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We examine stability of summation by parts (SBP) numerical schemes that use hyperboloidal slices to
include future null infinity in the computational domain. This inclusion serves to mitigate outer boundary
effects and, in the future, will help reduce systematic errors in gravitational waveform extraction. We also
study a setup with truncation error matching. Our SBP-Stable scheme guarantees energy balance for a class
of linear wave equations at the semidiscrete level. We develop also specialized dissipation operators. The
whole construction is made at second-order accuracy in spherical symmetry but could be straightforwardly
generalized to higher order or spectral accuracy without symmetry. In a practical implementation, we
evolve first a scalar field obeying the linear wave equation and observe, as expected, long-term stability and
norm convergence. We obtain similar results with a potential term. To examine the limitations of the
approach, we consider a massive field, whose equations of motion do not regularize and whose dynamics
near null infinity, which involve excited incoming pulses that cannot be resolved by the code, is very
different to that in the massless setting. We still observe excellent energy conservation, but convergence is
not satisfactory. Overall, our results suggest that compactified hyperboloidal slices are likely to be provably
effective whenever the asymptotic solution space is close to that of the wave equation.
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I. INTRODUCTION

A persistent problem in numerical relativity is the
inclusion of future null infinity Iþ in the computational
domain. As described by Penrose [1], future null infinity is
the set of end points of future directed null geodesics.
Ultimately, this will allow us to study the propagation of
waves out to Iþ. In the modern era of gravitational wave
astronomy, one landmark goal is to compute waveforms
from a binary merger in a completely satisfactory manner.
The present state of the art for extracting signals at Iþ
is to use Cauchy-characteristic extraction [2–6]. In this
approach, a standard time evolution is performed, and data
taken on a timelike worldtube from that evolution serve as
the given data for a tertiary computation on outgoing
characteristic slices compactified to Iþ. This approach
suffers from the principle weakness that data transfer is one
way, so eventually artificial outer boundary conditions in
the Cauchy domain corrupt the interior physically correct
data. Cauchy-characteristic matching [7] proposes to solve
this shortcoming by evolving and coupling both domains
simultaneously. In practice, interfacing two different for-
mulations of general relativity (GR) may not, however,
result in a composite partial differential equation problem
that is well posed [8].

An alternative path, which we follow, is to use com-
pactified hyperboloidal slices, which are everywhere space-
like but which terminate atIþ. Starting with the conformal
field equations [9,10], hyperboloidal slices have been used
with several formulations of GR [11–16], all of which have
to render the field equations sufficiently regular for
numerical approximation in some way. The specific strat-
egy we follow was suggested in Ref. [17] and employs the
dual foliation (DF) formalism [18]. The means to achieve
regular equations for regular unknowns is to use a carefully
chosen tensor basis in combination with hyperboloidal
coordinates. Follow-ups on the mathematical formalism
[19] and numerical implementation [20] have shown that it
should be possible to manage logarithmic divergences that
appear in the asymptotic solution space by a careful choice
of variables.
Until now, our analysis [17,19,20] has always been

performed at the continuum level, with verification of
convergence of numerical schemes being performed only
empirically. Thus, the question arises whether a numerical
scheme can be given that provably converges to the
continuum solution in the limit of infinite resolution.
This question is far too difficult to tackle right away for
GR. Even for systems used in the perturbative studies
[21,22], there is no rigorous numerical analysis. In this
paper, we therefore deal with the simplest case of a scalar*shalabh@iucaa.in
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field obeying a linear wave equation with potential
(LWEP). Special cases occur when the potential vanishes
(LWE) and for the massive Klein-Gordon equation
(LMKGE). We build two approximation schemes. In some
sense, both use a summation by parts (SBP) approach [23].
The first, which we call SBP-Stable, is formally stable and
captures at the semidiscrete level the energy conservation
properties of the continuum system. In the second scheme,
which we call SBP-TEM, we apply truncation error
matching (TEM) atIþ (see, for example, Ref. [24]) rather
than accepting the lower-order accurate pointwise approxi-
mation that is unfortunately necessary in the first approach.
This helps minimize unphysical reflections from the outer
boundary. We work at second-order accuracy on a
Minkowski background. In this work, we restrict ourselves
to spherical symmetry. Technical difficulties arise because
of the coordinate singularity at the origin, but the key
challenge we face is in managing the asymptotics nearIþ.
We fully expect a generalization of our scheme to hold in
more general scenarios. In Fig. 1, we present a contour plot
of a numerical solution for the wave equation, in which one
can see that the pulse leaves the domain in essentially two
bursts, with no visible numerical reflection.
It is intuitively clear that to reachIþ some price must be

paid. By construction, our coordinates are well adapted to
outgoing radiation, but there is a key difficulty in resolving
incoming waves. To investigate this, we perform tests with
different potentials, that result in a coupling between
outgoing and incoming pulses. Of particular interest is
the LMKGE. It turns out that compactification makes the
mass term singular at Iþ. But as described by Winicour

[25] solutions fall off toward Iþ faster than any inverse
power of areal radius R, so the field decays more rapidly
towardIþ than the rate at which the coefficient of the mass
term blows up. With this setup, our scheme guarantees
perfect energy conservation, but we find that the excitation
of badly resolved incoming pulses prevents long-term
convergence. In practice, this means that, at least for
now, if one wishes to use massive fields with hyperboloidal
slices, we need to keep the support of the fields away from
the wave zone. Working with less aggressive potentials, we
find that perfect long-term convergence is, as expected,
immediately recovered.
The paper is structured as follows. In Sec. II,we beginwith

a summary of the specific hyperboloidal foliation thatweuse.
The foliation can be adjustedwith only superficial changes to
the subsequent expressions. In Sec. III, we present our model
equation and derive an appropriate energy-balance law on
hyperboloidal slices for the continuum equations. Building
directly on this, in Sec. IV, we construct our SBP schemes,
leaving some technical parts for the Appendixes. Afterward,
in Sec. V, numerical evolutions are presented with a series
of different potentials. Finally, we conclude in Sec. VI.
Geometric units are used throughout.

II. HYPERBOLOIDAL SLICES OVERVIEW

We now briefly review geometric quantities describing a
foliation of spacetime, for which we use the standard
notation, and evaluate them under our choice of hyper-
boloidal slices. They will be used to obtain an energy on
such slices conserved up to boundary fluxes, which will, in
turn, underpin our numerical scheme. Let xμ

0 ¼ ðT; R; θAÞ
be the canonical spherical polar coordinates on the
Minkowski spacetime, so that the line element becomes

ds2 ¼ −dT2 þ dR2 þ R2dΩ2; ð1Þ

where dΩ2 is the line element on the unit round two-sphere.
Let xμ ¼ ðt; r; θAÞ be the hyperboloidal coordinates,
defined by T ¼ tþHðRÞ and R ¼ RðrÞ. Here, r ∈
½0; rI� is a compactified radial coordinate with rI a fixed
positive number that denotes the value of r at Iþ. The
angular coordinates θA are held fixed.
Let CR

� ¼ �1 denote the outgoing and incoming radial
light speeds in the original coordinates, and cr� those in
hyperboloidal coordinates. For the latter, we get

cr� ¼ � 1

R0ð1 ∓ H0Þ ; ð2Þ

with H0 ≡ dH=dR and R0 ≡ dR=dr. Thus, the light speeds
cr� are functions of r. If we choose R and H carefully, we
can restrict these functions to a desired form. Ideally, we
would have cr� ¼ �1 so that both incoming and outgoing
pulses could be resolved. However, this is not completely
compatible with our wish to draw infinity to a finite

FIG. 1. A contour plot showing the propagation of a pulse of a
scalar field ψ̃ , satisfying the wave equation, propagating to Iþ,
located here at r ¼ 1. The solution is computed using our SBP-
Stable scheme. The plot is cut off at low and high amplitudes.
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coordinate distance by use of a compactification RðrÞ. In
particular, following Ref. [26], we might take the simple

RðrÞ ¼ r

ΩðrÞ1=ð1−nÞ ¼ r

�
1 −

r2

r2I

�
1=ð1−nÞ

; ð3Þ

with 1 < n ≤ 2 and r ∈ ½0; rI�. Later, we adjust to a
slightly different compactification. With this choice,
R0 ∼ Rn as r → rI. Thus, only the height function H re-
mains to be chosen. To resolve outgoing pulses, of primary
interest in the asymptotically flat setting, we thus chooseH
so that crþ ¼ 1. Throughout, we choose R0ð1 −H0Þ ¼ 1, or
H0 ¼ 1 − 1=R0, and, thus, obtain crþ ¼ 1 identically, and
cr− ¼ −1=ð2R0 − 1Þ. Note that cr− ¼ −1 at the origin and
decreases in magnitude monotonically to 0 at rI. The line
element becomes

ds2 ¼ −dt2 − 2ðR0 − 1Þdtdrþ ð2R0 − 1Þdr2 þ R2dΩ2:

ð4Þ
The components of the spatial metric γij here can be read off
from the spatial components. The lapse α and only non-
trivial component of the shift βi are given, respectively, by

α ¼ R0ð2R0 − 1Þ−ð1=2Þ; βr ¼ −
R0 − 1

2R0 − 1
: ð5Þ

Note that the shift is negative but finite near and at I.
Finally, the extrinsic curvature Kab can be computed from
Ltγab ¼ 0 but is not explicitly needed in the following.

III. THE WAVE EQUATION WITH POTENTIAL
ON HYPERBOLOIDAL SLICES

In this section, we formulate the LWE with a linear
potential F on our hyperboloidal slices and study its
regularization. The case of the LWE can be obtained
simply by taking F ¼ 0.

A. The wave equation and regularity at the origin

Consider a scalar field ψ satisfying a linear wave
equation with a potential F:

ð□ − FÞψ ¼ 0; ð6Þ
where□ is the standard d’Alembertian. Imposing spherical
symmetry, we require that ψ ¼ ψðT; RÞ and also that the
potential be time independent and non-negative, i.e.,
F ¼ FðRÞ ≥ 0. Defining π ≡ −∂Tψ and ϕR ≡ ∂Rψ , we
thus get a first-order reduction of this equation in the form
of a system of three first-order equations in three variables:

∂Tψ ¼ −π;

∂TϕR ¼ −∂Rπ þ γ2ð∂Rψ − ϕRÞ;

∂Tπ ¼ −∂RϕR −
2

R
ϕR þ Fψ : ð7Þ

The first equation comes directly from the definition of π.
The second follows by equality of mixed partials ∂T and
∂R. The γ2 coefficient serves to damp the reduction
constraints [27,28] associated with the definition of ϕR.
This constraint vanishes at the continuum level in the
original second-order system but should not be assumed
to necessarily vanish in the reduction or, in general, at the
discrete level. Later, we will choose γ2 ¼ 0 and will
study conditions under which the constraint is satisfied,
in some sense, even at the discrete level. The third
equation is obtained by substituting for ∂Tψ and ∂Rψ
within Eq. (6).
Following the dual foliation [18] strategy of our

earlier work [17,19,20], we rewrite this first-order
reduction system in hyperboloidal coordinates while
keeping the reduction variables ðψ ;ϕR; πÞ unchanged.
This approach has the technical advantage that the
same dynamical variables are evolved in two coordinate
systems. Changing to the coordinates xμ introduced in
Sec. II, Eqs. (7) become

∂tψ ¼−π;

∂tϕR¼−
R0

2R0−1
∂rπ−

R0−1

2R0−1

�
∂rþ

2R0

R

�
ϕR

þ γ2R0

2R0−1
½∂rψþðR0−1Þπ−R0ϕR�þ

R0ðR0−1Þ
2R0−1

Fψ ;

∂tπ¼−
R0−1

2R0−1
∂rπ−

R0

2R0−1

�
∂rþ

2R0

R

�
ϕR

þ γ2ðR0−1Þ
2R0−1

½∂rψþðR0−1Þπ−R0ϕR�

þ R02

2R0−1
Fψ : ð8Þ

The origin of the γ2 terms appearing above is the single
constraint equation introduced in Eqs. (7), expressed here in
lowercase coordinates. Regularity at the origin is well
understood, but as it will play an important role in our
numerical schemewe nevertheless provide a brief discussion
about it. Sincewe areworking in spherical symmetry, wewill
substitute the θ and ϕ coordinates by θA ¼ ðθ;ϕÞ. The radial
coordinate goes from 0 to rI. The origin is not a physical
boundary but the artifact of the choice of spherical coor-
dinates. The terms containing 1=R become singular as
R → 0, but the 1=R coefficient appears multiplying only
ϕR, which must vanish for r → 0. This is due to regularity at
the origin. If we were to extend all three variables ðψ ;ϕR; πÞ
from ½0; rI� to ½−rI; rI� (equivalent to considering positive
r at ϕ → ϕþ π), parity of the fields requires that ψ and π
(scalars) be even functions of r and ϕR, as the radial
derivative of a scalar, be an odd function. The result is that
∂tϕR ¼ 0 at the origin for all times. Applying l’Hôpital’s rule
gives ϕR=R → ϕ0

R=R
0 as r → 0, and the equations at the

origin become
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∂tψðt; 0Þ ¼ −πðt; 0Þ;
0 ¼ −∂rπðt; 0Þ;

∂tπðt; 0Þ ¼ −3ϕ0
Rðt; 0Þ þ Fψðt; 0Þ; ð9Þ

both in canonical spherical polars and in hyperboloidal
coordinates. The γ2 terms vanish because, due to the parity
condition above, ∂rψ ¼ 0 and ϕR ¼ 0 at the origin, while
R0 − 1 ¼ 0 at the origin by definition. The second equation,
therefore, gives just an identity.
Equations (8), which use hyperboloidal coordinates, can

be rewritten in terms of the incoming and outgoing
characteristic variables

σþ ≡ −π þ ϕR; σ− ≡ −π − ϕR; ð10Þ

respectively, resulting in

∂tψ ¼ 1

2
ðσþ þ σ−Þ;

∂tσ
þ ¼ 1

2R0 − 1

�
∂rσ

þ þ R0

R
ðσþ − σ−Þ − R0Fψ

�

þ γ2

�
1

2R0 − 1

�
∂rψ þ σ−

2

�
−
σþ

2

�
;

∂tσ
− ¼ −

�
∂rσ

− þ R0

R
ðσ− − σþÞ þ R0Fψ

�

− γ2

��
∂rψ þ σ−

2

�
− ð2R0 − 1Þ σ

þ

2

�
: ð11Þ

Here again, the γ2 terms are proportional to the reduction
constraint. The equivalent transformation for the flat
equations (7) can be straightforwardly obtained from
Eqs. (11) by substituting R0 → 1, r → R, and t → T.
From Eqs. (11), we see that

ϕRðt; 0Þ ¼ 0 ⇒ σþðt; 0Þ ¼ σ−ðt; 0Þ ¼ −πðt; 0Þ ð12Þ

and

∂rπðt; 0Þ ¼ 0 ⇒ ∂rσ
þðt; 0Þ ¼ −∂rσ

−ðt; 0Þ ¼ ∂rϕRðt; 0Þ;
ð13Þ

yielding

∂tψðt; 0Þ ¼ σþðt; 0Þ ¼ σ−ðt; 0Þ;
∂tσ

þðt; 0Þ ¼ −3∂rσ
−ðt; 0Þ − Fψðt; 0Þ;

∂tσ
−ðt; 0Þ ¼ −3∂rσ

−ðt; 0Þ − Fψðt; 0Þ ¼ ∂tσ
þðt; 0Þ; ð14Þ

in both flat and hyperboloidal coordinates. The last
equation makes sense, because σþðt; 0Þ ¼ σ−ðt; 0Þ for all
times t.

B. Regularization

We now look at the behavior of the solutions nearIþ and
examine how it may be used to regularize terms appearing in
the field equations with R0. For example, in Eqs. (11),
ðR0=RÞϕR and potential terms appear, with coefficients that
become singular at rI. But, on the other hand, we expect
that the field variables ðψ ;ϕR; πÞ fall off as positive powers
of 1=R when r → rI. Thus, in order to regularize these
terms, we seek a suitable rescaling of the field variables. The
expectation is that the presence of a physically reasonable
potential does not induce slower decay toward Iþ than for
a solution of the LWE. Therefore, we rescale our variables
according to expected decay rates for the LWE regardless of
the form of F, to be set later on.

1. ðψ;ϕR; πÞ variables
A scalar field ϕ obeying the LWE falls off like 1=R

toward Iþ. This suggests the rescaling

ψ̃ ≡ χψ ; ϕ̃R ≡ χϕR þ χ0ψ ; π̃ ≡ χπ; ð15Þ

with χ ¼ χðRÞ ≃ R for large R and χ ≃ 1 near the origin.
These conditions ensure that the equations are unaffected at
the origin but that the evolved variables become Oð1Þ at
Iþ. As in Ref. [20], we take χ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2
p

. The system
satisfies

∂tψ̃ ¼ −π̃;

∂tϕ̃R ¼ −
R0

2R0 − 1
∂rπ̃ −

R0 − 1

2R0 − 1
∂rϕ̃R −

2R0ðR0 − 1Þ
ð2R0 − 1Þχ2R ϕ̃R

þ R0ðR0 − 1Þ
2R0 − 1

�
3

χ4
þ F

�
ψ̃ þ γ2R0

2R0 − 1
½∂rψ̃

þðR0 − 1Þπ̃ − R0ϕ̃R�;

∂tπ̃ ¼ −
R0 − 1

2R0 − 1
∂rπ̃ −

R0

2R0 − 1
∂rϕ̃R −

2R02

ð2R0 − 1Þχ2R ϕ̃R

þ R02

2R0 − 1

�
3

χ4
þ F

�
ψ̃ þ γ2ðR0 − 1Þ

2R0 − 1
½∂rψ̃

þðR0 − 1Þπ̃ − R0ϕ̃R�: ð16Þ

The potential term remains singular at rI if F does not fall
faster than 1=R. If at large R we have F ∼ 1=R1þϵ, with
ϵ > 0, we can choose n in Eq. (3) such that 1 < n < 1þ ϵ,
which gives R0F → 0 as r → rI and the term becomes
regular. The constraint damping terms are also tricky, since,
at least naively, they require γ2 to fall off very fast.

2. ðψ; σ + ; σ − Þ variables
A change of variables that captures more sharply the

falloff of solutions and that generalizes to nonlinear
systems by the use of asymptotic expansions [29,30] is
offered by
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ψ̃ ≡ χψ ; σ̃þ ≡ χ2σþ; σ̃− ≡ χσ−: ð17Þ

These variables satisfy the equations of motion

∂tψ̃¼1

2

�
σ̃þ

χ
þ σ̃−

�
;

∂tσ̃
þ¼ 1

2R0−1

�
∂rσ̃

þ−
2RR0

χ2
σ̃þþR0

R
ðσ̃þ−χσ̃−Þ

−R0χFψ̃
�
þγ2

�
1

2R0−1

�
χ∂rψ̃−

RR0

χ
ψ̃þχ

σ̃−

2

�
−
σ̃þ

2

�
;

∂tσ̃
−¼−∂rσ̃

−þ
�
RR0

χ2
−
R0

R

�
σ̃−þ R0

Rχ
σ̃þ−R0Fψ̃

−γ2

�
∂rψ̃−

RR0

χ2
ψ̃þ σ̃−

2
−ð2R0−1Þσ̃

þ

2χ

�
; ð18Þ

in hyperboloidal coordinates. As before, the potential term
can be regularized only if F ∼ 1=R1þϵ, with ϵ > 0, for large
R. Otherwise, all terms, except the second on the right-hand
side of the third equation, are regular at rI. A closer
inspection, however, shows that these two singular terms, in
fact, cancel each other at Iþ, rendering the equations
regular. Regularity at the origin follows by the same
considerations as in the previous section. The regularization
scheme for the ðψ ; σþ; σ−Þ system is sharper and simpler
than that for the ðψ ;ϕR; πÞ variables and is, thus, preferred
for numerical work. Other advantages are that the γ2
constraint terms are regular with no further thought, and,
as we shall see, the energy norm it provides is simpler than
that of the ðψ ;ϕR; πÞ system.
Inspired by Refs. [31–33], for later application in our

numerical setup, we define the operator ∂̃r as

∂̃rϕ≡ χ2ð∂r þ 2R0=RÞðϕ=χ2Þ: ð19Þ

Using this operator, we can avoid the explicit appearance
of the term 2R0=R which is singular at rI, as ∂̃r
corresponds to

∂̃rϕ ¼ ∂rϕþ 2R0

ð1þ R2ÞRϕ: ð20Þ

The motivation behind using this operator will become
even more apparent in the next section. With this definition,
we can write

R0=R ¼ 1

2
ðχ−2∂̃rχ

2 − ∂rÞ: ð21Þ

Substituting in Eqs. (18) yields

∂tψ̃ ¼ 1

2

�
σ̃þ

χ
þ σ̃−

�
;

∂tσ̃
þ ¼ 1

2R0 − 1

��∂r þ ∂̃r

2

�
σ̃þ þ χ

�∂r − ∂̃r

2

�
σ̃−

−
RR0

χ2
σ̃þ −

RR0

χ
σ̃− − R0χFψ̃

�
þ γ2

�
1

2R0 − 1

×

�
χð∂rψ̃Þ −

R
χ
R0ψ̃ þ χ

σ̃−

2

�
−
σ̃þ

2

�
;

∂tσ̃
− ¼ −

��∂r þ ∂̃r

2

�
σ̃− þ

�∂r − ∂̃r

2χ

�
σ̃þ

−
RR0

χ3
σ̃þ þ R0Fψ̃

�
− γ2

�
∂rψ̃ −

R
χ2

R0ψ̃

þ σ̃−

2
− ð2R0 − 1Þ σ̃

þ

2χ

�
: ð22Þ

At rI, setting γ2 ≃ 1=R, the equations take the form

∂tψ̃ ¼ σ̃−

2
;

∂tσ̃
þ ¼ −

σ̃−

2
−
χFψ̃
2

;

∂tσ̃
− ¼ −

��∂r þ ∂̃r

2

�
σ̃− −

R0

χ2
σ̃þ þ R0Fψ̃

�

− γ2

�
−
R0

χ
ψ̃ − ð2R0 − 1Þ σ̃

þ

2χ

�
: ð23Þ

Again, we see that the potential terms are singular at rI,
unless F ∼ 1=R1þϵ, with ϵ > 0, for large R.

C. Conserved energy on hyperboloidal slices

As we saw in the equations of motion, if F falls off too
slowly, it may result in singular equations near Iþ, even
when working with the rescaled variables. A classical
example is F ¼ m2, corresponding to the massive Klein-
Gordon equation. As pointed out by Winicour [25] with a
conformal approach, whatever rescaling we take, the mass
term always remains singular at Iþ. This can lead to
numerical problems, such as blowup or a lack of con-
vergence. One way of trying to tackle such issues is to
derive special algorithms that respect physical restrictions,
to make sure that errors are well behaved and that the code
converges at the desired accuracy. One constraint of
physical interest is provided by the energy conservation.
If such a conserved energy is available, we can utilize it as
an additional constraint on the dynamics of the field. In this
subsection, we derive a conserved energy at the continuum
level. Later, in Sec. IV, we will construct an approximation
to this norm in our discretization.
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1. Conserved energy with the original variables

Consider the functional Tμν½ψ �, with ψ satisfying the
LWEP, given by

Tμν ¼ ∂μψ∂νψ −
1

2
gμνð∂αψ∂αψ þ Fψ2Þ; ð24Þ

which we will refer to as the stress-energy tensor. The time-
independent potential F is non-negative for all R, bounded,
andCk for large k. In our setup, the stress-energy tensor is not
necessarily covariantly conserved, but, for the purposes of
this work, its utility comes down to the fact that it provides
coercive estimates on solutions to the field equations. To see
this, we follow the standard steps of the vector-field method.
A clear introduction to this approach can be found in
Ref. [34]. Consider a vector field Kμ and contract it with
Tμν. Taking the total divergence and using the product rule,
we get

∇μðTμνKνÞ ¼ ð∇μTμνÞKν þ Tμν∇μKν: ð25Þ

Using Eq. (6) in the first term on the right-hand side, we
obtain

∇μðTμνKνÞ ¼ −
1

2
Kνð∂νFÞψ2 þ Tμν∇μKν: ð26Þ

As shown in Fig. 2, consider a regionR surrounded by a
boundary ∂R consisting of the initial hyperboloidal slice
Σ0, some later hyperboloidal slice Σt, with t > 0, inner
timelike constant radial boundary ΣR, and future null
infinity Iþ. Integrating Eq. (26) over R and applying
Stokes’ theorem on the left side of the equation yields

Z
Σ0

TμνKμnν þ
Z
Σt

TμνKμð−nνÞ þ
Z
ΣR

TμνKμð−sνÞ

þ
Z
Iþ

TμνKμð−LνÞ ¼
Z
R

�
Tμν∇μKν −

1

2
Kνð∂νFÞψ2

�
;

ð27Þ

whereLν is the ingoingnull vector atIþ as defined inEq. (5)
in Ref. [20] and sν is the spatial normal vector toΣR. The first
term in thebulk integral on the right vanishes ifKμ is aKilling
vector. Taking furthermore Kμ causal and recalling our
restriction on the sign of the potential, it follows that the
integrandon the two spatial slicesΣ0 andΣt is sign definite. If
Kμ ¼ ð∂TÞμ, we get Kνð∂νFÞ ¼ ∂TF ¼ 0, resulting in a
vanishing bulk integral. Henceforth, we make this choice.
Taking R ¼ 0 at the inner boundary makes the ΣR integral
vanish. What remains is

Z
Σ0

TμνKμnν −
Z
Σt

TμνKμnν −
Z
Iþ

TμνKμLν ¼ 0: ð28Þ

From the line element (4), we can compute

nν
0 ¼ αð1; 1 − 1=R0; 0; 0Þ; Lν ¼ ð∂T − ∂RÞν0 : ð29Þ

Substituting these into Eq. (28), using Eq. (24), and moving
now to work with our first-order reduction (using π and ϕR),
we obtain

�Z
Σt

−
Z
Σ0

�
α

2

�
π2 − 2

R0 − 1

R0 πϕR þ ϕ2
R þ Fψ2

�

¼ −
1

2

Z
Iþ

½ðσ−Þ2 þ Fψ2� ≤ 0: ð30Þ

The reduction admits the natural analog of Eq. (28) when
γ2 ¼ 0, which we assume henceforth. BecauseF ≥ 0 atIþ,
the right side of Eq. (30) is negative semidefinite. Thus, the
energy on our hyperboloidal slices, given by the integrals on
the left side, can leak out only through Iþ and remains
conserved only when the right side is identically zero. The
flux of radiation throughIþ will depend on the form of F,
which plays a crucial role in the dynamics of the field. In all
cases, the energy on the subsequent hyperboloidal slices is
always upper bounded by the initial energy. Therefore,
integrating out the trivial dependence on θA, the angular
coordinates, we consider the energy norm

EðtÞ ¼
Z
Σt

εdr: ð31Þ

Depending on our choice of variables, we write either

ε ¼ 1

2

�
π2 − 2

�
R0 − 1

R0

�
πϕR þ ϕ2

R þ Fψ2

�
R2R0 ð32Þ

FIG. 2. Diagram depicting the spacetime region where Stokes’
theorem is applied. The normal vectors follow the conventions
of Ref. [34].
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or

ε¼1

2

��
2R0−1

2R0

�
ðσþÞ2þ

�
1

2R0

�
ðσ−Þ2þFψ2

�
R2R0: ð33Þ

Note the rather unusual convention, in which we are
absorbing the volume form into the symmetrizer (the matrix
that representing the quadratic form). Some care is needed to
obtain the flux at infinity. Let us, thus, temporarily truncate
the slices at an outer radius ro ≤ rI and take ro to be some
function of time t. We obtain then EðtÞ ¼ Eðt; roðtÞÞ and

d
dt

Eðt; roÞ ¼ ∂tEðt; roÞ þ ∂roEðt; roÞ ·
dro
dt

����
r¼ro

: ð34Þ

Substitution from the equations of motion and integrating by
parts gives for the first term

∂tEðt; roÞ ¼ −R2ϕRπjr¼ro ¼
1

4
R2½ðσþÞ2 − ðσ−Þ2�

���
r¼ro

;

ð35Þ

while, from the definition of ε, we get

∂roEðt; roÞ ¼ lim
δro→0

1

δro

�Z
roþδro

0

−
Z

ro

0

�
εdr ¼ εðt; roÞ:

ð36Þ

If the outer boundary of the system is a timelike constant
radius worldtube, then dro=dt ¼ 0, and the second term on
the right of Eq. (34) vanishes. If, instead, it is an incoming
null curve, so that _ro ¼ dro=dt ¼ cr− ¼ −1=ð2R0 − 1Þ, we
obtain

d
dt

Eðt; roÞ ¼ −
1

4
R2

2R0

2R0 − 1
½Fψ2 þ ðπ þ ϕRÞ2�

���
r¼ro

¼ −
1

4
R2

2R0

2R0 − 1
½Fψ2 þ ðσ−Þ2�

���
r¼ro

: ð37Þ

In the limit ro → rI, 2R0=ð2R0 − 1Þ → 1, we recover

d
dt

Eðt; rIÞ ¼ −
1

4
R2½Fψ2 þ ðπ þ ϕRÞ2�

���
r¼rI

¼ −
1

4
R2½Fψ2 þ ðσ−Þ2�

���
r¼rI

; ð38Þ

consistentwith the right side ofEq. (30)—note that a factor of
1=2 appeared above because δt ¼ 2δu there. In our case, we
take _ro ¼ cr−, because Iþ is incoming null. Note here that
the right-hand side of this expression should still be under-
stood in a limiting sense (as ro → rI). We will avoid this
complication in the following by the use of rescaled
variables. In deriving Eq. (38), the second term on the
right-hand side of Eq. (34) is important. Since the

hyperboloidal slices meet Iþ rather than i0, it appears
naively that if we had just taken _ro ¼ 0 and let ro → rI, we
would still get the correct expression for dE=dt. Contrarily,
as the foregoing discussion shows, this is not true.

2. Conserved energy with rescaled variables

In Eq. (38), as ro → rI, R → ∞ and it becomes difficult
to express dE=dt in closed form. But if we recall the
rescaled variables (17),

ψ̃ ¼ χψ ; σ̃þ ¼ χ2σþ; σ̃− ¼ χσ−; ð39Þ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
, all the coefficients in the above

expressions in fact regularize except possibly the potential
term. Examples that will be used later in the derivations are

ε ¼ 1

2

�
Fψ̃2R0 þ

�
2R0 − 1

2χ2

�
ðσ̃þÞ2 þ ðσ̃−Þ2

2

�
R2

χ2
ð40Þ

for the energy density,

∂roEðt;roðtÞÞ ·
dro
dt

¼−
1

2

1

2R0−1
·

�
Fψ̃2R0 þ

�
2R0−1

2χ2

�
ðσ̃þÞ2þðσ̃−Þ2

2

�
R2

χ2

����
r¼ro

ð41Þ

for the moving-boundary term, and

∂tEðt; roÞ ¼
1

4

�
σ̃þ2

χ2
− σ̃−2

�
R2

χ2

����
r¼ro

ð42Þ

for the remaining boundary term. In the limit ro ¼ rI, we
have R2=χ2 → 1 and, thus, get

d
dt

EðtÞ ¼ −
1

4
ððσ̃−Þ2 þ Fψ̃2Þ

����
r¼rI

: ð43Þ

The potential term in ε is, thus, still singular if F does not
fall off fast enough. In that case, we still can choose initial
data such that the product R0Fψ2 is finite at rI. Using
inequality (30), we can make sure that this whole term
remains regular at rI for all times t.

IV. SUMMATION BY PARTS SCHEME ON THE
HYPERBOLOIDAL SLICES

Having laid out the continuum setup above, in this
section we now present our discrete approximation. This
involves the evolution equations, the conserved (up to
boundary fluxes) energy, the use of regularized variables,
and discrete operators satisfying SBP and TEM.
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A. SBP and TEM overview

The energy estimate (43) shows that, for the continuum
equations, the size of the solution at any time is bounded
above by the size of the initial data plus an integral of the
flux of radiation that leaves the domain through Iþ. The
key idea of a summation by parts scheme is to discretize
such a system so that the semidiscrete equations admit a
similar estimate. Examples of the use of SBP schemes in
numerical relativity include Refs. [35–39]. See the review
in Ref. [40] for a more thorough discussion. We now give a
brief summary of how that is achieved. Consider a first-
order linear symmetric hyperbolic system for a state vector
u with k components, each a scalar quantity on spacetime.
The equation of motion is then written

∂tu ¼ ApðxμÞ∂puþ SðxμÞ; ð44Þ

where xν are the spacetime coordinates. Here, p is summed
over all spatial index values, and the principal part matrices
Ap and source terms SðxμÞ have the obvious dimension-
ality. We use boldface symbols to represent objects and
operators with the dimensionality of the state vector.
Symmetric hyperbolicity means that there exists a sym-
metrizer, a symmetric positive definite matrix H, with the
product HAp symmetric for each p.
In the context of numerical relativity, there is a natural

concern that we restrict our attention to symmetric hyper-
bolic systems, since when coupled to the moving puncture
gauge [41,42] popular formulations, such as BSSNOK by
Baumgarte and Shapiro [43]; Shibata and Nakamura [44];
Nakamura, Oohara and Kojima [45] or Z4 by Bona et al.
[46]; Bernuzzi et al. [47]; Alic et al. [48], may be strongly but
not symmetric hyperbolic.Although themethodswedevelop
may be applicable to these systems, demonstrating their
efficacy rigorously would not be straightforward in 3D.
Nevertheless, in our approach [17] we are primarily focused
on the use of a first-order reduction of GR in generalized
harmonic gauge, which is indeed symmetric hyperbolic.
Suppose that we solve the initial boundary value

problem for our system on a compact spatial domain
VðtÞ with boundary ∂VðtÞ. Then we have the energy

EðtÞ ¼
Z
VðtÞ

1

2
uTHu; ð45Þ

where the superscript T denotes the matrix transpose. This
energy norm satisfies

d
dt

EðtÞ ¼
Z
∂VðtÞ

1

2
uTHðApsp þ vpsp1Þuþ bulk term;

ð46Þ

where the bulk term, an integral over VðtÞ, can, in general,
be seen to be bounded using a combination of the Grönwall

and Cauchy-Schwarz inequalities, vp ¼ ∂txpðtÞ denotes
the local velocity of the outer boundary, and sp denotes the
outward-pointing unit normal to the domain at the boun-
dary. We assume, as in our hyperboloidal setup, that the bulk
term vanishes and that the boundary integral is nonpositive.
Now discretize the equations first by introducing the spatial
grid xpI , with index I labeling the grid points. We replace the
continuum state vector u by a discrete analogU that lives on
the grid and, thus, has components Uα

I for each continuum
field, with α here labeling the different continuum fields. We
need an approximation to the spatial derivative ∂p, whichwe
denote here asDi. In our specific setup, this last step is more
subtle, because, following Refs. [31–33], the use of shell
coordinates (spherical polars) requires us to introduce two
different approximations. But to illustrate the general
approach we sweep nonessential complications under the
carpet at this stage. We work with the semidiscrete approxi-
mation, writing the large collection of ordinary differential
equations for the components of U as

d
dt

U ¼ Apðt; xIÞDpUþ Sðt; xIÞ: ð47Þ

At this point, different options are available, and we will
choose the simplest. See Ref. [37] for a discussion of the
alternatives. Consider now the discrete approximation to
Eq. (44), given by the sum over grid points

EðtÞ ¼ 1

2
ðU;UÞH ≡ 1

2

X
I

UT
I ϒIHIUI; ð48Þ

where HI ¼ Hðt; xIÞ and ϒI ≡ ϒI1, which we call the
quadrature or quadrature matrix (1 here is the k × k identity
matrix associated with the state space) encodes information
about the local grid spacing at point I. For simplicity, the
norm is taken to be diagonal over grid points. Computing the
time derivative, we get

d
dt

ð2EðtÞÞ ¼ ðApDpU;UÞH þ ðU;ApDpUÞH
þ ððlnϒÞ·U;UÞH þ bulk term; ð49Þ

with the shorthand ððlnϒÞ·UÞI ¼ ðd=dtðlnϒIÞÞUI. Now
observe that the discretization can be carefully chosen so that

ðApDpU;UÞH þ ðU;ApDpUÞH þ ððlnϒÞ·U;UÞH
¼ ðU; ðApsp þ 1vpspÞUÞH;∂V þ bulk term; ð50Þ

where it must be possible to bound the bulk term by EðtÞ
multiplied by a constant that is independent of resolution,
encoded in our notation by ϒI, times EðtÞ. Here we have
defined a boundary inner product and associated norm,

ðU;VÞH;∂V ¼
X
B

UT
BϒBHBVB; ð51Þ
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with the sum here taken over the set of boundary points,
denoted throughout by an index B. We may then conclude
that the continuum energy conservation equation (46) has the
semidiscrete analog

d
dt

EðtÞ ¼ ðU; ðApsp þ 1vpspÞUÞH;∂V þ bulk term: ð52Þ

If a condition like Eq. (50) is satisfied, the method is called a
summation by parts scheme. Such a scheme has the advan-
tage that, under mild assumptions on the coefficient matrices
and source terms and the use of suitable boundary conditions,
solutions of the approximation are guaranteed to converge to
solutions of the continuum system in the limit of infinite
resolution [49]. The specific rate of convergence is deter-
mined by the choice of approximation to the spatial deriva-
tive. In numerical relativity, the twomost popular choices are
to use a spectral approximation or finite differences.
Despite its strengths, naively applying the SBP approach

may result in a scheme with undesirable features. For
example, insisting that the semidiscrete and continuum
energies match exactly, say, by careful adjustment of the
derivative operators near the boundary, can result in the
creation of numerical noise that propagates into the domain.
In the hyperboloidal setting, we might already suspect that
such noisewould be problematic, since everything about our
coordinates is engineered with the resolution of outgoing
rather than incoming waves inmind. Onemight counter that,
since the method would be guaranteed to converge in some
norm, we could just increase the resolution to suppress the
noise, but several points stand against this perspective. The
final aim of our research program is to provide gravitational
waveforms at null infinity. Since these waveforms will be
used for modeling, they should be as clean as possible
pointwise even at finite resolution. In otherwords, the natural
mathematical measure of error provided by the problemmay
not correspondwith the notion of error required of the data in
applications. Second, the norm that the equations naturally
provide (40), in fact, degenerates in the incoming character-
istic variable σ̃þ, in that the coefficient multiplying that
variable goes to zero near Iþ, if the compactification
parameter n < 2. In some of the models in this paper, we
could choose n ¼ 2. However, owing to the presence of log
terms in the natural expansion near Iþ in our gauge, no
formulation is presently available for GR in which n ¼ 2 is
permissible under our approach. Observe in passing that this
degeneracy appears also on null slices even for the wave
equation and so is not surprising. We aim, therefore, here to
develop a method that satisfies semidiscrete estimates like
Eq. (40) but whichminimizes dangerous reflections from the
outer boundary.
To that end let us illustrate, as summarized nicely in

Ref. [24], the utility of TEM by considering two finite-
difference approximations to the first derivative. Suppose
that in the bulk domain we have a one-dimensional uniform
grid with spacing h and the approximation

DFI ¼
1

2h
ðFIþ1 − FI−1Þ; ð53Þ

to the first derivative using the arbitrary grid function F,
which should not be confused with the potential, but that at
the outer boundary I ¼ N we take one of

DFN ¼ 1

2h
ð3FN − 4FN−1 þ FN−2Þ;

DFN ¼ 1

2h
ð4FN − 7FN−1 þ 4FN−2 − FN−3Þ: ð54Þ

Either choice results in a second-order accurate approxi-
mation to the first derivative. Assuming we are approxi-
mating with F a C3 continuum function f, we can Taylor
expand and find, using the standard little-oh notation, that
the error coefficient takes the form

DFI ¼ f0ðxIÞ þ
1

6
h2f000ðxIÞ þ oðh2Þ; I < N;

DFN ¼ f0ðxIÞ −
1

3
h2f000ðxIÞ þ oðh2Þ; I ¼ N ð55Þ

in the first case and

DFI ¼ f0ðxIÞ þ
1

6
h2f000ðxIÞ þ oðh2Þ ð56Þ

everywhere in the second. In the first case, the coefficient in
front of the h2 error term is different, which will induce
(convergent) high-frequency noise, whereas in the second
the approximation was carefully chosen at the boundary so
that the errors match up. In what follows, we exploit this,
the basic idea of TEM, to minimize high-frequency
reflections from Iþ.

B. Discretization

All our derivations will be done for a nonstaggered grid,
which includes a grid point at the boundaries. Let the radial
coordinate r take discrete values fr0;…; rNg. We take a
uniform grid with step size h, which gives

rI ¼ Ih; with I ¼ 0;…; N; ð57Þ

where N is a positive integer. Here, N corresponds to the
grid index at the outer boundary. Although the origin is not
a physical boundary point, it is convenient to treat it as a
boundary while defining the grid on the closed interval
½0; ro� and give boundary conditions in terms of the parity
of the various fields. As before, ro corresponds to the
compactified radial coordinate at the outer boundary.
We will define our discretization using a single grid

variable ψ instead of the whole state vector u, since the
basic idea remains the same. Define ΨIðtÞ ¼ ψðt; rIÞ,
assuming that ψðt; rÞ is a sufficiently smooth function of
r, and, for convenience, we drop the argument t. LetΨ to be
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the column vector with ΨI as its Ith element. We express
every linear operator, e.g., the finite-difference operator D,
acting onΨ as an ðN þ 1Þ × ðN þ 1Þmatrix. While writing
the discrete form of the continuum equations, we express
various coefficients that appear, which are, in general,
functions of r, as ðN þ 1Þ × ðN þ 1Þ matrices. This step
will become clearer in the next subsection. In the next
paragraph, we describe the general notation and properties
of these multiplication operators.
We denote the operators in the approximation corre-

sponding to various coefficient functions of r in the
equations of motion by writing their continuum names
in square brackets. For example, we denote by ½fðrÞ� the
operator, or ðN þ 1Þ × ðN þ 1Þ matrix, corresponding to
the function fðrÞ in the continuum limit. For simplicity, we
take these matrices to be diagonal with diagonal entries
½fðrÞ�II ¼ fðrIÞ. Being diagonal, all these operators satisfy
the same basic algebraic properties, such as commutativity,
as the corresponding continuum functions.
We define all our discrete norms using a centered grid, in

which each interval, of size h, in the bulk is taken
symmetrically about its respective grid point. Therefore,
the boundary points are left with the intervals of size h=2
which lie only toward the bulk, so that the sum of intervals
remains Nh. If the state vector U contains only a single
variable U1 ¼ Ψ, the quadrature reduces to a 1 × 1 matrix
in the state space, ϒ ¼ ½ϒ�. Here, ϒ is a scalar in the state
space but an ðN þ 1Þ × ðN þ 1Þ matrix in the grid space.
For simplicity, we take it to be a diagonal matrix:

ϒ ¼ diagðh=2; h;…; h; h=2Þ: ð58Þ

The same arguments apply to the symmetrizer as well,
which takes the form H ¼ ½W�, where W is just a scalar in
the state space and an ðN þ 1Þ × ðN þ 1Þ diagonal matrix
in the grid space:

W ¼ diagðw0;…; wNÞ: ð59Þ

These conventions lead to the following definition for the
norm of a single grid function Ψ:

kΨkH ¼ ΨTϒWΨ: ð60Þ

Assuming W is time independent, the only time depend-
ence appears in Ψ.
In our system, we will face the situation in which the

coordinate position of the outer boundary is a continuous
function of time. To realize this in our numerics, we keep
our grid uniform in the bulk, with width ¼ h, but make the
position of the last grid point a continuous function of time,
so that it moves with the outer boundary. However, we
impose that the maximum value the last grid width can take
is h. If the outer boundary moves further, we create a new,
(N þ 1)th grid point, at rN at that instant which moves with

the outer boundary. If, let us say at time t1, the outer
boundary reaches a distance h away from rN and still keeps
moving outward, this (N þ 1)th grid point gets fixed there
and a newer, (N þ 2)th grid point is created at rNþ1 ¼
ðN þ 1Þh at that instant, and so on. We can model the
reverse situation, in which the outer boundary moves
inward, in exactly the reverse way. That is, when the last
grid point merges with the penultimate one, it vanishes and
the penultimate one becomes the last grid point, and so on.
The next problem is to incorporate the moving outer

boundary in the definition of the norm. As before, we keep
the elements of W time independent but make its dimen-
sionality a function of time. The latter condition also
applies to the quadrature ϒ, but we make its last entry a
function of time by redefining it as

ϒ ¼ diagðh0;…; hNÞ; ð61Þ

with h0 ¼ h=2 and hI ¼ h for I ¼ 1;…; N − 1. Here, hN
can take only values in 0 < hN ≤ h. Its relationship with
the creation or annihilation of the last grid point is “out of
phase” as follows. Whenever ðrN − rN−1Þ > h=2, ϒ is
given by Eq. (61) with hN given by

hN ¼ rN − rN−1 −
h
2

ð62Þ

and the norm is given by Eq. (60). However, when
ðrN − rN−1Þ ≤ h=2, we do not consider the contribution
of the last grid point to the norm, which is the same as
removing the last row of Ψ, W, and ϒ and the last column
ofW and ϒ in Eq. (60), with ϒ as given by Eq. (61). In this
case, the effect of the moving boundary is captured by
hN−1, and its value is given by

hN−1 ¼ rN − rN−1 þ
h
2

for 0 ≤ rN − rN−1 ≤
h
2
: ð63Þ

In summary, for the case of a moving outer boundary,
we define the discrete norm by Eq. (60), taking
Ψ ¼ ðΨ0;…;ΨMÞT , W ¼ diagðw0; …; wMÞ, and ϒ ¼
diagðh0;…; hMÞ, with h0 ¼ h=2, hi ¼ h for i ¼
1;…;M − 1. We take M ¼ N whenever ðrN − rN−1Þ >
h=2, in which case hN is given by Eq. (62), and M ¼
N − 1 whenever ðrN − rN−1Þ ≤ h=2, with hN−1 given by
Eq. (63). On the initial slice, we set hN ¼ h=2.
Therefore, the total time derivative of the norm becomes

d
dt

kΨkH ¼ 2ΨTϒW _Ψþ ΨT _ϒWΨ; ð64Þ

where _Ψ ¼ dΨ=dt and _ϒ ¼ dϒ=dt. The second term
appears solely because of the moving outer boundary.
Using the chain rule, we get
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_ϒ ¼ ∂ϒ
∂rN _rN: ð65Þ

Substituting the definitions given in the previous paragraph
along with Eqs. (62) and (63), we obtain

ΨT _ϒWΨ ¼ wMΨ2
M _rN; ð66Þ

with M ¼ N for ðrN − rN−1Þ > h=2 and M ¼ N − 1 for
ðrN − rN−1Þ ≤ h=2. When the trajectory of rN is of an
incoming radial null ray, we get

_rN ¼ cr−jr¼rN ¼ −
1

2R0
N − 1

; ð67Þ

where R0
N ¼ R0ðrNÞ. Therefore, when the outer boundary is

at rI, this gives ΨT _ϒWΨ ¼ 0.
All these computations are easily generalized to a state

vector U belonging to the higher-dimensional state space
by working in a basis which diagonalize H and ϒ in that
space. Since the quadrature ϒ depends only on the grid
spacing and not on the dynamical variables, it should be a
scalar multiple of the identity matrix acting on the state
space. In that case, we can write

H ¼ diagðW1;…;WkÞ; ð68Þ

where, as introduced in Eq. (44), k is the dimension of the
state space.

C. ðψ; σ + ; σ − Þ system
In the next two subsections, we now discretize the

ðψ ; σþ; σ−Þ system of equations (11) and define a semi-
discrete energy. Demanding conservation of this discrete
energy up to a boundary term in the usual way, we obtain
our SBP scheme. Whenever working with the semidiscrete
setting, we set the constraint damping parameter γ2 ¼ 0.
This has the advantage of simplifying the energy estimates
by rendering the bulk term trivial, and, at least in the linear
setting, we shall see has no negative consequences for
constraint violation. The latter may need revisiting when
we tackle nonlinear problems like GR but, since we are
developing a scheme with the linear-dominated wave zone
in mind, seems reasonable. Following the conventions of
Sec. IV B, we define ΨIðtÞ ≔ ψðt; rIÞ, Σþ

I ðtÞ ≔ σþðt; rIÞ,
and Σ−

I ðtÞ ≔ σ−ðt; rIÞ and suppress the t dependence.
Define the column vectors Ψ, Σþ, and Σ− with Ith entries
as ΨI , Σþ

I , and Σ−
I , respectively. The state vector for our

system is then U ¼ ðΨ;Σþ;Σ−ÞT .
Let D and D̄ denote the finite-difference operators

represented by ðN þ 1Þ × ðN þ 1Þ matrices such that
ϒ−1D and ϒ−1D̄ approximate ∂r and ∂r þ 2R0=R, respec-
tively, at the discrete level. Here, ϒ is the same quadrature
matrix defined in Eq. (61). Therefore, motivated from
Eq. (11), we define our finite-difference scheme as

_Ψ ¼ Σþ þ Σ−

2
;

_Σþ ¼
�

1

2R0 − 1

�
ϒ−1

�ðDþ D̄Þ
2

Σþ þ ðD − D̄Þ
2

Σ−
�

−
�

R0

2R0 − 1

�
½F�Ψ;

_Σ− ¼ −ϒ−1
�ðDþ D̄Þ

2
Σ− þ ðD − D̄Þ

2
Σþ

�
− ½R0�½F�Ψ:

ð69Þ

As introduced in the previous section, the quantities in
square brackets denote the discrete operators corresponding
to the continuum functions written inside them. This makes
sense because R0 and F are functions of r.
Motivated by Eqs. (31) and (33), we define our discrete

energy norm as

Ê ¼ 1

2
ðΨT ½F�ϒWΨþ ðΣþÞTϒWþΣþ þ ðΣ−ÞTϒW−Σ−Þ:

ð70Þ

Here, the various W’s are the ðN þ 1Þ × ðN þ 1Þ weight
matrices just like W in the last subsection. Therefore, the
symmetrizer matrix here is the diagonal matrix with blocks
H ¼ diagðW;Wþ;W−Þ. So far, we demand only that the
matrices W, Wþ, and W− are positive and diagonal.
The discrete energy defined above is a function of time

and the outer boundary rN, which again is a function of
time, i.e., Ê ¼ Êðt; rNðtÞÞ. The contribution to change in
energy solely from the evolved variables is

∂tÊ ¼ ½ΨT ½F�ϒW _Ψþ ðΣþÞTϒWþ _Σþ þ ðΣ−ÞTϒW− _Σ−�:
ð71Þ

Substituting the evolution equations (69) and using various
algebraic relations and symmetry properties, we obtain

∂tÊ ¼
�
ðΣþÞT ϒ

2

�
W −Wþ

�
2R0

2R0 − 1

��
þ ðΣ−ÞT ϒ

2

× ðW −W−½2R0�Þ
�
½F�Ψþ

�
ðΣþÞTWþ

�
1

2R0 − 1

�

×

�
Dþ D̄

2

�
Σþ − ðΣ−ÞTW−

�
Dþ D̄

2

�
Σ−

�

þ
�
ðΣþÞTWþ

�
1

2R0 − 1

��
D − D̄

2

�
Σ−

− ðΣ−ÞTW−
�
D − D̄

2

�
Σþ

�
: ð72Þ

In order to derive an SBP scheme, this energy is required to
be conserved up to the boundary term, which was not
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imposed up to this point. Hence, motivated by the con-
tinuum expression (35), we demand

∂tÊ ¼ ðΣþÞTBΣþ − ðΣ−ÞTBΣ−; ð73Þ

which gives first

W ¼ Wþ
�

2R0

2R0 − 1

�
¼ W−½2R0�; ð74Þ

then

W−
�
Dþ D̄

2

�
¼ B; ð75Þ

and finally

W−
�
D − D̄

2

�
−
�
W−

�
D − D̄

2

��
T

¼ 0: ð76Þ

This gives our SBP scheme

W−D̄þDTW− ¼ Bþ BT ð77Þ

or, isolating instead D̄,

D̄ ¼ −ðW−Þ−1DTW− þ ðW−Þ−1ðBþ BTÞ: ð78Þ

Here, B is called the boundary matrix or boundary operator.
As the name suggests, this matrix is expected to be nonzero
only at (or near) the outer boundary. These relations are
analogous to those given in the continuum energy norm
(40), which is already promising.
We take the outer boundary to be an incoming null ray at

a finite coordinate radius rN . Using the same argument as in
Eqs. (64) and (66) and using Eq. (67), the effect of the
moving outer boundary to the change in energy is

ð∂rN ÊÞ_rN ¼ −
1

2
½FNwNΨ2

N þ wþ
NðΣþ

NÞ2 þ w−
NðΣ−

NÞ2�

·
1

2R0
N − 1

¼ −
1

2
w−
N

�
FN

2R0
N

2R0
N − 1

Ψ2
N þ ðΣþ

NÞ2

þ 1

2R0
N − 1

ðΣ−
NÞ2

�
; ð79Þ

where we use the obvious generalization of the notation
(59) for W� and the relations (74). Unlike in the last
subsection, we do not need to use the indexM instead of N
here because, as rN → rI, _rN → 0. Therefore, the total
change in energy becomes

_̂E ¼ d
dt

Ê ¼ ∂tÊþ ð∂rN ÊÞ_rN

¼ −
1

2
w−
NFN

2R0
N

2R0
N − 1

Ψ2
N −

1

2
w−
NðΣþ

NÞ2 þ ðΣþÞTBΣþ

−
1

2
w−
N

1

2R0
N − 1

ðΣ−
NÞ2 − ðΣ−ÞTBΣ−: ð80Þ

The SBP relation (77), or, equivalently, (78), dictates the
way in which the four operatorsD, D̄, U−, and B should be
related. Therefore, given three of them, it can be used to
derive the fourth one. We will choose D and B by hand and
describe a method to choose U− and, hence, derive D̄. We
define our methods with a second-order accurate operator
D given by

ðDΨÞI ¼
ΨIþ1 −ΨI−1

2
ð81Þ

in the bulk. A similar method can be applied for any higher-
order accurate operator D as well. Choosing

B ¼ diagð0;…; 0; BNÞ; ð82Þ

the SBP relation (78) gives

ðD̄ΨÞI ¼ −ðW−1DTWΨÞI ¼
wIþ1ΨIþ1 − wI−1ΨI−1

2wI
ð83Þ

in the bulk. We use two methods described in Ref. [50].
One method is by Evans, given in Ref. [31] and described
as follows. The continuum identity

∂rψ þ 2R0

R
ψ ¼ 3R0 dðR2ψÞ=dr

dðR3Þ=dr ð84Þ

suggests one form for D̄. To keep it consistent with
Eq. (83), we define

ðD̄ΨÞI ¼
ðR3

Iþ2
−R3

I Þ
12hR0

Iþ1

ΨIþ1 −
ðR3

I−R
3
I−2Þ

12hR0
I−1

ΨI−1

2
ðR3

Iþ1
−R3

I−1Þ
12hR0

I

ð85Þ

in the bulk. This suggests to us the choice w−
I ¼ ðR3

Iþ1 −
R3
I−1Þ=12hR0

I for all I, which reduces to R2=2 in the
continuum limit. This extra half factor makes the discrete
energy norm compatible with the continuum one.
The other method is described in Refs. [33,36] and uses

the identity

∂rψ þ 2R0

R
ψ ¼ ∂rðR2ψÞ

R2
: ð86Þ

This suggests w−
I ¼ R2

I =2 for all I. Following the termi-
nology of Ref. [50], we refer to this as the Sarbach method.
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Note that it is simpler to define w−
I using this method at

larger radii than Evans’method, but Evans’method is more
convenient near r ¼ 0, since it avoids the singular form of
1=R at the origin.

D. Regularization scheme

We know from the previous section that RN → ∞ as
rN → rI, making B, w−

N , and, hence, D̄ singular at rI.
Although this singular nature of D̄ is expected due to the
singular nature of R0=R at Iþ, it becomes impossible to
define it at rI. To avoid this, we need to regularize D̄ as
well. In this section, we therefore study the regularization
scheme of D̄ obtained with Sarbach’s method, which is
simple and naturally allows us to set the outer boundary at
Iþ. The regularization is not only “nice” but also necessary
to straightforwardly apply results, such as the Lax equiv-
alence theorem, from numerical analysis; see, for example,
Ref. [49] for details. This is because the formal definition of
numerical stability requires arbitrary given data with a finite
norm to be admissible, which will not be the case if there are
singular coefficients in the problem. Similar issues arise
when treating the origin in spherical polar coordinates, but
unfortunately at infinity we cannot rely on parity to help.

1. Regularized D̄

We define a new operator D̃ by

D̃ ¼ P−2D̄P2 ð87Þ
in such a way that all the entries of the matrix D̃ areOð1Þ in
the interval ½0; rI�. Since, using Sarbach’s method, the
coefficients in D̄ blow up like R2 at Iþ, the entries of P
should fall off like R−1. We take P to be an ðN þ 1Þ ×
ðN þ 1Þ diagonal matrix with diagonal elements

PII ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2
II

p ¼ 1

χI
for I ¼ 0;…; N: ð88Þ

We choose 1þ R2, instead of R2, simply to avoid singu-
larities at the origin. With this definition, the singular part
of D̄ at Iþ is absorbed by the matrices P2 and P−2.
Since, in the continuum limit, PðrÞ ¼ 1=χ, where χ2 ¼

1þ R2 as defined previously, one can check that this choice
of D̃ corresponds to the operator defined in Eq. (19)
[equivalently, Eq. (20)] as

D̃ → χ2
�
∂r þ

2R0

R

�
χ−2 ¼ ∂r þ

2R0

ð1þ R2ÞR ¼ ∂̃r; ð89Þ

thus justifying the definition.

2. Regularized variables and operators

Naively, one might expect that, writing a discrete version
of Eqs. (22) and defining W̃− ¼ PTW−P and B̃ ¼ PTBP,
one obtains the SBP scheme with

D̃ ¼ −ðW̃−Þ−1DTW̃− þ ðW̃−Þ−1ðB̃þ B̃TÞ ð90Þ

for the regular equations. But this turns out not to be the
case, because the additional rescaling of σþ by a factor of χ,
compared to the other variables, does not play any role in
the definition of D̃. This is also evident from Eq. (42), as we
want the same boundary matrix acting on all of the
dynamical variables. Therefore, to derive an SBP scheme
for the regular equations with the most aggressively
rescaled variables, we first rescale all the dynamical
variables by a single power of χ, derive equations of
motion, and then replace σ̄þð≡χσþÞ by ðσ̃þ=χÞ. This
reduces Eqs. (22) to the following form:

∂tψ̃ ¼ 1

2

�
σ̃þ

χ
þ σ̃−

�
;

∂tσ̃
þ ¼ 1

2R0 − 1

�
χ

�∂r þ ∂̃r

2

��
σ̃þ

χ

�
þ χ

�∂r − ∂̃r

2

�
σ̃−

−
RR0

χ
σ̃− − R0χFψ̃

�
þ γ2

�
1

2R0 − 1
ðχð∂rψ̃Þ

−
R
χ
R0ψ̃ þ χ

σ̃−

2

�
−
σ̃þ

2

�
;

∂tσ̃
− ¼ −

��∂r þ ∂̃r

2

�
σ̃− þ

�∂r − ∂̃r

2

��
σ̃þ

χ

�

−
RR0

χ3
σ̃þ þ R0Fψ̃

�
− γ2

�
∂rψ̃ −

R
χ2

R0ψ̃

þ σ̃−

2
− ð2R0 − 1Þ σ̃

þ

2χ

�
: ð91Þ

The semidiscrete form, with γ2 ¼ 0, is

_̃Ψ ¼ 1

2
½PΣ̃þ þ Σ̃−�;

_̃Σþ ¼
�

1

2R0 − 1

��
P−1ϒ−1

�
Dþ D̃

2

�
PΣ̃þ þ P−1ϒ−1

×

�
D − D̃

2

�
Σ̃− − P½RR0�Σ̃− − P−1½R0�½F�Ψ̃

�
;

_̃Σ− ¼ −
�
ϒ−1

�
Dþ D̃

2

�
Σ̃− þ ϒ−1

�
D − D̃

2

�
PΣ̃þ

− P2½RR0�PΣ̃þ þ ½R0�½F�Ψ̃
�
: ð92Þ

Defining the discrete energy as

Ê ¼ 1

2
½Ψ̃T ½F�ϒW̃ Ψ̃þðΣ̃þÞTϒW̃þΣ̃þ þ ðΣ̃−ÞTϒW̃−Σ̃−�

ð93Þ

and following the same procedure as above, we demand
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∂tÊ ¼ ðΣ̃þÞTPTB̃PΣ̃þ − ðΣ̃−ÞTB̃Σ̃−; ð94Þ

which gives

W̃ ¼ P−2W̃þ
�

2R0

2R0 − 1

�
¼ W̃−½2R0�; ð95Þ

W̃−
�
Dþ D̃

2

�
¼ B̃; ð96Þ

and

W̃−
�
D − D̃

2

�
−
�
W̃−

�
D − D̃

2

��T

¼ 0: ð97Þ

This leads to the SBP scheme given by Eq. (90).
Equations (92) are the ones used in the code. Provided
the potential function F falls off fast enough, they are
formally regular and satisfy the SBP property.

3. Constraints

The reduction constraint C ¼ ∂Rψ − ϕR, written in
terms of the rescaled fields ðψ̃ ; σ̃þ; σ̃−Þ and using a suitable
rescaling, takes the form

C ¼ R0χ
2R0 − 1

C

¼ 1

2R0 − 1

�
∂rψ̃ −

RR0

χ2
ψ̃ þ σ̃−

2

�
−
σ̃þ

2χ
: ð98Þ

It also appears as the coefficient of γ2χ in the second
equation of Eqs. (18). In the continuum case, if the
constraint is satisfied by the initial data, it will remain
satisfied in the time development. However, this might not
be the case at the discrete level. Defining the discrete form
of Eq. (98) as

Ĉ¼
�

1

2R0−1

��
ϒ−1DΨ̃−P2½RR0�Ψ̃þ Σ̃−

2

�
−
P
2
Σ̃þ; ð99Þ

taking the time derivative, and substituting the equations of

motion (92), we obtain _̂C ¼ 0. Therefore, in our discretiza-
tion scheme as well, if the constraint is satisfied on the
initial data, it will remain satisfied forever. Thus, taking
γ2 ¼ 0 in our discretization scheme is perfectly justified.
But, in general, this will not necessarily be the case for a
system of nonlinear equations.

E. Truncation error matching

Taking ϒ ¼ diagðh=2; h;…; h; h=2Þ, the operator D
defined with second-order accuracy by Eq. (81) in the
bulk has the Taylor expansion

ðDfÞI ¼ h

�
f0I þ

h2

6
f000I þ � � �

�
; I ¼ 0;…; N − 1:

ð100Þ

Incorporating the TEM property at the last grid point, D is
defined there as

ðDfÞN ¼ −fN−3 þ 4fN−2 − 7fN−1 þ 4fN
4

: ð101Þ

An extra half factor appears in this definition, compared
with the one given in Ref. [51], because of the half factor in
ϒNN . Taylor expanding fI for I ¼ N − 3;…; N at the Nth
grid point and substituting all these expansions in the
previous equation above gives us a series expansion of
ðDfÞN with terms up to h2 the same as given in Eq. (100),
with I ¼ N. As we will see shortly, our dissipation operator
vanishes like h3 as h → 0. Also, the h3 term in the Taylor
expansion of ðDfÞI is zero for I ¼ 0;…; N − 1 but nonzero
for I ¼ N. This residual term at the last grid point interferes
with the dissipation operator and may cause the code to
blow up from the outer boundary. Therefore, we redefine
the operator D at the last grid point so that the h3 term in
ðDfÞN vanishes identically. This leads to the following
definition of D at the last grid point:

ðDfÞN ¼ fN−4 − 5fN−3 þ 10fN−2 − 11fN−1 þ 5fN
4

:

ð102Þ

Here also, an extra half factor is introduced because of the
half factor in ϒNN . Thus, the matrix form of D near the
outer boundary is

D ¼

0
BBBBBBBBBBBB@

· · · · · · ·

· 0 1=2 0 0 0 0

· −1=2 0 1=2 0 0 0

· 0 −1=2 0 1=2 0 0

· 0 0 −1=2 0 1=2 0

· 0 0 0 −1=2 0 1=2

· 0 1=4 −5=4 5=2 −11=4 5=4

1
CCCCCCCCCCCCA

:

ð103Þ

Now, using this definition of D and taking W̃− ¼
diagðw̃−

0 ;…; w̃−
NÞ and B̃ ¼ diagð0;…; 1=4Þ, we define D̃

using Eq. (90). However, applying this operator to some
smooth function f, one can see that the Taylor expansion
of ðD̃fÞI not only violates the TEM property at
I ¼ N − 4;…; N, but also does not even give the leading
term hðw̃−fÞ0=w̃−, which we will expect from the Sarbach
method along with Eq. (87). Instead, looking at the
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corresponding Taylor expansions, their leading terms are
∼f=w̃−. Therefore, when divided by h, these terms will
blow up at Iþ with increasing resolution. To make the
system consistent, we define the operator D̃ by hand. Using
Eq. (83) in Eq. (87), we notice that D and D̃ are related as
D̃ ¼ ðW̃−Þ−1DW̃− in the bulk. Inspired from this, define D̃
on the whole grid as

D̃≡ ðW̃−Þ−1DW̃−: ð104Þ

This gives

ðD̃fÞI ¼
ðw̃−fÞIþ1 − ðw̃−fÞI−1

2w̃−
I

¼ DðW̃−fÞI
w̃−
I

ð105Þ

for I ¼ 0;…; N − 1 and

ðD̃fÞN ¼ 1

4w̃−
N
½ðw̃−fÞN−4 − 5ðw̃−fÞN−3 þ 10ðw̃−fÞN−2

− 11ðw̃−fÞN−1 þ 5ðw̃−fÞN � ð106Þ

for the term I ¼ N. This definition of D̃ not only approx-
imates Eq. (89) at second-order accuracy but also satisfies
the TEM property at all grid points.
Since we are defining D and D̃ by hand and choosing

W̃− by Sarbach’s method, in order to incorporate the SBP
property, we calculate the boundary matrix B̃ using
Eq. (96). We do not need to worry about the relation
(97), as it is automatically satisfied by this new choice of D
and D̃. Unlike what was assumed so far, this new B̃ has
nonzero entries in the bulk as well as at the outer boundary;
i.e., we also have B̃IJ ≠ 0 for both I; J < N. However, we
realize from Eq. (94) that only the symmetric part of B̃
contributes to the energy flux. Interestingly, it turns out that
the symmetric part of the new B̃ has nonzero entries only at
ðI; NÞ and ðN; IÞ positions, with I ¼ ðN − 4Þ;…; N.
In summary, we initially chose the operatorD, the weight

matrix W̃−, and the boundary matrix B̃ by hand and derived
D̃ using the SBP relation (90). Doing this, we lost all
control over the properties of D̃ near the outer boundary. As
a result, we obtained a form of D̃ which is inconsistent with
Eq. (89) near the outer boundary. In order to resolve this
issue, we adopted the reverse strategy. We first choseD and
D̃ satisfying the TEM property everywhere and W̃− from
Sarbach’s method, which we preferred over the Evans’
method. Using these operators, we then used the SBP
property to calculate the boundary matrix B̃. Since B̃
merely gives the energy flux at the outer boundary, the
price we pay in order to incorporate both SBP and TEM
properties is that we lose control over the boundary flux.
Another method for incorporating TEM could be

adapted from Ref. [50], which employs the outer boundary
condition in the SBP scheme in 1þ 1 dimensions.

Demanding specific relations between the weight and
boundary matrices between 1þ 1 and (jþ 1) dimensions,
they derive the operator D̄ in jþ 1 dimensions. In our
setup, we instead saw how D and D̃ are related without
invoking a 1þ 1-dimensional system. Given the above,
we expect that our method generalizes for any spatial
dimension.

F. The SBP-TEM and SBP-Stable methods

In this section, we give two numerical schemes, obtained
by approximating the continuum equations at the outer
boundary in two different ways. We will compare both in
our numerical experiments and see that they, empirically,
give satisfactory norm convergence but have slightly
different pointwise convergence. It is observed empirically
in many cases that the first scheme, which we call the SBP-
TEM discretization, gives perfect pointwise convergence
but is not formally stable. The second scheme, the SBP-
Stable scheme, is provably stable but has a lower-order
pointwise errors near the outer boundary.

1. SBP-TEM

As before, the total change in energy is given by

_̂E ¼ −
1

2
w̃−
NFN

2R0
N

2R0
N − 1

Ψ̃2
N þ ðΣ̃þÞTPB̃PΣ̃þ

−
1

2
w̃−
NP

2
NðΣ̃þ

NÞ2 − ðΣ̃−ÞTB̃Σ̃−

−
1

2

1

2R0
N − 1

w̃−
NðΣ̃−

NÞ2; ð107Þ

where the first, third, and fifth terms arise because of the
moving outer boundary. The boundary matrix B̃ here is the
one obtained by using the SBP and TEM properties.
Defining B̃s ≔ ðB̃þ B̃TÞ=2, we observe that only the

last row and the last column of B̃s are nonzero. As ro → rI,
PN ¼ 1=χN → 0 and 1=ð2R0

N − 1Þ → 0. Thus, the second,
third, and fifth terms in Eq. (107) vanish, as all other factors
in these terms areOð1Þ. The second term vanishes, because
B̃s has nonzero elements only in its last row and last
column. Since P is diagonal, multiplying P on the left of B̃s

gives the matrix PB̃s with all elements zero in its last row
and nonzero elements only in its last column. Multiplying
PB̃s on the right by P gives all elements zero in the last
column of the resulting matrix. This gives PB̃sP ¼ 0.
Therefore, the total change in energy reduces to

_̂E ¼ −
1

2
w̃−
NFN

2R0
N

2R0
N − 1

Ψ̃2
N − ðΣ̃−ÞTB̃sΣ̃−; ð108Þ

which is analogous to (108) in the continuum problem.
Here there is, however, an important subtlety. The first
term does indeed directly map to the potential term on the
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right-hand side of Eq. (108). But the second contains cross
terms between points at the boundary and points in the
interior. In this sense, one might argue that the SBP-TEM
scheme is not truly an SBP discretization, but we never-
theless keep the name to indicate the origin of the method.
This shortcoming means that there is a deviation of the
discrete energy flux at Iþ from the continuum one. To
understand this deviation, we ignore the potential term.
Expanding B̃s then, we get

_̂EðtÞ ¼ −
5

4
w̃−
NðΣ̃−

NÞ2 þ
�
9

8
ðw̃−

N−1 þ w̃−
NÞΣ̃−

N−1

−
5

4
ðw̃−

N−2 þ w̃−
NÞΣ̃−

N−2 þ
5

8
ðw̃−

N−3 þ w̃−
NÞΣ̃−

N−3

−
1

8
ðw̃−

N−4 þ w̃−
NÞΣ̃−

N−4

�
Σ̃−
N: ð109Þ

We can furthermore rewrite this expression by separating
the continuum part out from this expression to obtain

_̂EðtÞ ¼ −
1

2
w̃−
NðΣ̃−

NÞ2 − Σ̃−W̃−ðΔ2 þ Δ̃2ÞΣ̃−; ð110Þ

where Δ2Σ̃−
I ¼ 0 for I ¼ 0;…; N − 1,

Δ2Σ̃−
N ¼ Σ̃−

N−4 − 5Σ̃−
N−3 þ 10Σ̃−

N−2 − 9Σ̃−
N−1 þ 3Σ̃−

N

8
; ð111Þ

and finally

Δ̃2 ¼ ðW̃−Þ−1Δ̃2W̃−: ð112Þ

At the last grid point, the operator Δ2 corresponds to the
continuum operator

Δ2f ¼ h2

8

�
f00 þ h4

12
fð4Þ þ � � �

�
: ð113Þ

Assuming convergence, this gives

_̂EðtÞ ¼ −
1

2
w̃−
NðΣ̃−

NÞ2 − h2ð� � �Þ; ð114Þ

as resolution increases, so that the deviation diminishes like
h2, consistent with the TEM property.
Therefore, convergence of the SBP-TEM scheme is the

only remaining aspect to prove. A standard way to do so is
to first prove stability and then use the Lax equivalence
theorem [49,52] to ensure convergence. Unfortunately, the
quadratic form in Σ̃− on the right-hand side of Eq. (109) is
not sign definite, and so formal stability does not follow.
This implies that the energy at any later hyperboloidal time
slice is not (in general) upper bounded by that on the initial
slice. It is important to realize that this shortcoming does
not mean that the method will not converge for any given

initial data. Rather, it means that there is no guarantee of
convergence. It would be interesting to know the specific
class of data that does converge. To find examples of “bad”
data, we need to look at the eigenvectors of the boundary
matrix associated with positive eigenvalues. Instead of
going into more detail along these lines, in Sec. V, we
study empirically convergence of the scheme for various
choices of initial data.

2. SBP-Stable

We now present an alternative discretization which gives
a provably stable numerical scheme but requires a drop in
the pointwise convergence order at the outer boundary. This
scheme is obtained by adding AΣ̃− to the right-hand side of
_̃Σ−

in Eq. (92), with

A ¼ ϒðϒ−2Δ2 þ ϒ−2Δ̃2Þ: ð115Þ

This adds a new term in Eq. (108), which is

ðΣ−ÞTϒW̃−AΣ̃−: ð116Þ

Since only the symmetric part of ϒW̃−A contributes to _̂E,
when added to B̃s, it gives

−B̃s þ
ϒW̃−Aþ ðϒW̃−AÞT

2
¼ diagð0;…;−w̃−

N=2Þ; ð117Þ

and so, for this adjusted scheme, we get _̂E ¼ _E, the
continuum energy decay rate, which is negative semi-
definite, and the resulting semidiscrete scheme is stable.
Choosing a suitable time integrator, we can make the whole
discrete scheme stable. Therefore, by the Lax equivalence
theorem, the resulting scheme is convergent. However,
Eq. (115) shows that the AΣ̃− term vanishes like h rather
than h2 with increasing resolution. Thus, it decreases the
convergence order of the numerical scheme. We call AΣ̃−

an “artificial boundary” term, as it vanishes in the con-
tinuum limit.
When the outer boundary is not at Iþ, we need to add

more such artificial boundary terms to the equations.
Interestingly, it turns out that adding these terms to the
discrete equations of motion is equivalent to rather chang-
ing the definition of D at the outer boundary:

ðDfÞN ¼ fN − fN−1

2
: ð118Þ

The operator D̃ is automatically redefined from Eq. (104),
when D is defined by Eq. (81) for I ¼ 0;…; N − 1 and
Eq. (118). This clarifies how these artificial boundary terms
are decreasing the accuracy of the numerical scheme at the
outer boundary, effectively by decreasing the accuracy ofD
and D̃ at the last grid point. Therefore, just to keep the
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generality, we will drop the accuracy of D and D̃ instead of
using the artificial boundary terms. This result is unique,
because the choice of artificial boundary terms depends
uniquely on the definition of D and D̃ at the last grid point
and demanding that Eq. (117) is satisfied.
Interestingly, dropping the accuracy ofD and D̃ does not

affect the norm convergence. As we saw above, this is
equivalent to using D and D̃ satisfying the TEM property
and adding suitable artificial boundary terms. Since these
artificial boundary terms in the equations vanish like hwith
increasing resolution, we can infer from Eqs. (115) and

(116) that their contribution to _̂E vanishes like h2.
Therefore, the norm of errors should still converge at
second-order accuracy. On the other hand, the artificial
boundary terms do run the risk of badly damaging point-
wise convergence, as they may reflect a lot of noise into
the bulk.
The remaining ingredients required for the implementa-

tion of our discretized scheme are the treatment of the
origin, the adjustment of the energy, and the addition of
dissipation. As they are slightly more technical, they are
presented in Appendixes A, B, and C, respectively.

V. NUMERICAL EVOLUTION

A. Code description

We employ a one-dimensional code, written for spheri-
cally symmetric systems in spherical polar coordinates on
hyperboloidal slices, using the same infrastructure as that of
the work in Refs. [15,16,53]. We use a compactified radial
coordinate and hyperboloidal time as explained in Sec. II.
The implementation uses the method of lines with a fourth-
order Runge-Kutta for time integration. We work with
second-order accurate finite-difference operators D and D̃
to approximate the spatial derivatives derived from the
SBP-TEM scheme, as given by (81), (102), (105), and
(106), and the SBP-Stable scheme, as explained in
Sec. IV F 2. Our spatial grid has grid points at the origin
and at Iþ, as shown in Fig. 3. Regarding dissipation (see

Appendix C for the full details), we use a fourth-order
Kreiss-Oliger-like dissipation operator Qd2 satisfying the
TEM property, given by (C1), (C14), and (C15), with the
SBP-TEM scheme and by the operator Q acting on the
whole state vector and satisfying the dissipative property
(DP), as constructed in Sec. C 2, with the SBP-Stable
scheme. We treat the origin as an inner grid point, for which
we introduce ghost points on its left with the same grid
spacing as on the physical grid, and populate them using the
parity conditions (A2). Then all the finite-difference oper-
ators at the origin are defined in the sameway as on a typical
interior grid point, using a centered stencil; cf. Fig. 3. It
suffices to have a single ghost point in order to defineD and
D̃ at the origin, but we need two such ghost points to define
the dissipation operators there. In contrast, the outer boun-
dary is a true boundary which is placed at Iþ. All the
operators defined there are completely left sided.

B. Implementation

We experimented with various different values of the
compactification parameter n, defined in Eq. (3), obtaining
qualitatively similar results. For brevity, in our presentation
we choose the compactification function ΩðrÞ given by
Eq. (A4) with n ¼ 2 and rI ¼ 1. We observe that using
Evans’ method at the origin gives both the pointwise and
norm convergence plots visually indistinguishable from
those obtained by rewriting the equations there using the
l’Hôpital rule. This is exactly what we expect from the
explanations given in Appendix A. In our implementation,
we use the l’Hôpital rule, as it has an advantage that the
energy norm becomes independent of the resolution. We set
the height function H such that H0ðRðrÞÞ ¼ 1 − 1=R0ðrÞ.
We use χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
as a rescaling function and γ2 ¼ 0 for

all our purposes, as justified in Sec. IV D 3. We take N ¼
200 as our base resolution and increase this number by a
factor of 2 whenever performing convergence tests. This
gives h ¼ rI=N ¼ 0.005 at the original resolution. The
Courant-Friedrichs-Lewy factor, defined as the ratio
between the time step and grid spacing δt=h, is taken to
be 0.5 unless stated otherwise. We work with the
ðΨ̃; Σ̃þ; Σ̃−Þ system for all three choices of F considered
here. We have tested several families of initial data, but, in
our presentation, we take

ψð0; RÞ ¼ ae−λR
2

and πð0; RÞ ¼ 0; ð119Þ

with a ¼ 0.01 and λ ¼ 1, unless stated otherwise, and
compute the initial data for the ðψ̃ ; σ̃þ; σ̃−Þ variables
according to the transformation rules (10) and (17).

C. Results and interpretation

1. Linear wave equation, F = 0

Without adding dissipation, the evolved variables
look quite noisy at the origin, for both SBP-TEM and

FIG. 3. A schematic diagram showing the nonstaggered grid
and second -order finite-difference stencils (dashed line seg-
ments) that we use in the numerical implementation. All the grid
points are uniformly spaced. The stencil is centered everywhere
except on the boundary, which is at Iþ, where it leans left and
uses five grid points in the SBP-TEM scheme and two for the
SBP-Stable one. The values of the variables on the black-filled
points are evolved using the equations of motion. The empty
circles on the left denote the ghost points, which are required to
calculate derivatives at the origin and are filled using the parity
conditions described in Appendix A.
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SBP-Stable schemes. The reason for the noise is most likely
the nonsmoothness, mentioned in Appendix A, that arises
from our choice of χ in combination with our parity
conditions. Since our primary interest is in the regulariza-
tion at Iþ, and in the future we will employ a multipatch
method that avoids the coordinate singularity at the origin,
we have not invested a huge effort in improving the
treatment there. Instead, we use a small amount of
dissipation to suppress the noise. Interestingly, setting
for the dissipation parameter ϵ ¼ 0.002 suffices to damp
almost all of this noise by t ¼ 2; with this level of
dissipation, the amplitude of the solution at our base
resolution is down to ∼10−8 by t ¼ 10.
Each of our schemes is naturally associated with a

different dissipation operator, SBP-Stable with the dis-
sipation operator Q, which acts on the whole state vector
and satisfies the DP, and SBP-TEM with Qd2, which acts
variable by variable and has clean pointwise properties. If
we use instead Q with SBP-TEM, we see that pointwise
convergence is damaged, whereas if we useQd2 with SBP-
Stable, we see at particular times a small, though con-
vergent, growth in the energy of the solution. Matching
the dissipation operators with their natural discretization
plays to the strengths of each of the two methods and
works well.
Returning to Fig. 1, we see the basic behavior of the

massless scalar field satisfying the LWE in our simulations.
The initial narrow pulse at the origin, chosen to be
Gaussian-like as in Eq. (119) with a ¼ 0.01 and
λ ¼ 100, propagates to Iþ with speed equal to unity, as
expected from our construction in Sec. II. Here, we plot the
absolute value of the rescaled field jψ̃ j. The plot shows two
bursts of the pulse because of the time symmetry in our
initial data obtained by taking πðT ¼ 0; RÞ ¼ 0. Most of
the region looks white, because for clarity we show only the
values for 10−6 < jψ̃ j < 10−3. This plot was generated
using the SBP-Stable scheme with a little (ϵ ¼ 0.002)
dissipation. This plot also shows a small amount of noise at
the origin which gets damped with time because of the
dissipation.
In order to test the correctness of the implementation, we

compare the decay rate over time of our approximation to
the physical energy (93) with that of the analytical one.
Complete agreement between the two is demonstrated in
Fig. 4 for the SBP-Stable scheme. To generate these curves,
we consider the general solution of the LWE in spherical
symmetry:

ψðT; RÞ ¼ fðT þ RÞ − fðT − RÞ
R

ð120Þ

and then rewrite it in terms of hyperboloidal coordinates
and choose fðxÞ ¼ e−x

2

. With this f, we build the initial
data for the corresponding numerical setup. The numerical

solution plotted is constructed at our lowest resolu-
tion, N ¼ 200.
We now compare the SBP-TEM and SBP-Stable

schemes through the norm and pointwise convergence
curves with a specific focus onIþ. The norm convergence
plots in the adjusted norm (B1), described in detail in
Appendix B, are shown in Fig. 5 for the two schemes,
plotted in different colors, and for different resolutions
plotted in solid and dashed curves. At late times, a small,
smooth, stationary, though convergent feature remains in Ψ
(not shown here). We interpret this as the constraint
violation induced by the dissipation. This violation

FIG. 4. Comparison of the continuum and discrete energies as a
function of time for the initial data specified in the main text.
These are the same data as plotted in Fig. 1, and so it makes sense
that, as each of the two pulses hits the outer boundary, the energy
drops rapidly.

FIG. 5. Convergence order of our scalar field obeying LWE in
the adjusted energy norm given by Eq. (B1). The red curves show
the same for the SBP-TEM discretization and the black curves
for the SBP-Stable one. Both are near perfect, although it is true
that the SBP-Stable plot would not be as clean if we focused on the
physical energy (93) instead, because, as can be understood from
Fig. 4, the energy present after t ∼ 3 is negligible, and the effects of
dissipation start to dominate the error in Σ̃� after around t ∼ 7.
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dominates the other errors by about 3 orders of magnitude
toward the end of the evolution. Figure 5 shows almost
perfect second-order convergence for all times in both
schemes, as expected.
If we construct a similar plot using the physical energy

(93), that is, without adding the Ψ̃2 term, the stationary
error is completely eliminated and the remaining errors start
dominating. In the SBP-TEM scheme, all these remaining
errors still converge at second order, and we again observe a
perfect second-order norm convergence with only small
wiggles in some time intervals. These wiggles are observed
to be completely dependent on the dissipation, as increas-
ing the dissipation parameter ϵ increases their amplitude.
Since these errors converge faster than those produced by
the SBP-TEM scheme, these wiggles diminish rapidly by
increasing the resolution. On the other hand, in the
SBP-Stable scheme, this convergence order starts drifting

to ∼3 at late times. This is because, at late times, errors
introduced by the dissipation operator start dominating.
Although these errors converge like h pointwise at the last
three grid points (cf. Sec C 1), they can be easily seen to
converge like h3 in the norm. This appears to be the price
for guaranteed stability. We do not observe this behavior in
the SBP-TEM scheme, because in this scheme the energy
flux through Iþ depends on the resolution.
We now consider pointwise convergence. Since the SBP-

TEM scheme is designed to converge at second order at all
grid points for suitable initial data, we expect all the errors
to converge pointwise like h2 even atIþ, at least for a large
class of initial data. On the other hand, the SBP-Stable
scheme uses various finite-difference operators at the last
grid point, some of which are only OðhÞ, so we might
expect a decline in convergence order in this scheme atIþ.
Interestingly, this is not what we observe. Figure 6 shows
clean second-order convergence of σ̃− at Iþ in the SBP-
Stable scheme, and we obtain similar results for ψ̃ and σ̃þ.
The equivalent plot for the SBP-TEM scheme looks even
better. We observe with that scheme a smaller amplitude of
the error at Iþ by about a factor of 2.
In Fig. 7, we compare pointwise convergence in the two

different schemes. The top row shows the pointwise
convergence curves in the SBP-TEM scheme at three
different instants, the bottom the equivalent plots with
the SBP-Stable scheme. The first column shows how the
noise at the origin dominates the errors generated on the
rest of the grid. We expect that this source of error could be
reduced by adjusting χ to obtain smoothness at the origin.
At this instant, both sets of curves look essentially the same.
In the second column, we show equivalent plots at some
intermediate time when we observe a small wiggle on the

FIG. 6. Convergence of σ̃− at Iþ for the scalar field obeying the
LWE in the SBP-Stable discretization.

FIG. 7. Pointwise convergence of the scalar field obeying the LWE. The upper row shows the plots obtained from the SBP-TEM
discretization scheme at t ¼ 1.8, 5.4, and 30, and the bottom lower row shows the equivalent plots obtained from the SBP-Stable
scheme. We can observe how at late times the outer boundary starts affecting the pointwise convergence in the SBP-Stable scheme.
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norm convergence plot. As described before, this wiggle
is there due to the errors introduced by the dissipation
operator. At this instant, which corresponds to the small
wiggle in the convergence plot in Fig. 5, we can see that the
plots for both schemes do not overlap. In the last column,
we see a typical pointwise convergence behavior at late
times. The bottom right plot explains the deviation in the
norm convergence in the SBP-Stable scheme in the
physical energy. These last panels clearly demonstrate
the superiority of the SBP-TEM scheme over the SBP-
Stable one at late times on this initial data.
While working with the continuum equations, if we start

with constraint-satisfying initial data, the equations of
motion assure that the constraint (98) in the analytic
solution is satisfied for all times. However, in the discrete
case, the constraint (99) is violated even for the initial data.
This violation is approximated in our scheme as

ĈI ¼
1

2R0
I − 1

�
h2

6
Ψ000

I þ � � �
�
; ð121Þ

for I ¼ 0;…; N. Therefore, we expect the constraint
violation to converge at second order. In Sec. IV D 3, we

showed that, in the absence of dissipation, _̂C ¼ 0, inde-
pendent of the choice of the discretization scheme. Adding
dissipation terms to our equations, however, leads to a

nontrivial form of _̂C. This is exactly what we observe in our
numerical results. For ϵ > 0, a near-stationary constraint
violation appears on the grid, slowly evolving because of
the dissipation but vanishing with increasing resolution.

2. Linear wave equation with potential, F = 1=χ 2

The system F ¼ 1=χ2 and other models with potentials
are interesting for our methods for the following reason. In
spherical symmetry, Eq. (6) expressed in terms of the null
coordinates u ¼ T − R and v ¼ T þ R shows that the
rescaled field ψ̄ ¼ Rψ satisfies the equation

∂u∂vψ̄ ¼ ∂v∂uψ̄ ¼ −Fψ̄ : ð122Þ

Since, in spherical symmetry, ∂uψ̄ and ∂vψ̄ represent the
characteristic variables, respectively, the above equation
simply means that all the “outgoing modes” of ψ̄ , and,
hence, of ψ , are coupled to all the incoming ones via the
potential, and vice versa. This coupling is dangerous in the
hyperboloidal setup, because if high-frequency incoming
modes are generated near Iþ, they will necessarily be
poorly resolved on the grid. We are now considering
F ¼ 1=χ2, where the coupling, which is completely absent
in the LWE, decreases with increasing radius like 1=R2 and
is, hence, absent at the last grid point. In the next section,
we consider a much more extreme example.
Figure 8 shows the convergence order in the energy norm

of the field obeying the LWEP with F ¼ 1=χ2. In this case,

we observe an almost perfect convergence order at all times
in the SBP-TEM scheme. However, the convergence order
slowly decays in the SBP-Stable scheme once the data are
very small and the error is dominated by the lower-order
operators (in the derivatives and dissipation) near the outer
boundary. This plot also demonstrates the superiority of the
SBP-TEM scheme over the SBP-Stable one for this family
of initial data. However, we also observe very good second-
order convergence at Iþ in both schemes, appearing very
similar to that shown in Fig. 6.
Here, in contrast to the plain wave equation even given

initial data of compact support, part of the physical signal
always remains on the computational domain. The reason
for the slower decay of the solution is the coupling between
the incoming and outgoing modes of the solution as
described above. Therefore, as in Price’s law [54], we
expect a late-time tail at Iþ which decays like an inverse
power of time t. This is what we observe in Fig. 9, which is
constructed from the SBP-TEM scheme. We can see a
perfect overlap of the curves corresponding to three differ-
ent resolutions for long times, up until t ¼ 50 in the plot.
As could be anticipated from the previous figure, however,
this overlap is not as good in the SBP-Stable scheme. This
result again demonstrates the superiority of the SBP-TEM
scheme over the SBP-Stable setup for these initial data.

3. Linear massive Klein-Gordon equation, F =m2

As an extreme example, we now consider the alternative
potential F ¼ m2 with no decay near infinity. Despite the
fact that the hyperboloidal form of the equations of motion
(22) have terms with divergent coefficients of the form
R0Fψ̃ near infinity, the continuum equations still make
sense, at least within a large class of initial data, because
solutions decay faster than any inverse polynomial in R

FIG. 8. Convergence order of the scalar field obeying the
LWEP with F ¼ 1=χ2 in the energy norm given by Eq. (93). In
this particular case, we simply use the physical energy, because
it is not degenerate near infinity. The red curves correspond
to the SBP-TEM discretization and the black curves to the
SBP-Stable one.
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[25,55]. A separate question is whether or not we are able to
find accurate approximate solutions in our coordinates.
Even given a usable setup with a conserved positive energy
at the semidiscrete level, such an energy would require a
restricted class of initial data that decay rapidly at infinity,
and so formal numerical stability [49] does not automati-
cally follow. Perhaps an alternative perspective is that the
mass term is effectively arbitrarily “stiff” near infinity, so
that problems in time integration could be foreseen.
We choose initial data for ψ̃ that fall off fast enough so

that R0ψ̃ → 0 as r → rI, which, according to the con-
tinuum estimates mentioned above and as can be deduced
from Eq. (30), should then hold true at later times.
The initial data given by Eq. (119) are one such choice.
Under this assumption, all variables must vanish at Iþ.
Unfortunately, because of the singular coefficient, neither
of our two schemes can be used without modification. We
have thus tried various different strategies to manage the
singular coefficients, including, for example, fixing all time
derivatives at Iþ to vanish. By so doing, we are able to
perform numerical evolutions and obtain very good energy
conservation, even at low resolutions. But, unfortunately, as
soon as an outgoing pulse hits the region near Iþ, both
norm and pointwise convergence are completely lost, as
high-frequency reflections propagate back into the central
region. Performing convergence tests at successively higher
resolutions does not help.
Presently, it is not clear how, or even if, these difficulties

can be overcome. One possibility to obtain at least a
consistent scheme with a semidiscrete energy estimate
would be to impose Dirichlet-type boundary conditions
at a finite timelike boundary and to then take the limit to
Iþ. But, as mentioned above, even that would not
guarantee convergence. Another strategy might be to build
a discretization around the Bessel functions which naturally

capture the structure of solutions [25]. Final possibilities
would be to maintain a central, flat, slicing over the region
of interest for the massive field or to simply admit defeat
and modify the field equations near Iþ.

VI. CONCLUSIONS

In this series [17,19,20] of papers, we are developing a
method to attach future null infinity to the computational
domain via hyperboloidal slices in numerical relativity.
There are several aspects to the problem. In the present
work, we have focused on the properties of two approxi-
mation schemes for first-order reductions of linear wave
equations. We call these approximations SBP-Stable and
SBP-TEM. The first of these is formally stable, while the
second is instead built so that troublesome reflections from
null infinity are minimized. Here we worked in spherical
symmetry with second-order accurate operators, but neither
of these simplifications was fundamental. We moreover
expect that both schemes can be straightforwardly lifted to
treat nonlinear equations.
In our numerical experiments, the two schemes behave

comparably in many tests. Although the SBP-TEM method
is not formally stable even for the flat-space wave equation,
it seems unlikely that the user would stumble across
the expected class of “bad” initial data in practice. If they
did, the SBP-Stable method could be applied instead.
Concerning the SBP-Stable method, we seem to be forced
to use low-order operators near the outer boundary. In long
evolutions, the errors associated with these operators are
dominant. On the other hand, we were positively surprised
when using the SBP-Stable method that pointwise con-
vergence there is not too badly damaged for most of the
evolution.
The hyperboloidal coordinates that we employ are

fundamentally adapted to the clean resolution of outgoing
waves. There is, therefore, a limited class of models that
can be accurately treated by their use. We might anticipate,
for example, that any model which generated large amounts
of incoming radiation near null infinity to be poorly
approximated by either of our schemes. To investigate
this, we studied wave equations with different potentials.
We found that, when the potential decays sufficiently fast
near null infinity, our methods serve their purpose well, but
when this is not the case, as in the massive Klein-Gordon
equations, they cannot be directly applied and, at least with
naive adjustment, fail badly. Interestingly, even if a con-
sistent method with a conserved norm could be found at the
semidiscrete level, it would not necessarily converge,
because the equations of motion do not regularize. In
the future, it will be desirable to unpick the relationship
between the generation of incoming radiation and the
possibility to regularize a given model. It would also be
interesting to understand the slowest possible decay of a
potential that could be well treated by our (or any other)
methods.

FIG. 9. Late-time tail of a scalar field obeying the LWEP with
F ¼ 1=χ2 at three different resolutions, with N ¼ 200, 400, and
800, respectively. This plot is generated for the initial data given
by Eq. (119) with a ¼ 100 and λ ¼ 1. The slope of this tail is
measured to be ≈ − 1.74.
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An important open question is whether or not any
scheme could be given that combines the advantages of
both the SBP-Stable and SBP-TEM setups, perhaps
building on Refs. [56,57] and using a careful upwinding
discretization. Taking a broader view, it would be highly
desirable to understand if, or how, the energy method used
here could be combined with alternative novel discretiza-
tion schemes, such as those proposed in Refs. [58–61], to
demonstrate stability on hyperboloidal slices. For now,
however, our highest priority is to combine the methods we
have developed here with the regularization given in
Ref. [20] for nonlinear models to treat GR proper.
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APPENDIX A: ORIGIN

In order to calculate various derivatives at the origin,
which we treat as an interior point, using centered finite
difference stencils, we introduce ghost points to the left of
the origin in our numerical grid; see Fig. 3. We fill these
ghost zones using the suitable parity conditions

ψ̃−I ¼ ψ̃ I; π̃−I ¼ π̃I; and ðϕ̃RÞ−I ¼ −ðϕ̃RÞI ðA1Þ

or, equivalently,

ψ̃−I ¼ ψ̃ I; σ̃þ−I ¼ σ̃−I ; and σ̃−−I ¼ σ̃þI ; ðA2Þ

where χI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

I

p
. These parity conditions are obtained

by using the rescaling (17) for r ≥ 0 and ψ̃ ≡ χψ ,
σ̃þ ≡ χσþ, and σ̃− ≡ χ2σ− for r < 0. The latter rescaling
gives all the rescaled variables Oð1Þ for all r < 0 as σþ
becomes the outgoing characteristic variable for r < 0, and
hence falls like 1=R, and σ− becomes the incoming one,
and hence falls like 1=R2. Note that this extension renders
the evolved fields nonsmooth at the origin, a shortcoming
that could be easily overcome by adjusting the rescaling
slightly. This could be done, for example, by choosing χ to
be 1 identically in a neighborhood of the origin. Since we
are concerned primarily with the behavior of the approxi-
mation near infinity, we do not do so and will instead rely
on artificial dissipation to suppress any noise produced.
The above parity conditions are appropriate if and only
if R is taken to be an odd function of r and H an even

function of R. For r ≥ 0, H0ðRðrÞÞ ¼ 1 − 1=R0ðrÞ gives
HðrÞ≡HðRðrÞÞ ¼ RðrÞ − r. To impose evenness, we
must define H by

HðrÞ ¼
�
RðrÞ − r; for r ≥ 0;

r − RðrÞ; for r < 0:
ðA3Þ

Moreover, for r < 0, we must take c− ¼ −1 and
cþ ¼ 1=ð2R0 − 1Þ, as cþ and c− switch roles as incoming
and outgoing coordinate light speeds, respectively. Taking
R defined by Eq. (3), we see that HðrÞ is only C1 at the
origin. This is problematic, because due to this we can
never expect a smooth evolution of the fields at the origin.
To overcome this problem, we redefine ΩðrÞ as given in
Eq. (3) by

ΩðrÞ ¼ 1−
1

2

r2

r2I

�
tanh

�
tan

�
π

�
r
rI

−
1

2

��	
þ 1

�
: ðA4Þ

This choice of ΩðrÞ not only has similar asymptotics to the
compactification function as the one defined in Eq. (3) but
also gives RðmÞð0Þ ¼ 0 for every integer m > 1, as
ΩðmÞð0Þ ¼ 0 for m ≥ 1. Therefore, the height function
HðrÞ so obtained is C∞ at the origin with HðmÞð0Þ ¼ 0
for all m ≥ 0.
Since there is a 1=R singularity at the origin, there are

two methods to tackle it. One is using l’Hôpital’s rule and
the other is using Evans’ method, as described before.
Using l’Hôpital’s rule, we completely get rid of the operator
D̃ at the origin, whereas, using Evans’ method, we get the
value of w̃−

0 given by

w̃−
0 ¼ ðDR3Þ0

6hR0
0ð1þ R2

0Þ
¼ R3

1 − R3
−1

12hR0
0ð1þ R2

0Þ
¼ R3

1

6h
: ðA5Þ

This form of w̃−
0 has the following series expansion:

w̃−
0 ¼ 1

6R0
0ð1þR2

0Þ
�
ðR3

0Þ0 þ
h2

6
ðR3

0Þ000 þ � � �
�
¼ h2

6
: ðA6Þ

The series terminates, because R0 ¼ 0, R0
0 ¼ 1, and

RðmÞð0Þ ¼ 0 for every integer m > 1. Therefore, defining
w̃−
I using Sarbach’s for every I ≠ 0 and Evans’ method to

define w̃−
0 , we get

ðD̃fÞ0 ¼
6

h2

�
ðw̃−fÞ00 þ

h2

6
ðw̃−fÞ0000 þ

h4

120
ðw̃−fÞð5Þ0 þ � � �

�

¼ 3

�
f00 þ

h2

6
f0000 − h2f00 þ � � �

�
: ðA7Þ

To calculate all these derivatives, we used the continuum
values w̃− ¼ R2=½2ð1þ R2Þ� and RðmÞð0Þ ¼ 0 for every
integerm > 1. It is therefore clear that using Evans’method
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at the origin is effectively the same as using l’Hôpital’s
rule there.
But now, we encounter a problem. If we use Sarbach’s

method to define D̃ for all I ≠ 0 and at some instant
ΨI ≈ RI near the origin, then, from Eqs. (100) and (104),
the associated error near the origin goes like h2=R2≈
h2=r2 ¼ h2=ðI2h2Þ ¼ 1=I2, which does not converge. Our
strategy to overcome this problem is to use dissipation (as
outlined in the following section). At the origin, we therefore
simply use l’Hôpital’s rule.
The choice n ¼ 2 of the compactification parameter in

Eq. (3) gives a nonzero weight to the ðσ̃þÞ2 term at rI in the
energy defined by Eqs. (31) and (40), and hence to its
discrete version, and makes the discrete energy a norm, so
that the discrete energy has a positive weight at all grid
points, with a possible exception at the origin. The origin
has a positive weight whenever we use Evans’ method to
define D̃ there and has a zero weight whenever we rewrite
the equations there using l’Hôpital’s rule instead. In the
latter case, we do not include the origin in our definition of
discrete energy and define all the operators as N × N
matrices over the space of the grid functions defined on the
grid points I ¼ 1;…; N. Thus, the choice n ¼ 2 still makes
the discrete energy a norm.

APPENDIX B: FIXING UP THE ENERGY

The SBP-Stable scheme has been built for optimality in
the energy given by Eq. (93). As it is built directly on the
physical energy, this has the advantage that the resulting
method satisfies a precise energy balance relation with
_̂E ≤ 0. Unfortunately, however, in the massless case this
physical energy is degenerate, in that the rescaled field Ψ̃ is
completely absent. A similar degeneracy happens near Iþ
whenever the potential F falls off fast enough. Fortunately,
we can easily adjust the energy, taking instead

Ẽ ¼ Êþ 1

2
ΨTϒ½r2�Ψ

¼ 1

2
½Ψ̃Tϒð½r2� þ FW̃ÞΨ̃þ ðΣ̃þÞTϒW̃þΣ̃þ

þ ðΣ̃−ÞTϒW̃−Σ̃−� ðB1Þ

but keeping the exact same discretization as before. Using
the Grönwall inequality, we easily obtain the estimate

ẼðtÞ ≤ CðtmaxÞẼð0Þ; ðB2Þ

for all 0 ≤ t ≤ tmax with CðtmaxÞ > 0 a constant indepen-
dent of initial data for any tmax. In other words, by
sacrificing strict stability (working with this adjusted
energy), we gain nondegenerate estimates, and, because
we have not actually changed the discretization, we still
have strict stability in the degenerate physical energy.

APPENDIX C: DISSIPATION OPERATOR

In this Appendix, we first give a brief discussion of
standard dissipation operators before showing, in the
second part, how these operators can be naturally included
within our framework, both at the origin in spherical polar
coordinates and near null infinity.

1. For 1D and in the trivial L2 norm

We start by considering the fourth-order Kreiss-Oliger
dissipation operator [52,62,63]

QKO ¼ −ϵh3h−4ðDþD−Þ2; ðC1Þ

where ϵ is the dissipation parameter whose value is set in
our numerical evolutions. We will assume that we have an
operator Qd which agrees with this in the bulk of the grid
and taking an alternative form to be fixed just at a small
number of grid points near the boundaries. Ultimately, we
will “thread” the weights present in our norms through this
operator to render it suitable for use with the second-order
accurate D and D̃ operators. Here,

ðD�fÞI ¼ � fI�1 − fI
2

ðC2Þ

are the forward and backward finite-difference operators,
denoted by plus and minus signs, respectively. This
dissipation operator, which is centered, is defined only
in the bulk and corresponds to the fourth-order derivative of
a dynamical variable at second-order accuracy suppressed
by a power of the grid spacing:

½h−4ðDþD−Þ2f�I ¼
fI−2 − 4fI−1 þ 6fI − 4fIþ1 þ fIþ2

h4

¼
�
fð4ÞI þ h2

6
fð6ÞI þ � � �

�
: ðC3Þ

Ideally, we wish to define Qd at the outer boundary in such
a way that the following desirable properties are satisfied:
(1) It satisfies the DP, as detailed momentarily.
(2) It should be h3 times a discrete approximation of the

fourth -order derivative, as in Eq. (C3), of the
dynamical variable on which it acts.

The DP, as described in Ref. [37], is the requirement that,
in the inner product that induces the norm used to establish
stability, Qd satisfies the inequality

ðΨ; QdΨÞ ≤ 0; ðC4Þ

for any state vector Ψ. In this subsection, for simplicity, we
assume that the state vector consists of a single grid
function Ψ and work with the norm

ðΨ;ΨÞϒ ¼ ΨTϒΨ: ðC5Þ
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The second desirable property assures that this operator
vanishes like h3 in the continuum limit. In other words, it
assures that the dissipation term in each equation acts like a
higher-order error associated with a finite-differencing
scheme, which we want to match for every grid point.
We next consider the form that each of these properties

alone gives to Qd at the outer boundary. We denote the
dissipation operator obtained by demanding the first
property alone by Qd1 and that obtained from the second
property alone by Qd2. Presently, we do not know how, or
if, both can be imposed simultaneously. We will ignore the
coefficient ϵ in our calculations, as it plays no role there.
Substituting Eq. (C1) in the norm on the left of Eq. (C4),

with the norm defined by Eq. (C5), gives

ΨTϒQdΨ ¼ −kDð2ÞΨk2 þ ðboundary termsÞ; ðC6Þ

where

kDð2ÞΨk2 ¼ ðDð2ÞΨÞTðDð2ÞΨÞ ðC7Þ

is the trivial l2 norm. Here, Dð2Þ is a centered finite-
difference operator which approximates the second-order
derivative of a smooth function f projected on the grid at
second-order accuracy and is defined as

ðϒ−2Dð2ÞfÞI ¼
fI−1 − 2fI þ fIþ1

h2
¼ f00I þ

h2

12
fI⁗þ � � �

ðC8Þ

in the bulk, and ϒ is defined by Eq. (61), with hN ¼ h=2.
The form of the first term on the right of Eq. (C6) is not
surprising, because, in the continuum setting, we have

ðf; fð4ÞÞ≡
Z

rI

0

ff0000dr

¼
Z

rI

0

ðf00Þ2drþ ðff000 − f0f00ÞjrI0 : ðC9Þ

The form of the boundary terms above will depend on the
definition ofQd at the boundary. In order to satisfy theDP, as
defined by Eq. (C4), one possibility is to force the boundary
terms to be identically zero. This leads to definingQd1 from
the equation ðΨ; Qd1ΨÞ ¼ −kDð2ÞΨk2, to get

Qd1 ¼ −ϒ−1ðDð2ÞÞTDð2Þ: ðC10Þ

Here,Dð2Þ is defined by Eq. (C8) for I ¼ 0;…; N − 1. At the
last grid point, we define Dð2Þ as

ðϒ−2Dð2ÞfÞN ¼ fN−2 − 2fN−1 þ fN
h2

¼ f00N þ hf000N þ � � � :
ðC11Þ

This gives

ðDð2ÞfÞN ¼ fN−2 − 2fN−1 þ fN
4

: ðC12Þ

The resultingQd1 is the sameasEq. (C1) in thebulk and takes
the following form at the outer boundary:

0
BBBBBBBBBBBB@

· · · · · · ·

· − 6
h

4
h − 1

h 0 0 0

· 4
h − 6

h
4
h − 1

h 0 0

· − 1
h

4
h − 6

h
4
h − 1

h 0

· 0 − 1
h

4
h − 97

16h
33
8h − 17

16h

· 0 0 − 1
h

33
8h − 21

4h
17
8h

· 0 0 0 − 17
8h

17
4h − 17

8h

1
CCCCCCCCCCCCA

: ðC13Þ

With this definition,Qd1f ≈ h3fð4Þ in the bulk and is ≈hfð2Þ
at the last three grid points. Therefore, it is expected thatQd1
affects the pointwise convergence at the last three grid points,
at least in the TEM scheme, as it dominates the truncation
error there, which is ≈h2fð3Þ for that scheme. There is no
sense in incorporating the TEM property in the definition of
Dð2Þ in the construction of Qd1, because doing so does not
avoid these lower-order terms in the final operator.
If we instead prioritize the second desirable property

when defining Qd near the outer boundary, we need to
redefine the operator only at the last two grid points. This
property assures that the dissipation operator does not
affect the pointwise accuracy of the numerical scheme at
any grid point. We do not need to incorporate TEM to
define this operator at the last two grid points, as it is
already Oðh3Þ and we ignored all the terms in our TEM
discretization of order higher than h3. Remember that we
matched all the h2 and h3 coefficients in the finite-differ-
ence approximation D to the partial derivative ∂r at all grid
points to derive our TEM scheme. Demanding only that the
dissipation operator should correspond to h3fð4Þ at its
lowest order and ignoring the associated errors, we need
only a five-point stencil to define it at the last two grid
points. From this, we obtain

ðQd2fÞN−1 ¼ ϵh−1ð−fN−4 þ 4fN−3 − 6fN−2 þ 4fN−1

− fNÞ
¼ −ϵh3½h−4D3

−Dþf�N−1 ðC14Þ

and

ðQd2fÞN ¼ ϵh−1ð−fN−4 þ 4fN−3 − 6fN−2 þ 4fN−1 − fNÞ
¼ −ϵh3½h−4D4

−f�N: ðC15Þ
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In this case, the operator Qd2 satisfies Eq. (C6), where the
boundary terms are merely obtained from the difference
between Qd2 and Qd1, and we get

ðΨ; Qd2ΨÞϒ ¼ −kDð2ÞΨk2 þ
�
−ΨN−4ΨN−1 −

ΨN−4ΨN

2

þ 5ΨN−3ΨN−1 þ 2ΨN−3ΨN þ Ψ2
N−2
16

−
41ΨN−2ΨN−1

4
−
15ΨN−2ΨN

8
þ 37Ψ2

N−1
4

−
13ΨN−1ΨN

4
þ 9Ψ2

N

16

�
: ðC16Þ

It is not immediately clear ifQd2 satisfies the DP. Assuming
that we are treating the initial data for which the TEM
scheme is convergent, we can Taylor expand all ΨI’s in the
boundary term at the last grid point to obtain

ðΨ; Qd2ΨÞϒ ¼ −kDð2ÞΨk2 þOðh3Þ: ðC17Þ

Therefore, at sufficient resolution, we can make the h3 term
smaller such that only the bulk term, which is negative
definite, dominates. In this weak sense Qd2 is still dis-
sipative, even if it does not satisfy the DP.

2. In 3D, spherical polar coordinates, and energy norm

As we will be using the energy norm to perform our
norm convergence tests, the next step is to construct a
dissipation operator which satisfies the DP directly in our
energy norm and in spherical polar coordinates. Since the
weights of Ψ̃, Σ̃þ, and Σ̃− in our energy norm differ, we
need to define these operators differently for each grid
function. This needs to be done in such away that a nontrivial
dissipative effect is maintained on the solution at the origin
itself. Our basic strategy is to take an operator Qd known to
satisfy the DP for a single grid function in the ð·; ·Þϒ norm
used in the last section and then thread our weights into it.
Schematically, this looks like ðW−1=2ÞQdðW1=2Þ away from
the origin. Recalling that eachW ∼ r2 near the origin, we use
l’Hôpital’s rule to regularize the operator there. The remain-
ing subtlety to overcome is the parity of our evolved
variables,which are a combinationof even andoddquantities
that makes the application of l’Hôpital’s rule delicate for
general fields. To see this, note, for example, that the second-
order differential operator Δψ ≡ r−1∂2

rðrψÞ is defined only
on even functions, so a vector Laplace operator (or some
such) is required.
We now outline the complete construction. We start by

taking the DP operator Qd1 from before, now replacing the
ϵ parameter. From this, we define two auxiliary operators

Q̂1 ¼ Qd1; ðC18Þ

which is well defined on odd grid functions, and

Q̂2 ¼ ½r�TQd1½r�; ðC19Þ
which is well defined on even grid functions. Both satisfy
the DP using ð·; ·Þϒ. The next question is, given Q̂1 and Q̂2,
how to use them with our equations of motion. Considering
our evolution system, we know that Ψ is an even function.
Using the parity conditions (A2), we can also separate Σ̃þ

and Σ̃þ into their even and odd parts with

Σ̃þ ¼ Σ̃þ þ Σ̃−

2
þ Σ̃þ − Σ̃−

2
;

Σ̃− ¼ Σ̃− þ Σ̃þ

2
þ Σ̃− − Σ̃þ

2
: ðC20Þ

The first terms on the right are the even parts of Σ̃þ and Σ̃−,
respectively, and the second their odd parts. Defining

Σ̃e ≔
Σ̃þ þ Σ̃−

2
; Σ̃o ≔

Σ̃þ − Σ̃−

2
; ðC21Þ

we get

Σ̃þ ¼ Σ̃e þ Σ̃o; Σ̃− ¼ Σ̃e − Σ̃o: ðC22Þ

Observe that the state vector U can be written as U ¼
ðΨ̃; Σ̃þ; Σ̃−ÞT or as V ≔ ðΨ̃; Σ̃e; Σ̃oÞT . These two represen-
tations are related as U ¼ TV, with

T ¼

0
B@

1 0 0

0 1 1

0 1 −1

1
CA: ðC23Þ

Observe that T ¼ T̂Λ with Λ ¼ diagð1; ffiffiffi
2

p
;

ffiffiffi
2

p Þ and T̂ a
symmetric, orthogonal matrix. The weight matrices in our
energy norm satisfy the parity conditions

W̃ð−rÞ ¼ W̃ðrÞ and W̃�ð−rÞ ¼ W̃∓ðrÞ: ðC24Þ

Now, away from the origin, we can define the dissipation
operator as

Q ¼ H−1=2T̂QdT̂H1=2; ðC25Þ

with

Qd ¼

0
B@

Q̂1 0 0

0 Q̂1 0

0 0 Q̂2

1
CA: ðC26Þ

At the origin, we simply apply l’Hôpital’s rule which, as
mentioned above, results in a regular operator. Crucial here
is that Qd satisfies the DP in the ð·; ·Þϒ norm. This
definition guarantees that the dissipation operators respect
the parity of the fields to which they are applied, because
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T−1QU ¼ ðTTH1=2TÞ−1QdðTTH1=2TÞV; ðC27Þ

where bothQd, the matrix given in parentheses on the right,
and its inverse respect parity. To verify that this choice
satisfies the DP in our energy norm, we compute directly
obtaining

UTϒHQU ¼ ðT̂H1=2UÞTϒQdðT̂H1=2UÞ ≤ 0; ðC28Þ

as desired. This requires the fact that H1=2 and T̂ commute
with ϒ, along with the other properties noted above. In our
discretization, we use the operator by choosing

d
dt

U ¼ …þQU; ðC29Þ
where the ellipses denote right-hand sides obtained solely
from the earlier scheme. More explicitly, we can write
this as

_̃Ψ ¼ � � � þ ð½r2� þ ½F�W̃Þ−1=2Q̂1ð½r2� þ ½F�W̃Þ1=2Ψ̃;
_̃Σþ ¼ � � � þ 1

4
½ðW̃þÞ−1=2ðQ̂1 þ Q̂2ÞðW̃þÞ1=2Σ̃þ þ ðW̃þÞ−1=2ðQ̂1 − Q̂2ÞðW̃−Þ1=2Σ̃−�;

_̃Σ− ¼ � � � þ 1

4
½ðW̃−Þ−1=2ðQ̂1 − Q̂2ÞðW̃þÞ1=2Σ̃þ þ ðW̃−Þ−1=2ðQ̂1 þ Q̂2ÞðW̃−Þ1=2Σ̃−�; ðC30Þ

with suitable application of l’Hôpital’s rule understood at
the origin. To derive this, we use the adjusted energy norm
(B1). To see that the dissipation effectively removes energy
from the system, we need only compute the time derivative
of the energy norm, obtaining

_̃E ¼ � � � þ 1

2
UTHϒQU; ðC31Þ

as desired. We close with the observation that the dis-
sipation operator is not defined at all grid points for
which FR0 becomes unbounded, as is the case with
LMKGE at Iþ. (Although, in that case, neither the
SBP-Stable nor the SBP-TEM scheme are defined
anyway.)
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