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3Mesoamerican Center for Theoretical Physics, Universidad Autónoma de Chiapas, Ciudad Universitaria,

Carretera Zapata Km. 4, Real del Bosque (Terán), 29040 Tuxtla Gutiérrez, Chiapas, México
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We obtain the mass parameter for a class of static and spherically symmetric regular black holes (BHs)
(namely Bardeen, Hayward and Ayón-Beato-García BHs) which are solutions of Einstein’s field equations
coupled to nonlinear electrodynamics (NED) in terms of redshifts and blueshifts of photons emitted by
geodesic particles (for instance, stars) orbiting around these BHs. The motion of photons is not governed by
null geodesics for these type of spacetime geometries which reflects the direct effects of the electrodynamic
nonlinearities in the photon motion; hence, an effective geometry needs to be constructed to study null
trajectories [M. Novello et al., Phys. Rev. D 61, 045001 (2000)]. To achieve the above, we first study the
constants of motion from the analysis of the motion of both geodesic particles moving in stable circular
orbits and photons ejected from them and reaching a distant observer (or detector) in the equatorial
plane for the above mentioned regular BHs. The relationship between red/blueshifts of photons and the
regular BH observables is presented. We also numerically find the bounds on the photon shifts for these
regular BH cases.
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I. INTRODUCTION

The existence of black holes (BHs) in the cosmos has
been confirmed by recently detected gravitational waves
(GWs) by LIGO and Virgo collaborations [1,2] and with
the first direct image of compact object M87 by the Event
Horizon Telescope (EHT) collaboration [3–8]. BHs, which
are characterized by three externally observed classical
parameters namely, mass M, spin a, and charge Q, are one
of the most interesting compact objects predicted by
Einstein’s general relativity theory (GRT), as well as by
other modified gravitational theories (i.e., f(R) [9], Gauss-
Bonnet [10], Lovelock [11], massive gravity [12], modified
gravity [13], string theory [14], and some more.).
Hence, to know about the properties of BHs and the

physics in their vicinity, it is important to determine BH
observables (i.e.,M, a, and Q) in terms of quantities which
are astrophysically relevant. With this motivation at hand,
Herrera and Nucamendi (hereafter known as HN) came up
with an algorithm to obtain the mass and spin parameters of

a Kerr BH as a function of red/blueshifts (zr and zb,
respectively) of photons emitted by geodesic particles (say
stars) orbiting in stable circular orbits around it and the
radius of their respective orbits [15]. In their work they
found an explicit expression for the parameter a in terms of
zr, zb, radius of circular orbit and the parameter M of Kerr
BH. However, they argued that parameter M cannot be
found explicitly as it satisfies an eighth order polynomial in
M and one needs to find it numerically. Later, the HN
algorithm was used to obtain the observables of boson stars
and Reissner-Nordström BH in [16] and for rotating Kerr-
MOG BH in [17]. As HN theoretical approach has been
used only for a few compact objects till now, it is important
to develop more theoretical templates using HN algorithm,
such as if we have a set of observational data containing
red/blueshifts emitted by geodesic particles orbiting around
a BH at different radii fzr; zb; rg, then it is possible to
constrain the values of BH observables using that data set.
Additionally, it is widely known in GRT that collapsing

matter forms a spacetime singularity if the strong energy
condition and the existence of global hyperbolicity hold
[18,19]. A singularity is a location in spacetime where the
laws of normal physics breaks down. However, it is also
well established that these singularities are only due to the
limitations of GRT and must be get rid of in a quantum
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gravity theory. Though we do not have any trustable theory
of quantum gravity till now, many phenomenological
attempts have been made to get rid of these spacetime
singularities and study its effects. In this context, many
researchers proposed BH solutions even in GRT which are
popularly known as regular BHs [20–24]. These types of
BH solutions do have an event horizon reh but no spacetime
singularities. In these regular BHs models the singularity
theorem is bypassed in a way such that these BH solutions
only satisfy the weak energy condition and not the strong
one. It is important to note that these (regular) BHs are not
the solution of Einstein vacuum field equations, but can be
found either by using nonlinear electrodynamics, or by
revamping the gravity. Interestingly, the recent research on
gravitational wave echoes by Abedi and Afshordi [25] also
gave a hint about the existence of quantum BHs.
Motivated by this line of research, in this paper we

specifically infer the mass parameter of static and spheri-
cally symmetric (SSS) Bardeen, Hayward and Ayón-Beato-
García (ABG) BHs in terms of red/blueshifts of photons
emitted by geodesic particles moving in their stable circular
orbits around these regular BHs (see Fig. 1 for pictorial
representation of the setup used). In recent times, these
three SSS regular BHs gain lot of attentions from the
researchers and appeared in many notable works on geo-
desics of particles [26–35], quasinormal modes [36–40],
gravitational lensing [41–43], thermodynamics of BHs
[44,45], BH as a particle accelerator [46,47]. Also, these
regular BHs have been studied in [48–72]. It is worth it to
point out here that we consider that, without loss of
generality due to spherical symmetry, the whole setup
which comprises of the emitter (star), detector (observer)
and photons will lie in the equatorial plane (θ ¼ π=2)
of BH.
The remainder of paper is organized as follows: In

Sec. II, we give a brief overview of the HN algorithm and
note down the general form of some key quantities for a
SSS spacetime that are important for later sections.
Additionally, in Sec. II A we also find the expressions like

effective potential (Veff ), conserved energy per unit mass
(E), conserved orthogonal component of orbital angular
momentum per unit mass to the azimuthal rotation (L),
double derivative of (Veff ), azimuthal and time components
of 4-velocity (i.e., Uϕ and Ut), angular velocity (Ω) of the
geodesic particles moving in circular orbits in the equato-
rial plane around the SSS of compact objects and redshift
(zr) of the photons emitted from them. In Sec. III, we work
with the metric function fðrÞ for Bardeen regular BHs,
discuss the properties of event horizon, find the associated
explicit expressions for conserved quantities E and L for
geodesics particles moving around these BHs in stable
circular orbits with the help of general formulas found in
Sec. II. Later, we obtain the mass parameterM as a function
of frequency shift z, radius of stable circular orbits re (later
for simplicity used as r) and the parameter g. We also
verified our results with the Schwarzschild BH in the limit
g → 0. Finally, in Sec. III, we graphically find the bounds
on frequency shift z and analyze the mass parameter M for
Bardeen regular BH as a function of r and z. These analyses
must be carried out numerically; hence, in this section, we
also provide a numerical algorithm which is employed with
the regular Hayward and ABG BHs in Sec. IV and V
respectively. It is worth mentioning that we also used
equations of motion for photons emitted by geodesic
particle and traveling along null geodesics in the effective
geometry [73] before getting detected by an observer
(residing at a far away location from the emitter). We
finally present a summary of our work and conclude with
the results in Sec. VI. Further, by completeness, the
calculation of effective metrics for Bardeen, Hayward
and ABG BHs spacetimes is presented in the Appendix,
in which we have explicitly obtained the effective metric
components for these regular BHs spacetimes using the
prescription of the geometric optic approach in NED
theories given originally in [73] and later in [74–76].
Throughout the paper, we work with the sign conventions
ð−;þ;þ;þÞ and use the spherical polar coordinate
system. Greek letters denote the spacetime indices, while
Latin letters use for space indices only. Unless otherwise
stated, geometric units are used for the fundamental
constants, c ¼ GN ¼ 1.

II. BRIEF OVERVIEW OF HERRERA-
NUCAMENDI THEORETICAL APPROACH

The starting point of the HN [15] theoretical approach, is
the definition of the frequency shift z associated to the
emission and detection of photons

1þ z ¼ ωe

ωd
: ð1Þ

Here ωe is the frequency emitted by an observer moving
with a photon emitter particle at the point e and ωd the
frequency detected by an observer far away from the source
of emission. These frequencies are given by

FIG. 1. Pictorial representation of the setup in which a massive
geodesic test object is moving around a BH in a stable circular
orbit. Here, emitter, observer, and the trajectory of photons all lie
in the equatorial plane ðθ ¼ π

2
Þ.
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ωe ¼ −kμUμje;ωd ¼ −kμUμjd; ð2Þ

where Uμ ¼ ðUt; Ur; Uθ; UϕÞ is the 4-velocity of a particle
that moves in a geodesic trajectory in certain spacetime,
particularly we deal with static spherically symmetric
spacetimes

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3Þ

The geodesic particles are emitting photons which have
4-momentum kμ ¼ ðkt; kr; kθ; kϕÞ that move along null
geodesics kμkμ ¼ 0.
In order to compute the frequencies (2) we need to find

Uμ as well as kμ. The 4-velocities Uμ can be found by
considering the Euler-Lagrange equations

∂L
∂xμ −

d
dτ

�∂L
∂ _xμ
�

¼ 0; ð4Þ

with the Lagrangian L given by

L ¼ 1

2
½gtt_t2 þ grr _r2 þ gθθ _θ

2 þ gϕϕ _ϕ
2�; ð5Þ

being _xμ ≡ dxμ
dτ and τ the proper time. Since the metric (3)

depends solely on r and θ there are two quantities that are
conserved along the geodesics

pt ¼
∂L
∂_t ¼ gtt_t ¼ gttUt ¼ −E;

pϕ ¼ ∂L
∂ _ϕ ¼ gϕϕ _ϕ ¼ gϕϕUϕ ¼ L: ð6Þ

From (6) two components of the 4-velocity vector are
readily found

Ut ¼ −
E
gtt

¼ E
fðrÞ ; Uϕ ¼ L

gϕϕ
¼ L

r2sin2θ
: ð7Þ

The normalized 4-velocity condition

−1 ¼ gttðUtÞ2 þ grrðUrÞ2 þ gθθðUθÞ2 þ gϕϕðUϕÞ2: ð8Þ

renders

ðUrÞ2 þ fðrÞVeff ¼ 0; ð9Þ

here Veff is an effective potential given by

Veff ¼ 1þ r2Uθ −
E2

fðrÞ þ
L2

r2 sin2 θ
: ð10Þ

The 4-momentum kμ can be obtained in a similar
fashion. Using the same Lagrangian (5) one gets two

conserved quantities for photons: the energy and the
orthogonal component of the angular momentum to the
azimuthal rotation respectively

Eγ ¼ fðrÞkt; Lγ ¼ r2sin2θkϕ: ð11Þ

Thereby kt and kϕ can be written in terms of Eγ and Lγ

respectively, which are needed in (2) which in turn are
required to obtain 1þ z which reads now as

1þ z ¼ ðEγUt − LγUϕ − Urkr=fðrÞ − r2UθkθÞje
ðEγUt − LγUϕ −Urkr=fðrÞ − r2UθkθÞjd

: ð12Þ

Astronomers report the observational data in terms of a
kinematic frequency shift zkin defined as zkin ¼ z − zc
where zc known as the central frequency shift, corresponds
to a gravitational frequency shift of a photon emitted by a
static particle located in on the line going from the center of
coordinates to the far away observer (represented by the
green zig-zag line in Fig. 1). Hence

1þ zc ¼
ðEγUtÞje
ðEγUtÞjd

¼ Ut
e

Ut
d
: ð13Þ

The kinematic redshift zkin ¼ ð1þ zÞ − ð1þ zcÞ can be
written as

zkin¼
ðUt−bUϕ− 1

EγfðrÞU
rkr− 1

Eγ
r2UθkθÞje

ðUt−bUϕ− 1
EγfðrÞU

rkr− 1
Eγ
r2UθkθÞjd

−
Ut

e

Ut
d
; ð14Þ

where we have introduced the quantity b≡ Lγ=Eγ known
as the apparent impact parameter of photons. As the photon
energy Eγ and the orthogonal component of orbital angular
momentum Lγ to the azimuthal rotation are conserved
along null trajectories from the point of emission until
detection, the value of the impact parameter is preserved
i.e., be ¼ bd.
The analysis may be carried out either with z given by

(12) or with zkin, in this paper we work with the latter. The
expression (14) is rather simplified for circular orbits
(Ur ¼ 0) in the equatorial plane (Uθ ¼ 0)

zkin ¼
Ut

eU
ϕ
dbd −Ut

dU
ϕ
e be

Ut
dðUt

d − bdU
ϕ
dÞ

: ð15Þ

What is not yet included in (15) is the light bending due
to gravitational field, that is to say, we still need to find
b ¼ bðrcÞ where rc is the radius of the circular orbit of the
photons emitter. To construct this mapping, we consider
photons emitted at both sides of the compact object as
shown in Fig. 1 by the red and blue zigzag lines. At those
points kr ¼ 0 and kθ ¼ 0, whereas kt and kϕ are already
known and are given in (11). From kμkμ ¼ 0 one attains
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b� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
−
gϕϕ
gtt

r
¼ � rffiffiffiffiffiffiffiffiffi

fðrÞp : ð16Þ

However, if the observer is very far from the photons
emitter (i.e., r → ∞), all the spatial components of the
detector’s four-velocity (i.e., Ur, Uθ and Uϕ) vanish in this
asymptotic limit, except the component Ut ¼ 1 ¼ E. In
this case, the kinematic frequency shift (15) reduces to

zkin ¼ −Uϕbe: ð17Þ

According to (16), the impact parameter bðrÞ may have
two different signs, so does the kinematic frequency shift
zkin. The frequency shift corresponding to receding emitter
is known as a redshift (zr > 0), while the frequency shift of
an approaching emitter is known as a blueshift (zb < 0).

A. Circular orbits

For equatorial orbits the effective potential acquires a
simple form (for the case of equatorial orbits, the orthogo-
nal component of the orbital angular momentum to the
azimuthal rotation L is equal to the total orbital angular
momentum.)

Veff ¼ 1þ E2

gtt
þ L2

gϕϕ
¼ 1 −

E2

fðrÞ þ
L2

r2
: ð18Þ

For circular orbits Veff and its derivative dVeff
dr vanish. From

these two conditions one finds two general expressions for
the constants of motion E2 and L2 for any static spherically
symmetric spacetime

E2 ¼ −
g2ttg0ϕϕ

gttg0ϕϕ − g0ttgϕϕ
¼ 2f2ðrÞ

2fðrÞ − rf0ðrÞ ; ð19Þ

L2 ¼ g2ϕϕg
0
tt

gttg0ϕϕ − g0ttgϕϕ
¼ r3f0ðrÞ

2fðrÞ − rf0ðrÞ ; ð20Þ

where primes denote derivative with respect to r.
Stability of circular orbits is guaranteed provided that
V 00
eff > 0 holds.
The general expression for V 00

eff reads

V 00
eff ¼ −E2

�
g00ttgtt − 2ðg0ttÞ2

g3tt

�
− L2

�
g00ϕϕgϕϕ − 2ðg0ϕϕÞ2

g3ϕϕ

�

¼ g0ϕϕg
00
tt − g0ttg00ϕϕ

gttg0ϕϕ − g0ttgϕϕ
þ 2g0ttg0ϕϕ

gϕϕgtt

¼ 2½rfðrÞf00ðrÞ þ 3fðrÞf0ðrÞ − 2rf0ðrÞ�2
rfðrÞ½2fðrÞ − rf0ðrÞ� : ð21Þ

The explicit expressions for the energy and angular
momentum, (19) and (20), were used in the last step. If we

employed them now in (7) one obtains expressions for the
4-velocities in terms of fðrÞ only

Uϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f0ðrÞ
rð2fðrÞ − rf0ðrÞÞ

s
; Ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2fðrÞ − rf0ðrÞ

s
:

ð22Þ

The angular velocity of particles in these circular paths
can be readily found

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
−

g0tt
g0ϕϕ

s
¼

ffiffiffiffiffiffiffiffiffiffi
f0ðrÞ
2r

r
: ð23Þ

Since we have an explicit expression for both,Uϕ
e and be,

the frequency shift becomes

z ¼ Uϕ
e beþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gϕϕg0tt

gttðgttg0ϕϕ − g0ttgϕϕÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf0ðrÞ
fðrÞð2fðrÞ − rf0ðrÞÞ

s
: ð24Þ

It has been argued that photons motion in nonlinear
electrodynamics regular black holes is not governed by null
geodesics of the spacetime geometry. In order to see
reflected the direct effects of the electrodynamic non-
linearities in the photons motion, the null geodesics should
be studied using an effective geometry. The original
approach to derive effective metrics can be found in
([73]). Bardeen and Hayward regular BH were first
presented as toy models, they were not exact solutions
to Einstein equations; there were no known physical
sources associated with any of them. Later on, they were
interpreted as singularity-free solutions of the Einstein field
equations coupled to a suitable nonlinear electrodynamics.
Our third example in this paper, Ayon-Beato-Garcia (ABG)
regular black hole, was constructed from the start in the
framework of general relativity as a solutions of the
Einstein field equations coupled to nonlinear electrody-
namics ([77]). Some studies of null geodesics in these toy
models have been made without considering effective
metrics. Since we are going to be dealing with regular
BHs where light travel along null geodesics with an
effective metric g̃μν, the previous expression (24) needs
to be modified to take this fact into account. It was in the
derivation of the apparent impact parameter where the null
geodesic equation was employed, then (24) needs to be
replaced by

z ¼ Uϕ
e beþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃ϕϕg0tt

g̃ttðgttg0ϕϕ − g0ttgϕϕÞ

s
: ð25Þ
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The computation of the effective metrics g̃μν for Bardeen,
ABG and Hayward BHs can be found in the Appendix. In
the next section, we will analyze the relationship between
the mass parameter of three regular BHs in terms of the red/
blueshifts of light emitted by geodesic particles orbiting in
circular trajectories of radius rc. The analysis will be
carried out using both expressions (24) and (25), the former
does not take into account the effective metric, the later
does. In the literature one can find null geodesics studies
that inappropriately, do not take into account the fact that an
effective metric must be employed. By carrying out the
analysis with both expressions (24) and (25), we can
compare both results and see the differences of neglecting
the effective metric in regard to the computation of the mass
parameter in terms of circular orbits radii and red/blue-
shifts. For each of our three working examples, we will find
bounds of these frequency shifts as well.

III. BARDEEN REGULAR BLACK HOLE

Our first working example is the Bardeen spacetime.
This was the first regular BH model in general relativity, it
was later on reinterpreted as the gravitational field of a
nonlinear magnetic monopole, namely as a magnetic
solution to Einstein equations coupled to a nonlinear
electrodynamics [77]. Hence, here we will work it as a
toy model first and then as a solution of Einstein equation
with NED. For this spacetime, the function fðrÞ reads

fðrÞ ¼ 1 −
2M
r

�
r2

r2 þ g2

�
3=2

≡ 1 −
2M
r

RBðr; gÞ: ð26Þ

As the parameter g → 0, the function RBðr; gÞ → 1 and
(26) becomes the Schwarzschild metric. A plot of fðrÞ for
different values of g is shown in Fig. 2, it has two roots
which disappear as g increases. Consequently Bardeen

spacetime possesses an exterior (and interior) event horizon
rextH (rintH ) for certain values of g and M. In order to locate
these event horizons one has to find the roots of fðrÞ ¼ 0. It
is convenient to introduce the variables r̃ ¼ r=M and
g̃ ¼ g=M; hence, finding the roots of fðrÞ ¼ 0 is akin to
finding the roots of

r̃6 þ ð3g̃2 − 4Þr̃4 þ 3g̃4r̃2 þ g̃6 ¼ 0: ð27Þ

There are two roots real and positive if and only if
0 < g̃ < 0.7698, otherwise there are no real and positive
roots at all. At g̃c ¼ 0.7698 the two roots collide as shown
in Fig. 3, it is also shown the bounds on the parameters l
and Q of the Hayward and ABG BHs as well. Shaded
regions corresponds to the existence of BHs, the dots point
out the location of the critical cases. The upper (orange) line
represents the external event horizon. We will work in the
region outside the exterior horizon r > rextH , whose value
depends on g and M, that is rextH ¼ rextH ðg;MÞ and is found
by solving (27). Hence r > rextH is a condition that we ought
to keep in mind. We must also mention that only when the
mass M exceeds the critical mass Mc ¼ 3

ffiffiffi
3

p
g=4 we have

the pair of event horizons. What we are seeking is to find an
analytical formula for the mass parameter M ¼ Mðz; r; gÞ,
where r is the radius of circular orbits followed by geo-
desics particles emitting photons whose frequency shift is z
as detected by a far away observer, g is a parameter of the

FIG. 2. Plot of Bardeen’s fðr̃Þ as a function of r̃ ¼ r=M for
different values of parameter g̃. Here, g̃ ¼ g=M changes from zero
(Purple) to unity (red) in steps of 0.1. As g̃ increases its value, the
roots of fðr̃Þ get closer and then cease to exist. For g̃ > 0.76
approximately, fðr̃Þ is always positive.

FIG. 3. Plot shows the bound on the parameters Q, g and l of
ABG, Bardeen and Hayward BHs, respectively. Here, the BHs
exist in the shaded region only. Whereas, dots (blue, red, and
green) represent the location of extremal (ABG, Bardeen and
Hayward) BHs case. It worth to mention that parameters r, Q, g
and l are normalized with the mass parameter M of the
respective BHs.
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compact object which is interpreted as the magnetic
monopole charge. To reach this goal, we insert function
(26) into (24) and it is found that

z2 ¼ MRBðr2 − 2g2Þ
ðr − 2MRBÞ½g2 þ rðr − 3MRBÞ�

; ð28Þ

which is a relationship between the redshift (blueshift) z,
the mass parameter M and the radius rc of a particle’s
circular orbit that emits light. (28) makes sense provided

that z2 > 0. It turns out that existence of circular orbits
demands r2 − 2g2 > 0 and g2 þ rðr − 3MRBÞ > 0; thus
(28) is consistent as long as r − 2MRB > 0. In the limit
g → 0, this latter condition is akin to working outside
the event horizon r > 2M and the former condition is
akin to r > 3M which guarantee circular orbits for the
Schwarzschild BH. (28) leads us to quadratic equation for
the mass parameter M, its analytical expression is then
given by

M� ¼ r
12z2RBðr; gÞ

�
ð1þ 5z2Þ þ 2g2

r2
ðz2 − 1Þ � 1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðr; z; gÞ

p �
; ð29Þ

where the H and RB are given by

Hðr; z; gÞ ¼ ð1þ 10z2 þ z4Þðr2 − 2g2Þ
�
r2 −

2g2ðz2 − 1Þ2
1þ 10z2 þ z4

�
; RBðr; gÞ ¼

r3

ðr2 þ g2Þ3=2 :

Observing that 0 < ðz2 − 1Þ2=ð1þ 10z2 þ z4Þ ≤ 1 and
due to the condition r2 − 2g2 > 0, it turns out that H > 0
always; hence, the mass parameter is never a complex
quantity.
Nonetheless, (29) still poses a problem, since for a

particle following a circular orbit and emitting light with a
shift z, it is not physically acceptable to have two values of
the mass parameter. Lets figure out how to overcome this
difficulty.
Using the conditions for existence of circular orbits,

namely Veff ¼ 0 and V 0
eff ¼ 0, explicit expressions for E2

and L2 were found in the previous section. For the Bardeen
case, these are

E2 ¼ ðr − 2MRBÞ2ðr2 þ g2Þ
r2½g2 þ rðr − 3MRBÞ�

; ð30Þ

L2 ¼ Mrðr2 − 2g2ÞRB

½g2 þ rðr − 3MRBÞ�
; ð31Þ

(30) requires that g2 þ rðr − 3MRÞ > 0 whereas (31)
requires additionally that r2 − 2g2 > 0. On the other hand,
circular orbits are stable provided that V 00 > 0, from (21)
V 00 reads

V 00
eff ¼

½r3ðr − 6MRBÞ þ 8g2ðr2 − g2Þ�2Mr4

ðr2 þ g2Þ4R½r − 2MRB�½g2 þ rðr − 3MRBÞ�
; ð32Þ

which is positive as long as

r3ðr − 6MRBÞ þ 8g2ðr2 − g2Þ > 0: ð33Þ

Therefore, in addition to the condition (33), the con-
ditions

r − 2MRB > 0; r2 − 2g2 > 0;

g2 þ rðr − 3MRBÞ > 0; ð34Þ

must be simultaneously satisfied.
It can be verified that as g → 0 the mass parameter (29)

reduces to the one for Schwarzschild BH [16], namely

M�ðr; zÞ ¼ r
1þ 5z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2 þ z4

p

12z2
: ð35Þ

Stability for circular orbits (32), in this limit, implies
r > 6M. In [16] it was proven that r > 6M led us to the
conclusion that only the minus sign in (35) is allowed and
that there is a bound for the frequency shift, explicitly
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FIG. 4. The mass parameterM for the Schwarzschild black hole
is shown as a function of he frequency shift z (redshift z > 0 and
blueshift z < 0) and the radius r of an eventual circular orbit of a
photon emitter. M and r are in geometrized units and scaled by
pM⊙ where p is an arbitrary factor of proportionality.
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jzj < 1=
ffiffiffi
2

p
. The function M ¼ Mðr; zÞ given by (35) is in

geometrized units (GN ¼ c ¼ 1). We scale M and r by an
arbitrary multiple of the solar mass pM⊙, for Sgr A,
p ¼ 2.72 × 106. Its graph is shown in Fig. 4.
For Bardeen BH, solely the minus sign in (29) is allowed

as well. To see that this is indeed the case, we substitute the
expression (29), for the mass parameter M�, into the
stability condition (33). After some algebra (33) becomes

LHS ≡ −ð1þ 3z2Þðr2 − 2g2Þðr2 − 2g2GðzÞÞ > �r2
ffiffiffiffi
H

p
;

with GðzÞ ¼ 4z2

1þ 3z2
: ð36Þ

Recalling the condition r2 − 2g2 > 0, for the case
jzj ≤ 1, it is apparent that 0 ≤ GðzÞ ≤ 1, then one has
r2 > 2g2 > 2g2GðzÞ; therefore, the left-hand side in
Eq. (36) LHS is negative and the positive sign appearing
in (36) is out of the question; therefore Mþðr; zÞ must be

discarded. Nonetheless, for jzj > 1, the function GðzÞ is
bounded as 1 < GðzÞ < 4=3 and verifying analytically that
(36) holds for just the minus sign is not straightforward. We
checked numerically that (36) holds only with the minus
sign for a variety of intervals 0 ≤ g ≤ gmax, rmin ≤ r ≤ rmax

and 1 < z ≤ zmax satisfying r2 − 2g2 > 0 (zmax going
beyond unity). This establishes the uniqueness of the mass
parameter given by (29), only M−ðr; zÞ is compatible with
the stability condition of circular orbits. The stability
condition (36), together with (34) should allow us to find
the bounds for z and plotM ¼ M−ðg; r; zÞ. For g → 0, (29)
becomes (35) for Schwarzschild BH. For the case of a
magnetic monopole, using the relationship (25), that takes
into account the fact that light travels along null geodesics
with the effective metric, one obtains an expression for
the redshift (blueshift) z, and a quadratic equation for the
mass parameter that we call M̃ to distinguish it from (29),
they read

z2 ¼ 2M̃r2ðr2 − 2g2Þðr2 þ g2Þ5=2
ð3r2 − 4g2Þ½ðr2 þ g2Þ3=2 − 2M̃r2�½ðr2 þ g2Þ5=2 − 3M̃r4� : ð37Þ

For the quadratic equation AmM̃2 þ BmM̃ þ Cm ¼ 0, the coefficients are given by

Am ¼ 6r6ð3r2 − 4g2Þz2;
Bm ¼ −r2ðr2 þ g2Þ3=2½2ðr2 − 2g2Þðr2 þ g2Þ þ ð3r2 − 4g2Þð5r2 þ 2g2Þz2�;
Cm ¼ ðr2 þ g2Þ4ð3r2 − 4g2Þz2: ð38Þ

The explicit expression for the M reads

M̃� ¼ r2ðr2 þ g2Þ3=2½2ðr2 − 2g2Þðr2 þ g2Þ þ ð3r2 − 4g2Þð5r2 þ 2g2Þz2� �
ffiffiffiffi
△

p

12r6ð3r2 − 4g2Þz2 : ð39Þ

The discriminant △ ¼ B2
m − 4AmCm

△ ¼ r4ðr2 − 2g2Þðr2 þ g2Þ3½4ðr2 − 2g2Þðr2 þ g2Þ2 þ 4ð3r2 − 4g2Þðr2 þ g2Þð5r2 þ 2g2Þz2 þ ðr2 − 2g2Þð3r2 − 4g2Þ2z4�;
ð40Þ

is always positive since r2 − 2g2 > 0.
One faces again the undesirable possibility of having two

values for the mass parameter. We will verify whether the
conditions to have circular stable orbits will determine the
uniqueness of the solution, as mentioned before, this proof
ought to be done numerically.
We shall carry out the analysis considering Bardeen

spacetime as a toy model first and then considering it as an
exact solution of Einstein field equations with NED, that is
to say, working first with the expression (29) and second
with (39) and then comparing both outcomes. We shall
work in the region outside the exterior event horizon

r > rextH which exists only for g < 0.7698M, otherwise
one has a globally regular spacetime. These class of
solutions have been proven to exist, yet they are given
numerically [78,79]. The numerical algorithm to perform
this analysis is provided next.
(1) Construct a domain D which is a set of points

fðgi; rj; zkÞg ¼ Pijk.
(2) For each point Pijk compute Mþ and M− with (29).
(3) Test whether (33) and (34) are simultaneously

fulfilled.
(a) If the conditions are fulfilled. Then store

MðPijkÞ and z ¼ zðgi; rjÞ, the former to plot
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M ¼ Mðg; r; zÞ, the later to be constructing the
bounds of z.

(b) If the conditions are not satisfied. For the current
point Pijk there is not a physically acceptable
value of the parameter M and this point Pijk can
be disregarded.

(4) We can distinguished between a Bardeen BH or a
globally regular spacetime by testing whether g <
ð0.317Þð2MÞ is satisfied.
(a) It is satisfied (BH). Then one has to find rextH ¼

rextH ðgi; rj; zkÞ and verified that rj > rH, if it is
the case, continue, otherwise remove this set
fPijk;MðPijkÞg from the plot M ¼ Mðg; r; zÞ,
select another point and go back to 2.

(b) It is not satisfied (Globally regular spacetime).
Then any r > 0 is acceptable at this stage, store
MðPijkÞ and z ¼ zðgi; rjÞ and continue.

(5) Go back to 2. until every point in the domain D has
been tested and data stored.

A. Bardeen spacetime as a toy model

It turns out that withMþ there is not a single point in the
domain D, no matter how large it is constructed, for which
all conditions are simultaneously fulfilled. On the other
hand, working with M−, there is a subset DBH

M ⊂ D where
these conditions are simultaneously satisfied and those are
considered physically acceptable. Thus, a measurement of
the redshift z of light emitted by a particle that follows a
circular orbit of radius r in the equatorial plane around a
Bardeen BH (g̃ ¼ g=M < 0.7698) will have a mass param-
eter determined by M ¼ M−ðr; z; gÞ given in (29) whose
domain is the subset DBH

M . Part of this subset is shown in
figure 5, where the bounds of z in terms of g and r are
plotted, only for z between the lower (red) surface zminðg; rÞ
and the upper (green) surface zmaxðg; rÞ, the conditions for
circular stable orbits of photon emitters together with
r > rextH are simultaneously satisfied. For g ¼ 0 the
Schwarzschild bound jzj < 1=

ffiffiffi
2

p
is certainly recovered.

The gap between the bounding surfaces jzsup − zinf j nar-
rows as g increases its value. The two surfaces zmaxðg; rÞ
and zminðg; rÞ, collide along a curve. On that curve (it looks
a line in figure 5), z increases its value as g increases, yet z
never goes beyond 0.85. For g̃ > 0.7698 one has globally
regular (GR) spacetimes, there is a subset DGR

M where the
conditions for circular stable orbits of photon emitters are
simultaneously fulfilled. Part of this subset is shown in
Fig. 5 where we also superimposed both bounds for
Bardeen’s BH and globally regular spacetimes.
We scale M and r by an arbitrary multiple of the solar

mass, i.e., by pM⊙, being p an arbitrary proportionality
constant. Figure 6 shows this numerically generated scaled
relationship M ¼ Mðr; z; gÞ which is symmetric with
respect to the frequency shift z (zred > 0; zblue < 0) for
g ¼ 0.1, 0.5, 1.0, 2.0. For g ¼ 0.1 the graphM ¼ Mðr; zÞ is

nearly the one shown above in Fig. 4 for Schwarzschild
BH, yet there is a gap in the z axis that splits the regions for
z > 0 and z < 0. z is no longer bounded as jzj < 1=

ffiffiffi
z

p
as

in the Schwarzschild case, it allows a little bit larger values,
up to 0.85. The mass parameter allowed for the globally

 0
 1

 2
 3

 4

 0 10 20 30 40 50

 0

 0.2

 0.4

 0.6

 0.8

 1

zmin
zmax

g

r

z

 0
 1

 2
 3

 4
 0 10 20 30 40 50

 0

 0.4

 0.8

 1.2

 1.6

 2

zmin
zmax

g

r

z

 0
 1

 2
 3

 4
 0 10 20 30 40 50

 0

 0.4

 0.8

 1.2

 1.6

 2

GR-zmin
GR-zmax
BH-zmin
BH-zmax

g
r

z

FIG. 5. In the upper plot, we presents bounds of z for Bardeen’s
BH constructed with the original metric gμν. The only allowed
frequency shifts that could be detected by a far away observer is
located in the gap zminðg; rÞ < z < zmaxðg; rÞ. The value of z does
not go beyond 0.85. In the middle plot, we present bounds of z for
globally regular Bardeen’s spacetime, only z ∈ ½zmin; zmax� are
allowed. The two surfaces GR-zmax and BH-zmin corresponding
to Bardeen’s globally regular and BH spacetime respectively,
coincide when z < 0.85. Whereas, when z > 0.85 only globally
regular spacetime is allowed. This is shown in the lower plot
where we have superimposed both bounds for Bardeen BH and
globally regular spacetimes.

RICARDO BECERRIL et al. PHYS. REV. D 103, 084054 (2021)

084054-8



regular spacetime sector (green color) is considerably
smaller than for BH sector (red-blue color) yet, since there
is no event horizon, in principle, stable circular orbits of
photon emitters may allow smaller radii than those for the
BH sector. As g increases, the surface Mðr; zÞ for the BH
region, splits more notoriously into two parts for the red
and blueshifts; this gap width varies with r according
to Fig. 5. The green sector for GR spacetimes and the red-
blue sector for BHs is separated by the critical mass
Mc ¼ 3

ffiffiffi
3

p
g=4. For g ¼ 0 (Schwarzschild) one has stable

circular orbits for r̃ ¼ r=M > 6 ¼ r̃s. As mentioned above,
for g̃ ¼ g=M < g̃c ¼ 0.7698 Bardeen spacetime is a BH.
As g̃ grows, the value of this lower limit r̃s for stability
decreases as shown in the upper red curve in Fig. 7. In the
same figure one may see the behavior of r̃s ¼ r̃sðl̃Þ for the
Hayward (middle red curve) and r̃s ¼ r̃sðQ̃Þ for the ABG
(lower green curve) BH as function of their corresponding
parameters l and Q respectively. It is for the Bardeen BH
that this stability limit is lowered the most.

B. Bardeen spacetime as an exact solution
of Einstein field equations with NED

We performed an analogous analysis to the one just done
above. Yet, we take into account now that, since light
moves in null geodesics with an effective metric, then the
mass parameter expression to be employed is (39). It turns
out again that, solely with M̃−, there is a subset of the
domain D where the conditions of having circular and
stable orbits are all simultaneously fulfilled; therefore, the
solution is unique as it should be. Bardeen’s effective
metric g̃μν takes into account the effects of the electro-
magnetic nonlinearities on the motion of light, not on the
motion of particles with mass, it is related with the original
Bardeen’s geometry by
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FIG. 6. The mass parameter M for Bardeen’s BH g=M <
0.7698 (red⤏ blue colors) is shown as a function of the
frequency shift z (redshift z > 0 and blueshift z < 0) and the
radius r of an eventual circular orbit of a photon emitter for four
values of g. The green surface corresponds to the mass parameter
for the globally regular spacetime sector g=M > 0.7698.M and r
are in geometrized units and scaled by pM⊙ where p is an
arbitrary factor of proportionality. Here, the numerical algorithm
employed yields the known critical mass Mc ¼ ð3 ffiffiffi

3
p

gÞ=4 that
separates the BH from the GR spacetime (see text for details).
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FIG. 7. Stable circular orbits for the Schwarzschild spacetime
are found for r̃ ¼ r=M > rISCO ¼ 6. For Bardeen BH, this
rISCO ¼ rISCOðg̃Þ is shown in the upper curve (red color), where
g̃ ¼ g=M < 0.7698. We also present the behavior of rISCO ¼
rISCOðl̃Þ for the Hayward (middle red curve) and rISCO ¼
rISCOðQ̃Þ for the ABG (lower green curve) BH as function of
their corresponding parameters l=M and Q=M respectively.
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g̃tt ¼ gtt; g̃rr ¼ grr; g̃θθ ¼ gθθ=Φ; g̃ϕϕ ¼ gϕϕ=Φ;

where ΦðrÞ reads

Φ ¼ 1þ 1

2

�
r2 − 6g2

r2 þ g2

�
; ð41Þ

whose derivation is described in the Appendix. Since Φ →
3=2 as g → 0 (eliminating the electromagnetic fields) in
this limit, the effective metric does not becomes exactly the
Schwarzschild. By the same token, the expression for
M̃ðr; z; gÞ as g → 0 does not become exactly the one
corresponding to Schwarzschild.
Figure 8 shows a portion of this subset of points

fðr; g; zÞg, in which, plots of the z-bounds in terms of g
and r are displayed. Only with values of z in the gap
between the lower (red) surface zminðg; rÞ and the upper
(green) surface zmaxðg; rÞ one finds Mðr; z; gÞ to be
compatible with all the conditions for circular and stable
orbits for photon emitters. This plot can be compared with
figure 5 constructed with the original metric gμν not with
the effective g̃μν. The upper bounds shown in figure 8,
that is to say the upper surface zmaxðr; gÞ, reaches its
highest values (for a given fixed g) along the line where the
two surfaces zmaxðr; gÞ and zmaxðr; gÞ merge, on this
line z does not exceed 0.71 which is slightly higher than
Schwarzschild upper bound 1=

ffiffiffi
2

p
. Figure 9 presents the

scaled relationship M ¼ Mðr; z; lÞ for three g ¼ 0.1, 0.5,
1.0, 2.0. As mentioned above, using Bardeen’s original
metric gμν, z is bounded approximately by 0.85, whereas
using the effective metric, it is bounded by approximately
0.71. We also observed that as g climbs up, the scaled mass
parameter value yields a larger value. In figure 6 (working
with the original metric), looking at the data file, one
may pick randomly a point in the domain, for instance
Moðr ¼ 50; g ¼ 0.1; zmaxð50; 0.1Þ ¼ 8.266 value is 8.266
and see that increases its value as g grows, Moðr ¼ 50;
g ¼ 2; zmaxð50; 2ÞÞ ¼ 8.402. Whereas working with the
effective metric (figure 9), the largest value of the mass
parameter is Meffðr ¼ 50; g ¼ 0.1; zmaxð50; 0.1ÞÞ ¼ 8.247
for g ¼ 0.1 and M∶effðr ¼ 50; g ¼ 2; zmaxð50; 0.1ÞÞ ¼
8.3928. In regard to the mass parameter, generally speak-
ing, there is a slight reduction when using the effective
metric in relation to the original one.
We end this section calculating the angular velocity Ω of

photon emitters orbiting in stable circular orbits. The
relationships for Ut and Uϕ given in (22) are employed
to compute Ω¼Uϕ=Ut ¼

ffiffiffiffiffiffiffiffiffiffiffi
f0=r4

p
. For Bardeen metric it

reads

Ωðg; r; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr2 − 2g2Þ
ðg2 þ r2Þ5=2

s
: ð42Þ

The angular velocity becomes a function of g, r, z after
substituting M− given in (29). Ω is indeed a real quantity

since r2 − 2g2 > 0 and it is valid regardless Bardeen
spacetime is considered a toy model or an exact solution.
For g ¼ 0, the angular velocity for Schwwarzschild BH is
recovered
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goes beyond unity. In the middle plot, we present bounds of z
for globally regular Bardeen’s spacetime, only z ∈ ½zmin; zmax�
are allowed. The two surfaces zmax and zmin corresponding to
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where we have superimposed both bounds for Bardeen BH and
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Ωðr; zÞ ¼
ffiffiffiffiffi
M
r3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F−ðzÞ
r2

r
; ð43Þ

where F− ¼ ð1þ 5z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2 þ z4

p
Þ=ð12z2Þ.

IV. HAYWARD SPACETIME

Our second working example is the Hayward regular
BH. Inasmuch as this regular spacetime had not been
associated with any NED field, later on it was, here we
work it as a toy model first and then as a solution of
Einstein equation with NED, just as we did it in the
previous section. Its gtt ¼ −fðrÞ metric component reads

fðrÞ ¼ 1 −
2Mr2

r3 þ 2l2M
≡ 1 −

2M
r

RH: ð44Þ

As it happens with the Bardeen spacetime, the function

RHðr; lÞ ¼
r3

r3 þ 2l2M
; ð45Þ

RHðr; lÞ → 1 as the parameter l → 0 and the
Schwarzschild BH is recovered. The function fðrÞ behaves
in a similar fashion as Bardeen’s (see Fig. 10), i.e., it has
two roots for l̃ ¼ l=M < 0.7698 which implies the exist-
ence of an exterior rextH and interior rintH event horizons, these
horizons are found by solving fðr̃Þ ¼ 0 (where r̃ ¼ r=M),
which is equivalent to finding the roots of

r̃3 − 2r̃2 þ 2l̃2 ¼ 0: ð46Þ

For l̃ ≠ 0 the cubic has two real and positive roots and are
given by Cardan’s formula, provided that l̃ < l̃c ¼ 0.7698.
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FIG. 9. The mass parameter M for Bardeen’s BH g=M <
0.7698 (red⤏ blue colors) is shown as a function of the
frequency shift z (redshift z > 0 and blueshift z < 0) and the
radius r of an eventual circular orbit of a photon emitter for four
values of g. The fact that photons travel in the corresponding
effective metric was taken into account to generate these plots.
The green surface corresponds to the mass parameter for the
globally regular spacetime sector g=M > 0.7698. M and r are in
geometrized units and scaled by pM⊙ where p is an arbitrary
factor of proportionality. Here, the numerical algorithm employed
yields the known critical massMc ¼ ð3 ffiffiffi

3
p

gÞ=4 that separates the
BH from the GR spacetime (see text for details).

FIG. 10. Plot of fðr̃Þ for Hayward spacetime as a function of
r̃ ¼ r=M for different values of parameter l̃. Here, l̃ ¼ l=M
changes from zero (purple) to unity (red) in steps of 0.1. As l̃
increases its value, the roots of fðr̃Þ get closer and then cease to
exist. For l̃ > 0.7698, fðr̃Þ is always positive.
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At the critical value l̃c the two horizons rextH and rintH collide
as it is shown in Fig. 3. For l̃ ¼ 0 one is left with the
Schwarzschild horizon r̃ ¼ 2. We will work in the region
outside the exterior horizon r > rextH . The critical mass in
this case is Mc ¼ 3

ffiffiffi
3

p
l=4.

A. Hayward spacetime as a toy model

Once again, in order to find an explicit expression for the
mass parameter M ¼ Mðz; r; lÞ we substitute the Hayward
function fðrÞ into (24) to attain a relationship between the
redshift z, the Hayward parameter l, the radius of the
photon emitter circular orbit r and the mass parameter M

z2 ¼ Mr5R−1
H ðr; lÞðr3− 4l2MÞ

½ðr−2MÞr2þ 2l2M�½r5ðr− 3MÞþ 4l4M2þ 4l2Mr3� :

ð47Þ

Expressions for E2, L2 and V 00 are computed as well

E2 ¼ ðr2ðr − 2MÞ þ 2l2MÞ2
½r5ðr − 3MÞ þ 4l4M2 þ 4l2Mr3� ; ð48Þ

L2 ¼ Mr4ðr3 − 4l2MÞ
½r5ðr − 3MÞ þ 4l4M2 þ 4l2Mr3� ; ð49Þ

V 00 ¼ 2M½r5ðr− 6MÞþ 22l2r3M− 32l4M2�
½r5ðr− 3MÞþ 4l4M2þ 4l2Mr3�½ðr− 2MÞr2þ 2l2M� :

ð50Þ

Existence of circular orbits is guaranteed as long as
E2; L2 > 0, that is to say, the following two conditions

r5ðr − 3MÞ þ 4l4M2 þ 4l2r3M > 0;

r3 − 4l2M > 0; ð51Þ

simultaneously hold. Equation (47) additionally requires
that

r2ðr − 2MÞ þ 2l2M > 0; ð52Þ
which is satisfied since we are working outside the exterior
horizon. Lastly, circular orbits stability V 00 > 0 is akin to
demanding that

r5ðr − 6MÞ þ 22l2r3M − 32l4M2 > 0: ð53Þ

It is apparent that as l → 0, the condition for stability
of circular orbits V 00 > 0 implies r > 6M as in the
Schwarzschild BH case.
From (47) one arrives at a cubic equation to get

M ¼ Mðz; r; lÞ (l ≠ 0), explicitly

C3M3 þ C2M2 þ C1M þ C0 ¼ 0; ð54Þ

where

C3 ¼ 8l4ðr2 þ z2ðl2 − r2ÞÞ;
C2 ¼ z2ð12l4r3 − 14l2r5 þ 6r7Þ þ 2l2r5;

C1 ¼ z2ð6l2r6 − 5r8Þ − r8;

C0 ¼ z2r9:

It can be verified that for l ¼ 0 (54) becomes the mass
parameter formula (35) for Schwarzschild. Given a cubic
equation, there could be either three real roots or one real
root and two complex. We have verified numerically that
only one real value of the mass parameter allows the
conditions for stability of circular orbits to be fulfilled
together with the condition r > rextH ; furthermore, these
conditions are satisfied solely for jzj < 0.75. This analysis
was performed using a combination of bisection and
Newton-Raphson methods to solve (54). We have also
attained the bounds of z ¼ zðl; rÞ. We just basically
followed the five steps of the numerical algorithm
described in the previous section.
In Fig. 11 one observes bounds of the frequency shifts

for the two sectors: black-holes (upper plot) and globally
regular spacetimes (middle plot). DBH

M is a subset where all
the conditions for existence of stable circular orbits of
photons emitters outside the exterior event horizon are
satisfied. It stretches out in the region where zminðr; lÞ <
z < zmaxðr; lÞ (see upper plot in Fig. 11) it happens that
zmax < 0.75 in all the domain DBH

M , this value is reached
along the curve where the two bound surfaces merge. The
corresponding subset for the global regular sector is shown
in the middle plot in the same figure. The surface zmaxðr; lÞ
for GR coincides with the zminðr; lÞ for the BH case, but in
the case the surfaces spreads further and allows z > 0.75
differing from the BH case. This is shown in the lower plot
where we have superimposed both bounds for Hayward’s
BH and globally regular spacetimes.
As in the Bardeen working example, we scale M and r

by an arbitrary multiple of the solar mass. Plots of M ¼
Mðr; zÞ for different values of the Hayward parameter l
follows an analogous pattern as Bardeen’s plots. This
means that for l ¼ 0.1 the graph M ¼ Mðr; zÞ is rather
similar as the one for Schwarzschild BH. The gap in the z
axis that splits the regions for z > 0 and z < 0 also
increases its width as l increases. z goes beyond the
Schwarzschild bound jzj < 1=

ffiffiffi
z

p
, yet is smaller than unity.

Figure 12 shows this scaled relationship M ¼ Mðr; zÞ for
l ¼ 1.0 and 2.5. The mass parameter allowed for the
globally regular spacetime sector (green color) is smaller
than for BH sector (red-blue color). Since there is no event
horizon, stable circular orbits of photon emitters may allow
smaller radii than those for the BH sector. As l increases,
the surface Mðr; zÞ for the BH region, splits more noto-
riously into two parts for the red and blueshifts. We also
observed that Hayward’s parameter l grows, the scaled
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mass parameter also increases. Working with the original
Hayward’s metric, the largest value of Moðr ¼ 50;
l ¼ 0.1; zmaxð50; 0.1ÞÞ ¼ 8.265 for l ¼ 0.1 and increases
to Moðr ¼ 50; l ¼ 2; zmaxð50; 0.1ÞÞ ¼ 8.3721 for l ¼ 2.
This is a typical behavior of the mass parameter as
g grows.
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FIG. 11. In the upper plot, we presents bounds of z for
Hayward’s BH when using the original metric. The only allowed
frequency shifts that could be detected by a far away observer is
located in the gap zminðr; lÞ < z < zmaxðr; lÞ. It turns out that
z < 0.75. In the middle plot, we present bounds of z for globally
regular Hayward’s spacetime. Only z ∈ ½zmin; zmax� are allowed.
The two surfaces zmax and zmin corresponding to Hayward’s
globally regular and BH spacetimes respectively, coincide when
z < 0.75. Whereas, when z > 0.75 only globally regular space-
time is allowed. This is shown in the lower plot where we have
superimposed both bounds for Hayward’s BH and globally
regular spacetimes.
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FIG. 12. The mass parameter M for Hayward’s BH l=M <
0.7698 (red⤏ gray color) is shown as a function of the frequency
shift z (redshift z > 0 and blueshift z < 0) and the radius r of an
eventual circular orbit of a photon emitter for l ¼ 1 and l ¼ 2.5.
The green surface corresponds to the mass parameter for the
globally regular spacetime sector l=M > 0.7698. The third and
fourth plots corresponds to the mass parameter M for solely
globally regular (GR) spacetimes for l ¼ 2.0, 4.0, one observes
that M increases with l; nonetheless, it is much smaller than the
one for a BH. Here, our numerical algorithm yields the bound that
separates the BH from globally regular spacetime and agrees with
the relationship given in [23].
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B. Hayward spacetime as an exact solution
of Einstein field equations with NED

Considering Hayward spacetime as an exact solution of
Einstein equationts with NED, the mass parameter expres-
sion (25) must be employed. The effective metric is

g̃tt ¼ gtt; g̃rr ¼ grr; g̃θθ ¼ gθθ=Θ; g̃ϕϕ ¼ gϕϕ=Θ;

where Θðr; lÞ reads

Θ ¼ 1þ
"
1 − 7

2
ð2l2Mr2 Þ

1þ ð2l2Mr2 Þ

#
;

(see the Appendix). Since Θ → 2 as l → 0, hereby the
electromagnetic fields vanish, Hayward’s effective metric
does not become Schwarzschild metric in this limit,
neither the expression for M̃ðr; z; lÞ becomes the one for
Schwarzschild.
Substituting Hayward function fðrÞ in (25) one gets

z2 ¼ Mr2ð4l2M − r3Þ
S1S2ð4l2Mðl2M þ r3Þ þ r5ð−3M þ rÞÞ ; ð55Þ

where

S1 ¼ 1þ r3 − 7l2M
r3 þ 2l2M

;

S2 ¼
2r2M

2l2M þ r2
− 1;

which relates the redshift z, the Hayward parameter l, the
radius of the photon emitter r and the mass parameter M,
From it, a four order polynomial forM in terms of z, r and l
is found

C4M4 þ C3M3 þ C2M2 þ C1M þ C0 ¼ 0; ð56Þ

with

C4 ¼ 8l6ð5z2ðl2 − r2Þ − 2r2Þ;
C3 ¼ 2l2r3ðz2ð22l4 þ 15r4Þ − 3l2r2ð2þ 9z2ÞÞ;
C2 ¼ 3r6z2ð2l4 þ l2r2 − 4r4Þ;
C1 ¼ r9ðr2 þ z2ð10r2 − 7l2ÞÞ;
C0 ¼ −2r12z2:

The conditions for existence of stable circular orbits
remain the same (51) and (53). A four degree polynomial
may possess up to four real roots. We have verified
numerically that only one real value of the mass parameter
allows the conditions for stability of circular orbits to be
fulfilled. Furthermore, these conditions are satisfied for
jzj < 0.53 considerably lower than the Schwarzschild fixed

bound (0.7071). In Fig. 13 one observes bounds of the
frequency shifts for the BH (upper plot) and GR (middle
plot) sectors. The subset DBH

M where the conditions for
existence of stable circular orbits of photons emitters
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FIG. 13. In the upper plot, we presents bounds of z for
Hayward’s BH when using the effective metric. The only allowed
frequency shifts that could be detected by a far away observer is
located in the gap zminðr; lÞ < z < zmaxðr; lÞ. It turns out that
z < 0.53. In the middle plot, we present bounds of z for globally
regular Hayward’s spacetime. Only z ∈ ½zmin; zmax� are allowed.
The two surfaces zmax and zmin corresponding to Hayward’s
globally regular and BH spacetimes respectively, coincide when
z < 0.53. Whereas, when z > 0.53 only globally regular space-
time is allowed. This is shown in the lower plot where we have
superimposed both bounds for Hayward’s BH and globally
regular spacetimes.
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outside the exterior event horizon are satisfied, stretches out
in the region where zminðr; lÞ < z < zmaxðr; lÞ (see upper
plot in Fig. 13) it turns out that jzj < 0.53 in all the domain
DBH

M . In Fig. 14 Mðr; z; lÞ is presented for l ¼ 1, 2.5. The
fact that photons travel in the corresponding effective
metric was taken into account to numerically generate
these plots. The green (lower section) surface corresponds
to the mass parameter for the globally regular spacetime
sector (g=M > 0.7698); the upper (blue section) surface
corresponds to the BH sector (g=M < 0.7698). For the BH
sector, Meffðr ¼ 40; zmaxð40; 0.1Þ; l ¼ 0.1Þ ¼ 6.666 and
Meffðr ¼ 40; zmaxð40; 2Þ; l ¼ 2Þ ¼ 6.676, generally speak-
ing, as l grows, so does Mðr; z; lÞ. When using the original
metric Moðr ¼ 40; zmaxð40; 0.1Þ; l ¼ 0.1Þ ¼ 6.6128 and
Moðr ¼ 40; zmaxð40; 2Þ; l ¼ 2Þ ¼ 6.703. In general, com-
paring both cases, as an exact solution or as a toy model,
Meffðr; l; zmaxðr; lÞÞ > Moðr; l; zmaxðr; lÞÞ, be aware that
for both cases zmaxðr; lÞ most likely would be different.
To conclude this section, we calculate the angular

velocity Ω of photon emitters orbiting along stable circular
orbits. The relationship Ω ¼

ffiffiffiffiffiffiffiffiffiffiffi
f0=r4

p
is employed, it yields

for Hayward metric

Ωðr; z; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr3 − 4l2MÞ

p
2l2M þ r3

: ð57Þ

The angular velocity becomes a function of l, r, z after
inserting Mðl; r; zÞ solution of the cubic equation (54). The
effective metric does not play a role in computing Ω since it
relates to geodesic particles, not photons. Ω is indeed a real
quantity since r3 − 4l2M > 0 in compliancewith (51). Once
again, for l ¼ 0 the angular velocity for Schwarzschild
metric is recovered.

V. AYON-BEATO-GARCÍA REGULAR
BLACK HOLE

The previous two working examples ware originally
regular models that avoid the BH singularity problem, not
being truly solutions to the Einstein field equations at first.
Later on, they were interpreted as a solution of Einstein
field equations with NED. Unlike Bardeen and Hayward
spacetimes, Ayon-Beato and García (ABG) constructed a
singularity free exact solution of the Einstein field equa-
tions coupled to nonlinear electrodynamics satisfying the
weak energy condition from the very beginning. The
function fðrÞ is given by

fðrÞ ¼ 1 −
2Mr2

R3=2 þQ2r2

R2
with R ¼ r2 þQ2: ð58Þ

This function asymptotically behaves as the one corre-
sponding Reissner-Nordström BH
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FIG. 14. The mass parameter M ¼ Mðr; z; lÞ for Hayward’s
BH l=M < 0.7698 (red⤏ gray color) is shown for l ¼ 1 and
l ¼ 2.5 when using the effective metric. The green surface
corresponds to the mass parameter for the globally regular
spacetime sector l=M > 0.7698. The third and fourth plots
corresponds to the mass parameter M for solely globally regular
(GR) spacetimes for l ¼ 2.0, 4.0, one observes that M increases
with l; nonetheless, it is much smaller than the one for a BH.
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fðrÞ ¼ 1 −
2M
r

þQ2

r2
þOð1=r3Þ; ð59Þ

which possesses two event horizons given by rH ¼ M �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
that are real and distinct provided that

M2 > Q2. ABG spacetime possesses an event horizon
for certain values of Q and M. In order to locate the event
horizon one has to find the roots of fðrÞ ¼ 0. It is
convenient to introduce the variables r̃ ¼ r=Q and
Q̃ ¼ Q=ð2MÞ; hence, finding the roots of fðrÞ ¼ 0 is akin
to finding the roots of

ðr̃8 þ 6r̃6 þ 11r̃4 þ 6r̃2 þ 1ÞQ̃2 − r̃4ð1þ r̃2Þ ¼ 0: ð60Þ

The behavior of fðr̃Þ as a function of r̃ ¼ r=Q for
different values of parameter Q̃ ¼ Q=2M is shown in
Fig. 15. Figure 3 shows the external rextH and internal rintH
event horizons. We work in the region outside the exterior
horizon r > rextH , whose value depends on Q and M, that is

rextH ¼ rextH ðQ;MÞ, this is a condition that we ought to keep
in mind too.
We want to find an analytical formula for the mass

parameterM ¼ Mðz; r; QÞ, where r is the radius of circular
orbits followed by geodesics particles emitting photons
whose frequency shift is z as detected by a far away
observer and Q is the electric charge of the compact object.
As in the previous two sections, we will distinguish two
cases, first as if ABG spacetime were a toy model, that is to
say, not considering the effective metric to determine the
path followed by photons; secondly using the effective
metric constructed.

A. ABG spacetime using the original metric

For this first case, we insert the function (58) into (24),
(19), (20), and (21), to find the analytic expressions for the
redshift, the energy, the angular momentum and the second
derivative of the effective potential

z2 ¼ r2R2½Q2ðQ2 − r2Þ −M
ffiffiffiffi
R

p ð2Q2 − r2Þ�
½−2M2

ffiffiffiffi
R

p þ ðR2 þQ2r2Þ�½−3Mr4
ffiffiffiffi
R

p þ ðR3 þ 2Q2r4Þ� ; ð61Þ

E2 ¼ R3f2ðrÞ
−3Mr4

ffiffiffiffi
R

p ðR3 þ 2Q2r4Þ ; ð62Þ

L2 ¼ r4½Q2ðQ2 − r2Þ −M
ffiffiffiffi
R

p ð2Q2 − r2Þ�
−3Mr4

ffiffiffiffi
R

p ðR3 þ 2Q2r4Þ ; ð63Þ

V 00
eff ¼

2½AM2 þ BM þ C�
R2½−2Mr2

ffiffiffiffi
R

p þ ðR2 þQ2r2Þ�½−3Mr4
ffiffiffiffi
R

p þ ðR3 þ 2Q2r4Þ� ; ð64Þ

where A ¼ −6r6R2, B ¼ R3=2ðr819Q2r6 þ 9Q4r4 −
8Q6r2 − 8Q8Þ and C ¼ 4Q4RðQ6 − 3Q2r4 − 3r6Þ.
Since the analytic expressions for the energy and angular

momentum come from the condition for existence of
circular orbits, then E2 > 0, L2 > 0 must hold simulta-
neously for circular orbits, their stability requires V 00

eff > 0.
Of course z2 > 0must hold as well. Hence we have a set of
three conditions to have stable circular orbits in addition to
z2 > 0, these four conditions are explicitly given by

−3Mr4
ffiffiffiffi
R

p
þ ðR3 þ 2Q2r4Þ > 0; ð65Þ

Q2ðQ2 − r2Þ −M
ffiffiffiffi
R

p
ð2Q2 − r2Þ > 0; ð66Þ

−2Mr2
ffiffiffiffi
R

p
þ ðR2 þQ2r2Þ > 0; ð67Þ

AM2 þ BM þ C > 0: ð68Þ
With the coefficients A, B and C given in (64). It is by

using (61), that one finds a formula for the mass parameter

of Ayon-Beato-García regular BH M ¼ Mðz; r; QÞ. (61) is
equivalent to a quadratic equation for M, whose solution is
given explicitly by

M� ¼ Gðr; z;QÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðr; z; QÞp

12r4z2
ffiffiffiffi
R

p ; ð69Þ

where the function Gðr; z; QÞ is
Gðr; z; QÞ ¼ g0ðr;QÞ þ g2ðr;QÞz2;
g0ðr;QÞ ¼ R2ðr2 − 2Q2Þ;
g2ðr;QÞ ¼ 2Q6 þ 9Q4r2 þ 19Q2r4 þ 5r6; ð70Þ

and the function Hðr; z;QÞ is

Hðr; z; QÞ ¼ ðr2 − 2Q2ÞR4 − 2R2h2ðr;QÞz2 þ h24ðr;QÞz4;
h2ðr;QÞ ¼ 4Q8 þ 16Q6r2 þ 17Q4r4 þ 3Q2r6 − 5r8;

h4ðr;QÞ ¼ 2Q6 þ 3Q4r2 þQ2r4 − r6: ð71Þ
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As aforementioned, the ABG BH behaves asymptoti-
cally as the Reisnner-Nordstrom spacetime, in particular, in
this limit, we recovered the expression found in [16],
namely

M�ðr; z; QÞ ¼ rG�; ð72Þ
where

G� ¼ 1

12z2

�
ð1þ5z2Þþ7Q2z2

r2

�
�
1þ10z2þ z4þQ2z2

r2

�
Q2z2

r2
−2ðz2þ5Þ

��
1=2
�
:

ð73Þ
If we take Q ¼ 0 (72) becomes the mass parameter

expression for Schwarzschild. In [16] it was proven that

only M− in (72) was physically acceptable; hence, the
uniqueness of the mass parameter was guaranteed. The

external event horizon is given rH ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, as a

result, given a charge Q, the mass parameter must be
greater than jQj. This fact is illustrated in Fig. 16 for the
case Q ¼ 5, as an example.
In the ABG BH, the circular orbits stability condition

AM2 þ BM þ C > 0 and the other aforementioned
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FIG. 16. Scaled mass parameter of Reissner-Nordström blak-
hole with charge Q ¼ 5 as a function of ðr; zÞ. Since the event

horizon is given by rH ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, the mass parameter

must be larger than Q. Not all redshifts could be detected by a a
faraway observer, none in the gap between the region for red and
blueshifts.

FIG. 15. Plot of ABG’s fðr̃Þ as a function of r̃ ¼ r=Q for
different values of parameter Q̃. Here, Q̃ ¼ Q=2M changes from
0.1 (purple) to unity (red) in steps of 0.1. As Q̃ increases its value,
the roots of fðr̃Þ get closer and then cease to exist. For Q̃ > 0.32
approximately, fðr̃Þ is always positive.
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FIG. 17. In the upper plot, we presents bounds of z for ABG’s
BH. The only allowed frequency shifts that could be detected by a
far away observer is located in the gap zmin < z < zmax. In the
middle plot, we present bounds of z for globally regular ABG’s
spacetime. Only z ∈ ½zmin; zmax� are allowed. The two surfaces
zmax and zmin corresponding to ABG’s globally regular and BH
spacetimes respectively, coincide when z < 0.9. Whereas, when
z > 0.9 only globally regular spacetime is allowed. This is shown
in the lower plot where we have superimposed both bounds for
ABG’s BH and globally regular spacetimes.

MASS PARAMETER AND THE BOUNDS ON REDSHIFTS AND … PHYS. REV. D 103, 084054 (2021)

084054-17



conditions (65), (66) and (67) should allow us to find
bounds for z and to determine whether for each point
Pijk ¼ ðQi; rj; zkÞ there exists solely one massM. We have
performed the analysis following the numerical algorithm
already described. It turns out that with Mþ there is not a
single point in the domainD no matter how large we take it,

for which all conditions are simultaneously fulfilled, on the
other hand, working with M−, there is a subset for the BH
sector DBH

M ⊂ D where these conditions are simultaneously
satisfied and those are considered physically acceptable.
We partially show this subset in the upper plot of Fig. 17.
DBH

M spreads out between the surfaces zmin ¼ zminðQ; rÞ

FIG. 18. The mass parameter M ¼ Mðr; z; QÞ computed with the original ABG-metric for Q ¼ 2 is presented on the left side of this
figure, whereas M ¼ Mðr; z; QÞ constructed using the effective metrics is presented on the right side. Mðr; z; QÞ for ABG’s BH for
Q ¼ 2 is shown in the first plot. The second plot displays MðQ ¼ 2; r; zÞ for ABG’s globally regular spacetime sector. The third plot
superimposes both cases. Here, our numerical algorithm yields the bound that separates the BH from globally regular spacetime and
agrees with the relationship M ¼ 1.57Q. On the left set of plot, we presented Mðr; z; Q ¼ 2Þ constructed with the effective metric, see
text for details.
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and zmax ¼ zmaxðQ; rÞ; at any rate, the shift is never greater
than 0.9. For Q̃ ¼ Q=M > Q̃c ¼ 0.634, one encounters
globally regular spacetimes, its corresponding DGR

M is
displayed in the middle plot of Fig. 17. The lower plot
of Fig. 17 presents the superimposed image of the
above two.
The scaled mass parameter M ¼ MðQ; r; zÞ obtained

when using the original metric for ABG spacetime is
presented on the left set of plots in the Fig. 18 for the
value of the charge Q ¼ 2. The first plot corresponds to
M ¼ MðQ ¼ 2; r; zÞ for ABG BH. AsQ increases, the gap
between the zone for red and blueshifts broadens. The
second plot (left side) in Fig. 18 corresponds to the mass
parameter MðQ ¼ 2; r; zÞ for ABG’s globally regular
spacetime. The third plot we superimposed both cases.

B. ABG spacetime using the effective metric

ABG regular spacetime was born as an exact solution of
Einstein field equations in the context of nonlinear

electrodynamics; hence, the corresponding effective metric
should be employed, for this spacetime it reads

g̃tt ¼ gtt=ϒ; g̃rr ¼ grr=ϒ; g̃θθ ¼ gθθ; g̃ϕϕ ¼ gϕϕ;

ð74Þ

with ϒ given by

ϒ ¼ η2½ðr2 − 5Q2Þ þ 15M
2

η�
½ðr4 − 13Q2r2 þ 10Q4Þ þ 15M

4
ð3r2 − 4Q2Þη� ;

and

η ¼ ðr2 þQ2Þ12: ð75Þ

The relationship between z,r,Q andM reads for this case

z2 ¼ 2r3ð5Q2 − r2 − 15
2
M

ffiffiffiffi
R

p ÞðQ2ðr2 −Q2Þ ffiffiffiffi
R

p þMð2Q2 þQ2r2 − r4Þ
R5=2ð10Q4 þ r2ðr2 − 13Q2Þ þ 15

4
M

ffiffiffiffi
R

p ð3r2 − 4Q2ÞÞð4r7R3 þ r5ð 6M
R5=2 − 4

R2Þ − 2rÞðr2ð 2M
R3=2 − Q2

R2Þ − 1Þ
; ð76Þ

from it, M ¼ Mðr; z; QÞ can be attained by solving the cubic

C3M3 þ C2M2 þ C1M þ C0 ¼ 0; ð77Þ

with

C3 ¼ 90r6z2ð4Q2 − 3r2ÞR11=2;

C2 ¼ 3r2R5ð10ðr2 − 2Q2ÞR3þ z2ð67r8þ 289Q2r6− 325Q4r4− 150Q6r2− 40Q8Þ;
C1 ¼R9=2ð2r2R3ð35Q4− 29Q2r2þ 2r4Þþ z2ð60Q12þ 395Q10r2þ 886Q8r4þ 765Q6r6− 1127Q4r8− 484Q2r10− 25r12Þ;
C0 ¼−4ðQ2r2R7ð5Q4− 6Q2r2þ r4Þ−R4z2ð10Q4 − 13Q2r2þ r4ÞðQ6þ 3Q4r2þ 5Q2r4þ r6Þ:

We have also verified numerically, that only one real
value of the mass parameter allows the conditions for
stability of circular orbits to hold. Moreover, these con-
ditions are fulfilled only for jzj < 0.81, considerably higher
than the Schwarzschild fixed bound of 1=

ffiffiffi
2

p
. Figure 19

shows bounds of the frequency shifts for the BH (upper
plot) and GR (middle plot) sectors.
On the right side of Fig. 18, we show Mðr; z; QÞ

computed with the effective metric for Q ¼ 2. Choosing
the point ðr ¼ 50; Q ¼ 0.1Þ and looking at zmaxð50; 0.1Þ ¼
0.62 we observe that Meffðr ¼ 50; Q ¼ 0.1; z ¼ 0.62Þ ¼
8.2717, for another point with higher Q, Meffðr ¼ 50;
Q ¼ 2; zmaxð50; 2ÞÞ ¼ 8.5759, generally speaking, as Q
climbs up, so doesM. When employing the original metric,
the largest values attained in the same points are Moðr¼
50;Q¼ 0.1; zmaxð50;0.1Þ ¼ 0.7Þ ¼ 8.2662 andMoðr ¼ 50;

Q ¼ 2; zmaxð50; 2Þ ¼ 0.72Þ ¼ 8.5566. This is a typical
behavior, we observed that Meffðr;Q; zmaxðr;QÞÞ >
M0ðr;Q; zmaxðr;QÞÞ generally holds, be aware that
zmaxðr;QÞ is usually different when is calculated with
the original metric gμν or with the effective metric g̃μν.
To close this section, the angular velocity Ω of photon

emitters orbiting along stable circular orbits is computed.
The relationship Ω ¼

ffiffiffiffiffiffiffiffiffiffiffi
f0=r4

p
is employed, for ABG

metric it reads

ΩðQ; r; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðQ2 − r2Þ −MR1=2ð2Q2 − r2Þ

p
R3=2 ; ð78Þ

where R ¼ Q2 þ r2. The angular velocity becomes a
function of l, r, z after inserting M−ðQ; r; zÞ solution of
the quadratic equation (69). Ω is indeed a real quantity
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since Q2ðQ2 − r2Þ −MR1=2ð2Q2 − r2Þ > 0 in compliance
with (66).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have determined the mass parameter of
regular spacetimes (Bardeen, Hayward and Ayon-Beato-
Garcia) in terms of the frequency shifts z of light emitted by
particles traveling along circular geodesics of radii r
orbiting in these spaces. We have sorted out our study in
two categories, first when we use the original metric of
these spacetimes, and second, when we use the effective
metric that embodies the effects of the nonlinear electro-
magnetic fields, since light travels in null geodesics in
effective geometries. In spite of this fact, one can find
papers that study null geodesics in BH with NED without
using the effective metric, we wanted to explore the
difference that we could find in our study when one uses
the original and the effective metrics, and then perform a
comparison.
We have found explicit formulas for the mass parameter

using the original metric Moðr; z; pÞ and the effective
metric Meffðr; z; pÞ for the three regular spacetimes con-
sidered in this paper, p stands for the parameters g, l, Q

(Bardeen, Hayward and ABG parameters respectively).
The three working examples have a BH sector which
possess two event horizon, we work outside the exterior
one, and a globally regular spacetime sector.
Not all values of z would be detected from a faraway

observer, that is, there are bounds for the frequency shifts.
For the BH sector, there is a subset DBH

M ⊂ D where all
conditions for existence of photon emitters’ stable circular
orbits are simultaneously satisfied (together with the addi-
tional condition r > rextH ), in that subset, the mass parameter
is unique, this was numerically proven. Either using the
original gμν or the effective g̃μν metric, in order to find
M ¼ Mðr; z; pÞ one has to solve a polynomial of order two,
three or four. We found this domain for BH and GR
spacetimes and plotted it for our three working examples.
These domains (for BH and for GR spacetimes) are
bounded by two surfaces zminðr; pÞ and zmaxðr; pÞ, we
observed that the gap between them narrows as p increases.
For the Bardeen BH using the original metric, we found
that zmaxðr; gÞ < 0.85 and zmaxðr; gÞ < 0.71 using the
effective metric. For the Hayward BH using the original
metric, we found that zmaxðr; gÞ < 0.75 and zmaxðr; gÞ <
0.53 using the effective metric. For the ABG BH using the
original metric, we found that zmaxðr; gÞ < 0.9 and
zmaxðr; gÞ < 0.81 using the effective metric. Therefore,
there is a considerable difference when using the original
or the effective metric. In other words, the domain size
DBH

M ¼ fðr; z; pÞg where there exist a mass parameter
satisfying all the conditions for existence of circular stable
orbits of light emitters, vary significantly. However, the
difference between Moðr; z; pÞ and Meffðr; z; pÞ is rather
small. In the three working examples it happens that
Meffðr; p; zmaxðr; pÞÞ > M0ðr; p; zmaxðr; pÞÞ.
The mass parameter for the BH sector is considerably

larger than those for the GR sector. For the three cases, as
the corresponding parameter increases, the gap between the
region for red and blueshifts broadens. The angular velocity
for photons emitters orbiting along to stable circular orbits
were found for the three working examples. A study for
rotating regular BHs is being carried out and we will report
the findings somewhere else.
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APPENDIX: EFFECTIVE GEOMETRY

The action of gravitational field coupled to nonlinear
electromagnetic field reads

I ¼
�

1

16π

�Z ffiffiffiffiffiffi
−g

p ½R − 4LðFÞ�dx4; ðA1Þ

where scalar F≡ ð1=4ÞFαβFαβ, Faraday tensor related to
the vector potential via relation Fαβ ¼ ∂αAβ − ∂βAα, and L
is the Lagrange function representing the NED.
The corresponding Einstein field equation derive from

least action principle takes the form

Gαβ ¼ 8πTαβ ¼ 2½LFFαμF
μ
β − gαβLðFÞ�; ðA2Þ

where LF ≡ ∂FLðFÞ has been introduced.
Using symmetry of spacetime defined by Eq. (3) and a

particular Lagrange function LðFÞ one can construct the
corresponding spacetime metric in NED.
It has been argued in [73] that motion of photons around

NED regular black holes is governed not by the null
geodesics of the (original) spacetime geometry, but by
the null geodesics of an effective geometry that incorpo-
rates effects of the electrodynamic nonlinearities.
These null geodesics that are defined in effective

geometry follow from the Bianchi identities for the
Faraday tensor Fαβ which for the NED case read

ðLFFαβÞ;β ¼ 0; ðA3Þ

Fαβ;μ þ Fμα;β þ Fβμ;α ¼ 0: ðA4Þ

Using Bianchi identities (A3) and (A4), one can obtained
the propagation equation

kμkμ −
�
LFF

LF

�
Fμ
αFαβkμkβ ¼ 0; ðA5Þ

where LFF ≡ ∂2
FLðFÞ, wave vector kα ≡ −∇αS and S is

the wave phase. Further, Eq. (A5) can be rearranged to give�
gμβ −

�
LFF

LF

�
Fμ
αFαβ

�
kμkβ ¼ 0: ðA6Þ

This is the general equation describing motion of the
photons in the spacetimes representing the solution of
NED coupled with GRT. It is clearly seen from the above

Eq. (A6) that this is the modified normalization condition
for photons related to the effective metric

gαβeff ≡ g̃αβ ¼ gαβ −
�
LFF

LF

�
Fα
μFμβ: ðA7Þ

The details of how to derive effective geometry can be
found in [73–76]
Now, we will discuss the Bardeen, Hayward and ABG

BHs effective spacetime cases respectively, depending
upon the specific choice of LðFÞ.
Case I: For Bardeen BH, the Lagrange function LðFÞ is

LðFÞ ¼ 3M
q3m

 ffiffiffiffiffiffiffiffiffiffiffiffi
2q2mF

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2q2mF

p
!5

2

; ðA8Þ

with the Faraday tensor of the form

Fμν ¼ 2δθ½μδ
ϕ
ν �qm sin θ; ðA9Þ

that leads to the scalar of the electromagnetic field F

F ¼ q2m
2r4

; ðA10Þ

where the NED field is generated by a magnetic monopole
charge qm. Now, using Eqs. (A7)–(A10), the nonzero
contravariant components of Bardeen metric in effective
geometry are

g̃ttB ¼ gttB; ðA11Þ

g̃rrB ¼ grrB ; ðA12Þ

g̃θθB ¼ gθθB Φ; ðA13Þ

g̃ϕϕB ¼ gϕϕB Φ; ðA14Þ

and covariant components become

g̃Btt ¼ gBtt; ðA15Þ

g̃Brr ¼ gBrr; ðA16Þ

g̃Bθθ ¼
gBθθ
Φ

; ðA17Þ

g̃Bϕϕ ¼ gBϕϕ
Φ

; ðA18Þ

where

Φ ¼ 1þ 2F

�
LFF

LF

�
¼ 1þ 1

2

�
r2 − 6g2

r2 þ g2

�
; ðA19Þ
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where g≡ qm. In the limit, when r → ∞, Φ becomes the
value 3=2.
Case II: For Hayward BH, the Lagrange function

LðFÞ is

LðFÞ ¼ A
B

ðBFÞ32
½1þ ðBFÞ34�2 ; ðA20Þ

where the constantsA=B≡3=ð2l2Þ and B≡½2ð2l2MÞ43�=q2m.
Now, using Eqs. (A7), (A9), (A10), and (A20), the

nonzero contravariant components of Hayward metric in
effective geometry read as

g̃ttH ¼ gttH; ðA21Þ

g̃rrH ¼ grrH ; ðA22Þ

g̃θθH ¼ gθθHΘ; ðA23Þ

g̃ϕϕH ¼ gϕϕH Θ; ðA24Þ

and covariant components become

g̃Htt ¼ gHtt ; ðA25Þ

g̃Hrr ¼ gHrr; ðA26Þ

g̃Hθθ ¼
gHθθ
Θ

; ðA27Þ

g̃Hϕϕ ¼ gHϕϕ
Θ

; ðA28Þ

where

Θ ¼ 1þ
"
1 − 7

2
ð2l2Mr3 Þ

1þ ð2l2Mr3 Þ

#
: ðA29Þ

Similar to Bardeen case, in the asymptotic limit (i.e.,
r → ∞), Θ → 2.
Case III: For ABG BH, the Lagrange function L is

calculated from the Legendre transformation [22]:

H≡ 2FLF − L: ðA30Þ

Now, using the definition

Pμν ≡ LFFμν ¼ 2δt½μδ
r
ν�
qe
r2

; ðA31Þ

the scalar of Pμν reads

P≡ 1

4
PμνPμν ¼ ðLFÞ2F: ðA32Þ

It is also shown in [22] that H which is used to define the
NED source for ABG BH as function of P, is given as

HðPÞ ¼ P
ð1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
Þ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
Þ3

−
3

2Q2s

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
!5

2

;

ðA33Þ

where Q≡ qe, s≡ jQj=2m, P ¼ −Q2=ð2r4Þ. Using
Eqs. (A30) and (A32), the functions LF and LFF come
out as

LF ¼ 1

HP
; ðA34Þ

LFF ¼ −
HPP

ðHP þ 2PHPPÞH3
P
; ðA35Þ

where HP ≡ ∂PHðPÞ and HPP ≡ ∂PHP . Finally, the non-
zero contravariant components of ABG metric in effective
geometry, calculated using Eq. (A7) and Eqs. (A31)–(A35)
are

g̃ttABG ¼ gttABGϒ; ðA36Þ

g̃rrABG ¼ grrABGϒ; ðA37Þ

g̃θθABG ¼ gθθABG; ðA38Þ

g̃ϕϕABG ¼ gϕϕABG; ðA39Þ

and covariant components become

g̃ABGtt ¼ gABGtt

ϒ
; ðA40Þ

g̃ABGrr ¼ gABGrr

ϒ
; ðA41Þ

g̃ABGθθ ¼ gABGθθ ; ðA42Þ

g̃ABGϕϕ ¼ gABGϕϕ ; ðA43Þ

where

ϒ¼ η2½ðr2−5Q2Þþ 15M
2
η�

½ðr4−13Q2r2þ10Q4Þþ 15M
4
ð3r2−4Q2Þη� ; ðA44Þ

and η ¼ ðr2 þQ2Þ12: ðA45Þ

Further, for the limiting cases:
(i) when r → ∞, we have ϒ ¼ 1.
(ii) And also, when parameter Q → 0, ϒ ¼

½rþ ð15=2ÞM�=½rþ ð45=4ÞM� which again in the
asymptotic limit r → ∞ becomes unity.
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It is important to note here that the effective metric
components found here for Bardeen, Hayward and ABG
BHs are different from what have been already published in
the literature [74–76] by the multiplication of a conformal
factor proportional to L−1

F . This fact, of course, does not
affect the light trajectories because the geodesic equations on

the effective spacetime is invariant under a conformal
transformation. Interestingly, the conformal effectivemetrics
for Bardeen and Hayward BHs found by us are asymptoti-
cally flat except for a deficit solid angle (the study of this class
of asymptotic behavior was done in ([80])) and for the
corresponding ABG BHs are asymptotically flat.
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