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The procedure underlying the matching of 1-form (tetrad) fields in theories possessing absolute
parallelism—fðTÞ gravity being within this category—is addressed and exemplified. We show that the
remnant symmetries of the intervening spaces play a central role in the process, because the knowledge of
the remnant group of local Lorentz transformations enables one to perform rotations and/or boosts in order
to C1-match the corresponding tetrads on the junction surface. This automatically ensures the continuity of
the Weitzenböck scalar there, even though this proves to be just a necessary condition in order to obtain a
global parallelization of the spacetime.
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I. INTRODUCTION

Junction conditions are key tools in regard to the
comprehension on how different solutions of a given
physical theory interact. They provide crucial information
about the physical constraints arising because of the
interplay between the intervening solutions. In fact, the
way the pieces combine into a more global solution is as
important as the individual pieces themselves. For instance,
vacuum solutions describing black holes in any gravita-
tional theory would be of little interest if we did not know
that black holes are the result of gravitational collapse, i.e.,
of the unstoppable contraction of matter in a certain region
of spacetime. In this case, junction conditions will not only
be instrumental in providing a black hole formation
mechanism, but also in relating the physical properties
of the collapsing matter to the angular momentum, electric
charge, and mass of the remaining black hole.
In general relativity (GR), the definite answer to the

junction problem was pronounced by Israel [1], even
though Darmois and, later on, Lichnerowicz, were very
aware of the issue and made sharp contributions on the
matter well before [2]. Actually, solutions of GR involving
matching techniques were known since the late 30s and
early 40s, especially concerning the junction between
Friedmann-Robertson-Walker cosmological models and
the spherically symmetric vacuum corresponding to the
Schwarzschild solution [3,4]. Much more recently, the

junction conditions in extended theories of gravity within
the metric approach—known as fðRÞ gravity—were
worked out [5,6]. Additionally, junction conditions in
Palatini-fðRÞ gravity were studied as well [7].
Here it is our intention to study junction problems at the

level of the tetrad field, which is the dynamical carrier of
the gravitational degrees of freedom in the so called fðTÞ
gravity [8–10]. Due to the additional complications coming
from the underlying parallelization process involved in
these theories, it is by no means surprising that very few
authors dealt with this subject in the past; see [11,12]. In
certain sense, we offer in this paper a complementary point
of view regarding the ideas developed in [11]; actually, by
bringing into scene the remnant group of local Lorentz
symmetries present in fðTÞ gravity, we explain by means of
a relatively simple example, how to get a global paralle-
lization which incorporates at once the partial ones asso-
ciated to the spaces to be glued. This procedure is
particularly useful when no matter shells or layers are
present on the junction surface, so it can be considered the
fðTÞ analog of the Darmois-Lichnerovicz procedure.
Hopefully, it will serve also in other theories relying
on absolute parallelism (see, e.g., [13]), even though a
characterization of the remnant symmetries in question
constitutes a crucial ingredient of the method.
After a brief exposition of fðTÞ gravity and its remnant

group of transformations in Sec. II, we heuristically
illustrate the nature of the matching problem in Sec. III.
Section IV exemplifies the technique by obtaining a global
parallelization for the Schwarzschild interior and exterior

*francof@cab.cnea.gov.ar
†martin.onetto@ib.edu.ar

PHYSICAL REVIEW D 103, 084051 (2021)

2470-0010=2021=103(8)=084051(7) 084051-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9373-8909
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.084051&domain=pdf&date_stamp=2021-04-27
https://doi.org/10.1103/PhysRevD.103.084051
https://doi.org/10.1103/PhysRevD.103.084051
https://doi.org/10.1103/PhysRevD.103.084051
https://doi.org/10.1103/PhysRevD.103.084051


spaces corresponding to a simple model of a spherical star
immersed in a spherically symmetric vacuum. Finally, we
further comment on our results in Sec. V.

II. PRELIMINARY MATERIAL

In the context of fðTÞ gravity, the dynamical field is the
tetrad eaðxμÞ, and the metric gðxμÞ is just a subsidiary field
obtained by means of gðxμÞ ¼ eaðxμÞebðxμÞηab, where
ηab ¼ diagð1;−1;−1;−1Þ. This means that in the local
coordinates xμ, the components of the metric are just
gμν ¼ eaμebνηab. The tetrad is responsible for the torsion
Ta ¼ dea, which in local components acquires the form
Ta

μν ¼ ∂μeaν − ∂νeaμ. According to this framework, the
tensor Ta is the building block of the gravitational
Lagrangian; in fact, we can construct the (diffeomorphism)
invariant

T ¼ SaμνTa
μν; ð1Þ

where

Saμν ¼
1

4
ðTa

μν − Tμν
a þ Tνμ

aÞ þ 1

2
ðδaμTσν

σ − δaνTσμ
σÞ

and Tσ
σν ¼ gμρTμρ

ν ¼ eμaeρbηabTμρ
ν. The Weitzenböck

invariant T is a scalar only under general coordinate
transformations. However, under a local Lorentz trans-
formation of the tetrad, eaðxμÞ → ẽaðxμÞ ¼ Λa

bðxμÞebðxμÞ,
the object T transforms as T → T̃ ¼ T þDT, with

DT ¼ e−1dðϵabcdea ∧ eb ∧ ηdeΛc
fdΛf

eÞ ð2Þ

and e ¼ det eaμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gμνj

p
. This transformation law has

a central importance in this work; we see that, in general,
only global Lorentz transformations leave T invariant.
Nonetheless, we shall briefly comment on the local
symmetries which actually lie behind the transformation
law encoded in (2), leaving the reader to follow the full
exposition given in [14,15].
The remnant group of local Lorentz transformations [14]

is defined by demanding that T becomes a genuine Lorentz
scalar, i.e., by asking the on-shell equation DT ¼ 0. The
remnant group can be characterized by expanding the
Lorentz transformations around the identity element, i.e.,

Λa
bðxμÞ ¼ δab þ

1

2
σcdðxμÞðMcdÞab þOðσ2Þ; ð3Þ

where σcdðxμÞ ¼ −σdcðxμÞ are the infinitesimal parameters
and

ðMcdÞab ¼ δacηdb − δadηcb: ð4Þ

It is direct to show that the requirement DT ¼ 0 coming
from (2) at the same order implies

ϵabcddðea ∧ ebÞ ∧ dσcd þOðσ2Þ ¼ 0: ð5Þ

This result seems to suggest the convenience of classifying
a given spacetime ea in terms of the closed 2-forms ea ∧ eb

it involves, if any; in this way, a given tetrad will be called a
n-closed-area frame (n-CAF), if it satisfies dðea ∧ ebÞ ¼ 0
for any of the six different pairs ða; bÞ (0 ≤ n ≤ 6). For
instance, let us inquire into the infinitesimal, local sym-
metries allowed by the 6-CAF Euclidean, tetrad
ea ¼ δabdx

b, which leads to Minkowski space with metric
ηab. Equation (5) just says that the infinitesimal parameters
σcd are totally free. This means that any nonlocal Lorentz
invariant theory constructed upon the Weitzenböck invari-
ant T, such as fðTÞ gravity to be described in a moment, is
unable to select a preferred parallelization at a local level. In
other words, the absence of gravity embodied in
Minkowski space is described in fðTÞ gravity as a local
lack of preferred frames; any of them connected by local,
infinitesimal Lorentz transformations is equally good for
describing the local absence of gravity. However, things are
very different for finite Lorentz transformations. In this
case, the full expression (2) must be considered, and one
can prove that 6 one-dimensional groups (three pure
rotations and three pure boosts) act as remnant symmetry
groups of Minkowski space. Moreover, three Abelian, two-
dimensional groups Gi appear as symmetries as well; these
are generated by Gi ¼ fKi; Jig, ði ¼ x1; x2; x3Þ, where Ki
and Ji correspond to boosts and rotations along and about
the i-axes, respectively. For details, we suggest to con-
sult [14].
The equations of motion of fðTÞ gravity are

½e−1∂μðeSaμνÞ þ eλaTρ
μλSρμν�f0

þ Saμν∂μTf00 −
1

4
eνaf ¼ −4πGeλaT λ

ν; ð6Þ

where an arbitrary (at least twice differentiable) function f
of the Weitzenböck invariant T appears. The equations are
derived from the action

I ¼ 1

16πG

Z
fðTÞed4xþ Imatter; ð7Þ

which reduces to Einstein’s general relativity (in its tele-
parallel equivalent form), when fðTÞ ¼ T. In (6), T λ

ν is the
energy momentum tensor coming from the matter action
Imatter, and primes denote differentiation with respect to T.
Note that the equations of motion are of second order in
derivatives of the tetrad; this is a consequence of the fact
that T is constructed upon first derivatives of the tetrad.
Then, a proper set of initial data is S ¼ fea; ∂μeag, and
different solutions should be matched at junctions surfaces
J in such a way that the tetrad and its first derivatives are
well defined on them. The differentiability conditions on J
automatically assure the existence of the torsion and the
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Weitzenböck invariant on J. This is slightly different from
GR, where the scalar curvature R does not need to be
continuous on J because of the fact that it contains second
derivatives of the metric.

III. HEURISTICS

In this section, we shall illustrate the nature of the
problem by a simple example which, nonetheless, captures
the essence of the matching procedure in the presence of
absolute parallelism. Let us consider Minkowski spacetime
M described in standard pseudo-Euclidean coordinates
ðt;xÞ as the union of the submanifoldsM ¼∪i Mi, where

M1 ¼ fðt;xÞ ∈ Mjt ≥ 1g;
M2 ¼ fðt;xÞ ∈ Mj − 1 < t < 1g;
M3 ¼ fðt;xÞ ∈ Mjt ≤ −1g: ð8Þ

Here the Cauchy hypersurfaces t ¼ �1 will play the role of
junction surfaces J�. The spacetime metric is simply ηab
everywhere, regardless of the region considered. However,
the fðTÞ equations of motion are solved by infinitely many
1-form fields representing the infinite ways of parallelizing
M. Let us suppose that in solving the equations, we find
the fields

ea ¼ δabdx
b; in M1 and M3: ð9Þ

As mentioned in the previous section, the remnant group of
M includes 6 one-dimensional groups of boosts and
rotations. Suppose that in solving the equations in M2,
the following x-boosted tetrad is found:

e0 ¼ cosh½θðt;xÞ�dtþ sinh½θðt;xÞ�dx
e1 ¼ sinh½θðt;xÞ�dtþ cosh½θðt;xÞ�dx
e2 ¼ dy

e3 ¼ dz:

; in M2: ð10Þ

Despite the manifestly artificial character of the splitting
given in (8), the frames (9) and (10) are genuine solutions
(in the corresponding regions) of the vacuum fðTÞ motion
equations leading to the metric ηab; they are connected by a
time-dependent boost in the t–x plane, which is a trans-
formation belonging to the remnant group of M. As a
matter of fact, the Weitzenböck invariant coming from (9)
and (10) is identically null, even though the frame in M2

generates several non-null components of the torsion
tensor, namely,

Ttxt ¼ ∂tθ;

Ttxi ¼ ∂iθ; i∶y; z;

Txit ¼ ∂iθ; i∶x; y; z: ð11Þ

However, the fields (9) and (10) do not conform a
parallelization of the whole space M in general, because
of the discontinuity produced in the junction surfaces J�.
Plainly the tetrads are not C1-matched there.
In this trivial example, things can be solved easily. Using

the freedom to choose the tetrad provided by the remnant
group, we can sort things out on the junction surface. For
instance, taking θðt;xÞ ¼ 0 onM2, a global parallelization
of M is obtained at once, leading to the canonical,
Euclidean frame ea ¼ δabdx

b everywhere. Of course, this
is the simplest and more diaphanous solution concerning
the parallelization of M from the outset, but infinitely
many other, perhaps more interesting choices can be made;
among them, we have θðt;xÞ ¼ ð1þ cosðπtÞÞ=2, which
offers a C1 matching of the tetrads on the surfaces J�,
ensuring thus the continuity of the torsion tensor on them.
The simple setting involved in this example teaches us

three valuable lessons which are as follows:
1. What is obvious at the level of the metric (in this

case ηab), is not in the underlying world of the
tetrad ea.

2. The continuity of theWeitzenböck invariant T on the
junction surface is just a necessary condition in
order to have a well-defined parallelization onM. A
sufficient condition is given by the continuity of the
first derivatives of ea on the junction surface or,
equivalently, of the components of the torsion Ta on
it. These facts are in agreement with the analysis
performed in [11].

3. The importance of a thorough characterization of the
remnant group of the space-time under consider-
ation; this will enable one to select local Lorentz
rotations and boosts near the junction surface in
order to C1-match the corresponding tetrads.

In general junction problems, the role of the Mi above
could be played by spaces of very different geometrical and
topological structure, and it is easy to foresee that things
will rapidly go out of control, for in addition to the usual
complications arising as a consequence of gluing the spaces
at the level of the metric field, the remnant symmetries to be
used for matching the tetrads will manifest in a very
dissimilar tetrad structure on either side of the junction
surface. However, the continuity of T on the junction
surface will serve as a guiding principle; once assured, a
further knowledge of the remnant group of the intervening
spaces will hopefully enable us to perform the C1-matching
at the end. We illustrate the procedure in the next section by
using a simple, though physically relevant, model of a star.

IV. MATCHING TETRADS

Let us consider the very well-known textbook,
Schwarzschild interior and exterior metrics [16,17],

ds2− ¼ ½3hðr0Þ− hðrÞ�2
4

dt2 −
dr2

hðrÞ2 − r2dΩ2; 0 ≤ r ≤ r0;

ð12Þ
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where hðrÞ ¼ ð1 − r2=R2Þ1=2, R2 ¼ 3=ð8πϱ0Þ, and

ds2þ ¼ ð1 − 2M=rÞdt2 − dr2

1 − 2M=r
− r2dΩ2; r ≥ r0:

ð13Þ

Metric (12) represents a simple model of a static spherically
symmetric star of radius r0, consisting of a perfect fluid
with constant energy density ϱ0 and pressure

pðrÞ ¼ ϱ0

�
hðrÞ − hðr0Þ
3hðr0Þ − hðrÞ

�
: ð14Þ

Both metrics trivially match on the surface r ¼ r0 with the
sole condition of fixing the massM of the exterior solution
to M ¼ 4πϱ0r30=3. However, the underlying, proper tetrad
fields representing the corresponding solutions within the
context of fðTÞ gravity are quite intricate.
Let us briefly revisit the proper frames leading to the

exterior Schwarzschild metric first; full details can be found
in [18]. In what follows, isotropic coordinates with radial
marker ρ will be used, and the isotropic radius of the star
will be ρ⋆ (not to be confused with ϱ0, the constant energy
density of the star). The analysis starts by considering the
asymptotic frame

et ¼ Aþdt; ei ¼ Bþdxi; ð15Þ
being Aþ¼AþðρÞ, Bþ ¼ BþðρÞ. This tetrad leads to
the Schwarzschild metric in isotropic coordinates ds2þ¼
A2þdt2−B2þðdρ2þρ2dΩ2Þ, where ρ2¼ðx1Þ2þðx2Þ2þðx3Þ2,
and

Aþ ¼ 2ρ −M
2ρþM

; Bþ ¼
�
1þ M

2ρ

�
2

: ð16Þ

The tetrad (15) is not a consistent solution of the fðTÞ
equations of motion; however, we can radially boost it in
order to achieve a null Weitzenböck invariant T. The so
obtained tetrad automatically will solve the equations of
motion for any ultraviolet fðTÞ deformation, i.e., for any
function verifying fð0Þ ¼ 0 and f0ð0Þ ¼ 1 [see Eq. (6)]).
After the ρ-dependent boost eþa ¼ Λa

þbðρÞeb, the
Schwarzschild frame eþa corresponding to the exterior
solution results in

eþt ¼ Aþγþdt − BþΓðγþÞdρ;
eþ1 ¼ −AþΓðγþÞ sin θ cosϕdtþ Bþγþ sin θ cosϕdρ

þ ρBþ½cos θ cosϕdθ − sin θ sinϕdϕ�;
eþ2 ¼ −AþΓðγþÞ sin θ sinϕdtþ Bþγþ sin θ sinϕdρ

þ ρBþ½cos θ sinϕdθ þ sin θ cosϕdϕ�;
eþ3 ¼ −AþΓðγþÞ cos θdtþ Bþ½γþ cos θdρ − ρ sin θdθ�:

ð17Þ

Here we have defined ΓðγþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2þ − 1

p
, where γþ ¼

γþðρÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βþðρÞ2

p
, and βþðρÞ is the nondimensional

boost speed. It was demonstrated in [18] that the
Weitzenböck invariant is null provided the boost is tuned
according to

γþðρÞ ¼
M2 þ 4ρ2 þ kþρ

4ρ2 −M2
; ð18Þ

where kþ ≥ 0 is a free constant with units of length [19].
The condition kþ ≥ 0 is necessary in order to have γþ ≥ 1,
hence ΓðγþÞ ≥ 0. Note that the speed βþðρÞ goes to one
when ρ → M=2, which corresponds to the event horizon in
the isotropic chart ðt; ρ; θ;ϕÞ, which is related to the
standard Schwarzschild coordinates ðt; r; θ;ϕÞ by the radial
scaling 2ρ ¼ r½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p þ 1� −M. This is actually a

deficiency of the isotropic chart, and it has no physical
consequences because the junction surface corresponding
to the (isotropic) radius of the star ρ⋆ will always be greater
than M=2. Moreover, βþðρÞ goes to zero when ρ → ∞,
justifying the name adopted for the tetrad (15).
The tetrad (17) with the condition (18) represents the

exterior Schwarzschild geometry in any fðTÞ deformation
of ultraviolet character. The free constant kþ appearing in
(18) will be crucial in the matching procedure to be
unfolded in a moment. It actually defines a one-parameter
subgroup of Lorentz boosts in the radial direction ρ, leaving
unchanged the null value of the Weitzenböck invariant T;
then, it provides valuable information concerning the
remnant group of the Schwarzschild exterior solution.
Let us proceed now to fully derive the tetrad field

corresponding to the interior metric (12). As before, we
start from the isotropic tetrad et ¼ A−dt, ei ¼ B−dxi, thus
ds2− ¼ A2

−dt2 − B2
−ðdρ2 þ ρ2dΩ2Þ, where now we have

A− ¼ 4ρ3⋆ðρ⋆ −MÞ þMð4ρ⋆ −MÞρ2
ð2ρ⋆ þMÞð2ρ3⋆ þMρ2Þ ;

B− ¼ 1

4

ð2ρ⋆ þMÞ3
2ρ3⋆ þMρ2

: ð19Þ

It is straightforward to show that (16) and (19) C1-match at
the junction value ρ ¼ ρ⋆. Due to the fact that we are using
isotropic coordinates, the mass M in (19) is related to the
constant energy density ϱ0, but in a tricky way. In fact, we
have

y¼ 4x
ð1þ xÞ6 ; x¼ M

2ρ⋆
; y¼ ρ2⋆

R2
¼ 8

3
πρ2⋆ϱ0: ð20Þ

Note that if we demandM ¼ 0 (i.e., x ¼ 0), we have y ¼ 0,
or equivalently ϱ0 ¼ 0 for any ρ⋆. Under these circum-
stances, we have A− ¼ B− ¼ 1 from (19) and the metric is
just ds2− ¼ dt2 − ðdρ2 þ ρ2dΩ2Þ, which represents the
Minkowski line element in usual spherical coordinates;
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isotropic and spherical coordinates coincide when M ¼ 0,
so we shall take M ≠ 0 from now on. Details concerning
the structure of the interior Schwarzschild solution in
isotropic coordinates can be found in [20].
In the hope of finding the interior solution in the fðTÞ

context, we radially boost the isotropic frame e−a ¼
Λa−bðρÞeb. Of course, we obtain an expression formally
identical to (17), namely,

e−t ¼ A−γ−dt − B−Γðγ−Þdρ;
e−1 ¼ −A−Γðγ−Þ sin θ cosϕdtþ B−γ− sin θ cosϕdρ

þ ρB−½cos θ cosϕdθ − sin θ sinϕdϕ�;
e−2 ¼ −A−Γðγ−Þ sin θ sinϕdtþ B−γ− sin θ sinϕdρ

þ ρB−½cos θ sinϕdθ þ sin θ cosϕdϕ�;
e−3 ¼ −A−Γðγ−Þ cos θdtþ B−½γ− cos θdρ − ρ sin θdθ�:

ð21Þ

However, this tetrad will be a solution of the fðTÞ equations
only if we can assure that the intervening Weitzenböck
invariant T vanishes. A lengthy but otherwise standard
calculation gives

TðρÞ ¼ 32½FðρÞ þ GðρÞγ− þHðρÞγ0−�
ρ2ðM þ 2ρ⋆Þ6IðρÞ

; ð22Þ

where now the prime refers to differentiation with respect to
ρ, and the functions F, G, H, I are

F¼ðMρ2−2ρ3⋆Þ
× ½M2ρ4ðM−4ρ⋆Þþ10Mρ2ρ3⋆ðMþ2ρ⋆Þ−8ρ6⋆ðM−ρ⋆Þ�;

G¼ðMρ2þ2ρ3⋆Þ
× ½M2ρ4ðM−4ρ⋆Þþ6Mρ2ρ3⋆ðMþ2ρ⋆Þþ8ρ6⋆ðρ⋆−MÞ�;

H¼−ρðMρ2þ2ρ3⋆Þ2½Mρ2ðM−4ρ⋆Þþ4ρ3⋆ðM−ρ⋆Þ�;
I¼Mρ2ðM−4ρ⋆Þþ4ρ3⋆ðM−ρ⋆Þ: ð23Þ

The condition T ¼ 0 fortunately can be worked out because
of the fact that T contains just first derivatives of the tetrad.
This permits us to integrate (22) for γ−; nonetheless, we
have to introduce further functions in order to write down
the result in a sufficiently legible form. It yields

γ−ðρÞ ¼
ðMρ2 þ 2ρ3⋆Þ2

8ρIðρÞ ½−JðρÞ þ KðρÞ þ 8k−�; ð24Þ

where k− is an integration constant (with units of inverse
length) and the two extra functions are

J ¼ 2ρðMρ2 − 2ρ3⋆Þ
ðMρ2 þ 2ρ3⋆Þ3

½Mρ2ðM − 10ρ⋆Þ þ 2ρ3⋆ð5M − 2ρ⋆Þ�;

K ¼ 3
ffiffiffi
2

p ðM − 2ρ⋆Þ arctanð
ffiffiffiffiffi
M

p
ρ=

ffiffiffi
2

p
ρ3=2⋆ Þffiffiffiffiffi

M
p

ρ3=2⋆
: ð25Þ

The tetrad (21) with the so obtained γ− is the one correctly
describing the Schwarzschild interior solution for any “high
energy” fðTÞ theory. As in the exterior case, it depends on a
free parameter representative of the one-dimensional rem-
nant group of (restricted) boosts in the ρ coordinate.
Due to the fact that the functions A� (on one hand)

and B� (on the other), C1-match on the junction surface
ρ ¼ ρ⋆, the C1-matching of the frames (17) and (21)
will be guaranteed if the corresponding boosts join
smoothly at ρ ¼ ρ⋆. By imposing γ−ðρ⋆Þ ¼ γþðρ⋆Þ and
γ0−ðρ⋆Þ ¼ γ0þðρ⋆Þ, we obtain just one equation linking the
free constants kþ and k−, namely,

kþ ¼ −
ðM þ 2ρ⋆Þ2

ρ⋆
½k−ρ⋆ þDðxÞ�; ð26Þ

where the function DðxÞ reads

DðxÞ ¼ 1

4

�
3ðx − 1Þffiffiffi

x
p arctanð ffiffiffi

x
p Þ þ 3x2 þ 2xþ 3

ð1þ xÞ2
�
:

This function is positive in the domain (0,1), where x ¼
M=2ρ⋆ is defined. DðxÞ ranges in the interval ð0; 1=2Þ and
it goes to zero when x → 0 and tends to 1=2 when x → 1.
Bearing in mind that kþ ≥ 0, we notice from (26) that k− is
strictly negative.
Tetrads (17) and (21) with γ0s (18) and (24), along with

the relation (26), are the final solution for this particular
matching problem. In Fig. 1, we plot γðρÞ ¼ γðρÞ− þ γðρÞþ
as it emerges from our analysis, having fixed ρ⋆ ¼ 1, for
several values of the mass M in agreement with the
condition ρ⋆ > M=2.

FIG. 1. γðρÞ ¼ γðρÞ− þ γðρÞþ, as it comes from Eqs. (18), (24),
and (26). Different values of the mass M were taken, for a star
radius ρ⋆ ¼ 1 (vertical line in the figure).
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V. CLOSING REMARKS

The procedure underlying the matching of different
solutions within the context of fðTÞ was discussed.
Clearly, it does not involve only the matching of the metric
components, but of the entire tetrad field instead. This fact
brings additional complications at the time of obtaining
global solutions in theories possessing absolute parallelism,
where the tetrad structure is commonly quite intricate.
Throughout this work, we emphasized the need for know-
ing (at least partially) the remnant local symmetries acting
on a given solution of the fðTÞ equations of motion. By
examining the remnant local transformations allowed in the
intervening tetrads, we exemplified the matching of the
Schwarzschild interior and exterior spacetimes representing
a simple model of a spherically symmetric star.
Due to the high symmetry of the spaces considered,

simple radial (local) boosts acting on the isotropic, diagonal
tetrads were enough to achieve the condition T ¼ 0 every-
where, assuring that the corresponding spaces are indeed
solutions of the fðTÞ equations of motion for any (at least
twice differentiable) fðTÞ function of ultraviolet character.
The freedom arising by the presence of an arbitrary
constant (let us say, k−) in (26) is probably related to
the nature of the additional degrees of freedom present in
fðTÞ gravity, a subtle point not fully understood at the
moment [21]. This is analog to what happened in the
example of Sec. III concerning Minkowski spacetime; there
we had an infinite number of boosts θðt;xÞ able to
smoothly glue the tetrads across the surfaces t ¼ �1.
Nonetheless, as mentioned at the end of the preceding

section, we found that k− must be negative in order for kþ
to be positive. This implies, by Eq. (24), that γ− is divergent
at ρ ¼ 0 due to the ρ−1 factor present there [note that IðρÞ is
non-null at the origin, and both, JðρÞ and KðρÞ tend to zero
as ρ → 0, see Eqs. (23) and (25), respectively]. Hence,
regardless of the regularity of the functions A− and B− at
the origin (and of the Weitzenböck scalar, which vanishes
everywhere), the tetrad field becomes singular there.
Ultimately, this is a consequence of the fact that the boost

speed becomes the speed of light at the origin. On the other
hand, this behavior is somewhat expected: the tetrad is
constituted by four 1-form (or vector) fields; hence, it
should be null or divergent at the origin of the spherical
coordinate system held at the center of the star, the former
being excluded by the constant (non-null) character of
some metric components at the origin.
It is not hard to foresee that, under more general

circumstances, the matching procedure will become rapidly
more complex and less intuitive. For instance, if we would
deal with the collapse of a dust cloud and the subsequent
black hole formation within the realm of fðTÞ gravity—i.e.,
the analog of the Oppenheimer-Snyder solution in GR—it
is clear that the local symmetries to be considered should be
time dependent. Additionally, due to the fact that the spaces
to be matched in this case have a different number of
isometries, it results plausible that we would need to
consider, in addition to boosts, also time-dependent rota-
tions. All the more reason, a similar complexity will arise
when deformed solutions be considered (i.e., solutions of
fðTÞ gravity which are not present in GR), as it is the case,
for instance, of regular cosmological models [8] and black
holes [22]. The comprehension of the dynamics of the
tetrad field in situations of this sort is certainly a good
motivation for continuing with this line of research. In
particular, it would be pertinent to investigate the appear-
ance of further constraints coming from the matching
procedure which might have an impact on the asymptotic
structure of the tetrad field, specially in the case of
asymptotically flat spacetimes, where the nature of the
additional degree/s of freedom seems to be slightly more
unmaskable [23,24].
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