
 

Entropy bound in Einstein-Born-Infeld black holes

F. T. Falciano ,1,2,* M. L. Peñafiel,1,† and J. C. Fabris2,3,4,‡
1CBPF—Brazilian Center for Research in Physics, Xavier Sigaud st. 150,

Rio de Janeiro 22290-180, Brazil
2PPGCosmo, CCE—Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil

3Núcleo Cosmo-ufes & Departamento de Física—Universidade Federal do Espírito Santo,
Vitória, Espírito Santo 29075-910, Brazil

4National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia

(Received 22 September 2020; accepted 25 March 2021; published 27 April 2021)

We study the validity of Bekenstein’s entropy bound for a charged black hole in the context of nonlinear
electrodynamics. Bekenstein’s inequalities are commonly understood as universal relations between the
entropy, the charge, the momentum and the energy of a physical system but independent of its dynamics.
In particular, we consider the Born-Infeld electrodynamics coupled to gravity as described by general
relativity. Following the steps that lead to these inequalities, we study the absorption of a charged test
particle by the black hole and verify that the entropy bound is violated. We find a modified upper bound for
the entropy that depends on the maximum field parameter of the Born-Infeld theory.
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I. INTRODUCTION

Black holes have been extensively studied in the liter-
ature and their general properties outlined. More recently,
direct and indirect observations increased even more the
interest in these astrophysical objects. One of the main
ideas from black hole mechanics is to associate the horizon
area A with the black hole entropy S [1,2]

S ¼ kBc3

ℏG
A
4
;

where kB is the Boltzmann constant and c, G and ℏ are,
respectively, the speed of light, the gravitational and the
Planck constants. The identification of the black hole area
with its entropy allows for a resolution of a possible
violation of the second law of thermodynamics. The infall
of a classical body into a black hole decreases the entropy
of the system unless one can attribute an increase to the
black hole entropy. Accordingly, the generalized second
law of thermodynamics (GSL) states that the sum of the
entropy of the black hole and matter fields can never
decrease [3], i.e., δðSBH þ SmÞ ≥ 0.
Studying the infall of a small test body into the black

hole, Bekenstein proposed [4] an upper bound for the
entropy-to-energy ratio of any physical system given by
S ≤ ð2πkB=ℏcÞER. Subsequent works generalized this
bound by including the angular momentum [5,6] and the

charge of the system [7,8]. The most general bound
reads [9]

S ≤
2πkB
ℏc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞ2 − c2J2

q
−
q2

2

�
; ð1Þ

whereR is the radius of the minimum sphere that encloses
the system, E is the energy, J is the angular momentum and
q is the charge. The above relation is assumed to be valid
for an arbitrary physical system and, indeed, it has been
confirmed in a variety of physical situations [10–14].
Furthermore, the equality in (1) is achieved only for the
Kerr-Newman black hole or the associated black hole of the
physical situation, namely Reissner-Nordström (RN-BH)
and Schwarzschild (SBH) for the static charged and neutral
black hole, respectively. Most importantly, the entropy
upper bound (1) is assumed to be a universal bound,
meaning that should be valid for arbitrary physical systems
and independent on the underlying dynamics.
We shall analyze the entropy bound in the context of

nonlinear electrodynamics (NLED). In particular, we con-
sider the Born-Infeld (BI) electrodynamics [15–17] that,
among NLED, has several interesting features: avoidance
of classical singularity, it emerges as the low-energy regime
of string theory [18] and has no birefringence [19,20] (see
also [21,22] and references therein). We shall repeat the
same thought experiment proposed by Bekenstein and
collaborators of slowly lowering a test body into the black
hole but now generalizing for a charged body obeying BI
electrodynamics in the curved spacetime of an Einstein-
Born-Infeld black hole (EBI-BH).
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The paper is organized as follows. In the next section we
briefly review NLED and show (see Theorem 1) that the
displacement vector of a static charge in a static spherically
symmetric spacetime is curl free and specified by the
Maxwellian electrostatic potential in the same background.
In Sec. III we describe the main properties of the EBI-BH
and in IV we solve the NLED to find the electrostatic
potential of a BI test particle in the EBI-BH background. In
Sec. V we calculate the change in the black hole area and
show that Bekenstein’s entropy bound is violated. We
conclude with some final remarks in Sec. VI.

II. NONLINEAR ELECTRODYNAMICS

We define electromagnetism as a vector gauge theory for
the Uð1Þ symmetry group where the Faraday tensor is
given by Fμν ¼ ∂μAν − ∂νAμ. The dual of the Faraday
tensor reads F̃μν ¼ 1

2
ημναβFαβ where ημναβ is the totally

antisymmetric Levi-Civita tensor. The electric and mag-
netic fields are defined as the projection along the
normalized observer’s worldline vμ, i.e., Eμ ¼ Fμ

αvα and
Bμ ¼ F̃μ

αvα such that Eμvμ ¼ Bμvμ ¼ 0. There are only
two linearly independent Lorentz invariants constructed
with the Faraday tensor, its dual and the metric, namely,
F≡ 1

2
FμνFμν¼EαEα−BαBα and G≡ 1

2
F̃μνFμν ¼ 2BαEα.

A generic NLED constructed solely in terms of these two
invariants can be specified by its Lagrangian density
LðF;GÞ. In this case, the dynamics reads

∂μð
ffiffiffiffiffiffi
−g

p
EμνÞ ¼ −4π

ffiffiffiffiffiffi
−g

p
jν; ð2Þ

where Eμν and its dual Ẽμν ¼ 1
2
ημναβEαβ are the excitation

tensor defined as

Eμν ¼ 2ðLFFμν þ LGF̃μνÞ; ð3aÞ

Ẽμν ¼ 2ðLFF̃μν − LGFμνÞ: ð3bÞ

The notation LX means derivative of L with respect to X.
There are also only two Lorentz invariant quantities
constructed with Eμν and Ẽμν, namely

P ¼ 1

2
EμνEμν ¼ 4ðL2

F − L2
GÞF þ 8LFLGG; ð4aÞ

S ¼ 1

2
ẼμνEμν ¼ 4ðL2

F − L2
GÞG − 8LFLGF: ð4bÞ

The decomposition of the excitation tensor follows closely
that of the Faraday tensor, namely Dμ ¼ −Eμ

αvα and
Hμ ¼ −Ẽμ

αvα, which are, respectively, the four-dimensional
electric displacement and magnetic H field. These tensors
allow us to reformulate the NLED using the P framework
[20,23,24] by defining the Hamiltonian density

H ¼ 1

2
EμνFμν − L ¼ 2ðLFF þ LGGÞ − L: ð5Þ

In order to complete the Legendre transformation we
need to invert (3) to write Fμν as a function of the excitation
tensor and its dual. If that is the case, we can write

Fμν ¼ 2
∂H
∂Eμν

¼ 2ðHPEμν þHSẼμνÞ; ð6Þ

where HX means derivative with respect to X. Then, the
Lagrangian can be written in terms of the Hamiltonian as
LðP; SÞ ¼ 2ðHPPþHSSÞ −H. Note that even in NLED,
the dynamics is linear in term of the excitation tensor.
Nevertheless, due to the nonlinearity of the constitutive
relations, Eμ and Bμ do not share the same symmetries
and physical properties of Dμ and Hμ. In particular, an
electrostatic configuration implies E ¼ −∇ϕðxÞ but in
general ∇ ×D ≠ 0.
Notwithstanding, in a recent paper [22], it has been

shown that the displacement vector of an arbitrary NLED in
Schwarzschild spacetime is curl free. In addition, assuming
that the constitutive relations are invertible, the electrostatic
potential solution can be written in terms of Linet’s
solution. The latter is the electrostatic potential for a test
particle in conformity to Maxwell electrodynamics in
Schwarzschild. We now generalize this result for an
arbitrary static and spherically symmetric spacetime.
Theorem 1. The electrostatic potential ϕðxÞ produced

by a charged particle satisfying a generic NLED theory
LðF;GÞ in a static spherically symmetric spacetime is
entirely specified by the electrostatic potential ψðxÞ sat-
isfying Maxwell’s electromagnetism in the same back-
ground. The displacement vector is curl free and given
by D ¼ −∇ψðxÞ.
Proof. The electrostatic case implies B¼0 and ∂tE¼0,

hence the electric displacement reads Dμ ¼ −2LFðEÞEμ,
where the electric field is given by the gradient of the
potential ϕðxÞ, i.e., Eμ ¼ ð0;−∇ϕÞ in the reference frame
where the particle is at rest. Therefore, the dynamics (2)
reads

∂μð
ffiffiffiffiffiffi
−g

p
DμÞ ¼ −4π

ffiffiffiffiffiffi
−g

p
ρ; ð7Þ

where the density is defined as ρ ¼ Jαvα, and we have used
(3) together with the fact that the four-velocity of a static
particle vμ ¼ cδμ0=

ffiffiffiffiffiffi
g00

p
satisfies ∇μvμ ¼ ∂μvμ ¼ 0. Let

ψðxÞ be an auxiliary scalar function defined as the integral
along the path with tangent vector dl such that

ψðxÞ ¼ −2
Z

LFð∇ϕÞ∇ϕ · dl: ð8Þ

Straightforward inspection shows that (7) is formally
identical with the electrostatic Maxwellian case with the
electric field given by the gradient of the function ψðxÞ.
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Thus the displacement vector reads D ¼ 2LFð∇ϕÞ∇ϕ ¼
−∇ψ . Furthermore, assuming that the constitutive relations
are invertible, the P framework allows us to write the
Faraday tensor as a function of the excitation tensor and its
dual. In the electrostatic case, (6) shows that ∇ϕ ¼
−2HPð∇ψÞ∇ψ . ▪

In the present work we are interested in the physics of a
BI charged test particle in the EBI-BH spacetime. The BI
theory can be defined by the action

S ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p
β2ð1 −

ffiffiffiffi
U

p
Þ; ð9Þ

where β is the parameter that specifies the maximum
value of the field strength and U ¼ 1þ F=β2 −G2=4β4.
The BI theory is an example of a NLED whose P
framework is well defined and completely analogous to
the F framework. Indeed, defining V¼1−P=β2−S2=4β4

one can show that S ¼ G, P ¼ F − ðF2 þ G2Þ=ðUβ2Þ and
V ¼ ð1þ G2=4β4Þ2=U. Thus, the constitutive relations are

Fμν ¼ −
1ffiffiffiffi
V

p
�
Eμν þ S

2β2
Ẽμν

�
; ð10aÞ

Eμν ¼ −
1ffiffiffiffi
U

p
�
Fμν −

G
2β2

F̃μν

�
: ð10bÞ

In particular, in the electrostatic case, the displacement
vector simplifies to D ¼ −2LFðEÞE and the above con-
stitutive relations read

D ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jEj2β−2

p and E ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDj2β−2

p : ð11Þ

III. EINSTEIN-BORN-INFELD BLACK HOLE

The solution of a EBI-BH of charge q and massM can be
written in standard coordinate system ðt; r; θ;ϕÞ as [25–32]

ds2 ¼ g00ðrÞc2dt2 − g−100 ðrÞdr2 − r2dΩ2; ð12Þ

with dΩ2 ¼ dθ2 þ sin2 θdϕ2. The time-time component of
the metric is given by

g00ðrÞ ¼ 1 −
rs
r
þ 2r2q
3r4β

�
r2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ r4β

q �

þ 4r2q
3r

Z
∞

r

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r04 þ r4β

q ; ð13Þ

where rs ≡ 2GM=c2, rq ¼
ffiffiffiffi
G

p
q=c2 and rβ ≡

ffiffiffiffiffiffiffiffi
q=β

p
.

These three length parameters characterize completely
the EBI-BH solution. Changing the limits of integration
on the last term of (13) to the complementary interval ð0; rÞ

we obtain instead the Demianski’s [33] particlelike solution
(also referred to as EBIon). The nonzero components of the
electromagnetic field Fμν and the excitation tensor Eμν of
the black hole are

F01ðrÞ ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ r4β
q ; E01ðrÞ ¼

q
r2

: ð14Þ

It is evident from the above expression that the dis-
placement vector can be written as D ¼ −∇ψ where
ψðrÞ ¼ q=r is the potential of an electric monopole at
the origin. Notwithstanding, the potential for the electric
field, E ¼ −∇ϕq, reads

ϕqðrÞ ¼ q
Z

∞

r

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r04 þ r4β

q ¼ q
r 2F1

�
1

4
;
1

2
;
5

4
;−

r4β
r4

�
; ð15Þ

where 2F1½a; b; c; z� is the Gaussian hypergeometric func-
tion. This is an instantiation of Theorem 1 that is valid for
any NLED in static spherically symmetric spacetimes. We
can rewrite the metric in a more suggestive way as

g00ðrÞ¼ 1−
rs
r
þ r2q
r2
f

�
r
rβ

�
;

fðxÞ¼ 2

3
x4
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x4

r �
þ4

32F1

�
1

4
;
1

2
;
5

4
;−

1

x4

�
: ð16Þ

The function fðxÞ is a monotonic increasing function
that starts at zero and approaches 1 as its argument goes to
infinity (see Fig. 1). Let us analyze the properties of the
EBI-BH metric. For that, it is convenient to rescale the
radial coordinate in order to absorb rβ and define an
adimensional quantity, namely x ¼ r=rβ. Thus,

g00ðxÞ ¼ 1 −
1

x
ðxs − x2qFðxÞÞ; ð17Þ

where FðxÞ ¼ fðxÞ=x and we redefined the parameters as
xs ≡ rs=rβ and xq ≡ rq=rβ. The function FðxÞ is also
monotonic but now a decreasing function with Fð0Þ ¼
Γð1

4
Þ2=3 ffiffiffi

π
p

and Fðx → ∞Þ ¼ 0, hence if xs > x2qFð0Þ the
metric diverges to minus infinity at the origin, i.e.,
g00ð0Þ ¼ −∞. Contrarily, if xs < x2qFð0Þ, we have
g00ð0Þ ¼ ∞. Note that at spatial infinity g00ðx → ∞Þ ¼ 1
irrespective of the values of the parameters (the EBI-BH is
asymptotically flat). The first derivative of the metric
component reads
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dg00
dx

ðxÞ ¼ 1

x2

�
xs − x2q

�
FðxÞ − x

dF
dx

ðxÞ
��

;

¼ 1

x
ð1 − g00ðxÞ þ 2x2q½x2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p
�Þ: ð18Þ

The function dF
dx ðxÞ is a monotonically increasing func-

tion starting at−2 and it approaches zero for x → ∞. On the
other hand, the sum FðxÞ − x dF

dx ðxÞ appearing in the
derivative of the metric is monotonically decreasing and
with the same limits as FðxÞ. It is Fð0Þ for x ¼ 0 and tends
to zero for x → ∞ (see Fig. 2).
We conclude that if xs > x2qFð0Þ, then g00ðxÞ has no

extreme point and there is only one horizon, since the
g00ðxÞ will inevitably cross zero (Schwarzschild-like black
hole). Alternatively, if xs < x2qFð0Þ the g00ðxÞ diverges to

plus infinity at the origin and g00ðxÞ has one extreme point.
In this situation the black hole can have zero, one or two
horizons (Reissner-Nordström-like black hole). Indeed the
second derivative of the metric component reads

d2g00
dx2

ðxÞ ¼ −
2

x
dg00
dx

ðxÞ þ 4x2q

�
1 −

x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p
�
: ð19Þ

Thus, if dg00
dx ðxÞ ¼ 0, then the second derivative is neces-

sarily positive, which characterizes a minimum. There is,
however, an extra condition for the appearance of two
horizons; we need g00ðxÞ < 0 at the minimum. Suppose
there is a single horizon, namely, a position xext such that
dg00
dx ðxextÞ ¼ g00ðxextÞ ¼ 0, i.e.,

1þ x2q
dF
dx

ðxextÞ ¼ 0 ⇒ x2ext ¼ x2q −
1

4x2q
: ð20Þ

Since x2ext > 0, the existence of an extremum black hole
requires that x2q > 1=2. By definition, the parameters of
the extreme EBI-BH are related by x2s ¼ 4x2qfðxextÞ.
Combining all the above relations, we find that the
condition for a EBI-BH with two horizons is

ffiffiffiffiffiffiffiffi
36π

p

Γð1
4
Þ2

Mffiffiffiffiffiffi
qβ

p < q <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

fðxextÞ

s
M;

c4

2Gβ
< q:

In the limit β → ∞, we reobtain the RN condition
0 < q <

ffiffiffiffi
G

p
M. For finite values of β we can recast the

above inequalities as

ffiffiffiffiffiffiffiffi
18π

p

Γð1=4Þ2 <
xq
xs

<
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4fðxextÞ
p ;

ffiffiffi
2

p

2
≤ xq: ð21Þ

Note that the above inequality for rq can be satisfied only
if fðxextÞ < Γð1

4
Þ4=ð72πÞ ≈ 0.764. The existence of two

horizons imposes an upper bound on fðxextÞ.
We can also analyze the behavior of the metric in the two

asymptotic regimes of the parameter β. As mentioned
before, the metric (12) is always asymptotically flat, but
it differs for small values of r depending on the magnitude
of β. In the limit β ≪ 1 we have the deep BI regime where
rβ ≫ 1 and we can approximate the time-time component
of the metric by

g00ðrÞ ¼
�
1 − 2

r2q
r2β

�
−
rqs
r

þOðβ2Þ;

with rqs ¼ rs

�
1 −

Γð1
4
Þ2

3
ffiffiffi
π

p r2q
rsrβ

�
: ð22Þ

At first order in β, the BI corrections only modify the
value of the Schwarzschild mass. For low values of β, the

FIG. 1. The function fðxÞ defined in (16) is a monotonic
increasing function that tends to 1 for large values of x. We can
see that fðxÞ > x for values smaller than x ≈ 0.95. Its first
derivative becomes smaller than 1 for x ≈ 0.4, while the second
derivative is always negative for x ∈ ½0;∞Þ.

FIG. 2. Plot of the function FðxÞ its derivative and the particular
combination of them that appears in the derivative of g00ðxÞ. All
of them are monotonic functions.
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nonlinearities screen the charges and make them inefficient.
As a consequence, the metric departs from RN-BH and
behaves as SBH but with a rescaled mass. The horizon is
located at rh ≈ rqs.
The opposite regime happens in the limit β ≫ 1. This

correspond to the superficial BI regime where rβ ≪ 1,
and we can approximate the time-time component of the
metric by

g00ðxÞ ¼ 1 −
xs
x
þ x2q

x2
−

x2q
20x6

þO

�
x2q
x10

�
: ð23Þ

This expansion corresponds simultaneously to the limit
r → ∞ with finite β or β → ∞ with finite r. The latter
corresponds to the Maxwellian limit, hence it comes with
no surprise that the metric reduces to RN at first order.
Since rβ ≪ 1, outside the external horizon, i.e., r > rq, the
term x2q=x6 already gives only small corrections to the
metric component. Therefore, in this case, the horizon
should be located close to the external RN horizon xh ≈ xþ
with xþ ¼ 1=2

�
xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s − 4x2q

q �
.

The horizon radius xh has no analytic solution and it can
only be determined numerically through the equation
g00ðxhÞ ¼ 0. Nevertheless, we have an implicit solution
given by

xh ¼
1

2

�
xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s − 4x2qfðxhÞ

q �
: ð24Þ

The fact that fðxÞ is a monotonic increasing function of x
provides us with an iterative procedure to obtain the
location of the horizon. Let us define the first approximate

solution by x1 ¼ 1=2
�
xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s − 4x2qfðxþÞ

q �
. Note that,

since xs > xþ > xs=2 and 1 ≥ fðxÞ ≥ 0, we have the
following ordering xþ < xh < x1 < xs.
To improve the solution we can substitute xþ by x1 in

the argument of fðxÞ defining the second radius as

x2 ¼ 1=2
�
xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s − 4x2qfðx1Þ

q �
. Now x2 < xh and the

ordering becomes xþ < x2 < xh < x1 < xs. This iterative
procedure defines the radius xkþ1 as

xkþ1 ¼
1

2

�
xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s − 4x2qfðxkÞ

q �
with k ∈ N: ð25Þ

For every k even (odd), we have xk smaller (greater) than
xh. Therefore the sequence of radius can be ordered as

xþ < x2 < x4 < … < xh < … < x3 < x1 < xs:

In the limit k → ∞ the sequence approaches the true
value xh, but even for the first radius we already have a
good approximate solution. In order to check this, let us
evaluate the error in truncating the above sequence.

By definition, the horizon radius satisfies (24).
Moreover, the condition rβ ≪ 1 together with the relation
xs=2 ≤ xþ ≤ xh imply that xh ≈ xþ ≫ 1 and 1 ≥ fðxhÞ ≥
fðxþÞ ≥ fð1Þ ≈ 0.96. Therefore, the error in placing xþ
instead of xh in the argument of the function fðxÞ is smaller
than δf ∼ 0.04. Taylor expanding we find

rh ≈ r1 − 0.04
r2q
rs

þOðδf2Þ: ð26Þ

The function fðxÞ becomes almost constant for large
values of x; hence it should not vary appreciably outside
the exterior horizon. Therefore, we can further simplify
the metric by freezing the value of this function at the
horizon, i.e.,

g00ðxÞ ≈ 1 −
xs
x
þ x2qfðxhÞ

x2
for x > xh: ð27Þ

Figure 3 compares the exact form (17) of g00ðxÞ with the
approximative solution (27) and the RN-BH metric. Even
though inside the horizon the approximation fails com-
pletely, at the external horizon and beyond, it is a good
approximation to fix the value of the function at fðxhÞ.
Moreover, the rescale of the black hole charge as q2fðxhÞ is
crucial to describe the metric close to the horizon. This plot
shows that the RN-BH metric does not reproduce the
EBI-BH close the exterior horizon (only in the limit
β → ∞).

FIG. 3. Plot of the time-time component of the metric tensor as
a function of the adimensional variable x ¼ r=rβ with xs ¼ 2 and
xq ¼ 0.996. The solid curve is the exact function g00ðxÞ [see
(17)]. The small dashed curve displays the approximate solution
given by (27) where the function fðxÞ is fixed at its horizon value.
The large dashed shows g00ðxÞ for the RN-BH. We see that our
approximate solution is very different inside the exterior horizon
but can be considered as a good approximation at and beyond the
horizon. As expected the location of the RN horizon is smaller
than the BI horizon and the three g00 are similar far away from the
black hole.
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As a last comment, we mention that there is an upper and
lower bound for the size of the horizon area. The time-time
component of the metric satisfies

1 −
rs
r
≤ g00ðrÞ ≤ 1 −

rs
r
þ r2q

r2
; ð28Þ

and this relation can be translated into area by stating that
the EBI-BH area ðABIÞ is always smaller than SBH and
greater than the exterior RN-BH area, i.e.,

4πr2þ ≤ AðrBIÞ ≤ 4πr2s ; ð29Þ

where 2r� ¼ rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2q

q
and equality holds for the

two limiting behaviors β → ∞ or 0.

IV. CHARGED PARTICLE IN THE VICINITY
OF A EBI-BH

Let us consider a test charged body with mass m and
charge e. In order to find the electrostatic potential asso-
ciated with this test body, we need to solve the NLED for a
static test particle in the black hole spacetime. This becomes
a straightforward exercise by using Theorem 1. The chal-
lenge rests, then, in solving Maxwell’s equation in the same
spacetime.
Copson and then Linet [34,35] obtained the solution for

the electrostatic potential of a test particle in SBH, which
later was generalized for RN-BH [36]. Our analysis of the
preceding section shows that for our purpose we can
describe the EBI-BH as a RN-BH with a rescaled charge
given by q2 → q2fðxhÞ [see (27)]. Therefore, we can use
Linet’s solution with a few adjustments to describe the
electrostatic potential of a test particle outside the exterior
horizon of a EBI-BH. In this section we summarize the
main steps to obtain the electrostatic solution for RN from
the solution for SBH.
Consider a static spherically symmetric spacetime.

By choosing the time coordinate along the integral lines
of the timelike Killing vector ξt ¼ ∂t and the third
coordinate along the angular Killing vector ξϕ ¼ ∂ϕ,
namely a coordinate system ðt; r; θ;ϕÞ, the metric does
not depends on ðt;ϕÞ. The dynamics of a test charged
particle reads

∂μð
ffiffiffiffiffiffi
−g

p
gμαgνβEαβÞ ¼ −4π

ffiffiffiffiffiffi
−g

p
jν; ð30Þ

where Lξgμν ¼ 0. In the static case, there is no magnetic
field, hence we have D ¼ −2LðEÞE. By symmetry argu-
ments, the excitation tensor also satisfies LξEμν ¼ 0, hence
we have D ¼ Dðr; θÞ. The displacement vector of a NLED
satisfies the same differential equation of the electric field
for the Maxwellian case, which is given as the gradient of
the electric potential. Thus, we can write D ¼ −∇ψðr; θÞ
and (30) becomes

1

r2
∂
∂r
�
r2
∂ψ
∂r
�
þ g00ðrÞ

r2
L̂2ψ ¼ −4πj0; ð31Þ

where L̂2 is the square angular-momentum operator

L̂2ψ ¼ 1

sin θ
∂
∂θ
�
sin θ

∂ψ
∂θ
�
þ 1

sin2 θ
∂2ψ

∂φ2
:

The source is considered as a pointlike particle located at
r ¼ a and cos θ ¼ 1, hence j0 ¼ ea−2δðr − aÞδðθÞ. The
case of a charged particle with charge e outside a SBH,
where g00ðrÞ ¼ 1 − rs=r, has been studied by Copson and
Whitaker [34]. However, their solution does not have the
correct asymptotic behavior. Linet showed that Copson’s
solution in fact describes two charges. Analyzing the limit
r → ∞ it appears a charge e at ðr ¼ a; θ ¼ 0Þ and another
charge −ers=2a inside the black hole. In order to correct
the solution Linet included a spherically symmetric term of
the form ers=2ar.
The RN case can be written in terms of the above

solution by a coordinate transformation that maps the
differential equation for the electrostatic potential in
RN-BH into the differential equation for SBH. This
procedure works only if the metric can be written as g00 ¼
ð1 − rþ=rÞð1 − r−=rÞ and the difference rþ − r− is inde-
pendent of r.
There is little hope to find a similar coordinate trans-

formation to map the electrostatic equation in EBI-BH into
SBH. Indeed, the EBI-BH metric cannot be written as a
polynomial and has a nontrivial dependence on r through
the function fðxÞ defined in (16). Notwithstanding, outside
the exterior horizon, the BI corrections only suppress the
effect of the black hole charge and the metric can be
approximated by fixing the function fðxÞ at the exterior
horizon as proposed in (27). With this approximation we
have

g00ðrÞ ¼
ðr − rhÞðr − r�Þ

r2
; ð32Þ

where rh ¼ 1=2
�
rs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2qfðxhÞ

q �
and r� ¼ rs − rh.

Straightforward substitution shows that the coordinate
transformation z ¼ r − r� together with a redefinition of
the potential as

ψðr; θÞ ¼ z
zþ r�

ψ sðz; θÞ ð33Þ

brings the equation EBI-BH (31) to the form

∂
∂z
�
z2
∂ψ s

∂z
�
þ
�
1 −

rh − r�
z

�
−1
L̂2ψ s ¼ −4πzðzþ r�Þj0;

ð34Þ
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which is formally identical1 to the equation for the electrostatic potential in SBH with the substitution r2s → r2s − 4r2qfðxhÞ.
Using the derivation of Appendix B, the electrostatic potential in the vicinity of a EBI-BH reads

ψðr; θÞ ¼ e
2ar

ð2a − rsÞð2r − rsÞ − ðr2s − 4r2qfðxhÞÞ cos θ
½ð2r − rsÞ2 þ ð2a − rsÞ2 − 2ð2a − rsÞð2r − rsÞ cos θ − ðr2s − 4r2qfðxhÞÞsin2θ�1=2

þ ers
2ar

; ð35Þ

where the last term is Linet’s correction of the asymptotic
behavior [see discussion above (B5)]. The above expres-
sion gives the potential in standard coordinates but, for
future analysis, it is convenient to transform it to isotropic
coordinates. In the isotropic coordinate system, the interval
reads

ds2 ¼ ð1 − āb̄q=r̄2Þ2
Σ2

c2dt2 − Σ2½dr̄2 þ r̄2dΩ2�; ð36Þ

where ā is the position of the charged particle in the
isotropic coordinate system and

Σðr̄Þ¼
�
1þ rs

4r̄

�
2

−
r2qfðxhÞ
4r̄2

; b̄q ¼
r2s −4r2qfðxhÞ

16ā
: ð37Þ

Using this coordinates, Linet’s solution reads (see
Appendix C for details)

ψðr̄; θÞ ¼ ψCopðr̄; θÞ þ ψpðr̄Þ; ð38Þ

where ψpðr̄Þ is the term added by Linet, which in
isotropic coordinates reads ψpðr̄Þ¼ersðāΣāÞ−1=2ðr̄ΣÞ, with
Σā≡ΣðāÞ, and

ψCopðr̄; θÞ ¼
e
r̄
Σ−1
ā

Σ
ðμ2ðr̄; θÞ þ b̄q=āÞ

μðr̄; θÞ ; ð39Þ

μðr̄; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2 þ b̄2q − 2b̄qr̄ cos θ

r̄2 þ ā2 − 2ā r̄ cos θ

s
: ð40Þ

Given the above solution, we can now apply Theorem 1.
The constitutive relations for BI electrodynamics gives

EðxÞ ¼ −∇ϕðxÞ ¼ −
∇ψðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇ψðxÞj2β−2
p : ð41Þ

In principle one can integrate (41) and find the exact
electrostatic potential ϕðxÞ as a function of ψðxÞ and
∇ψðxÞ. But in practice, one obtains only a numerical
ϕðxÞ since the above equation has no analytical solution.
In [22], we have shown that a good approximation is to split

the electric field as a sum of two terms

EðxÞ ≈ −
∇ψCopffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇ψCopj2β−2
q − ∇ψp; ð42Þ

which is equivalent to decompose the BI electrostatic
potential as

ϕðxÞ ≈ ϕCopðxÞ þ ψpðxÞ: ð43Þ

The first term ϕCopðxÞ is obtained by integrating (41)
using only ψCopðxÞ in place of ψðxÞ, namely, it is the BI
solution if one considers only Copson’s solution for the
Maxwellian dynamics. The ψpðxÞ represents the added
term to correct the asymptotic behavior of Copson’s
solution. As discussed in [22], ψpðxÞ encodes the black
hole horizon polarization due to the presence of the test
charged particle. Alternatively, one can interpret this extra
term as an image charge inside the black hole.
Since the horizon works as a conducting surface [37,38],

the BI nonlinearities of the image particle must remain
confined inside the horizon. Therefore, viewed from the
outside, it is a very good approximation to consider the
image particle as a Maxwellian charge. This also implies
that any NLED with the correct Maxwellian limit for weak
fields must produce the same black hole polarization.
We can extract the dependence of the electrostatic

potential on the charges and the field’s strength parameter
β by defining dimensionless coordinates. Similar to rβ, we
can define a characteristic length associated to the charge e
as re ≡

ffiffiffiffiffiffiffiffi
e=β

p
. In this manner, we define the dimensionless

isotropic radius ȳ≡ r̄=re, and its related quantities
ȳa ¼ ā=re, ȳb ¼ b̄q=re, ys ¼ rs=re, yq ¼ rq=re and so
forth. The gradient scales as ∇ ¼ r−1e ∇y and the dimension-
less Linet’s potential is defined as ψðxÞ ¼ ffiffiffiffiffi

eβ
p

ΨðyÞ. In
dimensionless quantities, (41) becomes

∇yΦðyÞ ¼ ∇yΨðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇yΨðyÞj2

q ; ð44Þ

where ΦðyÞ≡ 1ffiffiffiffi
eβ

p ϕðxÞ. In order to integrate (44) we need

to tame the divergences of μðy; θÞ and ΨðyÞ as one
approaches the charged particle. Far away we have μ→1
and Ψ → 1=y, but close to the charged particle μ → ∞ and

1The right-hand side is not strictly identical since it is not
−4πz2. Notwithstanding, the source is a delta function which
trivializes the necessary modification in the solution.
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Ψ → Ψc ≈ μΣ−2=ya. We can incorporate both behaviors by
approximating (see Fig. 4 and Appendix D)

j∇μj ≈ μ2
reðā − b̄qÞ

ðr̄ − b̄qÞ2Σðr̄Þ
; j∇yΨj ≈

�
ΨCop

ζ

�
2

; ð45Þ

with

ζ−2ðr̄; θÞ ¼ ΣðāÞ ðμ2 − b̄=āÞ
ðμþ b̄=āμÞ2

�
r̄ðā − b̄Þ
ðr̄ − b̄Þ2

þ ðr̄2 − ā b̄Þ
r̄2Σðr̄Þ

ðμ2 þ b̄=āÞ þ μrs=2ā
μðμ2 − b̄=āÞ

�
: ð46Þ

The function ζðr̄; θÞ has two limits given by ζā≡ζðā;0Þ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−b̄=āÞ=ΣðāÞ

p
and ζ∞≡ζð∞;θÞ¼ð1þb̄=āÞ=ΣðāÞ. The

variability of ζ prevent us from integrating (44). We need a
further simplification. The simplest solution is to fix ζ,
which must be taken at the particle’s location in order to
maintain the normalization j∇yΦðāÞj ¼ 1. This is already a
very good approximation if the particle is not too close to
the horizon. At the black hole horizon, the BI region,2

defined by j∇yΨj > λ2 with λ≳ 2, deforms into an oval
spheroid (see Fig. 4 of [22]). As a consequence the
transition from a Maxwell-like behavior to a BI potential
becomes steeper.
In any case, when the BI nonlinearities dominate, the

electric field is almost constant to j∇yΦj ≈ 1. In this case,
we can decompose the system in two regions that are

matched at the border of the BI region, which we specify by
ȳ�. Outside the BI region, the potential is almost
Maxwellian, Φ ≈Ψ, while inside the BI region the
potential becomes an increasing linear function ΦðȳÞ ¼
Φðȳ�Þ þ Σaðȳ� − ȳÞ. We have used normalized variable to
show that the above approximations are valid irrespective
of the value of the BI field strength parameter β. Now we
can come back to the isotropic coordinates (37). The
position of the transition into the BI region ȳ� depends
on the parameter β but Φðȳ�Þ does not since it is by
definition the potential from the Maxwellian region. The
transformation from ϕ to Φ gets a factor

ffiffiffiffiffi
eβ

p
while

ȳ�¼ r̄�=re, hence we see that ϕCopðāÞ ¼
ffiffiffiffiffi
eβ

p
ψðr̄�Þ þ

βðr̄� − āÞ. The radius r̄� can be calculated by solving
j∇yΨj ¼ λ2, which gives ȳ� ≈ ȳa þ ð1 − b̄q=āÞ=ðλΣ3=2

a Þ.
Thus, βðr̄� − āÞ also scales with

ffiffiffiffiffi
eβ

p
and we know exactly

the dependence of the BI potential with respect to these two
parameters. Now we can approximate our solution using
the fixed value ζ ¼ ζa.
Figure 5 shows that ζ is always greater than ζa, hence by

fixing the value of ζ ¼ ζa we are underestimating the value
of the potential. This is sufficient for the thought experi-
ment described in the next section since we will establish
only a lower limit for the test body energy. Besides, our
previous analysis guarantees that the potential scales withffiffiffiffiffi
eβ

p
, hence the error due to fixing ζ ¼ ζa can at most

introduce a numerical factor, which is irrelevant for our
conclusion. Using (45) with ζ ¼ ζa, one can directly
integrate (44), which gives

ϕCopðr̄; θÞ ¼
ffiffiffiffiffi
eβ

p
ζa

�
Γð1

4
Þ2

4
ffiffiffi
π

p

−
ζ2a
ψCop

2F1

�
1

4
;
1

2
;
5

4
;−
�

ζa
ψCop

�
4
��

; ð47Þ

where the argument of the Gaussian hypergeometric
function is understood as a function of r̄ for fixed values

FIG. 4. We plot the relative error in approximating the gradient
of μ and Ψ using (45). We plot in log scale the difference of the
exact and the approximated expression divide by the exact value.
The exact values are calculated by numerically integrating j∇μj
and j∇yΨj from infinity along the θ ¼ 0 axis where the particle is
located at ā. We plot the relative error for three locations of the
charge particle, i.e., ā=r̄h − 1 ¼ ð10−2; 10−4; 10−6Þ.

FIG. 5. The difference between the function ζ and ζa, showing
that ζ ≥ ζa for any value of ā and r̄.

2When j∇yΨj ¼ λ2, with λ ≥ 2, the BI field strength is
approximately λ2 times lower than the Maxwellian strength.
The exact value is not important as long as we keep it of order
unit.
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of θ. The first term is an integration constant chosen so as to
cancel the constant term reminiscent of the asymptotic limit
of the hypergeometric function. The Gaussian hypergeo-
metric function has two well-defined limits

lim
x→0

2F1

�
1

4
;
1

2
;
5

4
;−x4

�
¼ 1þOðx4Þ; ð48Þ

lim
x→0

1

x 2F1

�
1

4
;
1

2
;
5

4
;−

1

x4

�
¼ Γð1

4
Þ2

4
ffiffiffi
π

p − xþOðx5Þ: ð49Þ

In the limit r̄ → ∞, the second term of (47) tends to ψCop
plus a constant, which is exactly the first term added to
cancel it. In this manner, far away from the charged particle
we reobtain a Maxwellian behavior (see [22] for more
details). At the particle position where ψCop → ∞ we have

ϕCopðā; 0Þ ¼
Γð1

4
Þ2 ffiffiffiffiffi

eβ
p

4
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b̄q=āÞ

ΣðāÞ

s
: ð50Þ

The first term equals the BI electrostatic potential
evaluated at the particle’s position for the flat spacetime
case [see Eq. (34) of [22]]. It is also formally equivalent to
the black hole potential (15) evaluated at the origin, i.e.,

ϕeð0Þ ¼
Γð1

4
Þ2

4
ffiffiffi
π

p ffiffiffiffiffi
eβ

p
: ð51Þ

The second term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b̄q=āÞ=ΣðāÞ

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g00ðāÞ
p

accounts
for the redshift of the potential due to the spacetime
curvature. Thus we can write

ϕCopðā; 0Þ ¼ ϕeð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðāÞ

p
: ð52Þ

V. LOWERING A CHARGED TEST
BODY INTO EBI-BH

Our thought experiment consists in slowly lower a small
spherical object with mass m and charge e as close as
possible to the horizon and then drop it into the black hole.
We assume this small body to be a test particle in order not
to perturb the black hole spacetime, specifically m=M ≪ 1
and je=qj ≪ 1. After the small body is absorbed, the area of
the black hole increases and consequently also its entropy.
We shall calculate the minimum change in the area of the
black hole following [9,39–41]. The action for the test
particle associated with the motion xμðτÞ is

S ¼
Z

dτ

�
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _xμ _xν

q
þ e
c
_xμAμ

�
; ð53Þ

where a dot means time derivative with respect to
proper time τ and the four-velocity is normalized, i.e.,

gαβ _xα _xβ ¼ c2. The Aμ is the total electromagnetic potential
vector. It has two contributions, one being the background

potential due to the black hole AðqÞ
0 and another from the

self-potential of the test particle AðeÞ
0 , which in curved

spacetimes gives a nontrivial contribution to the energy as
measured at infinity.
Given the stationarity of the spacetime, the timelike

Killing vector ξμ allows us to define the conserved quantity
E ¼ cpμξ

μ, which can be interpreted as the energy mea-
sured at infinity. The contribution of electromagnetic
potential to E is calculated at the particle position, which
in the Maxwellian case needs to be regularized by absorb-
ing the divergent coulomb term in the particle’s mass.
However, since BI is a theory that by construction has a
maximum value of electromagnetic fields, the potential is
finite everywhere including at the particle’s location. The
slowly lowering of the particle gives a four-velocity almost
stationary, namely _xμ ≈ cð1= ffiffiffiffiffiffi

g00
p

; 0⃗Þ, while the momentum
is defined as usual pμ ¼ ∂L=∂ _xμ, i.e.,
E¼pμξ

μc

¼mc_xβg0βþeA0ðā;0Þ;
¼mc2

ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðāÞ

p
þeϕqðāÞþ

e
2
ðϕCopðā;0ÞþψpðāÞÞ: ð54Þ

In the above equation, we have explicitly expressed A0 as a
sum of the electromagnetic potential of the black hole
ϕqðāÞ [see (15)] and of the test particle ϕ ¼ ϕCop þ ψp [see
(43)]. The caveat is that the latter gains a factor 1

2
since only

part of it goes to the self-energy while the rest contributes to
the background [9,42,43]. In isotropic coordinates, the
horizon is located at r̄h ¼ rh=2 − rs=4. When the particle is
close to the horizon, the proper distance of its center of
mass to the horizon is [9]

l≡
Z

ā

r̄h

dr
ffiffiffiffiffiffi
gr̄ r̄

p
≈ Σðr̄hÞðā − r̄hÞ þOðā − r̄hÞ2: ð55Þ

In first order we have āΣðāÞ ¼ a ¼ rh þOðl2Þ,

ΣðāÞ ¼ 4rh
2rh − rs

�
1 −

l
rh

�
þOðl2Þ;

b̄q=ā ¼ ð1þ δā=r̄hÞ−2 ¼ 1 − 2
l
rh

þOðl2Þ;

and thus the energy reads

E ¼ ð2rh − rsÞmc2l
2r2h

þ eϕqðāÞ þ
e2rs
4r2h

þ e2

re

Γð1
4
Þ2

8
ffiffiffi
π

p
ffiffiffiffiffiffiffi
l

2rh

s
:

We obtain a lower bound for the energy by replacing the
proper distance l by the proper radius R of the test body.
Since l ≥ R the particle’s energy satisfies
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E ≥
ð2rh − rsÞmc2R

2r2h
þ eϕqðāÞ þ

e2rs
4r2h

þ e2

4rh

Γð1
4
Þ2

2
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffi
rhR
2r2e

s
þOð3Þ; ð56Þ

where Oð3Þ means third order in any combination of l=M
or q=M. Once the spherical body is absorbed, the black
hole’s area increases due to a change in its mass M →
M þ E=c2 and in its charge q → qþ e. The initial area of
the black hole is A ¼ 4πr2h and we have two limiting cases
to consider: the deep BI regime (β ≪ 1) and the superficial
BI regime (β ≫ 1).
In the deep BI regime, the electrostatic potential for the

black hole [Eq. (15)] takes the form

ϕqðāÞ ¼
Γð1

4
Þ2

4
ffiffiffi
π

p ffiffiffiffiffiffi
qβ

p
þOðβÞ:

In addition, the metric is similar to SBH but with a rescaled
horizon radius rh ¼ rqs [see (22)]. Once the black hole
absorbs the test particle its charge changes to qþ e, hence
δA ¼ 8πrqsδrqs. Direct calculations show

δrqs ¼
2GE
c4

−
Γð1

4
Þ2

2
ffiffiffi
π

p Ge
ffiffiffiffiffiffi
qβ

p
c4

þOð2Þ; ð57Þ

δA ¼ 16πG
c4

rs

�
E −

Γð1
4
Þ2

4
ffiffiffi
π

p e
ffiffiffiffiffiffi
qβ

p �
þOð3Þ

≥
4πG
c4

"
2mc2Rþ e2

 
1þ Γð1

4
Þ2

4
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffi
2rsR
r2e

s !#

þOð3Þ; ð58Þ

where we have used (56). Note that the change in the black
hole area depends not only on the particle’s parameters but
also on the black hole mass.
For the superficial BI regime (β ≫ 1), the black hole

electrostatic potential is equivalent to a charge q at the
origin, hence at the test particle location, where ā ≫ rβ, the
BI nonlinearities can be neglected and ϕqðāÞ ≈ q=āΣðāÞ.
Thus, using the definition of ψp and (50), we find

E ¼ mc2ðā − b̄qÞ þ eqþ e2rs=4āΣðāÞ
āΣðāÞ

þ e
ffiffiffiffiffi
eβ

p Γð1
4
Þ2

8
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b̄q=āÞ

ΣðāÞ

s
: ð59Þ

Assuming the charge of the black hole to be small
compared with its mass q=M ≪ 1, we can approximate
rh ≈ rs − r2qfðxhÞ=rs and the black hole area by
A ≈ 4πðr2s − 2r2qfðxsÞÞ. Since E=M ≪ 1 and e=q ≪ 1,

and keeping only first order corrections, the change in
the area reads

δA ¼ 8πG
c4

ð2rsE − ð2qeþ e2ÞfðxsÞÞ þOð3Þ

≥
4πG
c4

�
2mc2Rþ 2ð2eqþ e2Þð1 − fðxsÞÞ

− e2
�
1 −

Γð1
4
Þ2

4
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffi
2rsR
r2e

s ��
þOð3Þ: ð60Þ

The term that multiplies the ð1 − fðxsÞÞ can be neglected
since the function fðxÞ tends to 1 for large x. Indeed, Taylor
expanding we have 1 − fðxsÞ ¼ 1

20
ðrβrsÞ4 þOðx−8s Þ, hence

we can neglect this term. Note that the last square root term
depends on the body’s radius R and charge e, and on the
black hole mass through rs. The inequality (60) reproduces
the result of [22] for a BI particle falling into a SBH. It is
interesting to note that the electromagnetic coupling
between the test particle and the black hole is the same
in the two different situations. In the deep BI regime, where
the nonlinearities dominate, the corresponding expansion
of ϕqðāÞ adequately cancels the contribution coming from
the change of the horizon area. On the other hand, in the
superficial BI regime, the black hole is close to a RN-BH
and in leading order the nonlinear corrections do not
contribute to the growth of area.
The black hole entropy is proportional to the black hole

area, hence the absorption of the test body also increases
the black hole entropy. Using the GSL we can translate the
change in the black hole area to a maximum bound to the
test body’s entropy. However, this procedure is valid only if
the increase in the black hole area depends only on the
small body parameters. In the two cases analyzed above,
the increase in the black hole area also depends on the black
hole mass. A straightforward solution is to use the inequal-
ities rs ≥ R. Therefore we can substitute rs → R in both
inequalities above, and the entropy bound for the two cases
read

SBI ≤
2πkB
ℏc

(
mc2Rþ e2

2
ð1þ ffiffiffi

2
p

R
λβ
Þ DeepBI

mc2Rþ e2
2
ð−1þ ffiffiffi

2
p

R
λβ
Þ Superficial BI

;

ð61Þ

where λβ ≡ 4
ffiffiffi
π

p
Γð1

4
Þ−2re ≈ 0.54re. Note that both regimes

violate Bekenstein’s bounds (1) since the extra terms are
positive. Both regimes acquire a term proportional to
e2R=λβ but physically they are very different. The deep
BI has a well-defined limit for β → 0 ðλβ → ∞Þ with the BI
nonlinearities giving only a small corrections to the
entropy. On the other hand, this term becomes very large
in the superficial BI regime. Since it is proportional to

ffiffiffi
β

p
,

the BI nonlinear term dominates and gives a very large
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contribution to the entropy bound. In this case, the limit
β → ∞ is not well defined in entropy bound. This is
expected since the β → ∞ corresponds to the Maxwell
limit where the Coulomb potential gives a divergent
contribution that is absorbed in the mass of the charge
particle. Even though the BI parameter can be made as large
as wanted, the bound (61) is valid for finite β.
It is also worth mentioning the change of sign in the

particle’s electrostatic self-energy for the deep BI regime,
i.e., we get the opposite sign as compared to (1). One could
naïvely argue that the deep BI regime (β ≪ 1) makes all
charges ineffective and we could not have any charge
contribution to the entropy. But this is not correct since the
black hole polarization is independent of the NLED. The
horizon works as a conducting surface, hence close to the
horizon the NLED tends to Maxwell’s electrodynamics. In
other words, any NLED with the correct Maxwell weak
field limit polarize the black hole horizon in the same
manner, or equivalently the image charge as seen from
outside the black hole always looks like a Maxwellian
charged particle. The total contribution is a combination of
the electromagnetic potential of the black hole, of the test
particle and of the imagine particle and the final result
clearly depends on the β parameter.

VI. CONCLUSION

The Bekenstein’s entropy bound is accepted as a
universal inequality relating the physical quantities of an
isolated system such as the energy, the angular momentum,
the charge and its size. Additionally, it is assumed to be
valid irrespective of the dynamics of the system and
conjectured impossible to be improved [9].
We study the same thought experiment by lowering a

charge test body close to the horizon and then letting it fall
into the black hole. The charged particle satisfies BI
electrodynamics in the spacetime of a EBI-BH. Due to
consistency, it is essential to have the black hole and the
charge test body comply with the same NLED. Indeed, the
nonlinearity encoded in the EBI-BH modify the change in
the black hole area due to the absorption of the falling
test body.
As a side result, we showed (see Theorem 1) that, for an

arbitrary NLED, the displacement vector is curl free in any
static spherically symmetric spacetime and the electrostatic
potential can be written in terms of Linet’s solution, which
is the Maxwellian electrostatic potential in Schwarzschild.
Using this result, we construct the electrostatic potential of
a test BI charged particle in the spacetime of a EBI-BH.
The EBI-BH has two limiting situation: the deep BI

regime when β ≪ 1 and the superficial BI regime when
β ≫ 1. In the former case, the EBI-BH is very similar to a
SBH but with a rescaled mass, i.e., the horizon is located at
rh ¼ rqs [see (22)], while in the superficial regime, the
EBI-BH is close to a RN-BH. In both situation the

Bekenstein entropy bound is violated but the coupling
with the black hole charge differs.
The deep BI regime has a small contribution from the BI

nonlinearities but the particle’s electrostatic self-energy
term has the opposite sign as compared to (1). In the limit
β → 0, the BI black holes tends to a Schwarzschild black
hole but the polarization of the horizon leaves an imprint by
changing the sign of e2.
The superficial BI regime has a distinct behavior. The

particle’s electrostatic self-energy remains the same but the
BI nonlinearities dominate and give a large positive. In
addition, the extra terms contributing to the change in the
black hole area combine the particle’s parameter with the
black hole mass. This is in contrast to the previous analysis
of Bekenstein and collaborators where the increase in the
black hole area depends only on the particle’s parameters.
This might suggest that the minimal coupling of matter
field with gravity is not sufficient to avoid long-range
interaction between the black hole and the matter field.
Finally, our analysis shows that, in general, any successful
entropy bound must take into account the dynamics of the
system.
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APPENDIX A: TRANSLATING COPSON
SOLUTION IN ISOTROPIC TO STANDARD

COORDINATE

Copson solution was originally expressed in isotropic
coordinates as

ψCopðr̄; θÞ ¼
eð1þ rs=4āÞ−2
r̄ð1þ rs=4r̄Þ2

�
μþ b̄

āμ

�
; ðA1Þ

where

μðr̄;θÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄− b̄Þ2þ2b̄ r̄ ð1− cosθÞ
ðr̄− āÞ2þ2ā r̄ ð1− cosθÞ

s
; b̄≡ r2s

16ā
: ðA2Þ

The transformation from isotropic to standard coordinate
ðr̄ ↔ rÞ reads

2r̄ ¼ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − rsÞ

p
−
rs
2
; r ¼ r̄ð1þ rs=4r̄Þ2; ðA3Þ
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which implies the following relations

r −
rs
2
¼ r̄ þ ā b̄

r̄
;

�
r −

rs
2

�
2

−
r2s
8
¼ r̄2 þ ā2b̄2

r̄2
; ðA4Þ

āþ b̄ ¼ a −
rs
2
; ā2 þ b̄2 ¼

�
a −

rs
2

�
2

−
r2s
8
: ðA5Þ

Note that �
āμþ b̄

μ

�
2

¼ ā2r̄2 þ ā2b̄2 − 2ā2b̄ r̄ cos θ
r̄2 þ ā2 − 2ā r̄ cos θ

þ b̄2r̄2 þ ā2b̄2 − 2b̄2ā r̄ cos θ

r̄2 þ b̄2 − 2b̄ r̄ cos θ
þ 2ā b̄;

¼ 1

4
ðð2a − rsÞð2r − rsÞ − r2s cos θÞ2½ð2r − rsÞ2 − r2s

þ ð2a − rsÞ2 − 2ð2a − rsÞð2r − rsÞ cos θ þ r2scos2θ�−1:

Therefore, straightforward calculation shows that

ψCopðr; θÞ ¼
e
2ar

ðð2a − rsÞð2r − rsÞ − r2s cos θÞ
× ½ð2r − rsÞ2 þ ð2a − rsÞ2 − r2ssin2θ

− 2ð2a − rsÞð2r − rsÞ cos θ�−1=2: ðA6Þ

APPENDIX B: ELECTROSTATIC POTENTIAL
IN A REISSNER-NORDSTRÖM FORM

COPSON SOLUTION

The differential equation for the electrostatic potential in
RN reads

1

r2
∂
∂r
�
r2
∂ψ
∂r
�
þ L̂2ψ

ðr − rþÞðr − r−Þ
¼ −4πj0; ðB1Þ

where L̂2 is the angular operator

L̂2ψ ¼ 1

sin θ
∂
∂θ
�
sin θ

∂ψ
∂θ
�
þ 1

sin2 θ
∂2ψ

∂φ2
:

For SBH the denominator below L̂2 is r2ð1 − rs=rÞ,
hence we want to transform this term into xðx − CteÞ.
A possible transformation is x ¼ r − r− such that
ðr − rþÞðr − r−Þ ¼ x½x − ðrþ − r−Þ�. The other step is to
redefine the potential ψðr; θÞ ¼ Aðr; xÞψ sðx; θÞ to conform
the radial operator. Since L̂2ψ ¼ AL̂2ψ s the condition is

1

r2
∂
∂r
�
r2

∂
∂r ðAψ

sÞ
�

¼ A
x2

∂
∂x
�
x2

∂ψ s

∂x
�
: ðB2Þ

Using r ¼ xþ r− and ∂r ¼ ∂x we find that if A¼
ð1−r−=rÞ¼x=r (B2) is automatically satisfied. Therefore,
the desired transformation is

r ¼ xþ r−; ψðr; θÞ ¼ r − r−
r

ψ sðx; θÞ: ðB3Þ

Copson solution (A6) gives the ψ sðx; θÞ part of the
electrostatic potential in RN. Note that we have to change x

back to r ¼ xþ r− and shift rs →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4r2q

q
¼ rs − 2r−,

hence ð2x − rsÞ → ð2r − rsÞ. The final adjustment is to
shift the position of the charge due to the modification in
the term multiplying j0. The source is a delta function
located at r ¼ a but after the change of variable appears a
term xðxþ r−Þ, instead of a simple x2. Effectively, this
implies that we have to shift a → ða − r−Þ, hence we also
have ð2a − rsÞ → ð2a − rsÞ. Implementing all this substi-
tutions, the Copson solution for RN reads

ψCopðr; θÞ ¼
e
2ar

ðð2a − rsÞð2r − rsÞ − ðr2s − 4r2qÞ cos θÞ
× ½ð2r − rsÞ2 þ ð2a − rsÞ2 − ðr2s − 4r2qÞsin2θ
− 2ð2a − rsÞð2r − rsÞ cos θ�−1=2: ðB4Þ

The above solution does not have the correct asymptotic
behavior. Indeed,

lim
r→∞

ψCopðr; θÞ ¼
e
r

�
1 −

rs
2a

�
þOðr−2Þ;

showing that it does not describe a particle of charge e but
two charges, one with e and the other with −ers=2a. In
order to correct the above solution Linet [35] showed that it
is sufficient to sum a term to cancel this contribution. Thus,
the electrostatic potential of a particle of charge e close to a
RN-BH reads

ψðr; θÞ ¼ ψCopðr; θÞ þ
ers
2ar

; ðB5Þ

with ψCopðr; θÞ given by (B4).
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APPENDIX C: ELECTROSTATIC POTENTIAL
IN RN USING ISOTROPIC COORDINATES

In standard coordinate system, Copson solution is given
by (B4). The coordinate transformation between standard
ðt; r; θ;ϕÞ to isotropic ðt; r̄; θ;ϕÞ is given by

2r̄ ¼ r −
rs
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − rsÞ þ r2q

q
; r ¼ r̄Σðr̄Þ

āþ b̄q ¼ a −
rs
2
; b̄q ¼

r2s − 4r2q
16ā

;

where b̄q is the generalization of b̄ and tends to it in the
limit q → 0. Note that by defining

μðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2 þ b̄2q − 2b̄qr̄ cos θ

r̄2 þ ā2 − 2ā r̄ cos θ

s
;

the second fraction on the rhs of (B4) equals
ðāμðr̄Þ þ b̄q=μðr̄ÞÞ. Therefore, comparing with (B4), we
see that Copson solution for RN using isotropic coordinate
reads

ψCopðr̄; θÞ ¼
e
r̄
Σ−1ðāÞ
Σðr̄Þ

�
μðr̄Þ þ b̄q

āμðr̄Þ
�

ðC1Þ

and the electrostatic solution with the correct asymptotic
limit [Linet’s solution (B5)] in terms of the isotropic
coordinate is

ψðr̄; θÞ ¼ e
r̄
Σ−1ðāÞ
μðr̄ÞΣðr̄Þ

��
μðr̄Þ þ rs

4ā

�
2

−
r2q
4ā2

�
: ðC2Þ

APPENDIX D: MATHEMATICAL EXPANSIONS

Let us analyze the divergent behavior of ψCop for the
limit approaching the charged particle, namely for θ ¼ 0
and r̄ → a. Recall that ψ ¼ ψCop þ ψp with

ψpðr̄; θÞ ¼
ers
2

ðāþ b̄q þ rs=2Þ−1
ðr̄ þ āb̄q=r̄ þ rs=2Þ

;

ψCopðr̄; θÞ ¼
eāðāþ b̄q þ rs=2Þ−1
ðr̄ þ āb̄q=r̄ þ rs=2Þ

�
μþ b̄q

āμ

�
;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄ − b̄qÞ2 þ 2r̄b̄qð1 − cos θÞ
ðr̄ − āÞ2 þ 2ā r̄ð1 − cos θÞ

s
;

b̄q ¼
r2s − 4r2q
16ā

:

Over the particle ψp is finite but since μ diverge ψCop is also
divergent. Approaching the charged particle ðr̄ → ā; θ → 0Þ
we can expand the relevant quantities as r̄ ¼ āþ δ and
ε ¼ 2ð1 − cos θÞ giving

μ2ðr̄;θÞ¼ ðā− b̄qÞ2þ2δðā− b̄qÞþ b̄qεðāþδÞ
δ2þ āðāþδÞε ;

1

μ3
∂μ
∂ r̄ ¼−

δ

ðā− b̄qÞ2
þ 3δ2

ðā− b̄qÞ3
þ āðāþ b̄qÞ
2ðā− b̄qÞ3

εþOðδ3;δεÞ;

1

μ3
∂μ
∂θ¼−

ā
ffiffiffi
ε

p
ðā− b̄qÞ2

�
ā−

ðāþ b̄qÞδ
ðā− b̄qÞ

�
þOðδ2 ffiffiffi

ε
p

;ε3=2Þ:

The derivatives of the potential read

1

ψ

∂ψ
∂r ¼ −ð1 − āb̄q=r̄2Þ

ðr̄ þ āb̄q=r̄ þ rs=2Þ
þ ðā2μ2 − āb̄qÞ
ðāμþ rs=4Þ2 − r2q=4

1

μ

∂μ
∂r ;

1

ψ

∂ψ
∂θ ¼ ðā2μ2 − āb̄qÞ

ðāμþ rs=4Þ2 − r2q=4
1

μ

∂μ
∂θ : ðD1Þ

Therefore, in the limit approaching the particle we have
ψ ≈ ψCop and

ψCop

μ
≈
eΣ−1ðāÞ
r̄Σðr̄Þ ; j∇μj ≈ μ2

Σðr̄Þ
ðā − b̄qÞ
ðr̄ − b̄qÞ2

;

Σðr̄Þ ¼
�
1þ rs

4r̄

�
2

−
r2q
4r̄2

; ðD2Þ

∇ψCop ≈
ψCop

μ
∇μ ⇒ j∇ψCopj ≈ β

�
ψCop

ζ

�
2

;

with ζ2 ≡ βeð1 − b̄q=āÞ
ΣðāÞ ðD3Þ

APPENDIX E: POTENTIAL CLOSE
TO THE HORIZON

The metric in isotropic coordinates reads

ds2¼
�
1−

r2s −4r2qfðxhÞ
16r̄2

�
2c2dt2

Σ2
−Σ2½dr̄2þ r̄2dΩ2�;

with Σðr̄Þ¼
�
1þ rs

4r̄

�
2

−
r2qfðxhÞ
4r̄2

; ðE1Þ

and the potential is

ψðr̄; θÞ ¼ e
r̄

Σ−1ðāÞ
μðr̄; θÞΣðr̄Þ

��
μðr̄; θÞ þ rs

4ā

�
2

−
r2qfðxhÞ
4ā2

�
;

μðr̄; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2 þ b̄2q − 2b̄qr̄ cos θ

r̄2 þ ā2 − 2ā r̄ cos θ

s
; b̄q ¼

r2s − 4r2qfðxhÞ
16ā

;

where ā is the position of the charged particle. Note
that when the particle gets close to the horizon, namely
ā ¼ ð1þ δÞr̄h with 0 < δ ≪ 1, we have b̄q ¼ r̄2h=ā ¼
r̄hð1 − δÞ þOðδ2Þ and

μðr̄;θÞ¼ 1þ2δ
r̄hðr̄− r̄h− r̄ð1− cosθÞÞ
ðr̄− r̄hÞ2þ2r̄hr̄ð1− cosθÞþOðδ2Þ: ðE2Þ
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