ c2ΔΦ2

þ 2νΨþ cΨΔΨ; ð83Þ

h ¼ 1þ 2U − e0ΔU: ð84Þ

For a spherically symmetric matter distribution, one can
obtain solutions for the potentials by directly integrating a
Poisson equation of the form Δψ ¼ −4πGρs, which in
spherical symmetry may be written explicitly:

1

r2
∂
∂r

�
r2
∂ψðrÞ
∂r

�
¼ −4πGρsðrÞ; ð85Þ

where ρs is a source function. This can be integrated to
obtain the solution

ψðrÞ ¼ C1 þ
Z

r

r0

1

y2

�
C2 − 4πG

Z
y

y0

ρsðy0Þy02dy0
�
dy: ð86Þ

Given a Jordan-frame geodesic xμðτÞ parameterized by
proper time τ, one has the following conserved quantities:

e ¼ gμ0
dxμ

dτ
¼ f

dt
dτ

;

l ¼ gμ3
dxμ

dτ
¼ r2h

dϕ
dτ

: ð87Þ

From the unit norm condition for the four-velocity, one
can show that the specific energy e must have the form

e2 ¼ −fh
�
dr
dτ

�
2

−
f
r2h

l2 − f: ð88Þ

The effective potential may be obtained by considering
the turning point (dr=dτ ¼ 0) expression for e2:

Veff ¼ −f
�
l2

r2h
þ 1

�
: ð89Þ

We now consider circular orbits and assume spherical
symmetry [f ¼ fðrÞ, h ¼ hðrÞ]; circular orbits lie at the
minima of the effective potential and are given by the
condition V 0

effðrÞ ¼ 0. One can solve V 0
effðrÞ ¼ 0 for

the specific angular momentum l to obtain

l ¼ rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf0

fðrh0 þ 2hÞ − rhf0

s
; ð90Þ

and a comparison with Eq. (87) yields the proper tangential
velocity:

r
dϕ
dτ

¼ l
rhðrÞ : ð91Þ

From the line element Eq. (82), one has dt=dτ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ − hðrÞv2

p
, which yields the tangential coordinate

velocity:

vðrÞ≡ r
dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−rf0ðrÞ
rh0ðrÞ þ 2hðrÞ

s
: ð92Þ

B. Circular orbits in the MEMe model

TheMEMemodel is a conservative theory in the sense of
[6], as the standard PPN parameters are the same as that of
GR. The extra parameters in the extended PPN formalism
have the values given in Eqs. (57)–(59), which differ from
that of GR, so one expects circular orbits in the MEMe
model to differ from those of GR, given some profile for the
matter distribution. We first consider a Gaussian profile:

ρ� ¼ ρ0e−r
2=2σ2 ; ð93Þ

with ρ0 being the central density and σ a characteristic
scale. Equation (86) may be used to obtain the potentials:
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U ¼ 2
ffiffiffi
2

p
π3=2Gρ0σ3

r
erf

�
rffiffiffi
2

p
σ

�
;

Φ2 ¼ −
4π5=2G2ρ20σ

4

r

�
erf

�
rffiffiffi
2

p
σ

�� ffiffiffi
π

p
rerf

�
rffiffiffi
2

p
σ

�

þ 2
ffiffiffi
2

p
σe−r

2=2σ2
�
− 2σerf

�
r
σ

��
;

Ψ ¼ π3=2G2ρ20σ
3

r
erf

�
r
σ

�
; ð94Þ

which may be used to compute the tangential velocity vðrÞ
as given by Eq. (92). It turns out that a large modulus for q
is required to obtain rotation curves that differ from q ¼ 0
in a discernible way. For the Gaussian model, the tangential
velocity of a circular orbit as a function of radius (rotation
curve) is plotted in Fig. 1, for the parameter choices ρ0 ¼
10−6 and σ ¼ 1 (with G ¼ c ¼ 1), with one curve corre-
sponding to q ¼ 0 and another corresponding to q ¼ 10.

The rotation curve for q ¼ 10 is virtually identical to that of
q ¼ 0 at large radii (as illustrated in the plot for the
difference Δv ≔ vGR − vMEMe) and has an increased value
for relatively small values of r. One might expect this
behavior; for instance, one may note that c0ΔU ∝ −qρ > 0
(for q < 0) and upon comparison, one finds that the slope
for c0ΔUðrÞ ∝ ρ�ðrÞ [as given by Eq. (93)] matches the
slope for the potentialUðrÞ; it follows that the counterterms
enhance the force in the radial direction, which in turn
increases vðrÞ. The convergence to the GR rotation curve at
large r is expected, as one expects the MEMe model to
converge to GR at low density. These general features
persist in the other examples we consider.
Another relevant matter profile is the isothermal one:

ρ� ¼ Mh

4πahr2
: ð95Þ

Such a profile is known to yield flat rotation curves in
Newtonian gravity and is of interest (upon regularization of
the singularity at r ¼ 0) for modeling dark matter halos.
The curve vðrÞ is plotted in Fig. 2 for the parameter choices
Mh ¼ 10−2 and ah ¼ 103. Again, one sees behavior similar
to that of the Gaussian case—the q ¼ −10 curve only
differs (and has a lower value) from the q ¼ 0 case at small
values for r, as expected. The divergence in the rotation
curves at small r is expected, since ρ� diverges in the limit
r → 0. In Fig. 3, we plot vðrÞ for the combined Gaussian
and isothermal matter distributions

ρ� ¼ ρ0e−r
2=2σ2 þ Mh

4πahr2
; ð96Þ

with the same parameter values as those of Figs. 1 and 2.
Again, we note the velocities are increased at small r.

(a)

(b)

FIG. 1. Plot (a) illustrates tangential velocity v of circular
orbits for the Gaussian matter distribution (93). Two cases are
compared: q ¼ 0 [in blue] and q ¼ −10 [in orange], and our
parameter choices are ρ0 ¼ 10−6 and σ ¼ 1 (with G ¼ c ¼ 1).
It should be mentioned that for jqj ≠ 0, vðrÞ generally becomes
imaginary for values of r > 0 less than some value. Plot
(b) illustrates the difference in rotation curves, where Δv ¼
vGR − vMEMe.

FIG. 2. This plot illustrates tangential velocity v of circular
orbits for the isothermal matter distribution (95). Two cases are
compared: q ¼ 0 [in blue] and q ¼ −10 [in orange], and the
parameter choices here are Mh ¼ 10−2 and ah ¼ 103 (with
G ¼ c ¼ 1). Again, as in Fig. 1, for q ≠ 0, vðrÞ becomes
imaginary for values of r > 0 less than some value.
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In all cases, we find that while the Laplacian counter-
terms have some effect on the behavior of rotation curves,
the value of q must be rather large in order to distinguish
the MEMe model and GR, and even then, this occurs only
at small values of r, as illustrated in the plots for Δv. If one
expects the MEMe model to break down at the TeV scale,
then 1=jqj is expected to be 30 orders of magnitude larger
than the average density of Earth; for realistic astrophysical
systems (galaxies), one might expect 1=jqj and the matter
density to differ by an even greater amount. For the
Gaussian example, the central density ρ0 in Fig. 1 is 6
orders of magnitude below the density scale 1=jqj ¼ 10−1

at which the MEMe model breaks down. For the isothermal
example, the average density 3Mh=4πa3h is 11 orders of
magnitude below the density scale 1=jqj ¼ 10−1.
While these results suggest that signatures of the MEMe

model are unlikely to appear in galactic rotation curves and
dilute matter distributions, the MEMe model may still
produce measurable differences in the interiors of neutron
stars. The density for a neutron star is roughly an order
of magnitude less than the highest energy-density
(∼14 GeV=fm3 ≈ 2.2 × 1036 J=m3) states of matter probed
to date in accelerator experiments [32,33]. If the scale for
the cutoff density is assumed to be an order of magnitude
higher than that of the quark-gluon density, so that it is 2
orders of magnitude higher than the neutron star density,
then upon modeling a neutron star with a Gaussian matter
distribution, the term c0ΔU can become comparable to
−2Φ2 deep within the distribution. In particular, one can
choose ρ0 ¼ M=2

ffiffiffi
2

p
π3=2σ3, with the normalization

M ¼ G ¼ 1 and σ ¼ 6. In this case, the magnitude of
the counterterm c0ΔU is roughly ∼0.75 of the post-
Newtonian correction −2Φ2 when r ¼ σ=10, though at
the same radius, one finds −c0ΔU=2U2 ∼ 1.2 × 10−3 and
−c0ΔU=2U ∼ 1.7 × 10−4, so the corrections are still rather
small. However, this rough calculation suggests that the
corrections from the MEMe model may modify the proper-
ties of the Neutron star in a measurable way.

VII. SUMMARY AND DISCUSSION

In this article, we have extended the PPN formalism to
handle a subclass of type-I MMGs and GCTs and have
applied the extended formalism to the MEMe model.
Outside matter sources the Einstein frame and the
Jordan frame coincide with each other and the field
equations in either frame agree with those in GR.
However, in the nonvacuum case, a PPN analysis for
GCTs and the MEMe model should be performed with
respect to the Jordan-frame metric gμν. In fact, matter is
minimally coupled to the Jordan-frame metric gμν, and it is
in this sense that the Jordan-frame metric is the physical
metric. In order to perform a PPN analysis for gμν, it is
necessary to introduce an additional (dimensionful) poten-
tial Ψ and counterterms (the latter vanish outside a matter
distribution) constructed from the Laplacians of the PPN
potentials. This can be understood considering the form of
the field equations in the Jordan frame, which contains the
energy density and its derivative up to the second order. We
have found that with the exception of the counterterm
parameters and the parameter ν associated with Ψ, the
parameters in the extended PPN formalism are the same as
those of GR.
The new potential Ψ and its associated parameter ν are

not dimensionless. One might ask whether it is possible to
define a dimensionless potential from Ψ. This can be done
by choosing an appropriate length scale; however, such a
procedure is not necessarily model independent. For
example, to post-Newtonian order, a theory having the
form of Eq. (44) would necessarily include a ρ�2 term on
the rhs, the coefficient of which would introduce an
additional scale. Indeed, each of the additional coefficients
appearing on the rhs will introduce additional scales, and
any of these can provide a reference scale to make Ψ
dimensionless. To avoid the choice of one scale rather
than the other, here we have chosen to leave Ψ and ν
dimensionful.
Given some compact, spherical matter distribution, we

have considered the monopole term in a standard multipole
expansion and have found that to post-Newtonian order, the
MEMe model is indistinguishable from GR in vacuum
regions outside the matter distribution. This is not particu-
larly surprising, as the Einstein- and Jordan-frame metrics
coincide in vacuum, and one can for a single fluid in the
Einstein frame absorb the differences from GR by a
redefinition of fluid density and pressure. However, the
differences betweenMEMe and GR become apparent when
the details of the matter distribution are taken into account.
The monopole expansion indicates that in MEMe, the
effective gravitational constant G depends on the internal
structure of the source masses, and we argue that one can
use this dependence to place strong constraints on the free
parameter q of MEMe. In particular, we argue that
(conceptual issues aside; see the next paragraph) a modi-
fication of the experiment described in [9] may improve the

FIG. 3. Rotation curves for the combined Gaussian (93) and
isothermal matter distributions (95), using the same parameter
choices as in Figs. 1 and 2.
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constraint on q over the speed of light constraint of [1] by
10 orders of magnitude. In particular, we propose an
experiment in which the spherical source masses are
disassembled into concentric “thick” shells, and the active
gravitational masses of the individual shells and the
assembled spheres are compared.
This proposal might bring up a conceptual issue regard-

ing the gravitational binding energy between concentric
thick shells of matter. In GR, this situation can be treated
using the standard junction and thin-shell formalism of
Israel [34]. Since the geometry outside the shells is
essentially that of GR, one might ask whether the binding
energy is modified at all. This question depends on the
behavior of the theory at the boundaries of spatially
compact matter distributions, which can be rather subtle
in certain theories of modified gravity. In the case of EiBI
gravity [5], which shares a structure similar to that of the
MEMe model in the weak-field limit [it falls into the class
of models described by Eq. (44) and has a Newtonian
potential resembling Eq. (26)], it was argued in [18] that
discontinuities in matter distributions, such as those at the
boundaries of stars, can generate unacceptable curvature
singularities in EiBI gravity. However, we have argued that
in the Newtonian limit of the MEMe model, such singu-
larities correspond to strong gravitational forces acting on
matter which lead to a rearrangement of matter distribu-
tions, so that the gravitational backreaction may resolve
such singularities—similar arguments have been made for
EiBI theory [19] (see also [20]). A detailed investigation of
this issue beyond the Newtonian limit in the MEMe model
will be left for future work.
Finally, we compared the post-Newtonian predictions of

the MEMe model and GR within a matter distribution to
understand the effects of the counterterms that appear in the
gravitational potential. In particular, we studied the behav-
ior of circular geodesics in the presence of spherically
symmetric Gaussian and isothermal matter distributions.
Plots of the tangential velocity rotation curves indicate that
the predictions of the MEMe model only differ signifi-
cantly from that of GR only for high matter densities and
large values for the parameter q. It follows from this result
that the MEMe model alone cannot describe galactic
rotation curves in the absence of dark matter—in fact,
the MEMe model (slightly) increases orbital velocities
at small radii—and the differences in the behavior of
geodesics between the MEMe model and GR are minimal

even within a distribution of dark matter. These results also
indicate that, in general, the counterterms do not have a
strong effect on the geodesics unless the parameter q is
increased to an unrealistically large value. On the other
hand, a rough estimate suggests that, for a cutoff density
1=q an order of magnitude higher than the highest densities
probed in accelerator experiments, the MEMe model may
yield measurable corrections to the properties of neu-
tron stars.
In the present paper, we have considered the MEMe

model as a type-I MMG theory and have focused on its
gravitational aspects. Alternatively, in the Einstein frame,
one can consider the MEMe model as a theory of a
modified matter action minimally coupled to GR.
Indeed, after integrating out the auxiliary tensor field
Aμ

α the matter action in the Einstein frame is modified
in such a way that the fields in the standard model of
particle physics acquire additional (renormalizable and
nonrenormalizable) interactions among themselves. In
future work, it is certainly interesting to study phenom-
enological consequences of those extra interactions (that
remain even in the G → 0 limit) and their implications to
collider physics, cosmic rays, early Universe cosmology,
and so on.
The extended PPN formalism developed in the present

paper may be applied to some of other type-I MMG
theories. It is worthwhile investigating the PPN constraints
on theories in this class and also extending the formalism so
that it can be applied to other type-I MMG theories and
some type-II MMG theories as well.
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