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We develop a number of novel “black-bounce” spacetimes. These are specific regular black holes where
the area radius always remains nonzero, thereby leading to a “throat” that is either timelike (corresponding
to a traversable wormhole), spacelike (corresponding to a “bounce” into a future universe), or null
(corresponding to a “one-way wormhole”). We first perform a general analysis of the regularity conditions
for such a spacetime and then consider a number of specific examples. The examples are constructed using
a mass function similar to that of Fan-Wang and fall into several particular cases, such as the original
Simpson-Visser model, a Bardeen-type model, and other generalizations thereof. We analyze the regularity,
energy conditions, and causal structure of these models. The main results are several new geometries, more
complex than before, with two or more horizons, with the possibility of an extremal case. We derive a
general theorem regarding static spacetime regularity and another general theorem regarding (non)
satisfaction of the classical energy conditions.
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I. INTRODUCTION

Research in black hole physics has recently received a
huge boost of interest, especially due to several break-
through discoveries, namely (i) the reconstruction of the
event-horizon-scale images of the supermassive black hole
candidate in the center of the giant elliptical galaxy M87 by
the Event Horizon Telescope project [1–6] and (ii) the
gravitational-wave searches by the LIGO Scientific and
Virgo Collaboration for coalescing compact binaries [7–13]
(and Laser Interferometer Space Antenna in the future [14]).

The detection of gravitational waves is not necessarily a
completely definitive proof of the existence of black holes,
since the ringdown signature in the time domain of
extremely compact objects and black holes is very similar
[15]. Despite the fact that the exterior of a black hole is
pathology-free, the interior seems to be riddled with prob-
lems [16], such as the presence of spacetime singularities.
More generically, the (maximally extended) Kerr family of
solutions harbors closed timelike curves and features
Cauchy horizons signaling the breakdown of predictability
of the theory [17,18]. Nevertheless, as dictated theoretically
by the weak cosmic censorship conjecture [19,20], space-
time singularities are cloaked by event horizons and there-
fore are inaccessible to distant observers. In fact, there are
still many subtle and interesting issues going on in black
hole physics. Deep issues of principle still remain, despite
many decades of work on the subject, and in many cases it is
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worthwhile to carefully reanalyze and reassess work from
several decades ago [21,22]. See also recent phenomeno-
logical discussions such as [23–28].
In particular, due to the problematic nature of the

spacetime singularities, it is useful to consider the existence
of regular black holes. It was recently shown that the
spacetime structure of regular spherically symmetrical
black holes generically entails the violation of the strong
energy condition (SEC) [29]. In order to prove this,
consider that, in general, there are N zeros of the metric
function gttðrÞ, located at the positions r ¼ ui of the
coordinate (where i ¼ 1;…; N). The outermost root
viewed from the outside corresponds to the black hole
event horizon. In fact, it was shown that the SEC is violated
in any static region within the event horizon in such a way
that the Tolman mass becomes negative. In the nonstatic
case, there is a constraint of another kind which, for a
perfect fluid, entails the violation of the dominant energy
condition (DEC).
Furthermore, a general procedure for constructing exact

regular black hole solutions was presented, in the presence
of electric or magnetic charges in general relativity (GR)
coupled to a nonlinear electrodynamics (NLED) [30–32]. A
two-parameter family of spherically symmetric black hole
solutions were obtained, where the singularity at the
spacetime center was eliminated by moving to a certain
region in the parameter space; consequently the black hole
solutions become regular everywhere. The global proper-
ties of the solutions were studied and the first law of
thermodynamics was derived. The procedure was also
generalized to include a cosmological constant, and regular
black hole solutions that are asymptotic to an anti–de Sitter
spacetime were constructed.
The study of regular black holes was generalized to

modified theories of gravity and their relation with the
energy conditions [33,34]. For instance, a class of regular
black hole solutions was obtained in four-dimensional fðRÞ
gravity, where R is the curvature scalar, coupled to a
nonlinear electromagnetic source [35]. Using the metric
formalism and assuming static and spherically symmetric
spacetimes, the resulting fðRÞ and NLED functions were
characterized by a one-parameter family of solutions which
are generalizations of known regular black holes in GR
coupled to NLED [30,36–46]. The related regular black
holes of GR were recovered when the free parameter
vanished, and where consequently the Einstein-Hilbert
action was recovered, i.e., fðRÞ ∝ R. The regularity of
the solutions was further analyzed and it was shown that
there are particular solutions that violate only the SEC,
which is consistent with the results attained in [29].
This analysis was then generalized by leaving unspecified

the function fðRÞ and the NLED Lagrangian in the model,
and regular solutions were then constructed through an
appropriate choice of the mass function [47]. It was shown
that these solutions have two horizons, namely, an event

horizon and a Cauchy horizon. All energy conditions are
satisfied throughout the spacetime, except the SEC, which is
violated near the Cauchy horizon. Regular solutions of GR
coupled with NLEDwere also found by considering general
mass functions and then imposing the constraint that the
weak energy condition (WEC) and the DEC are simulta-
neously satisfied [48]. Further solutions of regular black
holes were found by considering both magnetic and electric
sources [49], adding rotation [50–55], or by considering
modified gravity [56–61].
Herein, we are essentially interested in constructing

regular black hole models, inspired by the recently devel-
oped black-bounce spacetimes [62]. The constructed space-
time neatly interpolates between the standard Schwarzschild
black hole and the Morris-Thorne traversable wormhole
[63–66] and at intermediate stages passes through a black-
bounce, an extremal null-bounce, and a traversable worm-
hole. It is interesting to note that as long as the bounce
parameter a is nonzero the geometry is regular everywhere,
so one has a somewhat unusual form of a “regular black
hole,”where r ¼ 0 can be either spacelike, null, or timelike.
Thus this spacetime generalizes and broadens the class of
regular black holes beyond those usually considered.
The nonstatic evolving version of this regular black-

bounce geometry was also recently analyzed, where the
static metric was rewritten using Eddington-Finkelstein
coordinates [67]. In fact, the spacetime interpolates
between the Vaidya spacetime and a black-bounce and
traversable wormhole. It was also shown that the spacetime
metric can be used to describe several physical situations of
particular interest, including a growing black bounce, a
wormhole to black bounce transition, and the opposite
black bounce to wormhole transition. Furthermore, the
black-bounce spacetimes were also used to construct
closely related spherically symmetric thin-shell traversable
wormholes, where each bulk region is now a segment of the
black-bounce spacetime, and the exotic matter is concen-
trated on the thin shell [68]. The construction permitted a
dynamical analysis of the throat by considering linearized
radial perturbations around static solutions, and it was
shown that the stability of the wormhole is equivalent to
choosing suitable properties for the exotic material residing
on the wormhole throat.
It is interesting to note that different kinds of regular

black holes to the black-bounce solutions discussed above,
with a minimum of the areal radius in the T-region, where
the radial coordinate is timelike, or on a horizon, were
discussed in [69–72]. More specifically, the spacetimes
described in [70] have a de Sitter late-time asymptotic,
making them in principle viable candidate cosmologies. In
[72], regular solutions with a phantom scalar and an
electromagnetic field were obtained, leading to a diversity
of global structures, including those with up to four
horizons. In addition to this, the stability of the solutions
obtained in [70] was analyzed in [73], where it was shown
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that all the configurations under study were unstable under
spherically symmetric perturbations, except for a special
class of black universes where the event horizon coincides
with the minimum of the area function.
Thus, in this work, we shall develop a number of

additional novel black-bounce spacetimes. These are spe-
cific regular black holes where the area radius always
remains nonzero, thereby leading to a throat that is either
timelike (corresponding to a traversable wormhole), space-
like (corresponding to a bounce into a future universe), or
null (corresponding to a one way wormhole). We shall first
perform a general analysis of the regularity conditions for
such a spacetime and then consider a number of specific
examples.
The structure of this article is organized as follows. In

Sec. II we deal with general properties, like the spacetime
symmetry and the curvature singularities in Sec. II A, the
stress-energy tensor in Sec. II B, the Hernandez-Misner-
Sharp mass in Sec. II C, and the energy conditions in
Sec. II D. In Sec. III we describe some of the main features
of the Simpson-Visser model. In Sec. IV we present several
new black-bounce models, where we analyze the main
characteristics, such as regularity, quasilocal mass, energy
conditions, and causal structure. We make our conclusion
and final remarks in Sec. V.
We adopt the metric signature ðþ;−;−;−Þ. Given the

Levi-Civita connection, Γα
μν¼ 1

2
gαβð∂μgνβþ∂νgμβ−∂βgμνÞ,

the Riemann tensor is defined as Rα
βμν ¼ ∂μΓα

βν −
∂νΓα

βμ þ Γσ
βνΓα

σμ − Γσ
βμΓα

σν. We shall work in geome-
trodynamic units where G ¼ c ¼ 1.

II. GENERAL BLACK-BOUNCE SPACETIMES

A. Metric and curvature

The most general static spherically symmetric metric can
always locally be cast into the form

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − Σ2ðrÞðdθ2 þ sin2 θdϕ2Þ: ð1Þ

Here fðrÞ and ΣðrÞ are at this stage two freely specifiable
functions. Horizons (if present) are located at the roots of
fðrÞ ¼ 0, and the metric determinant is g ¼ −Σ4ðrÞ sin2 θ.
The area of a sphere at radial coordinate r is AðrÞ ¼
4πΣ2ðrÞ. The coordinate choices implicit in Eq. (1) are
often called “Buchdahl coordinates” [74–77].
From this line element, we may easily calculate the

nonzero components of the Riemann tensor

Rtr
tr ¼

1

2
f00; Rtθ

tθ ¼ Rtϕ
tϕ ¼

f0Σ0

2Σ
;

Rrθ
rθ ¼ Rrϕ

rϕ ¼
f0Σ0 þ 2fΣ00

2Σ
; Rθϕ

θϕ ¼
fΣ02 − 1

Σ2
: ð2Þ

To guarantee that the spacetime is everywhere regular we
demand the following:

(i) ΣðrÞ must be nonzero everywhere.
(ii) Σ0ðrÞ and Σ00ðrÞ must be finite everywhere.
(iii) fðrÞ, f0ðrÞ, and f00ðrÞ must be finite everywhere.

We may also calculate the Kretschmann scalar, K ¼
RαβμνRαβμν, in terms of the Riemann components (2), as
a semipositive sum of squares [78]

K ¼ 4ðRtr
trÞ2 þ 4ðRtθ

tθÞ2 þ 4ðRtϕ
tϕÞ2 þ 4ðRrθ

rθÞ2
þ 4ðRrϕ

rϕÞ2 þ 4ðRθϕ
θϕÞ2: ð3Þ

More explicitly, in view of the spherical symmetry, we have

K ¼ 4ðRtr
trÞ2 þ 8ðRtθ

tθÞ2 þ 8ðRrθ
rθÞ2 þ 4ðRθϕ

θϕÞ2: ð4Þ

See Appendix A for a more comprehensive justification of
the fact that the Kretschmann scalar is semipositive for the
strictly static region of any static spacetime. Specifically, in
the current situation we find the explicit sum of squares

K ¼ ðΣ2f00Þ2 þ 2ðΣf0Σ0Þ2 þ 2Σ2ðf0Σ0 þ 2fΣ00Þ2 þ 4ð1 − fΣ02Þ2
Σ4

: ð5Þ

Verifying whether or not the Kretschmann scalar is finite
for all values of the radial coordinate r is a good check on
the regularity of any static spacetime.
Similarly one can consider the Weyl scalar CμναβCμναβ,

for which a minor variant of the argument in [78] yields

CμναβCμναβ ¼ 4ðCtr
trÞ2 þ 4ðCtθ

tθÞ2 þ 4ðCtϕ
tϕÞ2

þ 4ðCrθ
rθÞ2 þ 4ðCrϕ

rϕÞ2 þ 4ðCθϕ
θϕÞ2: ð6Þ

In view of spherical symmetry this reduces to

CμναβCμναβ ¼ 4ðCtr
trÞ2 þ 8ðCtθ

tθÞ2 þ 8ðCrθ
rθÞ2

þ 4ðCθϕ
θϕÞ2: ð7Þ

Indeed, explicit computation yields a perfect square

CμναβCμναβ ¼ 1

3

�
f00−

2f0Σ0

Σ
þ2fðΣ02−ΣΣ00Þ

Σ2
−

2

Σ2

�
2

: ð8Þ
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Verifying whether or not the Weyl scalar is finite for all
values of the radial coordinate r is a partial check on the
regularity of any static spacetime.

B. Stress-energy tensor

The Einstein field equations are given by

Rμν −
1

2
gμνR ¼ κ2Tμν; ð9Þ

where gμν is the metric tensor, Rμν ¼ Rα
μαν, R ¼ gμνRμν,

Tμν is the stress-energy tensor, and κ2 ¼ 8πG=c4. In this
work we adopt geometrodynamic units c ¼ G ¼ 1, so
κ2 → 8π, as mentioned in the Introduction. If we consider
the matter sector as an anisotropic fluid, then in regions
where the t coordinate is timelike [fðrÞ > 0, for instance, in
the domain of outer communication], the mixed compo-
nents of the stress-energy tensor are given by

Tμ
ν ¼ diag½ρ;−p1;−p2;−p2�; ð10Þ

where ρ, p1, and p2 are the energy density and the two
principal pressures, respectively. Taking into account the
line element (1), the Einstein equations (9) provide the
following stress-energy profile:

ρ ¼ −
Σðf0Σ0 þ 2fΣ00Þ þ fΣ02 − 1

κ2Σ2
; ð11Þ

p1 ¼
Σf0Σ0 þ fΣ02 − 1

κ2Σ2
; ð12Þ

p2 ¼
Σf00 þ 2f0Σ0 þ 2fΣ00

2κ2Σ
: ð13Þ

However, in regions where the t coordinate is spacelike,
fðrÞ < 0, we should set

Tμ
ν ¼ diag½−p1; ρ;−p2;−p2�; ð14Þ

where p1 is the principal pressure in the now spacelike t
direction. Then in the subhorizon regions where t is
spacelike

ρ ¼ −
Σf0Σ0 þ fΣ02 − 1

κ2Σ2
; ð15Þ

p1 ¼
Σðf0Σ0 þ 2fΣ00Þ þ fΣ02 − 1

κ2Σ2
; ð16Þ

p2 ¼
Σf00 þ 2f0Σ0 þ 2fΣ00

2κ2Σ
: ð17Þ

Furthermore, at any horizons that may be present, where
fðrÞ ¼ 0, we have

ρ ¼ −p1 ¼ −
Σf0Σ0 − 1

κ2Σ2
; p2 ¼

Σf00 þ 2f0Σ0

2κ2Σ
: ð18Þ

The on-horizon equality of ρ ¼ −p1 has been known for
some time [79,80] and physically is needed to ensure that ρ
is continuous as one crosses the horizon.
Finally, for the trace of the stress energy

T ¼ Tμ
μ ¼ ρ − p1 − 2p2

¼ −
Σ2f00 þ 4ΣðΣ00f þ Σ0f0Þ þ 2ðΣ0Þ2f − 2

κ2Σ2
ð19Þ

regardless of whether one is above or below any horizon
that may be present.
To guarantee that the stress-energy is everywhere regular

we demand the following:
(i) ΣðrÞ must be nonzero everywhere.
(ii) Σ0ðrÞ and Σ00ðrÞ must be finite everywhere.
(iii) fðrÞ, f0ðrÞ, and f00ðrÞ must be finite everywhere.

(This is of course the same set of conditions as was required
for the Riemann tensor to be everywhere regular.)

C. Hernandez-Misner-Sharp quasilocal mass

The Hernandez-Misner-Sharp (HMS) quasilocal mass
[81–86] is most easily defined by inspecting the Riemann
tensor component

Rθϕ
θϕ ¼ −

2MHMSðrÞ
ΣðrÞ3 ¼ fðrÞΣ0ðrÞ2 − 1

ΣðrÞ2 : ð20Þ

Then

MHMSðrÞ ¼
1

2
ΣðrÞf1 − fðrÞΣ0ðrÞ2g: ð21Þ

Using this, fðrÞ can be written as

fðrÞ ¼ 1 −
2MHMSðrÞ − ΣðrÞf1 − Σ0ðrÞ2g

ΣðrÞΣ0ðrÞ2 : ð22Þ

It will be useful to redefine fðrÞ as

fðrÞ ¼ 1 −
2MðrÞ
ΣðrÞ : ð23Þ

But nowMðrÞ is simply a function appearing in the metric,
it is no longer the quasilocal mass obtained by integrating
the energy density over the volume contained by a surface
of radius r. Explicitly

MðrÞ ¼ MHMSðrÞ − 1
2
ΣðrÞf1 − Σ0ðrÞ2g
Σ0ðrÞ2 ;

MHMSðrÞ ¼ MðrÞΣ0ðrÞ2 þ 1

2
ΣðrÞf1 − Σ0ðrÞ2g: ð24Þ
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At any horizon that may be present, where fðrHÞ ¼ 0, in
view of (21) and (23) we have

MHMSðrHÞ ¼ MðrHÞ ¼
ΣðrHÞ
2

: ð25Þ

Finally, at any local extremum of ΣðrÞ that may be present
(that is Σ0ðrextÞ ¼ 0, corresponding to a throat, a bounce, or
an “antithroat”), in view of (21) and (23) we have

MHMSðrextÞ ¼
ΣðrextÞ

2
;

MðrextÞ ¼
ΣðrextÞf1 − fðrextÞg

2
: ð26Þ

Either differentiating MHMSðrÞ or substituting (22) into
the Einstein equations, we may obtain the Hernandez-
Misner-Sharp quasilocal mass in terms of the stress-energy
component Tt

tðrÞ,

M0
HMSðrÞ ¼ 4πTt

tðrÞΣðrÞ2Σ0ðrÞ;

MHMSðrÞ ¼ M� þ 4π

Z
r

r�
Tt

tðr̄ÞΣðr̄Þ2Σ0ðr̄Þdr̄: ð27Þ

Note that while the Hernandez-Misner-Sharp quasilocal
mass can be defined for arbitrary values of r, it really only
has its normal physical interpretation in the region where
the t coordinate is timelike, where Tt

t → ρ and we have

M0
HMSðrÞ ¼ 4πρðrÞΣðrÞ2Σ0ðrÞ;

MHMSðrÞ ¼ MHMSðrHÞ þ 4π

Z
r

rH

ρðr̄ÞΣðr̄Þ2Σ0ðr̄Þdr̄: ð28Þ

That is, the “mass function”MðrÞ defined in (23) is not the
energy contained within a surface of radius r; we now see
that it is the Hernandez-Misner-Sharp quasilocal mass
MHMSðrÞ that plays this role.
Note that in the limit ΣðrÞ → r we recover the usual

results

MðrÞ ¼ MHMSðrÞ; fðrÞ ¼ 1 −
2MHMSðrÞ

r
;

Rθϕ
θϕ ¼ −

2MHMSðrÞ
r3

: ð29Þ

D. Energy conditions

The standard energy conditions of classical GR are
(mostly) linear in the stress-energy tensor and have clear
physical interpretations in terms of geodesic focusing, but
suffer the drawback that they are often violated by semi-
classical quantum effects. In contrast, it is possible to
develop nonstandard energy conditions that are intrinsically
nonlinear in the stress-energy tensor and which exhibit
much better well-controlled behavior when semiclassical

quantum effects are introduced, at the cost of a less direct
applicability to geodesic focusing [87–90]. The energy
conditions have also found significant usage in cosmologi-
cal settings [91–97], in “gravastars” [98–103], and in
various wormhole-related constructions [104–109]. The
standard pointwise energy conditions [65] for the stress-
energy tensor (10) are given by the inequalities

NEC1;2 ¼ WEC1;2 ¼ SEC1;2 ⇔ ρþ p1;2 ≥ 0; ð30Þ

SEC3 ⇔ ρþ p1 þ 2p2 ≥ 0; ð31Þ

DEC1;2 ⇔ ρ − jp1;2j ≥ 0

⇔ ðρþ p1;2 ≥ 0Þ and ðρ − p1;2 ≥ 0Þ; ð32Þ

DEC3 ¼ WEC3 ⇔ ρ ≥ 0: ð33Þ

(This formulation has carefully been phrased to be
true regardless of whether the t coordinate is timelike
or spacelike.) We note that DEC1;2 ⇔ ððNEC1;2Þ and
ðρ − p1;2 ≥ 0ÞÞ. Since we already want to enforce the
NEC, for all practical purposes we might as well subsume
part of the DEC into the NEC and simply replace
DEC1;2 ⇒ ρ − p1;2 ≥ 0.
Inserting the results given in (11)–(13), in regions where

the t coordinate is timelike we have

NEC1 ¼ WEC1 ¼ SEC1 ⇔ −
2fΣ00

κ2Σ
≥ 0; ð34Þ

NEC2¼WEC2¼SEC2⇔
Σ2f00−2fðΣΣ00 þðΣ0Þ2Þþ2

2κ2Σ2
≥0;

ð35Þ

SEC3 ⇔
Σf00 þ 2f0Σ0

κ2Σ
≥ 0; ð36Þ

DEC1 ⇒
2ð1 − f0ΣΣ0 − fðΣ0Þ2 − fΣΣ00Þ

κ2Σ2
≥ 0; ð37Þ

DEC2 ⇒ −
Σ2f00 þ Σð4f0Σ0 þ 6fΣ00Þ þ 2fΣ02 − 2

2κ2Σ2
≥ 0;

ð38Þ

DEC3 ¼ WEC3 ⇔ −
Σðf0Σ0 þ 2fΣ00Þ þ fðΣ0Þ2 − 1

κ2Σ2
≥ 0:

ð39Þ

Inserting the results given in (15)–(17), in regions where
the t coordinate is spacelike we have

NEC1 ¼WEC1¼ SEC1⇔þ2fΣ00

κ2Σ
≥ 0; ð40Þ
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NEC2¼WEC2¼SEC2⇔
Σ2f00−2ðΣ0Þ2fþ2ΣΣ00fþ2

2κ2Σ2
≥0;

ð41Þ

SEC3 ⇔
Σf00 þ 2Σ0f0 þ 4Σ00f

κ2Σ
≥ 0; ð42Þ

DEC1 ⇒
2ð1 − f0ΣΣ0 − fðΣ0Þ2 − fΣΣ00Þ

κ2Σ2
≥ 0; ð43Þ

DEC2 ⇒
−Σ2f00 − 2ΣΣ00f − 4ΣΣ0f0 − 2ðΣ0Þ2f þ 2

2κ2Σ2
≥ 0;

ð44Þ
DEC3 ¼ WEC3 ⇔ −

ΣΣ0f0 þ ðΣ0Þ2f − 1

κ2Σ2
≥ 0: ð45Þ

That is, independent of whether one is above or below
the horizon, we have

NEC1 ¼ WEC1 ¼ SEC1 ⇔ −
2jfðrÞjΣ00ðrÞ

κ2ΣðrÞ ≥ 0: ð46Þ

So as long as one is not exactly on any event horizon that
might be present we must have fðrÞ ≠ 0. Also ΣðrÞ > 0
everywhere. So we easily verify that NEC1 ¼ WEC1 ¼
SEC1 all exhibit negative values everywhere, not exactly on

the event horizon wheneverΣ00ðrÞ > 0. Thus the null energy
condition (NEC), and so all of the standard pointwise energy
conditions, are violated for black-bounce models when-
ever Σ00ðrÞ > 0.
Theorem.—For any static anisotropic fluid sphere with

line element as in (1), all of the standard pointwise energy
conditions are violated whenever fðrÞ ≠ 0, ΣðrÞ > 0,
and Σ00ðrÞ > 0.
Unfortunately, apart from NEC1 and DEC1, the other

pointwise energy conditions do not transform nicely as one
crosses any horizon that may be present.
We now intend to look for models with positive energy

density ρ, at least (insofar as possible) satisfyingWEC3. In
addition to this, we are also looking for models that have a
richer causal structure than the original Simpson-Visser
model [62].
To quantify the amount of exotic matter present in the

regions where the NEC is violated, we may apply a volume
integral quantifier [107,110]. With respect to Buchdahl
coordinates, ΣðrÞ defines the appropriate formula for the
surface area of the spherical hypersurfaces via A¼4πΣðrÞ2.
It follows that if the NEC is violated when r ∈ ½r1; r2�, then
the amount of exotic matter is quantified by the definite
integral

Z
r2

r1

ðρþ prÞ4πΣ2dΣ ¼
Z

r2

r1

−
2jfjΣ00

κ2Σ
4πΣ2dΣ ¼ −

Z
r2

r1

jfjΣ00ΣdΣ ¼ −
Z

r2

r1

jfjΣ00Σ0Σdr ¼ −
1

2

Z
r2

r1

jfjΣ½ðΣ0Þ2�0dr

¼ −
1

2
jfjΣðΣ0Þ2

����
r2

r1

þ 1

2

Z
r2

r1

ðjfjΣÞ0ðΣ0Þ2dr: ð47Þ

Given a specific candidate spacetime, i.e., explicit forms for
fðrÞ and ΣðrÞ, we may compute this integral and obtain the
amount of required exotic matter.

III. SIMPSON-VISSER
BLACK-BOUNCE SPACETIME

The Simpson-Visser black-bounce model is a special
case of (1). Specifically, take

ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ a2

p
; MðrÞ ¼m; fðrÞ ¼ 1−

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p :

ð48Þ
This model has several properties, which we now list:
Since (for a > 0) ΣðrÞ is never zero, and is regular, and
fðrÞ is regular, then for a > 0 this spacetime is everywhere
regular. If we take the limit a → 0, then the Schwarzschild
solution is recovered. For different values of the constant a,

we have the following situations: (a) For 0 < a < 2m, there
are two horizons, r� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 − a2

p
, where rþ is

positive and r− is negative. This is a regular black hole
spacetime, with the core being a bounce located at r ¼ 0.
(b) For a ¼ 2m, we have a wormhole with a throat located
at r ¼ 0, being an extremal null throat. This throat can only
be crossed from one region to another, i.e., so that the
wormhole is only one-way traversable. (c) For a > 2m, we
have a wormhole with a two-way timelike throat at r ¼ 0.
We may also see that in the case with two horizons,

0 < a < 2m, so fðr ¼ 0Þ ¼ ½ða − 2mÞ=a� < 0. That is,
fðrÞ is positive outside the horizons with metric signature
ðþ;−;−;−Þ, zero on the horizons, and negative between
the horizons with metric signature ð−;þ;−;−Þ.
For the Kretschmann scalar we find the explicit sum of

squares

K ¼ 4m2ð2r2 − a2Þ2 þ 8m2r4 þ 8ðmr2 − 2ma2 þ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
Þ2 þ 4ð2mr2 þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
Þ2

ðr2 þ a2Þ5 : ð49Þ
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Provided a > 0 this is manifestly finite for all values of r
and m.
The energy conditions for this spacetime, in the region

where t is timelike, are written as

NEC1 ⇔ −
2a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 2m

�
κ2ðr2 þ a2Þ5=2 ≥ 0;

NEC2 ⇔
3a2m

κ2ðr2 þ a2Þ5=2 ≥ 0; ð50Þ

WEC3 ⇔ −
a2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

− 4m
�

κ2ðr2 þ a2Þ5=2 ≥ 0;

SEC3 ⇔
2a2m

κ2ðr2 þ a2Þ5=2 ≥ 0; ð51Þ

DEC1 ⇒
4ma2

κ2ðr2 þ a2Þ5=2 ≥ 0;

DEC2 ⇒ −
a2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 5m

�
κ2ðr2 þ a2Þ5=2 ≥ 0: ð52Þ

Starting with the regular black hole spacetime, wherein
a < 2m, we see that the NEC1 ¼ WEC1 ¼ SEC1 is
violated outside the horizons r�; furthermore the WEC3

and DEC2 are violated when jrj ≫ rþ. For a wormhole
with a null throat, a ¼ 2m, the NEC1 is violated for all
values of r; the WEC3 and DEC2 are violated for jrj ≫ a.
Relative to the two-way wormhole with a > 2m, the NEC1

and WEC3 are violated for all values of the radial
coordinate, while DEC2 is violated for jrj sufficiently
large. The energy density is always negative for the last
case. It is noteworthy that spherically symmetric regular
black holes in GR coupled to NLED always violate SEC3,
however, this is not necessarily true for black-bounce
spacetimes. Furthermore, even if SEC3 is satisfied,
SEC1 is certainly violated—at best one has partial sat-
isfaction of some of the energy conditions.
The energy conditions for this spacetime, in the region

where t is spacelike (the existence of this region requires
a < 2m), are written as

NEC1 ⇔
2a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 2mÞ

κ2ðr2 þ a2Þ5=2 ≥ 0;

NEC2 ⇔
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
−mÞa2

κ2ðr2 þ a2Þ5=2 ≥ 0; ð53Þ

WEC3 ⇔
a2

κ2ðr2 þ a2Þ2 ≥ 0;

SEC3 ⇔
2a2ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 3mÞ

κ2ðr2 þ a2Þ5=2 ≥ 0; ð54Þ

DEC1 ⇒
4ma2

κ2ðr2 þ a2Þ5=2 ≥ 0;

DEC2 ⇒
a2m

κ2ðr2 þ a2Þ5=2 ≥ 0: ð55Þ

Below the horizon we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
< 2m, so that

NEC1 ¼ WEC1 ¼ SEC1 is certainly violated. This implies
that below the horizon all of the usual pointwise energy
conditions are violated. Even though WEC3 is satisfied
below the horizon, WEC1 is not—at best one has partial
satisfaction of some of the energy conditions.
We may apply the volume integral from Eq. (47) to the

Simpson-Visser spacetime to obtain the amount of exotic
matter required. In the case where a > 2m, we have no
horizons, i.e., a traversable wormhole geometry. For this
case we may simply integrate the expression for NEC1

above horizons from Eq. (50), all the way from 0 to þ∞,

Z þ∞

0

2a2
�
2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p �
κ2ðr2 þ a2Þ52 dV

¼
Z þ∞

0

a2r
�
2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p �
ðr2 þ a2Þ2 dr ¼ m − a: ð56Þ

Given a > 2m, the amount of exotic matter present must
therefore be strictly greater than m in order to stabilize the
wormhole throat.
In the case where horizons are present, i.e., when we

have a regular black hole and a ∈ ð0; 2mÞ, we find the
following for the amount of exotic matter inside the
horizon:

Z
rH

0

2a2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

− 2m
�

κ2ðr2 þ a2Þ52 dV

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2mÞ2−a2
p

0

a2r
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

− 2m
�

ðr2 þ a2Þ2 dr

¼ −
ða − 2mÞ2

4m
; ð57Þ

and for the amount of exotic matter outside the horizon

Z þ∞

rH

2a2
�
2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p �
κ2ðr2 þ a2Þ52 dV

¼
Z þ∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2mÞ2−a2
p

a2r
�
2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p �
ðr2 þ a2Þ2 dr ¼ −

a2

4m
: ð58Þ

In all cases the amount of exotic matter required is strictly
finite.
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We can easily calculate the Hernandez-Misner-Sharp
mass (21) for this model,

MHMSðrÞ ¼
a
2
þ κ2

2

Z
r

0

Tt
tðrÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
dr

¼ mr2

r2 þ a2
þ a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p : ð59Þ

This mass is always positive. The first identity in this
expression arises from Eq. (27), with r� ¼ 0, M� ¼ a=2.
We also have the limits limr→0 MHMSðrÞ ¼ a=2 and
limr→∞MHMSðrÞ ¼ m.
The causal structure of the spacetime is given by the

Carter-Penrose diagrams for the following cases: (i) for
a > aext ¼ 2m, in Fig. 1, which corresponds to a traditional
two-way traversable wormhole in the sense of Morris and
Thorne; (ii) for a ¼ aext ¼ 2m, in Fig. 2, which corre-
sponds to a one-way wormhole geometry with an extremal
null throat; (iii) for 0 < a < 2m, in Fig. 3, where we have
one horizon location in each universe, and one may
propagate through the event horizon, at r ¼ rþ, to reach
the spacelike bounce hypersurface at r ¼ 0, before “bounc-
ing” into a future reincarnation of our own Universe.
Our primary goal below is to explore new black-bounce

models that generalize this Simpson-Visser model or that
might somewhat ameliorate the violation of the energy
conditions. We shall explore these options in the next few
sections. In the rest of the work we will consider ΣðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
as given in (48).

Though not central to this paper, a dynamical version of
the Simpson-Visser spacetime has been explored in [67],

where multiple phenomenological models describing
various transitions are analyzed.

IV. NEW BLACK-BOUNCE SPACETIMES

We shall first consider the following rather general class
of black-bounce models that generalize the Simpson-Visser
spacetime, in which the functions ΣðrÞ, MðrÞ and fðrÞ are
given by

ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; MðrÞ ¼ mΣðrÞrk

ðr2n þ a2nÞðkþ1Þ=ð2nÞ ;

fðrÞ ¼ 1 −
2MðrÞ
ΣðrÞ : ð60Þ

Here n and k are positive integers. This new model is
inspired by the Fan-Wang mass function [31] for regular
black holes. The Simpson-Visser model (48) is recovered
for n ¼ 1 and k ¼ 0, and (for any n and k) in the limit

FIG. 2. Carter-Penrose diagram for the case when we have a
one-way wormhole geometry with an extremal null throat; for all
relevant examples this corresponds to fixing a ¼ aext.

FIG. 1. Carter-Penrose diagram for the case when we have a
traditional two-way traversable wormhole in the sense of Morris
and Thorne.

LOBO, RODRIGUES, SILVA, SIMPSON, and VISSER PHYS. REV. D 103, 084052 (2021)

084052-8



a → 0 we obtain the Schwarzschild solution. We cannot
recover the usual regular black hole solutions (Bardeen,
Hayward, Frolov) due to the term a2 present in ΣðrÞ.
However, this model can generate several new classes of
black bounce, for which we shall examine several specific
cases below.

A. Model n= 2 and k= 0

For n ¼ 2 and k ¼ 0 in (60), we have

ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; fðrÞ ¼ 1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a44

p : ð61Þ

In order to verify the regularity of the model, we analyze
the Kretschmann scalar (3), using (61), which takes the
following form:

K ¼ 8m2r8

ðr2 þ a2Þ2ðr4 þ a4Þ5=2 þ
4m2r4ð3a4 − 2r4Þ2

ðr4 þ a4Þ9=2

þ
4
�

2mr2ffiffiffiffiffiffiffiffiffi
a4þr44

p þ a2
�
2

ðr2 þ a2Þ4

þ 8ða2ðr4 þ a4Þ5=4 þmðr6 − 2a6 − a2r4ÞÞ2
ðr2 þ a2Þ4ðr4 þ a4Þ5=2 : ð62Þ

The Kretschmann scalar is manifestly finite for all real
values of the radial coordinate, so the spacetime is regular
for this model. From (61) we see that fðrÞ ¼ 0 provides
two symmetric real values r� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ4 − a44

p
. When

0 < a < 2m, we have a regular black hole with two event
horizons r�, one in the positive and another in the negative
region of r, with signature ðþ;−;−;−Þ outside the horizon.
For r ¼ 0, the spacetime is regular and can be extended to
r < 0, then going through a bounce to the region where the
radial coordinate is negative, i.e., this corresponds to a one-
way spacelike throat, a black bounce. We also see that the
limit of fðrÞ for r → 0, results in ½ða − 2mÞ=a� < 0, with a
signature ð−;þ;−;−Þ inside the horizon. If a ¼ 2m, the
(maximally extended) spacetime has only extremal hori-
zons, so we have a one-way wormhole geometry with an
extremal null throat and a signature ðþ;−;−;−Þ. For
a > 2m, we have no horizons and there is a wormhole
with a two-way timelike throat, maintaining the signature
ðþ;−;−;−Þ throughout. Essentially, this spacetime pos-
sesses the same characteristics as for the Simpson-Visser
geometry. Thus, this is the behavior in general for any
integer n and k ¼ 0. Thus, the causal structures remain the
same as in the Simpson-Visser case. More specifically,
(i) the case a > aext ¼ 2m is depicted in Fig. 1;
(ii) a ¼ aext ¼ 2m in Fig. 2; and (iii) the region 0 < a <
aex ¼ 2m is depicted in Fig. 3.
In the region where the t coordinate is timelike, the

energy conditions are given by

NEC1 ⇔ −
2a2ð1 − 2mffiffiffiffiffiffiffiffiffi

a4þr44
p Þ

κ2ðr2 þ a2Þ2 ≥ 0;

NEC2 ⇔
ma2ð2a6 þ 3a4r2 þ 7a2r4 − 2r6Þ

κ2ðr2 þ a2Þðr4 þ a4Þ9=4 ≥ 0; ð63Þ

WEC3 ⇔ −
a2ððr4 þ a4Þ5=4 − 2mð2a4 þ a2r2 þ r4ÞÞ

κ2ðr2 þ a2Þ2ðr4 þ a4Þ5=4 ≥ 0;

SEC3 ⇔
2ma2r2ð3a4 þ 5a2r2 − 2r4Þ
κ2ðr2 þ a2Þðr4 þ a4Þ9=4 ≥ 0; ð64Þ

DEC1 ⇒
4a4m

κ2ðr2 þ a2Þðr4 þ a4Þ5=4 ≥ 0;

DEC2 ⇒
a2
�
mð6a8−a6r2þ2a4r4−a2r6þ6r8Þ

ðr4þa4Þ9=4 − 2
�

κ2ðr2 þ a2Þ2 ≥ 0: ð65Þ

We see that outside the horizons the NEC1 ¼ WEC1 ¼
SEC1 condition is again violated for jrj > rþ and the
NEC2, SEC3, DEC2, and WEC3 are violated for r ≫ rþ.
Again, we have a negative energy density beyond some
in-principle calculable but messy absolute value of r,
maintaining the essential characteristics of the original
Simpson-Visser model.

FIG. 3. Carter-Penrose diagram for the maximally extended
case where we have one horizon location in each universe. One
may propagate through the event horizon, at r ¼ rþ, to reach the
spacelike bounce hypersurface at r ¼ 0, before bouncing into a
future reincarnation of our own Universe. Infinitely many future
copies of the Universe exist if we extrapolate the time coordinate
“up” the page; only two are displayed here for tractability.
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In the subhorizon region where the t coordinate is spacelike (the existence of this region requires a < 2m) we have

NEC1 ⇔
2a2ð1 − 2mffiffiffiffiffiffiffiffiffi

a4þr44
p Þ

κ2ðr2 þ a2Þ2 ≥ 0; ð66Þ

NEC2 ⇔
2a2ðr4 þ a4Þ9=4 −ma2ð3r2 − a2Þð2r6 − r4a2 − r2a4 − 2a6Þ

κ2ðr2 þ a2Þ2ðr4 þ a4Þ9=4 ≥ 0; ð67Þ

WEC3 ⇔
a2ððr4 þ a4Þ5=4 − 2mr2ðr2 − a2ÞÞ

κ2ðr2 þ a2Þ2ðr4 þ a4Þ5=4 ≥ 0; ð68Þ

SEC3 ⇔
4a2ðr4 þ a4Þ9=4 − 2ma2ð4a8 − 3a6r2 − 3a2r6 þ 6r8Þ

κ2ðr2 þ a2Þ2ðr4 þ a4Þ9=4 ≥ 0; ð69Þ

DEC1 ⇒
4a4m

κ2ðr2 þ a2Þðr4 þ a4Þ5=4 ≥ 0; DEC2 ⇒
ma2ð2a4 − 5r2a2 þ 2r4Þ

κ2ðr4 þ a4Þ9=4 ≥ 0: ð70Þ

We see that between the horizons the NEC1 ¼ WEC1 ¼
SEC1 condition is again violated, now for all jrj < rþ. This
implies violation of all the standard pointwise energy
conditions, maintaining the essential characteristics of
the original Simpson-Visser model.
The Hernandez-Misner-Sharp mass (21) for the case

of (61) is given by

MHMSðrÞ ¼
a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þ mr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ r44

p : ð71Þ

The mass is always positive, and the limits are given by
limr→0MHMSðrÞ ¼ a=2 and limr→∞MHMSðrÞ ¼ m.
If we construct models by varying the (integer) value of

n, and setting the value of k in (60) to zero, we will always
have the same qualitative characteristics as the original
Simpson-Visser model. Thus, this motivates changing the
value of k, which we will consider below.

B. Model n= 1 and k= 2

For the case n ¼ 1 and k ¼ 2 in (60), we have

ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; fðrÞ ¼ 1 −

2mr2

ðr2 þ a2Þ3=2 : ð72Þ

The function fðrÞ is identical to that appearing in the
regular Bardeen black hole, with the change a → q.
However, the spacetime is completely different to that of
Bardeen, due to the term a2 appearing in Σ2. [Note that the
Bardeen model is recovered by setting a → 0 in ΣðrÞ, but
leaving a ≠ 0 in fðrÞ.] Solving for the roots of fðrÞ ¼ 0,
we have (i) for a < aext ¼ 4m=ð3 ffiffiffi

3
p Þ, there are four real

solutions, which are symmetrical to each other, namely,
ðrþ; rC;−rC;−rþÞ (where rþ corresponds to the event

horizon and rC to a Cauchy horizon); (ii) for a ¼ aext,
we have two real solutions ðrþ;−rþÞ; and (iii) for a > aext,
no real value exists.
In this new model, we have the first drastic difference

compared to the Simpson-Visser model for a < aext, as, by
taking the limit r → 0 in fðrÞ, we verify that fðrÞ has a
positive value with signature ðþ;−;−;−Þ, contrary to the
Simpson-Visser case. This is due to the fact that the latter
model only has a single horizon, changing the signature
from ðþ;−;−;−Þ, outside, to ð−;þ;−;−Þ, inside the
horizon, where r ¼ 0 is contained. However, in the model
considered in this section, the signature changes four times,
as we can see in Fig. 4 which describes the behavior of the
metric function fðrÞ. Thus, we have four horizons, namely,
two event and two Cauchy horizons.

FIG. 4. Graphical representation of the possibilities of fðrÞ,
given by (72). For a < aext, the signature changes four times,
which translates as four horizons: two event and two Cauchy
horizons. For a ¼ aext, we have a black bounce with two
symmetric degenerate horizons. For a > aext, no horizon exists.
See the text for more details.
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The Kretschmann scalar is given by

K ¼ 8m2r4ðr2 − 2a2Þ2
ðr2 þ a2Þ7 þ 4ða2ðr2 þ a2Þ3=2 þ 2mr4Þ2

ðr2 þ a2Þ7

þ 4m2ð2a4 − 11a2r2 þ 2r4Þ2
ðr2 þ a2Þ7

þ 8ða2ðr2 þ a2Þ3=2 þmr2ðr2 − 4a2ÞÞ2
ðr2 þ a2Þ7 : ð73Þ

We verify that for a > 0 this scalar is finite for all values
of ðr;mÞ. Thus, the spacetime is always regular.
The causal structure is summarized as follows: (i) When

a < aext ¼ 4m
3
ffiffi
3

p we have four horizons and the global causal

structure cannot easily be represented in two dimensions, at
least not without “cutting the sheet.” Consequently the
usual Penrose diagram approach is not useful. (ii) When
a ¼ aext ¼ 4m

3
ffiffi
3

p we have a black bounce with two symmetric

degenerate horizons. The relevant Penrose diagram is
depicted in Fig. 5. (iii) The specific case of a > aext ¼
4m
3
ffiffi
3

p is a horizonless traversable wormhole represented by

the Penrose diagram in Fig. 1.

In the region where the t coordinate is timelike, the
energy conditions for this model are given by the following
relations:

NEC1 ⇔ −
2a2ð1 − 2mr2

ðr2þa2Þ3=2Þ
κ2ðr2 þ a2Þ2 ≥ 0;

NEC2 ⇔
ma2ð13r2 − 2a2Þ
κ2ðr2 þ a2Þ7=2 ≥ 0; ð74Þ

WEC3 ⇔ −
a2ððr2 þ a2Þ3=2 − 8mr2Þ

κ2ðr2 þ a2Þ7=2 ≥ 0;

SEC3 ⇔
2ma2ð7r2 − 2a2Þ
κ2ðr2 þ a2Þ7=2 ≥ 0; ð75Þ

DEC1 ⇒
12a2mr2

κ2ðr2 þ a2Þ7=2 ≥ 0;

DEC2 ⇒ −
a2ð2ða2 þ r2Þ3=2 −mð2a2 þ 3r2ÞÞ

κ2ðr2 þ a2Þ7=2 : ð76Þ

As mentioned above, the NEC1 ¼ WEC1 ¼ SEC1 are
violated for jrj > rþ; the DEC2 andWEC3 are violated for
jrj ≫ rþ. The NEC2 is violated in the range −

ffiffiffiffiffiffiffiffiffiffi
2=13

p
a <

r <
ffiffiffiffiffiffiffiffiffiffi
2=13

p
a, and finally the SEC3 is violated for

−
ffiffiffiffiffiffiffiffi
2=7

p
a < r <

ffiffiffiffiffiffiffiffi
2=7

p
a. AsWEC3 ¼ ρ is violated outside

the event horizon, we continue to have negative energy
densities.
In the region where the t coordinate is spacelike, the

energy conditions for this model are given by the following
relations:

NEC1 ⇔
2a2ð1 − 2mr2

ðr2þa2Þ3=2Þ
κ2ðr2 þ a2Þ2 ≥ 0;

NEC2 ⇔
2a2ðr2 þ a2Þ3=2 þ a2mð9r2 − 2a2Þ

κ2ðr2 þ a2Þ7=2 ≥ 0; ð77Þ

WEC3 ⇔
a2ððr2 þ a2Þ3=2 þ 4mr2Þ

κ2ðr2 þ a2Þ7=2 ≥ 0;

SEC3 ⇔
4a2ðr2 þ a2Þ3=2 þ 2ma2ð3r2 − 2a2Þ

κ2ðr2 þ a2Þ7=2 ≥ 0; ð78Þ

DEC1 ⇒
12a2mr2

κ2ðr2 þ a2Þ7=2 ≥ 0;

DEC2 ⇒ −
a2mðr2 − 2a2Þ
κ2ðr2 þ a2Þ7=2 ≥ 0: ð79Þ

Again, the NEC1 ¼ WEC1 ¼ SEC1 is violated for sub-
horizon regions.
The Hernandez-Misner-Sharp mass (21) for this model

(72) is given by

FIG. 5. In this example the horizon location is extremal.
Mathematically we therefore have repeated roots rþ ¼ rC of
fðrÞ ¼ 0. Since the extremal horizon (Hþ ¼ Cþ ¼ rþ) is as
usual an infinite proper distance from any point not on the
extremal horizon, the Carter-Penrose diagram is somewhat
misleading in that it would be infeasible to propagate through
the extremal horizon to reach the hypersurface at r ¼ 0. The
bounce surface is now timelike, given fðrÞ does not switch sign
through the extremal horizon.
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MHMSðrÞ ¼
a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þ mr4

ðr2 þ a2Þ2 : ð80Þ

The mass is always positive and possesses the limits
limr→0MHMSðrÞ ¼ a=2 and limr→∞MHMSðrÞ ¼ m.
If one wishes to construct models by setting k ¼ 2 and

by changing the integer n, we verify that the respective
spacetime possesses similar characteristics as the case
considered above, and the energy density will always be
negative for the region outside the event horizons.

C. Model with zero energy density

While (as we have seen above) some of the energy
conditions will always be violated, can we at least satisfy
the WEC3? This would require a non-negative energy
density, and we shall first consider the special case where
the energy density is identically zero. Setting ρðrÞ ¼ 0 and
ΣðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
in (11) and solving the differential

equation for fðrÞ, we obtain

fðrÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
þ KÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

r2
: ð81Þ

But the regularity condition that fð0Þ be finite requires the
integration constant K to be set to K ¼ −a, in which case

fðrÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

r2
: ð82Þ

This geometry is horizonless and

fðrÞ¼1

2
þOðr2Þ; while fðrÞ¼1−

a
r
þOð1=r2Þ: ð83Þ

From the Einstein equations applied to this metric it is now
easy to verify that ρ ¼ 0 and that

pr ¼ −
2a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− aÞ

r2ðr2 þ a2Þ3=2 ;

pt ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
ð3a2 þ 2r2Þ − að7r2 þ 6a2Þ
2ðr2 þ a2Þ3=2r4 : ð84Þ

For this model pr < 0 for any nonzero r, and pt > 0 for
any r, so certainly NEC1 is still violated throughout the
spacetime. WEC3 is by construction marginally satisfied.
So while we can force the WEC to be tolerably well
behaved, other energy conditions will still be violated. The
Hernandez-Misner-Sharp mass for this spacetime is par-
ticularly simple, MHMSðrÞ ¼ a=2 everywhere.
One could try to generalize this construction by choosing

some positive function ρ�ðrÞ > 0 and setting ρðrÞ ¼
ρ�ðrÞ > 0. One would then solve the differential equation
for fðrÞ arising from (11), fixing the integration constant by
demanding the finiteness of fð0Þ. Such a construction

would at least satisfyWEC3, at least in the domain of outer
communication, but the status of the other energy con-
ditions would remain unresolved.
However when it comes to analyzing the NEC1 ¼

WEC1 ¼ SEC1 we can say more. From Eq. (46) substitut-
ing Σ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, we can see that

NEC1 ¼ WEC1 ¼ SEC1 ⇔ −
2jfðrÞja2
κ2ðr2 þ a2Þ ≥ 0: ð85Þ

So NEC1 ¼ WEC1 ¼ SEC1 are definitely violated every-
where except on the horizons themselves, indeed when-
ever fðrÞ ≠ 0.

D. Model MðrÞ=m cos2n ½r0=ΣðrÞ�
Choosing MðrÞ ¼ m cos2n ½r0=ΣðrÞ�, we have

fðrÞ ¼ 1 −
2MðrÞ
ΣðrÞ ¼ 1 −

2m cos2n ½r0=Σ�
Σ

; ð86Þ

where for n → 0, since we are retaining Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, we

recover the Simpson-Visser model. As the radial coordinate
tends to infinity we have limr→∞ fðrÞ ¼ 1. [Indeed, for
r ≫ 1 we have fðrÞ ∼ 1 − ð2m=rÞ.] Also

lim
r→0

fðrÞ ¼ 1 −
2m cos2n ðr0=aÞ

a
: ð87Þ

Appropriately choosing r0 we have three possibilities,
namely, fð0Þ>0, with the signature ðþ;−;−;−Þ; fð0Þ¼0
with 2m ≥ a; and fð0Þ < 0, with signature ð−;þ;−;−Þ.
The number of horizons may also be modified by

changing fð0Þ, i.e., m=a, as we see in Fig. 6. In the plots
of Fig. 6, one may envision the three structures of a black
bounce: (i) for r0 ¼ 2πa and a ¼ 3m, we have no horizons,
and consequently we have a wormhole with a two-way
timelike throat at r ¼ 0; (ii) for r0 ¼ 2πa and a ¼ 2m,
there is an extremal throat at r ¼ 0; (iii) for the specific
example r0 ¼ 2πa and a ¼ 0.5m, we have a regular black
hole with 14 horizons, and where r ¼ 0 is a bounce. Thus,
the number of horizons can in principle grow indefinitely.
For the latter case, the causal structure cannot be repre-
sented in a Penrose diagram. The causal structure is given
by (i) when a > aext ¼ 2m, ðr0 ¼ 2πaÞ, in Fig. 1, and
(ii) when a ¼ aext ¼ 2m, ðr0 ¼ 2πaÞ, in Fig. 2.
Analytically, the energy density is not particularly

simple; we represent it in Fig. 7. We see that the energy
density oscillates as the function fðrÞ. Asymptotically
expanding the energy density as r → ∞ the dominant
term is

ρðrÞ ≈ −a2=κ2r4: ð88Þ

Therefore the energy density is certainly negative for some
regions outside the event horizon.
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The Hernandez-Misner-Sharp mass (21) for the model
(86) is given by

MHMSðrÞ¼
a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p þmr2cos2n ðr0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
Þ

r2þa2
: ð89Þ

The mass is always positive with the limits
limr→∞MHMSðrÞ ¼ m and limr→0MHMSðrÞ ¼ a=2.

E. Model MðrÞ =m arctannðr=aÞðΣ=rÞð2=πÞn
We will now define a mass function that provides a

positive energy density. More specifically, consider the
specific case MðrÞ ¼ m arctannðr=aÞðΣ=rÞð2=πÞn, so that
the metric function fðrÞ is given by

fðrÞ ¼ 1 −
2MðrÞ
ΣðrÞ ¼ 1 −

2m arctannðr=aÞ
r

�
2

π

�
n
: ð90Þ

In the limit ða; nÞ → 0 we regain the Schwarzschild
solution. One may show that the Kretschmann scalar is
regular, so the spacetime is regular. We can now fix n and
regulate the presence of horizons by adjusting a, as shown
in Fig. 8. For instance, consider n ¼ 1, 2, where the
extreme case for n ¼ 1 is given by aext ¼ 4m=π, and for
n ¼ 2 we have aext ≈ 5.16315560586775m=π2.
The causal structure is given by the Penrose diagrams,

namely, (i) the cases n ¼ 1 and a > aext ¼ 4m=π; n ¼ 2
and a > aext ≈ 5.16m, are depicted in Fig. 1; (ii) for n ¼ 1,

FIG. 6. Graphical representation of the possibilities of fðrÞ, given by (86) with r0 ¼ 2πa.

FIG. 7. Graphical representation of the energy density ρðrÞ, to the model (86) with r0 ¼ 2πa.
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a ¼ aext ¼ 4m=π, in Fig. 2; (iii) for n ¼ 1, a<aext¼
4m=π, in Fig. 3; (iv) for n¼2, a ¼ aext ≈ 5.16m, is depicted
in Fig. 9, where we have an extremal horizon in our
Universe, followed by a timelike bounce hypersurface at

r ¼ 0, bouncing into a separate universe without horizons;
(v) for n ¼ 2 and a ¼ aext ≈ 5.16m, in Fig. 10, where here
we have an inner and outer horizon in ourUniverse, followed
by a timelike bounce hypersurface at r ¼ 0, bouncing into a
separate universe without horizons.

FIG. 8. Graphical representation of fðrÞ for (90). In the left side n ¼ 1 and right side n ¼ 2. For n ¼ 2, the extreme value is
approximately aext ≈ 5.16315560586775m=π2.

FIG. 9. Carter-Penrose diagram for the case where we have an
extremal horizon in our Universe, followed by a timelike bounce
hypersurface at r ¼ 0, bouncing into a separate universe without
horizons. Since the extremal horizon ðHþ ¼ Cþ ¼ rþÞ is as
usual an infinite proper distance from any point not on the
extremal horizon, the Carter-Penrose diagram is somewhat
misleading in that it would be infeasible to propagate through
the extremal horizon to reach the hypersurface at r ¼ 0.

FIG. 10. Carter-Penrose diagram for the case where we have an
inner and outer horizon in our Universe, followed by a timelike
bounce hypersurface at r ¼ 0, bouncing into a separate universe
without horizons.
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The energy conditions are shown in Fig. 11. In both cases,
one verifies that all the energy conditions are violated, but in
particular, the condition WEC3 ¼ ρ is always satisfied for
the cases n ¼ 1, a < aext and a ¼ aext; this renders a
positive energy density everywhere. A new feature that
highlights the difference between a regular black-bounce
solution (with horizons) and the standard regular black hole,
considered in the Introduction, is that the condition SEC3,
defined in (30), is always satisfied, as one can readily verify
in Fig. 11. More specifically, this does not occur for regular
spherically symmetrical black holes, where this condition is
always violated within the event horizon [29].
The Hernandez-Misner-Sharp mass (21) for the model

(90) is given by

MHMSðrÞ ¼
π−nða2πn þm2nþ1r arctan ðraÞnÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p : ð91Þ

Note that for n odd the mass is always positive, and
we have the following limits: limr→∞MHMSðrÞ ¼ m and
limr→0MHMSðrÞ ¼ a=2.

F. Model MðrÞ=m arctannðr=aÞð2=πÞn
We now define a mass function that provides a positive

energy density, given byMðrÞ ¼ m arctannðr=aÞð2=πÞn, so
that the factor fðrÞ takes the form

fðrÞ ¼ 1 −
2MðrÞ
ΣðrÞ ¼ 1 −

2m arctannðr=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
2

π

�
n
: ð92Þ

For n → 0 we have the Simpson-Visser spacetime
and ða; nÞ → 0 the Schwarzschild solution. The
Kretschmann scalar is regular everywhere. Figure 12
shows fðrÞ, where for the cases n¼1 and n¼2,
we have horizons according to the values of a, with
n ¼ 1, aext ¼ 0.714410046190945m and n ¼ 2; aext ¼
0.4456300400812961661m.
The causal structure is given by (i) the cases n ¼ 1 and

a > aext ≈ 0.714m; n ¼ 2 and a > aext ≈ 0.446m, are
depicted in Fig. 1; (ii) n ¼ 2 and a ¼ aext ≈ 0.446m, in
Fig. 5; (iii) n ¼ 1 and a ¼ aext ≈ 0.714m, in Fig. 9; and
(iv) n ¼ 1 and a ¼ aext ≈ 0.714m, in Fig. 10.
We notice that, for odd n, the positive and negative

regions of r are not symmetric, contrary to the situation for
n even, where the regions are symmetric. In the case where
n ¼ 1, the energy density is positive for r > rþ and
negative for −∞ < r < rþ, as we see in the left plot
Fig. 13. In the right plot of Fig. 13, we have the case
n ¼ 2, where the energy density is positive for r > rþ and
negative inside of the horizon.
The Hernandez-Misner-Sharp mass (21) for the model

(92) is given by

FIG. 12. Graphical representation of fðrÞ for (92), with n ¼ 1 (left) and n ¼ 2 (right) for different values of a.

FIG. 11. Graphical representation of the energy conditions for (90) with n ¼ 1, a ¼ aext ¼ 4m=π, κ2 ¼ 8π, in the left plot, and n ¼ 2,
a ¼ aext ≈ 5.16m, κ2 ¼ 8π in the right plot.
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MHMSðrÞ ¼
a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þmð2πÞnr2 arctan ðraÞn
r2 þ a2

: ð93Þ

For n even the mass is always positive and possesses the
limits limr→∞MHMSðrÞ ¼ m and limr→0MHMSðrÞ ¼ a=2.

V. CONCLUSION

The investigation of wormholes and regular compact
objects in GR allows for the construction of multiple
models that have the two main characteristics of the
previous models, a throat and regularity (and possibly
horizons); models which we call black bounce. In this work
we have presented two quite general theorems that guide
two general characteristics of these models, the regularity
of static spacetimes and the energy conditions for them. We
note that curvature regularity can be readily verified by
checking the condition that the Kretschmann scalar is
always finite, and that we can easily characterize the
situations under which the usual pointwise energy con-
ditions are always violated for spherically symmetric
models with the metric (1). We have reanalyzed the
Simpson-Visser model, adding a new physical quantity
to the discussion: the Hernandez-Misner-Sharp quasilocal
mass, which is always positive.
We present several new classes of black-bounce models

that generalize the geometry of the original Simpson-Visser
model. Two of them reduce to the original for a specific
choice of parameters. All the models reduce to
Schwarzschild for a suitable choice of parameters, are
regular throughout the spacetime, and have an area of the
angular part of the metric that is always positive and
nonzero. All models have positive Hernandez-Misner-
Sharp mass. The first of these solutions, the model in
Sec. IVA, has exactly the same characteristics as the
Simpson-Visser model. The second, given in Sec. IV B,
presents different characteristics, such as the possibility of
having four horizons, two event horizons and two Cauchy
horizons, and choosing the parameters properly, we can
have an extreme case with only two event horizons. The
causal structure of this solution with four horizons cannot

be represented in a usual Penrose diagram, and the extreme
case shows something new, namely, the bounce at r ¼ 0 is
timelike and can be traversed in both directions, both from
r > 0 to r < 0 and from r < 0 to r > 0. This solution has
the symmetry a ↔ −a and r ↔ −r. In Sec. IV C we
analyze a model with zero energy density. Analysis of
this model explicitly demonstrates that, while one can by
construction force tolerable behavior for the WEC3 con-
straint, one would still violate NEC1 ¼ WEC1 ¼ SEC1

everywhere “off-horizon.” In the fourth solution, presented
in Sec. IV D, we also have the possibility of having
multiple horizons, more than four, depending on the choice
of parameters. The fifth solution, presented in Sec. IV E,
may present an asymmetry, such as two horizons on the
positive part of the radial coordinate r and none on the
negative part. For the symmetric solution of this model,
the energy condition SEC3 ¼ ρ − pr − 2pt ≥ 0 may be
satisfied for all r. This is a specific characteristic of black-
bounce models, because in regular black holes with
spherical symmetry this condition is always violated within
the event horizon [29]. In the sixth model, presented in
Sec. IV F, we also have the possibility of asymmetry, but
for the symmetrical model, the energy density is always
positive outside the event horizon.
In conclusion, we have presented and analyzed just some

of the salient features of several models of new black-
bounce geometries. We could also study geodesics,
dynamic thin shells, thermodynamics, the scattering and
absorption of quantum fields, shadows (silhouettes), and
quasinormal modes. These topics will be addressed appro-
priately in future work.
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APPENDIX A: REGULARITY OF
STATIC SPACETIMES

In Ref. [78], Bronnikov and Rubin showed that, for a
spherically symmetric and static spacetime, finiteness of the
Kretschmann scalar is enough to forbid a curvature singu-
larity. We now state the following somewhat more general
theorem that does not appeal to spherical symmetry.
Theorem.—For any static spacetime, in the strictly static

region, the Kretschmann scalar is positive semidefinite,
being a sum of squares of the nonzero components Râ b̂

ĉ d̂.
Then if this scalar is finite, all the orthonormal components
of the Riemann tensor must be finite.
Proof.—First, for any arbitrary spacetime in terms of any

orthonormal basis, the Kretschmann scalar is

K ¼ RμναβRμναβ ¼ Râ b̂ ĉ d̂R
â b̂ ĉ d̂: ðA1Þ

Now assuming only that one can distinguish space from
time, split the indices into space and time, â ¼ ð0̂; îÞ,
so that

K ¼ Rî ĵ k̂ l̂R
î ĵ k̂ l̂ þ 4R0̂ î ĵ k̂R

0̂ î ĵ k̂ þ 4R0̂ î 0̂ ĵR
0̂ î 0̂ ĵ

þ 4R0̂ 0̂ 0̂ îR
0̂ 0̂ 0̂ î þ R0̂ 0̂ 0̂ 0̂R

0̂ 0̂ 0̂ 0̂: ðA2Þ

But the last two terms vanish in view of the symmetries of
the Riemann tensor, and so

K ¼ Rî ĵ k̂ l̂R
î ĵ k̂ l̂ þ 4R0̂ î ĵ k̂R

0̂ î ĵ k̂ þ 4R0̂ î 0̂ ĵR
0̂ î 0̂ ĵ: ðA3Þ

But since, in the strictly static region where the t coordinate
is timelike, we have gâ b̂ ¼ ηâ b̂ ¼ diagf1;−1;−1;−1g, this
reduces to

K ¼ Rî ĵ k̂ l̂Rî ĵ k̂ l̂ − 4R0̂ î ĵ k̂R0̂ î ĵ k̂ þ 4R0̂ î 0̂ ĵR0̂ î 0̂ ĵ: ðA4Þ

Furthermore, in the strictly static region where the t
coordinate is timelike, the 4-metric is block diagonalizable
gab ¼ ðN2Þ ⊕ ð−gijÞ. More to the point the extrinsic
curvature of the constant-t spatial slices is then zero, and
hence by the Gauss-Codazzi [111–113] equations one
has R0̂ î ĵ k̂ ¼ 0.
Thence as long as the spacetime is static we can split

spacetime → spaceþ time in such a manner that

K ¼ Rî ĵ k̂ l̂Rî ĵ k̂ l̂ þ 4R0̂ î 0̂ ĵR0̂ î 0̂ ĵ ≥ 0: ðA5Þ

Consequently in any static spacetime if the Kretschmann
scalar is finite then all the orthonormal components Râ b̂ ĉ d̂
of the Riemann tensor must be finite. Therefore, we can
determine the regularity of a static spacetime simply by
checking if the Kretschmann scalar is finite.
Similar comments can be made about the Weyl tensor,

CμναβCμναβ ¼ Cî ĵ k̂ l̂Cî ĵ k̂ l̂ − 4C0̂ î ĵ k̂C0̂ î ĵ k̂ þ 4C0̂ î 0̂ ĵC0̂ î 0̂ ĵ:

ðA6Þ

But the static condition implies that both the 4-metric and
the Ricci tensor are block diagonalizable. Thence both
gab ¼ ðN2Þ ⊕ ð−gijÞ and Rab ¼ R00 ⊕ Rij. This now
implies that in static spacetimes C0̂ î ĵ k̂ ¼ R0̂ î ĵ k̂ ¼ 0. So
as long as the spacetime is static we can split spacetime →
spaceþ time in such a manner that

CμναβCμναβ ¼ Cî ĵ k̂ l̂Cî ĵ k̂ l̂ þ 4C0̂ î 0̂ ĵC0̂ î 0̂ ĵ ≥ 0: ðA7Þ

Consequently in any static spacetime if the Weyl scalar
CμναβCμναβ is finite then all the orthonormal components
Câ b̂ ĉ d̂ of the Weyl tensor must be finite.

[1] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. I. The shadow of the
supermassive black hole, Astrophys. J. 875, L1 (2019).

[2] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. II. Array and instrumen-
tation, Astrophys. J. Lett. 875, L2 (2019).

[3] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. III. Data processing and
calibration, Astrophys. J. Lett. 875, L3 (2019).

[4] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. IV. Imaging the central
supermassive black hole, Astrophys. J. Lett. 875, L4
(2019).

[5] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. V. Physical origin of the
asymmetric ring, Astrophys. J. Lett. 875, L5 (2019).

[6] K. Akiyama et al. (Event Horizon Telescope), First M87
Event Horizon Telescope results. VI. The shadow and

NOVEL BLACK-BOUNCE SPACETIMES: WORMHOLES, … PHYS. REV. D 103, 084052 (2021)

084052-17

https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43


mass of the central black hole, Astrophys. J. Lett. 875, L6
(2019).

[7] B. P. Abbott et al. (LIGO Scientific and Virgo), Observa-
tion of Gravitational Waves from a Binary Black Hole
Merger, Phys. Rev. Lett. 116, 061102 (2016).

[8] B. P. Abbott et al. (LIGO Scientific and Virgo), Properties
of the Binary Black Hole Merger GW150914, Phys. Rev.
Lett. 116, 241102 (2016).

[9] B. P. Abbott et al. (LIGO Scientific and Virgo), Astro-
physical implications of the binary black-hole merger
GW150914, Astrophys. J. Lett. 818, L22 (2016).

[10] B. P. Abbott et al. (LIGO Scientific and Virgo), Binary
Black Hole Mergers in the First Advanced LIGO Observ-
ing Run, Phys. Rev. X 6, 041015 (2016).

[11] B. P. Abbott et al. (LIGO Scientific and VIRGO),
GW170104: Observation of a 50-Solar-Mass Binary Black
Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118,
221101 (2017).

[12] B. P. Abbott et al. (LIGO Scientific and Virgo), GWTC-1:
A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during
the First and Second Observing Runs, Phys. Rev. X 9,
031040 (2019).

[13] R. Abbott et al. (LIGO Scientific and Virgo), GW190814:
Gravitational waves from the coalescence of a 23 solar
mass black hole with a 2.6 solar mass compact object,
Astrophys. J. Lett. 896, L44 (2020).

[14] E. Barausse, E. Berti, T. Hertog, S. A. Hughes, P. Jetzer, P.
Pani, T. P. Sotiriou, N. Tamanini, H. Witek, K. Yagi, N.
Yunes et al., Prospects for fundamental physics with LISA,
Gen. Relativ. Gravit. 52, 81 (2020).

[15] V. Cardoso, E. Franzin, and P. Pani, Is the Gravitational-
Wave Ringdown a Probe of the Event Horizon?, Phys. Rev.
Lett. 116, 171101 (2016).

[16] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4
(2019).

[17] R. Penrose, Singularities of spacetime, in Theoretical
Principles in Astrophysics and Relativity (Chicago
University Press, Chicago, 1978), p. 217.

[18] H. Reall, Viewpoint: A possible failure of determinism in
general relativity, Physics 11, 6 (2018).

[19] R. Penrose, Gravitational collapse: The role of general
relativity, Riv. Nuovo Cimento 1, 252 (1969); Gen. Relativ.
Gravit. 34, 1141 (2002).

[20] R. M. Wald, Gravitational collapse and cosmic censorship,
in Black Holes, Gravitational Radiation and the Universe:
Essays in Honor of C.V. Vishveshwara, edited by B. R.
Iyer and B. Bhawal, An International Book Series on The
Fundamental Theories of Physics: Their Clarification,
Development and Application Vol. 100 (Springer, Dor-
drecht, 1999), pp. 69–85, https://doi.org/10.1007/978-94-
017-0934-7_5.

[21] M. Visser, Black holes in general relativity, Proc. Sci.,
BHGRS (2008) 001 [arXiv:0901.4365].

[22] M. Visser, C. Barceló, S. Liberati, and S. Sonego, Small,
dark, and heavy: But is it a black hole?, Proc. Sci., BHGRS
(2008) 010 [arXiv:0902.0346].

[23] M. Visser, Physical observability of horizons, Phys. Rev. D
90, 127502 (2014).

[24] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M.
Visser, Phenomenological aspects of black holes beyond
general relativity, Phys. Rev. D 98, 124009 (2018).

[25] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio,
and M. Visser, On the viability of regular black holes,
J. High Energy Phys. 07 (2018) 023.

[26] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M.
Visser, Geodesically complete black holes, Phys. Rev. D
101, 084047 (2020).

[27] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M.
Visser, Opening the Pandora’s box at the core of black
holes, Classical Quant. Grav. 37, 145005 (2020).

[28] R. Doran, F. S. N. Lobo, and P. Crawford, Interior of a
Schwarzschild black hole revisited, Found. Phys. 38, 160
(2008).

[29] O. B. Zaslavskii, Regular black holes and energy con-
ditions, Phys. Lett. B 688, 278 (2010).

[30] K. A. Bronnikov, Regular magnetic black holes and
monopoles from nonlinear electrodynamics, Phys. Rev. D
63, 044005 (2001).

[31] Z. Y. Fan and X. Wang, Construction of regular black holes
in general relativity, Phys. Rev. D 94, 124027 (2016).

[32] K. A. Bronnikov, Comment on Construction of regular
black holes in general relativity, Phys. Rev. D 96, 128501
(2017).

[33] S. Capozziello, F. S. N. Lobo, and J. P. Mimoso, Energy
conditions in modified gravity, Phys. Lett. B 730, 280
(2014).

[34] S. Capozziello, F. S. N. Lobo, and J. P. Mimoso, General-
ized energy conditions in extended theories of gravity,
Phys. Rev. D 91, 124019 (2015).

[35] M. E. Rodrigues, E. L. B. Junior, G. T. Marques, and V. T.
Zanchin, Regular black holes in fðRÞ gravity coupled to
nonlinear electrodynamics, Phys. Rev. D 94, 024062
(2016).

[36] G. W. Gibbons and D. A. Rasheed, Sl(2,R) invariance of
nonlinear electrodynamics coupled to an axion and a
dilaton, Phys. Lett. B 365, 46 (1996).

[37] E. Ayón-Beato and A. García, New regular black hole
solution from nonlinear electrodynamics, Phys. Lett. B
464, 25 (1999).

[38] E. Ayón-Beato and A. García, Regular Black Hole in
General Relativity Coupled to Nonlinear Electrodynamics,
Phys. Rev. Lett. 80, 5056 (1998).

[39] I. Dymnikova, Regular electrically charged structures in
nonlinear electrodynamics coupled to general relativity,
Classical Quant. Grav. 21, 4417 (2004).

[40] F. S. N. Lobo and A. V. B. Arellano, Gravastars supported
by nonlinear electrodynamics, Classical Quant. Grav. 24,
1069 (2007).

[41] L. Hollenstein and F. S. N. Lobo, Exact solutions of fðRÞ
gravity coupled to nonlinear electrodynamics, Phys. Rev.
D 78, 124007 (2008).

[42] L. Balart, Energy distribution of 2þ 1 dimensional black
holes with nonlinear electrodynamics, Mod. Phys. Lett. A
24, 2777 (2009).

[43] A. García, E. Hackmann, C. Lammerzahl, and A. Macias,
No-hair conjecture for Einstein-Plebanski nonlinear
electrodynamics static black holes, Phys. Rev. D 86,
024037 (2012).

LOBO, RODRIGUES, SILVA, SIMPSON, and VISSER PHYS. REV. D 103, 084052 (2021)

084052-18

https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/Physics.11.6
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1007/978-94-017-0934-7_5
https://doi.org/10.1007/978-94-017-0934-7_5
https://doi.org/10.1007/978-94-017-0934-7_5
https://doi.org/10.1007/978-94-017-0934-7_5
https://arXiv.org/abs/0901.4365
https://arXiv.org/abs/0902.0346
https://doi.org/10.1103/PhysRevD.90.127502
https://doi.org/10.1103/PhysRevD.90.127502
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1088/1361-6382/ab8141
https://doi.org/10.1007/s10701-007-9197-6
https://doi.org/10.1007/s10701-007-9197-6
https://doi.org/10.1016/j.physletb.2010.04.031
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1103/PhysRevD.96.128501
https://doi.org/10.1103/PhysRevD.96.128501
https://doi.org/10.1016/j.physletb.2014.01.066
https://doi.org/10.1016/j.physletb.2014.01.066
https://doi.org/10.1103/PhysRevD.91.124019
https://doi.org/10.1103/PhysRevD.94.024062
https://doi.org/10.1103/PhysRevD.94.024062
https://doi.org/10.1016/0370-2693(95)01272-9
https://doi.org/10.1016/S0370-2693(99)01038-2
https://doi.org/10.1016/S0370-2693(99)01038-2
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1088/0264-9381/21/18/009
https://doi.org/10.1088/0264-9381/24/5/004
https://doi.org/10.1088/0264-9381/24/5/004
https://doi.org/10.1103/PhysRevD.78.124007
https://doi.org/10.1103/PhysRevD.78.124007
https://doi.org/10.1142/S021773230903117X
https://doi.org/10.1142/S021773230903117X
https://doi.org/10.1103/PhysRevD.86.024037
https://doi.org/10.1103/PhysRevD.86.024037


[44] G. J. Olmo and D. Rubiera-Garcia, Palatini f(R) black
holes in nonlinear electrodynamics, Phys. Rev. D 84,
124059 (2011).

[45] L. Balart and E. C. Vagenas, Regular black holes with a
nonlinear electrodynamics source, Phys. Rev. D 90,
124045 (2014).

[46] M. Guerrero and D. Rubiera-Garcia, Nonsingular black
holes in nonlinear gravity coupled to Euler-Heisenberg
electrodynamics, Phys. Rev. D 102, 024005 (2020).

[47] M. E. Rodrigues, J. C. Fabris, E. L. B. Junior, and G. T.
Marques, Generalisation for regular black holes on
general relativity to fðRÞ gravity, Eur. Phys. J. C 76,
250 (2016).

[48] M. E. Rodrigues, E. L. B. Junior, and M. V. de S. Silva,
Using dominant and weak energy conditions for building
new classes of regular black holes, J. Cosmol. Astropart.
Phys. 02 (2018) 059.

[49] M. E. Rodrigues and M. V. de S. Silva, Bardeen regular
black hole with an electric source, J. Cosmol. Astropart.
Phys. 06 (2018) 025.

[50] C. Bambi and L. Modesto, Rotating regular black holes,
Phys. Lett. B 721, 329 (2013).

[51] J. C. S. Neves and A. Saa, Regular rotating black holes
and the weak energy condition, Phys. Lett. B 734, 44
(2014).

[52] B. Toshmatov, B. Ahmedov, A. Abdujabbarov, and Z.
Stuchlik, Rotating regular black hole solution, Phys. Rev.
D 89, 104017 (2014).

[53] M. Azreg-Aïnou, Generating rotating regular black hole
solutions without complexification, Phys. Rev. D 90,
064041 (2014).

[54] I. Dymnikova and E. Galaktionov, Regular rotating electri-
cally charged black holes and solitons in non-linear
electrodynamics minimally coupled to gravity, Classical
Quant. Grav. 32, 165015 (2015).

[55] R. Torres and F. Fayos, On regular rotating black holes,
Gen. Relativ. Gravit. 49, 2 (2017).

[56] W. Berej, J. Matyjasek, D. Tryniecki, and M. Woronowicz,
Regular black holes in quadratic gravity, Gen. Relativ.
Gravit. 38, 885 (2006).

[57] E. L. B. Junior, M. E. Rodrigues, and M. J. S. Houndjo,
Regular black holes in fðTÞ gravity through a nonlinear
electrodynamics source, J. Cosmol. Astropart. Phys. 10
(2015) 060.

[58] M. E. Rodrigues and M. V. de S. Silva, Regular multi-
horizon black holes in fðGÞ gravity with nonlinear
electrodynamics, Phys. Rev. D 99, 124010 (2019).

[59] M. V. de S. Silva and M. E. Rodrigues, Regular black holes
in fðGÞ gravity, Eur. Phys. J. C 78, 638 (2018).

[60] E. L. B. Junior, M. E. Rodrigues, and M. V. de S. Silva,
Regular black holes in rainbow gravity, Nucl. Phys. B961,
115244 (2020).

[61] P. A. Cano and Á. Murcia, Resolution of Reissner-
Nordström singularities by higher-derivative corrections,
Classical Quant. Grav. 38, 075014 (2021).

[62] A. Simpson and M. Visser, Black-bounce to traversable
wormhole, J. Cosmol. Astropart. Phys. 02 (2019) 042.

[63] M. S. Morris and K. S. Thorne, Wormholes in space-time
and their use for interstellar travel: A tool for teaching
general relativity, Am. J. Phys. 56, 395 (1988).

[64] M. S. Morris, K. S. Thorne, and U. Yurtsever, Wormholes,
Time Machines, and the Weak Energy Condition, Phys.
Rev. Lett. 61, 1446 (1988).

[65] M. Visser, Lorentzian Wormholes: From Einstein to
Hawking (AIP Press, New York, 1995).

[66] F. S. N. Lobo, Wormholes, warp drives and energy con-
ditions, Fundam. Theor. Phys. 189, 1 (2017) (formerly
Lecture Notes in Physics).

[67] A. Simpson, P. Martín-Moruno, and M. Visser, Vaidya
spacetimes, black-bounces, and traversable wormholes,
Classical Quantum Gravity 36, 145007 (2019).

[68] F. S. N. Lobo, A. Simpson, and M. Visser, Dynamic thin-
shell black-bounce traversable wormholes, Phys. Rev. D
101, 124035 (2020).

[69] K. A. Bronnikov, G. Clement, C. P. Constantinidis, and
J. C. Fabris, Structure and stability of cold scalar-tensor
black holes, Phys. Lett. A 243, 121 (1998).

[70] K. A. Bronnikov and J. C. Fabris, Regular Phantom Black
Holes, Phys. Rev. Lett. 96, 251101 (2006).

[71] K. A. Bronnikov, V. N. Melnikov, and H. Dehnen, Regular
black holes and black universes, Gen. Relativ. Gravit. 39,
973 (2007).

[72] S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova,
Magnetic black universes and wormholes with a phantom
scalar, Classical Quant. Grav. 29, 245006 (2012).

[73] K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko,
Instabilities of wormholes and regular black holes sup-
ported by a phantom scalar field, Phys. Rev. D 86, 024028
(2012).

[74] M. R. Finch and J. E. F. Skea, A review of the relativistic
static fluid sphere, 1998 (unpublished).

[75] P. Boonserm and M. Visser, Buchdahl-like transformations
for perfect fluid spheres, Int. J.Mod. Phys.D 17, 135 (2008).

[76] P. Boonserm and M. Visser, Buchdahl-like transformations
in general relativity, Thai J. Math. 5, 209 (2007).

[77] I. Semiz, On the (non)genericity of the Kiselev spacetime,
IOP SciNotes 1, 025206 (2020).

[78] K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology
and Extra Dimensions (World Scientific, Singapore,
2013).

[79] A. J. M. Medved, D. Martin, and M. Visser, Dirty black
holes: Space-time geometry and near horizon symmetries,
Classical Quant. Grav. 21, 3111 (2004).

[80] M. Visser, Dirty black holes: Thermodynamics and hori-
zon structure, Phys. Rev. D 46, 2445 (1992).

[81] W. C. Hernandez and C.W. Misner, Observer time
as a coordinate in relativistic spherical hydrodynamics,
Astrophys. J. 143, 452 (1966).

[82] C. W. Misner and D. H. Sharp, Relativistic equations for
adiabatic, spherically symmetric gravitational collapse,
Phys. Rev. 136, B571 (1964).

[83] H. Maeda and M. Nozawa, Generalized Misner-Sharp
quasilocal mass in Einstein-Gauss-Bonnet gravity, Phys.
Rev. D 77, 064031 (2008).

[84] A. B. Nielsen and D. H. Yeom, Spherically symmetric
trapping horizons, the Misner-Sharp mass and black hole
evaporation, Int. J. Mod. Phys. A 24, 5261 (2009).

[85] G. Abreu and M. Visser, Kodama time: Geometrically
preferred foliations of spherically symmetric spacetimes,
Phys. Rev. D 82, 044027 (2010).

NOVEL BLACK-BOUNCE SPACETIMES: WORMHOLES, … PHYS. REV. D 103, 084052 (2021)

084052-19

https://doi.org/10.1103/PhysRevD.84.124059
https://doi.org/10.1103/PhysRevD.84.124059
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.90.124045
https://doi.org/10.1103/PhysRevD.102.024005
https://doi.org/10.1140/epjc/s10052-016-4085-x
https://doi.org/10.1140/epjc/s10052-016-4085-x
https://doi.org/10.1088/1475-7516/2018/02/059
https://doi.org/10.1088/1475-7516/2018/02/059
https://doi.org/10.1088/1475-7516/2018/06/025
https://doi.org/10.1088/1475-7516/2018/06/025
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1016/j.physletb.2014.05.026
https://doi.org/10.1016/j.physletb.2014.05.026
https://doi.org/10.1103/PhysRevD.89.104017
https://doi.org/10.1103/PhysRevD.89.104017
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1088/0264-9381/32/16/165015
https://doi.org/10.1088/0264-9381/32/16/165015
https://doi.org/10.1007/s10714-016-2166-7
https://doi.org/10.1007/s10714-006-0270-9
https://doi.org/10.1007/s10714-006-0270-9
https://doi.org/10.1088/1475-7516/2015/10/060
https://doi.org/10.1088/1475-7516/2015/10/060
https://doi.org/10.1103/PhysRevD.99.124010
https://doi.org/10.1140/epjc/s10052-018-6122-4
https://doi.org/10.1016/j.nuclphysb.2020.115244
https://doi.org/10.1016/j.nuclphysb.2020.115244
https://doi.org/10.1088/1361-6382/abd923
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1007/978-3-319-55182-1_1
https://doi.org/10.1088/1361-6382/ab28a5
https://doi.org/10.1103/PhysRevD.101.124035
https://doi.org/10.1103/PhysRevD.101.124035
https://doi.org/10.1016/S0375-9601(98)00133-9
https://doi.org/10.1103/PhysRevLett.96.251101
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1088/0264-9381/29/24/245006
https://doi.org/10.1103/PhysRevD.86.024028
https://doi.org/10.1103/PhysRevD.86.024028
https://doi.org/10.1142/S0218271808011912
https://doi.org/10.1088/2633-1357/aba1f5
https://doi.org/10.1088/0264-9381/21/13/003
https://doi.org/10.1103/PhysRevD.46.2445
https://doi.org/10.1086/148525
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRevD.77.064031
https://doi.org/10.1103/PhysRevD.77.064031
https://doi.org/10.1142/S0217751X09045984
https://doi.org/10.1103/PhysRevD.82.044027


[86] V. Faraoni and G. Vachon, When Painlevé-Gullstrand
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