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The signal of continuous gravitational waves has a longer duration than the observation period. Even if
the waveform in the source frame is monochromatic, we will observe the waveform with modulated
frequencies due to the motion of the detector. If the source location is unknown, a lot of templates having
different sky positions are required to demodulate the frequency, and the required huge computational cost
restricts the applicable parameter region of coherent search. In this work, we propose and examine a new
method to select candidates, which reduces the cost of coherent search by following up only the selected
candidates. As a first step, we consider an idealized situation in which only a single-detector having 100%
duty cycle is available and its detector noise is approximated by the stationary Gaussian noise. Also, we
assume that the signal has no spin-down, that the polarization angle, the inclination angle, and the initial
phase are fixed to be ψ ¼ 0, cos ι ¼ 1, and ϕ0 ¼ 0, and that they are treated as known parameters. We
combine several methods: (1) the short-time Fourier transform with the resampled data such that the Earth
motion for the source is canceled in some reference direction, (2) the excess power search in the Fourier
transform of the time series obtained by picking up the amplitude in a particular frequency bin from the
short-time Fourier transform data, and (3) the deep learning method to further constrain the source sky
position. The computational cost and the detection probability are estimated. The injection test is carried
out to check the validity of the detection probability. We find that our method is worthy of further study for
analyzing Oð107Þ sec strain data.
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I. INTRODUCTION

Advanced LIGO and Advanced Virgo detected the first
event of gravitational waves from a binary black hole
merger in 2015 [1]. After the three observation runs, a lot of
binary coalescence events are found [2,3]. In addition to
Advanced LIGO and Advanced Virgo, KAGRA [4], and
LIGO India [5] are planning to join the gravitational wave
detector network [6]. The gravitational wave astronomy is
expected to get fruitful results for improving our under-
standing of the astronomical properties of compact objects
[7–9], the true nature of gravity [10–12], the origin of the
Universe [13], and so on (see [14] for a review).
All gravitational wave signals which are detected so far

have duration Oð100−2Þ sec, which is much shorter than
the observation period. By contrast, we also expect gravi-
tational waves which last longer than the observation
period. Such long-lived gravitational waves are called
“continuous gravitational waves” (see [15,16] as text-
books). Continuous gravitational waves are defined by
the following three properties: (1) small change rate of the
amplitude, (2) almost constant fundamental frequency, and
(3) duration longer than the observation period. Rotating
anisotropic neutron stars are typical candidate sources of

continuous gravitational waves. In addition, there are
several exotic objects proposed as possible candidates of
the sources of continuous gravitational waves [17–19].
Continuous gravitational waves are modeled by simpler

waveforms than those of coalescing binaries. The param-
eters characterizing a typical waveform are the amplitude,
the initial frequency, and the frequency derivatives with
time. Although the waveform generated by the source is
analytically simple, the effect of the detector’s motion
makes the data analysis for continuous gravitational waves
challenging. The detector’s motion causes the modulation
in the frequency, and resulting in the dispersion of the
power in the frequency domain. If the source location is
a priori known by electromagnetic observations, the
modulation can be removed precisely enough. By contrast,
for the unknown target search, we need to correlate the data
with a tremendous amount of templates to cover the
unknown source location on the sky. This severely restricts
the applicability of the all-sky coherent search to strain data
of long durations. Therefore, semicoherent methods, in
which the strain data is divided into a set of segments and
statistics calculated for respective segments are summed
up appropriately, are often used. Various semicoherent
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methods (e.g., time-domain F -statistic [20], SkyHough
[21], FrequencyHough [22]) were proposed so far, and
they are actually used to analyze LIGO and Virgo’s data.
There is a tremendous effort to find continuous gravita-
tional waves [23–27].
As another trend of the research, the deep learning

method is introduced to the field of gravitational wave data
analysis. After the pioneering work done by George and
Huerta [28], there are many proposals to use deep learning
for wide purposes, e.g., parameter estimation for binary
coalescence [29–32], noise classification [33], and wave-
form modeling [34]. As for applications to the search for
continuous gravitational waves, several groups already
proposed deep learning methods. Dreissigacker et al.
[35,36] applied neural networks to all-sky searches of
signals with the duration 105 sec and 106 sec. They used
Fourier transformed strain as inputs. Their methods can be
applied to the signal located in broad frequency bands and
to the case of multiple detectors and realistic noise. Also, it
is shown that the synergies between the deep learning and
standard methods or other machine learning techniques are
also powerful [37,38].
In this paper, we propose a new method designed for

detecting monochromatic waves, combining several trans-
formations and the deep learning method. In Sec. II, the
waveform model and some assumptions are introduced.
The coherent matched filtering and the time resampling
technique are briefly reviewed in Sec. III. In Sec. IV, we
explain our strategy that combines several traditional
methods such as the resampling, the short-time Fourier
transform, and the excess power search with the deep
learning method. We show the results of the assessment of
the performance of our new method in Sec. V. Section VI is
devoted to the conclusion.

II. WAVEFORM MODEL

We consider a monochromatic gravitational wave. We
denote by fgw its frequency constant in time. With the
assumption that the source is at rest with respect to the solar
system barycenter (SSB), a complex-valued gravitational
waveform in the source frame hsourceðτÞ will be simply
written as

hsourceðτÞ ¼ h0e2πifgwτþiϕ0 ; ð2:1Þ

where τ is called “SSB time,” and h0 and ϕ0 are the
amplitude and the initial phase, respectively. In this work,
for simplicity, we assume that

ϕ0 ¼ 0; ð2:2Þ

and regard it as a known parameter. The phase of a
gravitational wave is modulated due to the detector motion
and the modulation depends on the source location. The
normal vector pointing from the Earth’s center to the sky

position specified by a right ascension α and a declination
angle δ is defined by

nðα; δÞ ¼

0
B@

1 0 0

0 cos ϵ sin ϵ

0 − sin ϵ cos ϵ

1
CA
0
B@

cos α cos δ

sin α cos δ

sin δ

1
CA; ð2:3Þ

with the tilt angle between the Earth’s rotation axis and the
orbital angular momentum ϵ. Here, we work in the SSB
frame, in which the z axis is along the Earth’s orbital
angular momentum and the x axis points towards the vernal
equinox. Defining the detector time t so as to satisfy

τ ¼ tþ rðtÞ · nðαs; δsÞ
c

; ð2:4Þ

we obtain the waveform in the detector frame

hðtÞ ≔ h0eiΦðtÞ; ð2:5Þ
with

ΦðtÞ ¼ 2πfgwtþ 2πfgw
rðtÞ · nðαs; δsÞ

c
: ð2:6Þ

A subscript “s” indicates the quantity related to the gra-
vitational wave source. Namely, ðαs; δsÞ means the sky
position of the source. In the following, we use the
notation ns ≔ nðαs; δsÞ.
For the modeling of the detector motion, we adopt a little

simplification, which we believe will not affect our main
result. We assume that the position vector of the detector
can be written by a sum of the Earth’s rotation part r⊕ðtÞ,
and the Earth’s orbital motion part r⊙ðtÞ. The Earth is
assumed to take a circular orbit on the xy plane. Then, we
can write r⊙ðtÞ as

r⊙ðtÞ ¼ RES

0
B@

cosðφ⊙ þΩ⊙tÞ
sinðφ⊙ þ Ω⊙tÞ

0

1
CA; ð2:7Þ

where RES, Ω⊙, and φ⊙ are the distance between the Earth
and the Sun, the angular velocity of the orbital motion and
the initial phase, respectively. The detector motion due to
the Earth’s rotation can be described as

r⊕ðtÞ ¼ RE

0
B@

1 0 0

0 cosϵ sin ϵ

0 − sin ϵ cosϵ

1
CA
0
B@

cosλcosðφ⊕ þΩ⊕tÞ
cosλ sinðφ⊕ þΩ⊕tÞ

sinλ

1
CA;

ð2:8Þ

where RE, λ, Ω⊕, and φ⊕ are the radius of the Earth, the
latitude of the detector, the angular velocity of the Earth’s
rotation and the initial phase, respectively. The modulated
phase ΦðtÞ can be decomposed into
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ΦðtÞ ¼ 2πfgwtþΦ⊕ðtÞ þΦ⊙ðtÞ; ð2:9Þ

where

Φ⊕ðtÞ ¼ 2πfgw
r⊕ðtÞ · ns

c
; ð2:10Þ

Φ⊙ðtÞ ¼ 2πfgw
r⊙ðtÞ · ns

c
: ð2:11Þ

Finally, we take into account the amplitude modulation
due to the detector’s motion, which can be described by
the antenna pattern function. In this work, the polarization
angle and the inclination angle are, respectively, assumed
to be

ψ ¼ 0; cos ι ¼ 1; ð2:12Þ

and, similarly to ϕ0, they are treated as known parameters.
Then, the gravitational wave to be observed by a detector
can be written as

hobsðtÞ ¼ GðtÞhðtÞ þG�ðtÞh�; ð2:13Þ

with

GðtÞ ≔ FþðtÞ þ iF×ðtÞ
2

: ð2:14Þ

The definitions of FþðtÞ and F×ðtÞ are the same as those
used in Jaranowski et al., [20]. In this work, the antenna
pattern function of LIGO Hanford is employed. The strain
data is written as

sðtÞ ¼ hobsðtÞ þ nðtÞ; ð2:15Þ

where nðtÞ is the detector noise. We assume that the strain
data from the detector has no gaps in time and the detector
noise is stationary and Gaussian.

III. COHERENT SEARCH METHOD

Before explaining our method, we briefly review the
coherent search method and the time resampling tech-
nique [20].
If the expected waveforms can be modeled precisely and

the noise is Gaussian, the matched filtering is the optimal
method for the detection and the parameter estimation,
besides the computational cost. The noise weighted inner
product is defined by

ðajbÞ ≔ 4Re

�Z
∞

0

df
ãðfÞb̃�ðfÞ
SnðfÞ

�
; ð3:1Þ

where SnðfÞ is the power spectral density of the detector
noise. A signal-to-noise ratio (SNR) can be calculated with

the inner product between a strain sðtÞ and a template
htempðtÞ as

ρMF ≔
ðsjhtempÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhtempjhtempÞ

p : ð3:2Þ

Theoretically predicted waveforms htempðtÞ have various
parameters characterizing the source properties and the
geometrical information. A set of waveforms having differ-
ent parameters is called a template bank. For each template
in a template bank, we can assign the value of SNR
calculated by Eq. (3.2). If the maximum value of SNR in
the template set exceeds a threshold value, it is a sign that
an actual signal may exist and the parameter inference is
also obtained from the distribution of SNR.
Due to a long duration and a narrow frequency band of

continuous gravitational waves, the inner product (3.1) can
be recast into the time-domain expression as

ðajbÞ ≃ 2

SnðfgwÞ
Re

�Z
Tobs

0

dtaðtÞb�ðtÞ
�
; ð3:3Þ

where Tobs is the observation time. For a monochromatic
source, the waveform can be modeled by Eq. (2.1). The
modulation due to the detector motion is only in the
phase of the waveform. The time resampling technique
nullifies the phase modulation by redefining the time
coordinate. If the position of the source is a priori known,
the exact relation (2.4) can be obtained. Therefore, the
phase modulation can be completely removed and the
monochromatic waveform is applicable to the time-domain
matched filtering (3.3). Calculation of the inner product
(3.3) between the resampled signal and a monochromatic
waveform is equivalent to the Fourier transform. Thus, the
fast algorithm (i.e., fast Fourier transform) can be employed
to rapidly search the gravitational wave frequency, fgw.
When the source location is unknown, we need to search

all-sky by placing a set of grid points fnðiÞg gNgrid

i¼1 to keep the
maximum loss of SNR within the acceptable range. For
each grid point, we carry out the Fourier transform after the
transformation

ζ ≔ tþ rðtÞ · ng
c

: ð3:4Þ

Here, we omit the superscript (i), for brevity. The necessary
number of grid points Ngrid can be estimated by the angular
resolution of gravitational wave sources. The angular reso-
lution of gravitational wave sources can be roughly given
by the ratio between the wavelength of the gravitational
wave and the diameter of the Earth’s orbit, i.e.,

ðδθÞcoh ∼
λgw
2RES

∼ 10−5 ½rad�: ð3:5Þ
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Here, we adopt 100 Hz as the fiducial value for cλ−1gw. Thus,
the required number of grid points is, at least,

Ngrids ∼
4π

ðδθÞ2coh
∼ 1.3 × 1011: ð3:6Þ

The time resampling and the Fourier transform are applied
to each grid point. The number of floating point operations
required for carrying out FFT is ∼1.7 × 1012 per grid point,
with the signal of a duration 107 sec and a sampling
frequency 1024 Hz. Even if we have a 1PFlops machine,
the computational time becomes 2.2 × 108 sec, which is
longer than the signal duration. For this reason, a naïve
coherent method with the time resampling is not suitable
even for monochromatic sources (see [39] proposing a
more efficient coherent method).

IV. OUR METHOD

A. Subtracting the effect due to the Earth’s rotation

As stated in Sec. III, the time resampling technique can
demodulate the phase, but complete demodulation is not
available because of the limitation of computational
resources. In our work, the time resampling technique is
employed to eliminate only the effect caused by the Earth’s
diurnal rotation, Φ⊕ðtÞ. Assuming a representative grid
point ng, we can rewrite the phase (2.6) as

ΦðtÞ ¼ 2πfgwtþΦ⊕ðtÞ þΦ⊙ðtÞ;
¼ 2πfgwζ þ δΦ⊕ðtÞ þ δΦ⊙ðtÞ; ð4:1Þ

where

δΦ⊕ðtÞ ≔ 2πfgw
r⊕ðtÞ · Δn

c
; ð4:2Þ

δΦ⊙ðtÞ ≔ 2πfgw
r⊙ðtÞ · Δn

c
; ð4:3Þ

and Δn ≔ ns − ng. Since the residual phase varies with
time, we will place grid points so that the amplitude of the
residual phase in the worst case, i.e.,

min
ng

max
t

jδΦ⊕ðtÞj

becomes smaller than a threshold δΦϵ for any source
direction ns within the area covered by the grid point
ng. To optimize the grid placement, we employ the method
proposed in Ref. [40]. The residual phase δΦ⊕ is expanded
up to the first order of Δα ≔ αs − αg and Δδ ≔ δs − δg0.
Then, we get

δΦ⊕ ≃
2πfgw
c

RE cos λf−Δδ sin δg cosðαg − φ⊕ −Ω⊕tÞ
−Δα cos δg sinðαg − φ⊕ − Ω⊕tÞg: ð4:4Þ

Here, the constant term is neglected because it degenerates
with the initial phase ϕ0. The maximum value of the
residual phase is

max
t
jδΦ⊕j ¼

2πfgw
c

REj cos λj

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔδÞ2sin2δg þ ðΔαÞ2cos2δg

q
: ð4:5Þ

The grid points are to be determined to satisfy
maxt jδΦ⊕j < δΦϵ for any source direction.
Because the residual phase (4.5) is symmetric under

the transformation δg → −δg, the placement of grids on the
negative δ side can be generated by inverting the sign of the
grids on the positive δ side. Therefore, we focus on the case
with 0 ≤ δ ≤ π=2.
Since the residual phase depends only on δ at δg ¼ π=2,

a single template can cover the neighbor of δ ¼ π=2. In
fact, at δ ¼ π=2, Eq. (4.5) becomes

max
t
jδΦ⊕j ¼

2πfgw
c

REjΔδj cos λ: ð4:6Þ

Therefore, the condition maxt jδΦ⊕j ≤ δΦϵ gives the lower
bound of δ1 such that the region δ1 ≤ δ ≤ π=2 can be
covered by a single patch represented by fðαg; δgÞ ¼
ð0; π=2Þg, to find

δ1 ≔
π

2
− δΦϵ ×

c
2πfgw

1

RE cos λ
: ð4:7Þ

Plural patches are necessary to cover the strip of a
constant δ in the other range. We introduce a two-
dimensional metric corresponding to the residual phase
(4.5),

dσ2 ¼ cos2 δdα2 þ sin2 δdδ2: ð4:8Þ

In general, a metric in a 2-dimensional manifold can be
transformed into a conformally flat metric by an appro-
priate coordinate transformation. When the space is con-
formally flat, the curve of a small constant distance
measured from an arbitrary chosen point can be approxi-
mated by a circle. Therefore, a template spacing in the two-
dimensional parameter space becomes relatively easy. By
defining new variables X ≔ α and Y ≔ − log j cos δj, the
metric can be transformed into

dσ2 ¼ e−2YðdX2 þ dY2Þ: ð4:9Þ

Along with [40], we can construct the sky patches covering
the half-sky region with 0 ≤ δ ≤ δ1. Figure 1 shows a part
of grid points constructed under the condition
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δΦϵ ¼ 0.058; ð4:10Þ

which we adopt throughout this paper. The total number of
grid points to cover the whole sky is

Ngrid ¼ 352; 436; ð4:11Þ

for fgw ¼ 100 Hz.

B. Modeling the effect due to the
Earth’s orbital motion

As we choose δΦϵ to be sufficiently small, we neglect
δΦ⊕ in the following discussion. Then, after subtracting the
phase modulation due to the Earth’s rotation, the phase of
the gravitational wave (4.1) becomes

ΦðtÞ ¼ 2πfgwζ þ δΦ⊙ðtÞ: ð4:12Þ

We apply the short-time Fourier transform (STFT) to the
time-resampled strain,

sðζÞ ¼ hobsðζÞ þ nðζÞ: ð4:13Þ

In the rest of the paper, we treat only the time-resampled
data. Therefore, without confusion, the time-resampled
data in Eq. (4.13) can be denoted by the same character
as the original one. The strain is divided into Nseg segments
having the duration Tseg and their start times are denoted by
ζj ≔ jTslide, ðj ¼ 0; 1;…; Nseg − 1Þ. Tslide is not necessary
to be equal to Tseg. The output of STFT with the window
function wðζÞ is defined by

sSTFTj;k ¼ hSTFTj;k þ nSTFTj;k ; ð4:14Þ

where

hSTFTj;k ¼ 1

Tseg

Z
ζjþTseg

ζj

dζ0wðζ0 − ζjÞhobsðζ0Þe−2πifkζ0 ;

ð4:15Þ

nSTFTj;k ¼ 1

Tseg

Z
ζjþTseg

ζj

dζ0wðζ0 − ζjÞnðζ0Þe−2πifkζ0 ; ð4:16Þ

and fk ≔ kΔf ¼ k=Tseg is the frequency of the kth element
of STFT. Let us focus on the positive frequency modes,
i.e., fk > 0. Then, the second term of Eq. (2.13) can be
neglected and Eq. (4.15) can be approximated by

hSTFTj;k ≃
1

Tseg

Z
ζjþTseg

ζj

dζ0fwðζ0 − ζjÞ

× Gðtðζ0ÞÞe2πiδfkζ0eiδΦ⊙ðζ0Þg; ð4:17Þ

with δfk ≔ fgw − fk. In the expression of GðtðζÞÞ, the
SSB time ζ appears only through the combination Ω⊕tðζÞ.
The difference between Ω⊕tðζÞ and Ω⊕ζ is negligibly
small. Therefore, in Eq. (4.17), GðtðζÞÞ can be replaced by
GðζÞ. The duration Tseg is chosen so that GðtðζÞÞ can be
approximated by a constant in each segment. With this
choice of Tseg, the factor eiδΦ⊙ðtÞ also can be seen as a
constant in each segment because it varies slower than the
antenna pattern function. Therefore, Eq. (4.17) can be
approximated by

hSTFTj;k ≃ h0eiδΦ⊙ðζjÞGðζjÞWkðζjÞ; ð4:18Þ

where

WkðζjÞ ≔
1

Tseg

Z
ζjþTseg

ζ
dζ0wðζ0 − ζjÞe2πiδfkζ0 : ð4:19Þ

In this work, we use the Tukey window,

wðζÞ ¼

8>>><
>>>:

1
2
− 1

2
cosð 2πζ

αTseg
Þ; ð0 ≤ ζ

Tseg
< α

2
Þ;

1; ðα
2
≤ ζ

Tseg
≤ 1 − α

2
Þ;

1
2
− 1

2
cosð2πðTseg−ζÞ

αTseg
Þ;

�
1 − α

2
< ζ

Tseg
≤ 1

�
:

ð4:20Þ

We set the parameter α to 0.125. With βk ≔ Tsegδfk,
Eq. (4.19) can be calculated as

WkðζjÞ ¼ e2πiδfkζj
ð1þ eiπαβkÞð1 − e2πiβkð1−α=2ÞÞ

4πiβkðα2β2k − 1Þ : ð4:21Þ

Using the Jacobi-Anger expansion, we can expand the
factor eiδΦ⊙ðζjÞ that appears in Eq. (4.18) as

FIG. 1. Grid point placement on a fraction of ðα; cos δÞ plane.
Blue dots are grid points and orange contours show the
maxt jδΦ⊕ðtÞj ¼ δΦϵ contours for each grid point. The region
fðα; δÞjδ < δ1g is covered by a single template ðαg; δgÞ ¼
ð0; π=2Þ and the shape of the patch is square on this plane.
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eiδΦ⊙ðζjÞ ¼
X∞
l¼−∞

ilJlðXÞeilΩ⊙ζjeilðφ⊙−ϕXÞ; ð4:22Þ

where JlðzÞ is the Bessel function of the first kind and

X ≔
2πfgwRES

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔnxÞ2 þ ðΔnyÞ2

q
; ð4:23Þ

eiϕX ≔ Δnx þ iΔny: ð4:24Þ

Therefore, Eq. (4.18) can be expressed as

hSTFTj;k ≃ h0GðζjÞWkð0Þe2πiδfkζj

×
X∞
l¼−∞

ilJlðXÞeilðφ⊙−ϕXÞeilΩ⊙ζj : ð4:25Þ

The Fourier transform of hSTFTj;k with a fixed integer k is
defined by

Hl;k ≔
1

Nseg

XNseg−1

j¼0

hSTFTj;k e−2πijl=Nseg : ð4:26Þ

We refer to Hl;k as the l-domain signal. To understand the
pattern hidden in Hj;k, we set aside the factor GðζjÞ for a
while. Then Eq. (4.26) can be estimated as

Hl;k ∼ h0Wkð0Þil0Jl0 ðXÞeil0ðφ⊙−ϕXÞ; ð4:27Þ

with l0 ∼ lþ 2πΩ−1
⊙ δfk. Because of the fact that JlðzÞ ≃ 0

for jlj≳ jzj and X ≲Oð103Þ for fgw ¼ 100 Hz, the signal
is localized within the region where only few thousand bins
in the l domain. Putting back the antenna patternGðζjÞ, we
expect that l-domain signals lose their amplitude and their

localizations become worse than those for the idealized
cases. Figure 2 shows an example of the l-domain signal.

C. Excess power method for finding candidates

By the method shown in the previous subsection, for
every grid point ng and every frequency bin fk, we obtain
an l-domain strain defined by

Sl;k ≔ Hl;k þ Nl;k; ð4:28Þ

with

Nl;k ≔
1

Nseg

XNseg−1

j¼0

nSTFTj;k e−2πijl=Nseg : ð4:29Þ

There are Tobs=Tseg ∼Oð106Þ data points in a single l-
domain strain and we know that the signal in l-domain will
be localized within a small region ∼Oð103Þ. Thus, the
excess power method [41] is useful for selecting the
candidates with a minimal computational cost. We here
divide an l-domain signal into short chunks so that each
chunk has the length δl and neighbored segments have an
overlap by δl=2, which is one of the simplest choices but
not the optimal one. Then, we obtain Nchunk=signal ¼
2ðNseg − δlÞ=δl chunks from one l-domain signal. The
excess power statistic for the grid point ng, the frequency
bin fk, and the cth chunk (c ¼ 0; 1;…; Nchunk=signal − 1) is
defined by

Eðng; fk; cÞ ≔ 4
Xðcþ2Þδl=2−1

l¼cδl=2

jSl;kj2
σ̃2k

; ð4:30Þ

where

hNl;kN�
l0;ki≕

1

2
σ̃2kδll0 : ð4:31Þ

The variance of noise in the l domain, σ̃k, is estimated as

σ̃2k ¼
SnðfkÞ
NsegTseg

×W; ð4:32Þ

where W is the factor coming from the window function
and defined by

W ≔
Z

0.5

−0.5
dx½wðxÞ�2: ð4:33Þ

The derivation of Eq. (4.32) is summarized in Appendix.
We define the SNR of the excess power by

ρEPðng; fk; cÞ ≔
Eðng; fk; cÞ − hEin

σnðEÞ
; ð4:34Þ

FIG. 2. An example of the l-domain waveform. The length of
the l-domain waveform is 219. This figure is an enlargement
around the region at where the signal is localized. The amplitude
is h0 ¼ 1.0.
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where

hEin ¼ 2δl; ð4:35Þ

and

σnðEÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðE − hEinÞ2in

q
¼ 2

ffiffiffiffiffi
δl

p
; ð4:36Þ

are, respectively, the expectation value and the standard
deviation of E when only noise exists. We select the
candidate set of parameter values fng; fk; cg, when

ρEPðng; fk; cÞ > ρ̂EP

is satisfied with a threshold value ρ̂EP. Strictly speaking,
since the excess power statistic E is the sum of 2δl squared
Gaussian random variables with the variance 1=2

ffiffiffiffiffi
δl

p
, E

follows a chi square distribution with the degree of freedom
2δl. However, since here we choose δl to be large, the
distribution of E can be approximated by a Gaussian
distribution with the average 2δl and the standard deviation
2

ffiffiffiffiffi
δl

p
. Therefore, in the absence of gravitational wave

signal, the probability distribution of ρEP is a Gaussian
distribution with zero mean and unit variance.
Also in the presence of some signal, the excess power

statistics ρEP is given by a sum of many statistical variables.
Thus, the statistical distribution of ρEP can be approximated
by the Gaussian distribution whose mean and standard
deviation are calculated as

μEPðξÞ ¼
2PkðξÞ
σ̃2k

ffiffiffiffiffi
δl

p ; ð4:37Þ

and

σEPðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4PkðξÞ

σ̃2kδl

s
; ð4:38Þ

Here, we define

PkðξÞ ≔
X
l

jHl;kðξÞj2; ð4:39Þ

and we define ξ as a set of parameters ξ ≔ ðh0; ξ⃗Þ ¼
ðh0; fgw; αs; δsÞ. The false alarm rate and the detec-
tion efficiency will be assessed with this Gaussian
approximation.

D. Neural network for localizing

1. Fundamentals

Deep learning is one of the approaches for finding
features being hidden in the data (see [42] as a textbook).

Artificial neural networks (ANNs) are the architectures
playing the central roll in deep learning. An ANN consists
of consecutive layers and each layer is formed by a lot of
units (neurons). Each layer takes inputs from the previous
layer and processed data is passed to the next layer. As a
simple example, the process occurring in each layer can be
written as the combination of affine transformation and a
nonlinear transformation, i.e.,

xðlþ1Þ
i ¼ g

�XNðlÞ

j¼1

wðlÞ
ij xðlÞj þ bðlÞ

�
ði ¼ 1; 2;…; Nðlþ1ÞÞ;

ð4:40Þ

where xðlÞ is a set of input data on the lth layer and g is a
nonlinear function, which is called an activation function.
We use a rectified linear unit (ReLU) [43], defined by

gðzÞ ¼ max½z; 0�: ð4:41Þ

The parameters w and b are, respectively, called weights
and biases. They are tunable parameters and optimized to
capture the features of data. The process to optimize
weights and biases is called training. Frequently, the affine
transformation and the nonlinear transformation are divided
into two layers, called a linear layer and a nonlinear
transformation layer, respectively.
In addition to the layers as given by Eq. (4.40), many

variants are proposed so far. In this work, we use also one-
dimensional convolutional layers [44] and max-pooling
layers [45]. The input of a convolutional layer, denoted by
xci , is a set of vectors. For example, in the case of color
images, each pixel has three channels corresponding to
three primary colors of light. Therefore, the input data is a
set of three two-dimensional arrays. The discrete convo-
lution, which is represented as

oc
0
i ¼

XC−1
c¼0

XK−1
k¼0

fc;c
0

k xciþk þ bc
0
; ð4:42Þ

is calculated in a convolutional layer. Here, x is the input
and o is the output data of the layer. C and K are,
respectively, the number of channels and the width of
the kernel. Each pixel of the data is specified by an index i.
The parameters f and b are optimized during the training.
A max pooling layer, whose operation can be written as

oci ¼ max
k¼0;1;…;K−1

½xcsiþk�; ð4:43Þ

with the kernel size K and the stride s, reduces the length of
the data and hence the computational cost.
In supervised learning, a given dataset consists of many

pairs of input data and target values. An ANN learns the
relation between input data and target values from the
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dataset and predicts values corresponding to newly given
input data. In order to train an ANN, the deviation between
the predicted values and the target value is quantified by a
loss function. For a regression problem, the mean square
loss,

L½yðwÞ; t� ¼ 1

2

Xd
i¼1

jyiðwÞ − tij2; ð4:44Þ

is often employed. Here, y and t are a set of predicted values
and that of target values, respectively, and they are
expressed as d-dimensional vectors. The prediction
depends on the weights of the neural network, which are
denoted by a single symbol w. An ANN is optimized so as
to minimize the loss function for a given dataset, which is
the sum of the loss functions for all data contained in the
training dataset. Because the complete minimization using
all dataset cannot be done, the iterative method is used. The
weight w is updated by the replacement algorithm given by

w → w − η∇w

XNtrain

n¼1

L½ynðwÞ − tn�; ð4:45Þ

where Ntrain is the number of data contained in the dataset
and η is called learning rate and characterizes the strength
of each update. The algorithm shown in Eq. (4.45) is called
gradient descent, which is the simplest procedure to update
the weights, and many variants (e.g., momentum [46], rms
prop [47], Adam [48]) are proposed so far. Regardless of
the choice of the update algorithm, the gradients of a loss
function is required and they can be quickly calculated by
the backpropagation scheme [49]. In Eq. (4.45), all data in
the dataset are used for each iteration. In practice, the loss
function for a subset of the dataset is calculated. The subset
is called a batch and chosen randomly in every iteration.
This procedure is called a minibatch training.
In the training process, we optimize a neural network so

that the loss function is minimized for a dataset. However,
this strategy cannot be straightforwardly applied to prac-
tical situations. First, the trained neural network may fall in
overfitting. Then, the neural network does not have an
expected ability to correctly predict the label for a newly
given input data which is not used for training. Second, we
have to optimize the neural network model and the update
procedure, too. For this purpose, we have to appropriately
select the hyperparameters, such as the number of neurons
of the lth layer (NðlÞ) and the learning rate (η). They are not
automatically tuned during the training process.
To solve these problems, we prepare a validation dataset

that is independent from the training dataset. The weights
of the neural network are optimized so that the loss function
for the training dataset is minimized. The validation data is
used for monitoring the training process and assessing
which model is better for the problem that the user wants to

solve. To prevent the overfitting, the training should be
stopped when the loss for the validation dataset tend to
deviate from that for the training dataset (early stopping).
To optimize the hyperparameters, many neural network
models having various structures are trained with different
training schemes. Among them, we choose the one per-
forming with the smallest loss for the validation dataset.

2. Setup in our analysis

The whole architecture of the neural network we used is
shown in Table I. The input data of the neural network is the
complex valued numbers taken from a short chunk of the
l-domain signal, and the output is the predicted sky
position. The l-domain waveform Hl;k is determined
mainly by the residual phase δΦ⊙, which depends on the
sky position ðαs; δsÞ through thevectorΔn. Because z⊙ ¼ 0,
only x and y components of Δn affect δΦ⊙. Therefore, we
label each waveform with the values ofΔnx andΔny, which
are the targets of the prediction of the neural network. The
outputs of the neural network are inverted to the predicted
values which are denoted by ðαp; δpÞ. We apply the neural
network to each candidate, selected by the excess power
method, in order to narrow down the possible area in which
the source is likely to be located. For simplicity, the ðα; δÞ
plane is regarded as a two-dimensional Euclidean space, and
the shape of the predicted region is assumed to be a disk on
the ðα; δÞ plane. For each candidate, the origin of the disk is

TABLE I. The architecture of the neural network used in this
work. For convolution and max pooling layers, the input and the
output are characterized by ðC;NÞ where C is the number of
channels and N is the length of the data. For convolutional layers,
the lengths of kernels are 16, 16, 8, 8, 4, and 4 from the earlier to
the later layer. The kernel size of the max pooling layers is 4.

Layer Input Output

1D convolution (2, 2048) (64, 2033)
ReLU (64, 2033) (64, 2033)
1D convolution (64, 2033) (64, 2018)
ReLU (64, 2018) (64, 2018)
Max pooling (64, 2018) (64, 504)
1D convolution (64, 504) (128, 497)
ReLU (128, 497) (128, 497)
1D convolution (128, 497) (128, 490)
ReLU (128, 490) (128, 490)
Max pooling (128, 490) (128, 122)
1D convolution (128, 122) (256, 119)
ReLU (256, 119) (256, 119)
1D convolution (256, 119) (256, 116)
ReLU (256, 116) (256, 116)
Max pooling (256, 116) (256, 29)
Dense 256 × 29 64
ReLU 64 64
Dense 64 64
ReLU 64 64
Dense 64 2
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set to the predicted point. The radius of the disk, denoted by
rNN, is fixed to a constant value. In the follow-up stage, the
finer grids are placed to cover whole region of the disk.
In order to train the neural network, we need to prepare

the training dataset and the validation dataset. We use
Eq. (4.26) as the model waveform and pick up only a short
chunk containing the signal. The length of chunk is
δl ¼ 2048. We prepare 200 000 waveforms for the training
and 10 000 waveforms for validation. At that time, we set
h0 ¼ 1. We assume that we use only a single detector and
use the geometry information (e.g., the latitude of the
detector) of LIGO Hanford in calculating the antenna
pattern function as an example. In this work, we focus
on one sky patch covered by a single grid point and a
frequency bin fixed at fk ¼ 100 Hz since the scaling to the
search over the whole sky and the wider frequency band is
straightforward. The sources are randomly distributed
within the sky patch. The parameters βk are randomly
sampled from a uniform distribution on ½−0.5; 0.5�. The
original strain has the duration 224 sec and the sampling
frequency 1024 Hz. We introduce the normalized gravita-
tional wave amplitude by

ĥ0 ≔ h0

�
SnðfrefÞ
1 Hz−1

�
−1=2

: ð4:46Þ

Here, we set fref ¼ fk. At each training step, the amplitude
whose logarism is randomly chosen from the uniform
distribution on −2.1 ≤ log10 ĥ0 ≤ −1.0 is multiplied to the
waveforms, and they are injected into the simulated noise.
The different realizations of noise are sampled for every
iterations. The real part and the imaginary part of the noise
data mimicking Nl;k are generated from a Gaussian
distribution with a zero mean and a variance

W
4NsegTseg

; ð4:47Þ

[see Eqs. (4.31) and (4.32)].

We employ the minibatch training. We set the batch size
to 256. The Adam [48] is used for the update algorithm. We
implement with the PYTHON library PYTORCH [50] and use
a GPU GeForce 1080Ti. The parameter values we used are
listed in Table II.

E. Follow-up analysis by coherent matched filtering

After selecting candidates and narrowing down the
possible area at which the source is likely to be located,
we apply the coherent matched filtering for the follow-up
analysis. The grid points with the resolution shown in
Eq. (3.5) are placed to cover the selected area. Assuming a
grid point, we can carry out the demodulation of the phase
by using the time resampling technique. If the deviation
between the directions of the grid point and the source is
smaller than the resolution, the residual phase remaining
after the time resampling is sufficiently small to avoid the
loss of SNR.
In this operation, heterodyning and downsampling can

significantly reduce the data length and hence the computa-
tional cost [51]. Let us assume that we have a candidate
labeled with fng; fk; cg. If the candidate is the true event,
the gravitational wave frequency fgw should take the value
in the narrow frequency band indicated by

fk −
1

2Tseg
≤ fgw ≤ fk þ

1

2Tseg
: ð4:48Þ

By multiplying the factor e−2πifkζ to the resampled strain,
we can convert the gravitational wave signal frequency to
near dc components (heterodyning). After that, the gravi-
tational wave signal has a lower frequency than
1=2Tseg Hz. Therefore, downsampling by appropriately
averaging the resampled strain data with a sampling
frequency ∼1=Tseg reduces the number of data points
without loss of the significance of the gravitational wave
signal.
The coherent matched filtering follows the heterodyning

and the downsampling processes. As stated in Eqs. (2.2)
and (2.12), we fix ψ ¼ 0, cos ι ¼ 1, and ϕ0 ¼ 0 and treat
them as known parameters. Also, we assume that the signal
waveform and the template completely match. The defi-
nition of a match is already given in Eq. (3.2). The
gravitational waveform is written as

hðξÞ ¼ h0 · htempðξ⃗Þ: ð4:49Þ

Among these parameters, the amplitude h0 can be analyti-
cally marginalized to maximize the likelihood. Then we
obtain the signal-to-noise ratio in Eq. (3.2) and use it as the
detection statistic. When only the detector noise dominates
the strain data, ρMF follows the standard normal distribu-
tion. On the other hand, if the signal exists, then the SNR
follows a Gaussian distribution with a mean

TABLE II. The values of the parameters we used in this work.

Symbol Parameters Value

Tobs Observation period 224 sec
fs Sampling frequency 1024 Hz
Ngrid No. of grids 352436
Nbin No. of frequency bins of STFT 3200
Tseg Duration of a STFT segment 32 sec
Tslide Dilation of STFT segment 32 sec
δl Length of chunk 2048
ðδlÞslide Dilation of chunk 128
fk Fixed frequency bin 100 Hz
αg Right ascension of grid −0.158649 rad
δg Declination of grid 1.02631 rad
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μMFðξÞ ¼ h0 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhtempðξ⃗Þjhtempðξ⃗ÞÞ

q
; ð4:50Þ

and a unit variance.

V. RESULTS

A. Computational cost

Our procedure is characterized by three parameters
ρ ≔ ðFAPEP; rNN; ρ̂MFÞ, i.e.,

(i) FAPEP, false alarm probability for each chunk,
(ii) rNN, the radius of the predicted region to which the

follow-up analysis is applied,
(iii) ρ̂MF, the threshold of the SNR of the coherent

matched filtering.
N EP denotes the computational cost of the excess power

method. 2Nseg multiplications and 2Nseg additions of real
numbers are required to calculate the excess powers for all
chunks in one l-domain signal. The computational cost for
calculating the excess powers for all chunks can be
estimated as

N EP ¼ 4Nseg × Ngrid × Nbin ∼ 4.7 × 1015; ð5:1Þ

in the unit of the number of floating point operations. As we
see in the following, this cost can be neglected. Next, we
check the computational time of the neural network
analysis. We estimate the computational time of the neural
network by measuring the elapsed time for analyzing ten
thousand data. Because the elapsed time is 1.4 sec, the total
computational time of the neural network is estimated as

T NN ≃
1.4 sec
104data

× Ncandidate; ð5:2Þ

where Ncandidate is the number of candidates which are
selected by the excess power method and is estimated as

Ncandidate ¼ Nchunk × FAPEP;

¼ Ngrid · Nbin ·
Nseg

ðδlÞslide
× FAPEP;

≃ 4.6 × 1010
�
FAPEP
10−2

�
: ð5:3Þ

Substituting it, we obtain

T NN ≃ 6.4 × 106 sec

�
FAPEP
10−2

�
: ð5:4Þ

Therefore, we focus on the case FAPEP ≤ 10−2. The
computational cost of our analysis is dominated mainly
by the preprocessing of the observed strain data and
the follow-up analysis. The computational cost of the
entire analysis is denoted by N comp and is approximately
calculated by

N comp ¼ N preprocess þN follow−up; ð5:5Þ

where N preprocess and N follow−up are the computational cost
of the preprocessing and the follow-up analysis, respec-
tively. In this work, we fix the STFT segment duration and
the length of the chunk. Thus, the computational cost of the
preprocessing is a constant.

N preprocess ¼ Ngrid × ðN STFT þN FFT × NbinsÞ: ð5:6Þ

The computational cost of the STFT is

N STFT ¼ Nseg · 5Tsegfs log2 Tsegfs; ð5:7Þ

and the computational cost of FFT is

N FFT ¼ 5Nseg log2 Nseg: ð5:8Þ

With Tobs ¼ 224 sec, Tseg ¼ 25 sec, fs ¼ 210 Hz, and
Ngrid ∼ 3.5 × 105, the computational cost of the preprocess
is estimated as

N preprocess ≃ 2.3 × 1018: ð5:9Þ

On the other hand, the computational cost of the follow-up
analysis is determined by the combination of FAPEP and
rNN. The computational cost of the follow-up analysis is

N follow−up ¼ Ncandidate ×
πðrNNÞ2
ðδθÞ2coh

×N FFT;coh: ð5:10Þ

Here, ðδθÞ2coh is the typical area of region where each grid
point of the coherent analysis covers [see Eq. (3.5)]. The
computational cost of taking match is dominated by the
Fourier transform and calculated as

N FFT;coh ¼ 5ðTobsfs;cohÞ log2ðTobsfs;cohÞ ≃ 5.0 × 107;

ð5:11Þ

where fs;coh ¼ 1=Tseg ¼ 2−5 Hz. Therefore, we estimate
the computational cost of the follow-up analysis as

N follow−up ¼ 9.0 × 1022
�

rNN
10−3 rad

�
2
�
FAPEP
10−2

�
: ð5:12Þ

Substituting Eqs. (5.9) and (5.12) into Eq. (5.5), we can
assess the computational cost of the entire analysis as a
function of rNN and FAPEP. Figure 3 shows the computa-
tional cost for various combinations of FAPEP and rNN. One
can read a feasible combination of FAPEP and rNN depend-
ing on one’s available computational resources.
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B. False alarm probability

The false alarm probability of the entire process (see
[52,53]) is

pfaðρÞ ¼ f1 − ðProb½ρEP < ρ̂EPjρEP ∼N ð0; 1Þ�ÞNchunkg
× f1 − ðProb½ρMF < ρ̂MFjρMF ∼N ð0; 1Þ�ÞNtg;

ð5:13Þ
where Nt is the number of required templates for the
coherent search. It can be estimated by

Nt ¼ Ncandidate ×
πðrNNÞ2
ðδθ2Þcoh

× Nbin;coh; ð5:14Þ

where Nbin;coh is the number of the frequency bins of the
coherent search. Using the value listed in Table II, we obtain

Nt ≃ 5.6 × 1021
�

rNN
10−3 rad

�
2
�
FAPEP
10−2

�
: ð5:15Þ

Because the false alarm probability of the follow-up stage
determines that of the entire process, we can approximate
it as

pfaðρÞ ≃ f1 − ðProb½ρMF < ρ̂MFjρMF ∼N ð0; 1Þ�ÞNtg:
ð5:16Þ

Furthermore, because Nt ≫ 1, we can approximate

pfaðρÞ ≃ Nt · Prob½ρMF > ρ̂MFjρMF ∼N ð0; 1Þ�: ð5:17Þ

In this work, the threshold ρ̂MF is chosen so that the
false alarm probability of the entire process is 0.01. As
shown in Eq. (5.15), the number of templates depends on
ðrNN; FAPEPÞ, and the same is true for ρ̂MF.
The false alarm probability of the matched filtering has

already been studied in the literature. Therefore, in this work,
we check only the validity of the statistical properties of the
excess powermethod. It is computationally difficult to treat a
whole signal of a duration Tobs ¼ 224 sec. Therefore, we
generate Nseg short noise data of a duration Tseg assuming
SnðfÞ ¼ 1. After applying awindow function, FFT is carried
out to each short strain.Wepickup aFFTofkth frequencybin

from each FFT data and regard them as fnSTFTj;k gNseg

j¼1 . We

obtain Nl;k by taking the Fourier transform of fnSTFTj;k gNseg

j¼1

and divide it into Nseg=δl ¼ 128 chunks. After repeating
above procedures for 80 times, 10, 240 chunks are generated.
For each chunk, the excess power statistics E and SNRs ρEP
are calculated. The histogram of the simulated values of ρEP
is shown in Fig. 4. It seems to match the standard normal
distribution. Additionally, we carry out the Kolmogorov-
Smirnov test and obtain a p value of 0.753254. It is
numerically confirmed that the SNR of noise data follows
the standard normal distribution.

C. Detection probability

The detection probability of the signal with an amplitude
h0 can be estimated by

pdetðh0; ρÞ
¼ hpdetðξ; ρÞiξ⃗
¼ hProb½ρEP > ρ̂EPjρEP ∼N ðμEPðξÞ; σEPðξÞÞ�
× Prob½source is located in a predicted regionjξ; rNN�
× Prob½ρMF > ρ̂MFjρMF ∼N ðμMFðξÞ; 1Þ�iξ⃗; ð5:18Þ

FIG. 3. The logarithm of the evaluated computational cost in
the unit of the number of floating point operations. In the white
hatched region, the computational cost is dominated by that of the
preprocessing, i.e., N follow−up ≤ N preprocess. As the false alarm
probability of excess power is set to be smaller, the computational
cost is reduced because the number of candidates decreases. Also,
the computational cost becomes smaller as the parameter rNN is
shrunk.

FIG. 4. The histogram of the simulated ρEP. The blue line is the
histogram, and the orange line indicates the standard normal
distribution. They match well. The p value of the Kolmogorov-
Smirnov test is 0.753254.
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where

h� � �iξ⃗ ≔
Z

dξ⃗ð� � �Þπðξ⃗Þ ð5:19Þ

is the average over the source parameters ξ⃗ with the pro-
bability density function πðξ⃗Þ. As explained in Sec. IV D,
the neural network is trained with the waveforms sampled
only from the vicinity of the reference grid point and the
narrow frequency band. It is envisaged that the trained
neural network does not work well for signals outside of the
reference patch and the frequency band. Therefore, we only
test for the limited parameter region. Correspondingly, the
average operation is also taken over such narrow parameter
space. To quantify the detection power, the amplitude
parameter h95%0 is defined by

pdetðh95%0 ; ρÞ ¼ 0.95; ð5:20Þ

and correspondingly,

ĥ95%0 ≔ h95%0

�
SnðfrefÞ
1 Hz−1

�
−1=2

: ð5:21Þ

The parameters, FAPEP and rNN, are optimized so that
h95%0 takes the smallest value under the condition of the
computational power.
To explore the parameter space of (FAPEP, rNN), we

place the regular grid on log10 FAPEP from −8 to −2 by a
step of 1, and the regular grid on log10 rNN from −4.5 to
−3.0 by a step of 0.05. For every pair of FAPEP and rNN, we
calculate ĥ95%0 by the following procedure. First, we place a
regular grid on log10 ĥ0 from−2.3 to−1.0 by a step of 0.05.
For one sample of the amplitude, the parameters ξ⃗ are
randomly sampled. The sampled parameters are denoted by

fξ⃗ðiÞgMi¼1. The waveforms are generated with the sampled
parameters. Each waveform is injected into different noise
data in the same manner as the method explained in
Sec. IV D. The fraction of the events detected is employed
as the estimator of the detection probability of the signal

with parameter ðh0; ξ⃗ðiÞÞ. Repeating these procedure for

every sampled parameters fξ⃗ðiÞgMi¼1, we obtain the set of the
estimated detection probabilities. Then, the detection prob-
ability pdetðh0; ρÞ is estimated by

pdetðh0; ρÞ ≃
1

M

XM
i¼1

pdetðh0; ξ⃗ðiÞ; ρÞ: ð5:22Þ

Changing the value of the amplitude ĥ0, we get the
estimated detection probability as a function of h0 for a
certain values of FAPEP and rNN. If the estimated detection
probability exceeds 95% for one or more samples of the
amplitude, the obtained detection probabilities are fitted by
a sigmoidlike function,

ςðD; a; bÞ ¼ 1

1þ eðD−aÞ=b ; ð5:23Þ

where

D ≔ ðĥ0Þ−1; ð5:24Þ

is called “the sensitivity depth,” and the parameters ða; bÞ
of a sigmoid function is to be optimized. Using the
optimized parameters ða�; b�Þ, the estimated value of
D95% ≔ ðĥ95%0 Þ−1 can be obtained as

D95%ðFAPEP; rNNÞ ¼ a� − b� ln
1 − 0.95
0.95

; ð5:25Þ

which is the inverse of ςðDÞ. In this work, we set M ¼
1024 and the number of noise realization for each param-
eter set to be 512. Figure 5 shows an example of the fitting.
The estimated values of D95% is shown in Fig. 6.
To confirm that the signals with the amplitude h95%0 are

detected with 95% detection probability, we perform the
injection test. To save the computational cost, we skip the
follow-up stage and assume that the detection probability
is determined by the excess power selection and the neural
network analysis. We only use a short chunk centered at
the support of the signal as an injection waveform. Ten
thousand chunks with various signal parameters ξ⃗ are
prepared and injected into Gaussian noise data. The wave-
form model and the noise property are the same as those of
the training dataset of the neural network. The excess
power is calculated for each chunk, and the neural network
analysis is carried out if a chunk is selected as a candidate.
Counting the number of detected events, we obtain the
recovered value of the detection probability. The pro-
cedure shown above is repeated for each combination of
ðFAPEP; rNNÞ. Figure 7 shows the result of the injection
test. For all combinations of ðFAPEP; rNNÞ, the detection

FIG. 5. Example of fitting of detection probability. We set
FAPEP ¼ 10−3 and rNN ¼ 10−3.8 rad. Blue dots are estimated
values of pdet, and orange solid line is the fitted sigmoid curve.
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probabilities are close to 95%. Therefore, our estimation of
the detectable amplitude ĥ95%0 is convincing.

VI. CONCLUSION

We proposed a new method of an all-sky search for
continuous gravitational waves, combining the excess
power and the deep learning methods. The time resampling
and the STFT are used for localizing the signal into a
relatively small number of elements in the whole data.
Then, the excess power method selects the candidates of the
grid point in the sky and the frequency bins where the
signal likely exists. The deep neural network narrows down
the region to be explored by the follow-up search by two

orders of magnitude than the original area of the sky patch.
Before the follow-up coherent search, the heterodyning
and the downsampling can reduce the computational cost.
We calculated the computational cost of our method. Most
of the computational costs are spent by preprocessing the
strain data and the follow-up coherent matched filtering
search. The computational costs of the excess power
method are negligibly small, and the computational time
of the neural network can be suppressed to an acceptable
level by setting FAPEP ≤ 10−2. We estimated the detection
abilities of our method with the limited setup where the
polarization angle, the inclination angle, and the initial
phase are fixed and assumed as known parameters. The
dataset for training the neural network and testing is gen-
erated from a very narrow parameter space of ðfgw; αs; δsÞ.
With a reasonable computational power, the sensitivity
depth can be achieved D95% ≳ 80.
Our training data, which is used for training the neural

network, span the restricted parameter region. Namely, the
gravitational wave frequencies of the training data are
distributed within the small frequency band centered at
100 Hz of width �1=ð2TsegÞ and the source locations are
sampled from very narrow regions around the fixed grid
point. Nevertheless, we can expect our method can be
applied to the all-sky search and the frequency band below
100 Hz. If the gravitational wave frequency becomes lower
than 100 Hz, the strength of the phase modulation becomes
weaker [see Eq. (2.6)]. Therefore, even if fgw < 100 Hz,
the signal power in the l domain would still be concen-
trated in a narrow region, and it can be expected that the
efficiency of the excess power method is maintained. We
can employ a similar discussion also for the dependency on
the source location. The power concentration in the l
domain is still valid even if we take into account the
dependency of the source location, while it causes the
variation of the signal amplitude. From the above discus-
sion, only slight modifications of the construction of the
training data and our neural network structure are enough to
apply our strategies to an all-sky search of monochromatic
sources having a frequency lower than ∼100 Hz.
In addition to the above points, there are several avenues

for improving our method. We fixed various parameters
such as the width of the STFT Tseg and the length of each
chunk δl in a little hand-waving manner. Surveying and
optimizing these parameters may improve the detection
efficiency of our method. Especially, the sampling fre-
quency when downsampling might reduce the computa-
tional cost significantly. As can be seen from Eq. (4.27), the
deviation δfk causes the translation of the signal in the l
domain. It is expected that we can further constrain the
gravitational wave frequency than ∼T−1

seg. Considering this
effect, we can set the sampling frequencies of down-
sampled strains to a lower value than our current choice.
This optimization would result in the further reduction of
the computational time of the follow-up coherent search.

FIG. 7. Recovered values of the detection probability. For all
parameters, the detection probabilities are recovered to 95% with
the error of only a few percent.

FIG. 6. Estimated sensitivity depths D95%. For parameters
within a blank region, the detection probabilities do not reach
95% for a surveyed range of amplitude ĥ0. For rNN ≲ 10−4 rad,
the neural network controls the detection probability. On the other
hand, for rNN ≳ 10−3.6 rad, the excess power method controls the
detection probability because the predicted region is large enough
to contain the true location of the source.
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In the present paper, we assumed that the stationary
Gaussian detector noise and 100% duty cycle. We also
simplified the waveform model, e.g., the frequency change
df=dt is not incorporated. In spite of these simplifications,
the obtained results can be regarded as a proof of principle
and are enough to convince that our method has the
potential for improving the all-sky search for continuous
gravitational waves with the duration of Oð107Þ sec.
Relaxing these assumptions is beyond the scope of this
paper and left as future work.
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APPENDIX: NOISE STATISTICS
IN THE l DOMAIN

In general, the power spectral density of a stochastic
process nðtÞ is defined by

hñðfÞñ�ðf0Þi≕ 1

2
SnðfÞδðf − f0Þ; ðA1Þ

where the Fourier transform of nðtÞ is defined by

ñðfÞ ¼
Z

∞

−∞
dtnðtÞe−2πift; ðA2Þ

while we define the STFT by Eq. (4.16). Ignoring the effect
of the window function, the variance of nSTFTj;k can be
approximated by

hðnSTFTj;k ÞðnSTFTj0;k0 Þ�i ¼
1

2Tseg
SnðfkÞδkk0δjj0 : ðA3Þ

Here, we assume that different STFT bins are statistically
independent. The variance of Nl;k is

hNl;kN�
l0;k0 i

¼ 1

N2
seg

XNseg

j¼1

XNseg

j0¼1

hðnSTFTj;k ÞðnSTFTj0;k0 Þ�ie−2πiðjl−j
0l0Þ=Nseg ;

¼ SnðfkÞ
2TsegNseg

δll0δkk0 : ðA4Þ

Therefore, we get

σ̃2k ¼ 2hNl;kN�
l;ki ¼

SnðfkÞ
TsegNseg

: ðA5Þ
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