
 

Motion of charged particles around a magnetic black hole
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We study the motion of charged particles in a family of five-dimensional solutions describing either a
black hole or topological star with a fifth compact dimension stabilized by a magnetic flux. The particle’s
trajectory is shown to move along the surface of a Poincaré cone. The radial motion shows a rich structure
where the existence of various bound, plunging, or escaping trajectories depend on the constants of motion.
Curves of energy and angular momentum corresponding to spherical orbits show a swallow-tail structure
highly reminiscent to phase transitions of thermodynamics. When the momentum along the compact
direction is varied, the is a critical point beyond which the swallow-tail kink disappears and becomes a
smooth curve.
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I. INTRODUCTION

The study of geodesics and particle motion within a
spacetime is an important tool to understand the proper-
ties of a gravitational system. For instance, the stability
of circular orbits is linked to quasinormal modes of the
spacetime [1].1 From an astrophysical standpoint, the
size of innermost stable circular orbits of charged
particles around a black hole may reveal features of
magnetic fields in its vicinity [3]. In fact, as the direct
imaging of a black hole is now a reality [4], one can
seriously consider the optical appearance of the black
hole, which can be calculated by considering null
geodesics around it [5–8]. For instance, this has been
done for braneworld gravity [9] and gravity coupled to
non-linear electrodynamics [10].
In recent decades, theories of gravity with extra

dimensions have received attention due to developments
in theoretical physics such as string theory, holographic
correspondences, and braneworld scenarios, among
many others. A simple and natural candidate of a
gravitating source in higher dimensional gravity
would be a black hole with a compact fifth dimension.
However, these black holes, including electrically
charged ones, are known to suffer from Gregory–
Laflamme instability [11,12]. (See, e.g., Refs. [13–15]
for reviews).
The possibility of stable black holes with compact extra

dimensions was raised by Stotyn and Mann in [16], where
they argued that the presence of a magnetic charge may

stabilize the spacetime.2 They introduced a solution to the
five-dimensional Einstein–Maxwell equations character-
ized by two parameters, which are denoted ðα; βÞ in the
notation of the present paper. If α > β, the spacetime carries
a horizon and hence describes the black hole with the
compact extra dimension stabilized by the magnetic charge.
On the other hand, if α < β, it describes a type of soliton

star [16]. In this case, if a certain minimum radial distance
is approached the spacetime caps off in a “cigarlike”
geometry. Conical singularities may be present, unless
the periodicity of the compact fifth dimension is appropri-
ately fixed. In Refs. [19,20], Bah and Heidmann allow the
presence of orbifold fixed points. This introduces topo-
logical cycles in the compact fifth direction, and these
solutions were called topological stars by the authors. In
this case, the magnetic field determines the minimum radial
distance where the spacetime caps off. When the magnetic
field is zero, this does not happen as the spacetime is simply
a direct product between a Schwarzschild/Minkowski
spacetime and a circle.
In this paper, we study the motion of charged particles in

this family of solutions described in the preceding para-
graphs. We shall use the terminology magnetic Kaluza–
Klein black hole (KKBH) to refer to the case α > β, and
magnetic topological star (TS) to refer to the case α < β.
Since we always consider a nonzero magnetic field through-
out the paper, we will often drop the term “magnetic” since it
will be understood that it will be present at all times.

*yenkheng.lim@xmu.edu.my
1However, see Ref. [2] about the subtleties regarding the

precise relation between the two.

2On the other hand, one can also have stable black strings
or more generally black p-branes, by considering Anti-de
Sitter black strings or p-branes supported by scalar fields [17].
These configurations were recently shown to be perturbatively
stable [18].
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A guiding intuition in understanding the physics of this
problem is the fact that the particle is under the influence of
two forces. First is the spherically symmetric gravitational
attraction toward the KKBH/TS, and second is the Lorentz
force due to a spherically symmetric magnetic field.
A similar situation occurs for a charged particle around a
magnetically charged Reissner–Nordström black hole,
which was studied by Grunau and Kagramanova in [21].
There, the authors obtained exact analytical solutions in
terms of Weierstraß functions. Further studies of particles in
the Reissner–Nordström spacetime were subsequently done
byother authors in [22–24].Anonrelativistic analogueof this
problem is the dyon-dyon interaction studied by Schwinger
et al. in [25]. (See also [26,27].) In these similar/analogue
problems, themotion of the electric charge is known tomove
on the surface of a Poincaré cone [28].
It will be shown in this paper that the same is true for

charged particles in the noncompact part of the KKBH/TS
spacetime. The main reason for this similarity across all
the aforementioned problems is that the equations of
motion in the angular coordinates are the same. They
depend only on the electromagnetic properties of the
system which are spherically symmetric, and independent
of the other parameters that distinguishes the different
systems. Relative to a choice of coordinate axes, the
opening angle and orientation of the Poincaré cone depend
on the product between the particle charge and the
magnetic field strength, as well as its angular momentum.
The radial motion of the particle can be classified into

categories depending on whether it has access to the
horizon, may escape to infinity, or bound in a finite domain.
These depend on the particle’s energy, momenta, and
whether a horizon is present in the solution. If a horizon
is present (the KKBH case) there is at most one bound
domain where the particle orbits the black hole indefinitely.
When a particle’s energy exceeds a certain threshold, no
bound orbits exist; it could either fall into the horizon or
escape to infinity. In this sense, the situation is similar
to particles around most spherically symmetric [21,29] as
well as rotating black holes [30]. On the other hand, if no
horizon is present (the TS case) the particle may have two
disconnected bound domains. Furthermore, a bound
domain may still exist when the energy exceeds the
aforementioned threshold.
The rest of the paper is organized as follows. In Sec. II

we describe the spacetime given by [19,20] and derive the
equations of motion for a charged particle in it. The
parameter space of conserved quantities of the particle,
as well as its domains of motion are studied in Sec. III.
In particular, we obtain the Poincaré cone in Sec. III A
and study the domains of radial motion in Sec. III B.
Conclusions and closing remarks are given in Sec. V. In this
paper, we use geometrical units where the speed of light
equals unity and the convention for Lorentzian metric
signature is ð−;þ;þ;þ;þÞ.

II. EQUATIONS OF MOTION

The five-dimensional KKBH/TS spacetime is described
by the metric [16,19,20]

ds2 ¼ −Udt2 þ Vdw2 þ dr2

UV
þ r2dθ2 þ r2sin2θdϕ2; ð1aÞ

U ¼ 1 −
α

r
; V ¼ 1 −

β

r
; ð1bÞ

where α and β are constants and w is the coordinate
representing the compact fifth dimension. If α > β, the
solution describes a KKBH and has a horizon at r ¼ α. On
the other hand, if α < β, the solution describes the TS
spacetime where the spacetime caps off at r ¼ β.
In this latter case, the periodicity of w can be appropri-

ately fixed to remove conical singularities, as was done in
[16], or such that certain orbifold singularities are allowed,
as was done in [19,20]. Here, we need not choose a
particular periodicity for w and mainly focus on the motion
of particles in the noncompact directions, namely ðr; θ;ϕÞ.
The gauge potential of this solution is given by

A ¼ −g cos θdϕ: ð2Þ

The Maxwell tensor is then obtained by taking the exterior
derivative, F ¼ dA. For the potential (2), the Maxwell
tensor describes a spherically symmetric inverse-square
magnetic field, whose strength is parametrized by g.
The metric (1) with the gauge potential (2) satisfies the
Einstein–Maxwell equations in five dimensions provided
that g2 ¼ 3

2
αβ.3

The motion of a test particle of charge per unit mass e is
described by a spacetime curve xμðτÞ, where τ is an
appropriate affine parameter. Here we shall take our choice
of parametrization for τ such that

gμν _xμ _xν ¼ −1; ð3Þ

where over-dots denote derivatives with respect to τ.
The motion is governed by the Lagrangian Lðx; _xÞ ¼
1
2
gμν _xμ _xν þ eAμ _xμ. For the spacetime described by (1)

and (2), the Lagrangian is explicitly

Lðx; _xÞ ¼ 1

2

�
−U_t2 þ V _w2 þ _r2

UV
þ r2 _θ2 þ r2sin2θ _ϕ2

�

− eg cos θ _ϕ: ð4Þ

Since the magnetic field strength and the particle charge
always appear together in the equations of motion, it will be
convenient to define q ¼ eg.

3We normalise our gauge field such that the Einstein–Maxwell
action appears as I ∝

R
d5x

ffiffiffiffiffiffi−gp ðR − FμνFμνÞ.
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The conjugate momenta are obtained by pμ ¼ ∂L
∂ _xμ.

Explicitly, they appear as follows:

pt ¼
∂L
∂_t ¼ −U_t; ð5aÞ

pw ¼ ∂L
∂ _w ¼ V _w; ð5bÞ

pϕ ¼ ∂L
∂ _ϕ ¼ r2sin2θ _ϕ − q cos θ; ð5cÞ

pr ¼
∂L
∂ _r ¼ _r

UV
; ð5dÞ

pθ ¼
∂L
∂ _θ ¼ r2 _θ: ð5eÞ

Since our spacetime has three Killing vectors ∂t, ∂w, and∂ϕ, the momenta along these directions are constants of
motion. We shall denote the constants by

pt ¼ −E; pw ¼ P; pϕ ¼ L; ð6Þ
representing the energy, linear momenta along the w-
direction, and the angular momentum of the particle,
respectively. The evolution of t, w, and ϕ are determined
by the first integrals

_t ¼ E
U
; _w ¼ P

V
; _ϕ ¼ Lþ q cos θ

r2sin2θ
: ð7Þ

The equations of motion for r and θ can be obtained from
the Euler–Lagrange equations, giving

θ̈ ¼ −
2_r _θ
r

þ cos θðLþ q cos θÞ2
r4sin3θ

þ qðLþ q cos θÞ
r4 sin θ

; ð8Þ

̈r ¼ 1

2

�
U0

U
þ V 0

V

�
_r2 þ rUV _θ2 −

VU0E2

2U
þ UV 0P2

2V

þ UVðLþ q cos θÞ2
r3sin2θ

; ð9Þ

where primes denote derivatives with respect to r.
We also note that Eq. (3) can be regarded as another

equation of first integrals. Using Eq. (7) to express _t, _w, and
_ϕ in terms of the constants of motion, we have

_r2

UV
þ r2 _θ2 −

E2

U
þ P2

V
þ ðLþ q cos θÞ2

r2sin2θ
¼ −1: ð10Þ

Equations (8) and (9) can be solved numerically while
using Eq. (10) as a consistency check. In this work, this is
performed by implementing the fourth-order Runge–Kutta
algorithm in C.
A deeper analytical insight can be found by considering

the Hamilton–Jacobi equation Hð∂S∂x ; xÞ þ ∂S
∂τ ¼ 0, where

Hðp; xÞ ¼ 1
2
gμνðpμ − eAμÞðpν − eAνÞ is the Hamiltonian

obtained from the Legendre transform of the Lagrangian.
Explicitly, the Hamilton–Jacobi equation for our present
context reads

1

2

�
−
1

U

�∂S
∂t

�
2

þ 1

V

�∂S
∂w

�
2

þ UV

�∂S
∂r

�
2

þ 1

r2

�∂S
∂θ

�
2

þ 1

r2sin2θ

�∂S
∂ϕþ q cos θ

�
2
�
þ ∂S

∂τ ¼ 0: ð11Þ

For this system, the Hamilton–Jacobi equation is com-
pletely separable, giving the first integrals

_t ¼ E
U
; _w ¼ P

V
; _ϕ ¼ Lþ q cos θ

r2sin2θ
; ð12aÞ

r2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ L2 −

ðLþ q cos θÞ2
sin2θ

s
; ð12bÞ

r2 _r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ðVE2 −UP2Þ − r2UVðr2 þ L2 þQÞ

q
; ð12cÞ

where Q is the Carter-like [31] separation constant.
We further simplify the equations by introducing a

Mino-type parameter [32] defined by dτ
dλ ¼ r2, and changing

variables to x ¼ cos θ. Then the equations of motion now
become

dt
dλ

¼ r2E
U

; ð13aÞ

dw
dλ

¼ r2P
V

; ð13bÞ

dϕ
dλ

¼ Lþ qx
1 − x2

; ð13cÞ

dx
dλ

¼ ∓ ffiffiffiffiffiffiffiffiffiffi
XðxÞ

p
; ð13dÞ

dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð13eÞ

where

XðxÞ ¼ Q2ð1 − x2Þ − ðLþ qxÞ2; ð14aÞ

RðrÞ ¼ r4ðVE2 −UP2Þ − r2UVðQþ L2 þ r2Þ: ð14bÞ

III. PARAMETER AND COORDINATE RANGES

A. Angular motion

The polar motion with x ¼ cos θ is governed by XðxÞ in
Eq. (14a). Since dx

dλ must be real in Eq. (13d), the particle is
allowed to move in the domain where XðxÞ ≥ 0. Clearly,
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we see that no such domain exist if Qþ L2 ≤ 0. Therefore
the Carter-like constant Q is restricted to Q > −L2. When
this is satisfied, XðxÞ is non-negative in the domain
x− ≤ x ≤ xþ,

x− ≤ x ≤ xþ; ð15Þ

where

x� ¼ −qL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQþ q2ÞðQþ L2Þ

p
Qþ L2 þ q2

: ð16Þ

The domain (15) is nonempty if ðQþ q2ÞðQþ L2Þ ≤ 0.
Since we already argued above thatQ > −L2, we then have
Qþ q2 ≥ 0.

ðQ;LÞ ∈ fQþ L2 > 0 and Qþ q2 ≥ 0g: ð17Þ

Equation (13d) can be integrated explicitly upon a
choice of branch and initial conditions. Here, let us
consider two specific choices, xð0Þ ¼ xþ and xð0Þ ¼ x−.
In the former, we take the upper (negative) sign of
Eq. (13d), whereas in the latter we take the lower (positive)

sign. These choices will give an increasing λ as the particle
evolves away from their respective initial conditions. The
integration is then4Z

x

x�

dx0ffiffiffiffiffiffiffiffiffiffiffi
Xðx0Þp ¼ ∓

Z
λ

0

dλ0

xðλÞ ¼ xþ þ x−
2

� xþ − x−
2

cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ L2 þ q2

q
λ

�

xðλÞ ¼ 1

Qþ L2 þ q2

h
−qL�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQþ q2ÞðQþ L2Þ

q

× cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qþ L2 þ q2
q

λ
�i

: ð18Þ

We can also obtain an analytical solution for ϕ expressed as
a function of x by eliminating λ from Eq. (13c) and (13d),
giving

dϕ
dx

¼ ∓ Lþ qx

ð1 − x2Þ ffiffiffiffiffiffiffiffiffiffi
XðxÞp : ð19Þ

The integral can be performed with the aid of partial fraction
decomposition on the factor 1=ð1 − x2Þ. The result is

ϕðxÞ ¼ ðsgnðL − qÞ þ sgnðLþ qÞÞ π
4
� 1

2

	
sgnðL − qÞ arcsin

� ðL − qÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQþ q2ÞðQþ L2Þ

p �
1

1þ x
−
Qþ L2 þ q2 − qL

ðL − qÞ2
��

− sgnðLþ qÞ arcsin
� ðLþ qÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQþ q2ÞðQþ L2Þ
p �

1

1 − x
−
Qþ L2 þ q2 þ qL

ðLþ qÞ2
��


; ð20Þ

where the “�” signs are in accordance to the choice of
initial conditions of xðλÞ in Eq. (18). We have also defined
the sign function as sgnðxÞ which returns �1 if x ≷ 0 and
returns 0 if x ¼ 0.
It is worth noting that the angular equations of motion

are independent of α and β, and are purely due to the
Lorentz interaction between the charge and the spherically
symmetric magnetic field. As alluded to in the Introduction,
the equations of motion for x ¼ cos θ and ϕ are in fact
identical to the equations of motion for a charged particle
around a magnetically charged Reissner–Nordström black
hole [21,23,24,29], as well as the nonrelativistic dyon-dyon
interaction [25,26] where the motion is confined to the
Poincaré cone.
We will show that the Poincaré cone also exists in our

context of the KKBH/TS spacetime as well. If we take our
coordinates ðr; θ;ϕÞ to define a naive Euclildean three-
space with fêr; êθ; êϕg as the orthonormal basis in spherical
coordinates, the vector

J⃗ ¼ −q êr − r2 sin θ _ϕêθ þ r2 _θêϕ ð21Þ

is conserved throughout the motion, i.e., d
dτ J⃗ ¼ 0⃗. In the

nonrelativistic case, this quantity is the total angular
momentum of the system [25–27]. This implies that the
particle moves on the surface of a cone which subtends an
angle χ such that

cos
χ

2
¼ −

J⃗

jJ⃗j · êr ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þQþ L2
p : ð22Þ

If we further define a Cartesian coordinate system in this
naive Euclidean space by

x1 ¼ r sin θ cosϕ; x2 ¼ r sin θ sinϕ; x3 ¼ r cos θ;

ð23Þ
the angle ψ of the cone’s axis with the x3-direction (the axis
passing through the north and south poles) is given by

cosψ ¼ J⃗

jJ⃗j · ê3 ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þQþ L2
p ; ð24Þ

where Eq. (12) was used and ê3 is the unit vector along x3.

4Note that in the argument of the cosine function, λ lies outside
the square root.

YEN-KHENG LIM PHYS. REV. D 103, 084044 (2021)

084044-4



B. Radial motion

The motion in the r-direction is governed by the function
RðrÞ defined in Eq. (14b), which we will rewrite here as

RðrÞ ¼ c4r4 þ c3r3 þ c2r2 þ c1rþ c0; ð25Þ

where

c4 ¼ −ð1þ P2 − E2Þ; ð26aÞ

c3 ¼ αþ β − βE2 þ αP2; ð26bÞ

c2 ¼ −ðαβ þQþ L2Þ; ð26cÞ

c1 ¼ ðαþ βÞðQþ L2Þ; ð26dÞ

c0 ¼ −αβðQþ L2Þ: ð26eÞ

From Eq. (13e), the requirement that drdλ be real means the
particle can only access the domains of r where RðrÞ ≥ 0.
We identify these domains by studying the root structure of
RðrÞ, which serves as possible boundaries of the domains.
It will be convenient to define K ¼ L2 þQ, as L and Q

always appear in this combination in RðrÞ. To aid our
discussion below, we introduce the following terminology
for the possible domains of r such that RðrÞ ≥ 0:

(i) Plunging orbits. A finite domain of r which contains
the horizon r ¼ α. Particles in this domain may fall
into the horizon.

(ii) Escaping orbits. A (semi-)infinite domain of r,
where RðrÞ remains positive as r → ∞. Particles
in this domain can escape to infinity.

(iii) Bound orbits. A finite domain bounded by two roots
of RðrÞ. Particles in this domain are in stable bound
orbits, neither falling into the black hole or escaping
to infinity.

Suppose we start with a case where RðrÞ has four real
roots. Varying E, P, and K will generally vary the positions
of each root. A pair of roots will coalesce into a degenerate
root when RðrÞ ¼ R0ðrÞ ¼ 0. A particle located at this
point will solve the equations of motion for constant r,
which we will call a circular orbit.5 This condition is
satisfied when the energy and angular momentum satisfies

E2 ¼ E2
0 ¼

ðr − αÞ2½2ðr − βÞ2 þ r2ð2r − 3βÞP2�
rðr − βÞ2ð2r − 3αÞ ; ð27aÞ

L2 þQ ¼ K0 ¼
r2½αðr − βÞ2 þ r2ðα − βÞP2�

ðr − βÞ2ð2r − 3αÞ : ð27bÞ

For a given α, β, and P, plotting Eq. (27) as a parametric
curve in r on the E2-K plane will serve as a boundary
separating domains for which RðrÞ has various numbers of
real or complex roots.
We can identify which pair among the four roots are

degenerate by evaluating the second derivative

R00ðrÞ
���E¼E0 ;
L¼L0

¼ −
2½αðr − βÞ3ðr − 3αÞ þ r2ðα − βÞðr2 − 3ðαþ βÞrþ 6αβÞP2�

ðr − βÞ2ð2r − 3αÞ : ð28Þ

If the double root of RðrÞ is a local minimum, this
corresponds to an unstable circular orbit. On the other
hand, if this double root is a local maximum, the circular
orbit is stable as a small perturbation puts it in small
oscillations about its original radius. The critical circular
orbit (CCO) is rCCO such that R00ðrCCOÞ ¼ 0. This is the
critical radius where a circular orbit changes from being
unstable to stable, or vice versa. Indeed, if P ¼ β ¼ 0, and

letting α ¼ 2m, we recover the innermost stable circular
orbit (ISCO) of the Schwarzschild black hole, rISCO ¼ 6m.6

Looking at large r, we find that, asymptotically,

E2
0 ∼ 1þ P2 −

1

2
ðαþ ðα − βÞP2Þ 1

r
þO

�
1

r2

�
; ð29aÞ

K0 ∼
1

2
ðαþ ðα − βÞP2Þrþ 1

4
ð3αþ 4βÞðα − βÞP2

þ 3

4
α2 þO

�
1

r

�
: ð29bÞ

5The term “circular” used here has an interesting roundabout
connotation. Usually, constant-r solutions of spherically sym-
metric equations of motion reduces to a circle because the
symmetry confines the motion to a plane containing the origin.
When spherical symmetry is not present, constant-r trajectories
may lie on a sphere, and are typically called spherical orbits [33].
At the same time we have shown in the previous subsection that
the trajectories lie on a Poincaré cone. The intersection between a
cone and a sphere whose apex and centres coincide is, again, a
circle.

6As we shall see in the following, the reason we use the
terminiology “critical circular orbit” rather than “innermost” is
there may be multiple points satisfying R00ðrÞ ¼ 0, and hence
innermost is no longer accurate.
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Next we will explore the E2-K space as α varies, starting
from α > β (the KKBH case), and then for α < β (the
TS case).

1. α > β (KKBH)

We begin with α > β, which correspond to spacetimes
with an event horizon. The E2 − K space can be organized
into domains separated by curves E2 ¼ E2

0 and K ¼ K0, as
defined in Eq. (27). Fig. 1 demonstrates the domains for the
concrete example α ¼ 2, β ¼ 1, and P ¼ 0.2.
For α > β, we find that there are two branches of circular

orbits. The unstable branch has R00ðrÞ > 0 and occurs for

3
2
α < r < rCCO and is the upper branch depicted in Fig. 1.

This branch tends to infinity as r → 3
2
α. On the other hand,

the stable branch is the one with R00 < 0 and corresponds to
rCCO < r < ∞. This branch asymptotically approaches
E2 ¼ 1þ P2 as r → ∞, in accordance to Eq. (29).
The horizontal red line is E2 ¼ 1þ P2. Values of E2

below this line makes the leading coefficient c4 of RðrÞ
negative. We shall call this case A. Conversely, values of E
above this line shall be called case B for which c4 is
positive.
First we look at Case A. As the leading coefficient c4 is

negative, we have RðrÞ < 0 for values of r beyond its
largest root. This implies that the particle is unable to
escape to infinity. The parameters giving four real roots of
RðrÞ lie in domain A1 in Fig. 1. The structure of these four
roots can be understood with the aid of the Descartes rule of
signs. ForK ¼ L2 þQ satisfying (17), along with α, β ≥ 0,
we see that c2 < 0, c1 > 0, and c0 ≤ 0.
The remaining coefficient c3 can be rearranged as

c3 ¼ β

�
α

β
ð1þ P2Þ − E2

�
:

Since E2 < 1þ P2 and α > β, this term is positive. By the
Descartes rule of signs, RðrÞ in this case has four positive
roots. Since RðαÞ ¼ E2α3ðα − βÞ > 0, the number of roots
located outside the horizon is either 3 or 1. From these
considerations, we conclude that, for E2 < 1þ P2, there is
always a plunging orbit and at most one bound orbit. A
sketch of such a situation is shown in Fig. 2(a), which
occurs when E and K takes values in the subdomain A1 of
Fig. 1. For r > rCCO, the two largest roots will coalesce,
shrinking the domain of bound orbit to a point, giving a
stable circular orbit. On the other hand, if r < rCCO, the
second and third largest roots coalesce such that the

(a) (b)

(c) (d)

FIG. 2. Sketches of y ¼ RðrÞ for various cases of energy and angular momentum, corresponding to domains (a)–(d) of the L-E plane
of Fig. 1. The vertical red lines indicate the horizon r ¼ α. The allowed domains of r corresponding to RðrÞ ≥ 0 are marked as thick blue
lines. For each allowed domain, the labels plunging, escaping, and bound are as defined in the main text.

FIG. 1. Parameter space described by angular momentum L and
energy E, plotted here for α ¼ 2, β ¼ 1, and P ¼ 0.2. The blue
curves corresponds to the circular orbits, where the second
derivatives of RðrÞ on these orbits are indicated. The segment
with R00ðrÞ < 0 give stable circular orbits while and the other
segment with R00ðrÞ > 0 give unstable circular orbits. The two
segments meet at r ¼ rCCO. The four domains marked A1, A2,
B1, and B2 have functions RðrÞ sketched in Figs. 2(a), 2(b), 2(c),
and 2(d), respectively.
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plunging and bound domains are only separated by a point,
which is the unstable circular orbit. For this case (α > β),
we see that it is indeed appropriate to call rCCO the
innermost stable circular orbit.
Varying E2 and K further until the pair of roots become

complex, the function RðrÞ will appear as sketched in
Fig. 2(b), where only a plunging orbit can exist. This occurs
when E2 and K takes values in subdomain A2 of Fig. 1.
We now turn to Case B, where E2 > 1þ P2. Now c4 is

positive. Whether c3 is positive or negative, the Descartes
rule of signs tells us that RðrÞ has either three positive
roots or one positive root. Since RðrÞ is positive at the
horizon, we conclude that there are no bound orbits in this
case. The possible types of motion are either plunging
and/or escaping orbits. More specifically, there are two
subdomains B1 and B2, where domain B1 corresponds
to functions RðrÞ appearing in the form sketched in
Fig. 2(c), and domain B2 have functions appearing as
sketched in Fig. 2(d).
Finally we look specifically at the circular orbits,

which lie on the boundary curves separating the domains

discussed above, as shown in Fig. 1. In particular, the
curve (27) for 3

2
α < r < rCCO is the upper curve. Particles

whose energy and angular momentum taking values along
this upper curve are unstable spherical orbits. The lower
curve gives stable circular orbits with radii in the
range rCCO < r < ∞.

2. 2
3 β < α < β (TS)

When β > α, the spacetime describes a TS without the
presence of a horizon. The structure of the parameter space
in this case is richer, as there can be up to three branches of
circular orbits, depending on the value of P. Figure 3 shows
the sequence of the curves (27) for the concrete example
α ¼ 1.5, β ¼ 2, and increasing values of P.
We shall attempt to understand these structures by

looking closely at the circular orbit conditions. The various
root configurations shall be given labels similar to the
black-hole case, with the main difference being that,
instead of a horizon, we have the tip of the spacetime
r ¼ β. We note that

(a) (b)

(c) (d)

FIG. 3. Parameter space for the TS spacetime with α ¼ 1.5, β ¼ 2, and various P. The horizontal direction represents L2 þQ and the
vertical direction represents E2. The horizontal red lines correspond to E2 ¼ 1þ P2.
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RðβÞ ¼ −P2β3ðβ − αÞ ≤ 0: ð30Þ

In other words, as long as P is nonzero, the spacetime tip
is not accessible to the particle. We modify our sketch of
RðrÞ for the various cases accordingly to obtain Fig. 4.
The vertical lines, now in green, represent the end-of-
spacetime position r ¼ β.
Looking Eq. (27b), we should keep in mind that this

quantity must be positive due to Eq. (17). Since now β > α,
this quantity changes sign at

β
ffiffiffi
α

pffiffiffi
α

p ∓ P
ffiffiffiffiffiffiffiffiffiffiffi
β − α

p and
3

2
α: ð31Þ

The root r ¼ β
ffiffi
α

pffiffi
α

p þP
ffiffiffiffiffiffi
β−α

p is beyond r < β, so we need not

consider this unphysical location. For the next root, we
introduce the notation

r� ¼
β

ffiffiffi
α

pffiffiffi
α

p
− P

ffiffiffiffiffiffiffiffiffiffiffi
β − α

p > β: ð32Þ

At fixed α and β, either r� is larger or smaller than 3α=2,
depending on the value of P. We consider each case in turn:
If 0 < P < 3α−2β

3
ffiffi
α

p ffiffiffiffiffiffi
β−α

p , then r� < 3
2
α. In this case K0 is

positive for β < r < r� and 3
2
α < r < ∞. An example of this

situation is shown in Fig. 3(a). The branch β < r < r�

corresponds to the middle branch of Fig. 3(a), starting from
large positive infinity at r → β, andgoing toK ¼ 0 as r → r�.
For this branch, we find R00ðrÞ < 0 which correspond to
stable circular orbits. The domain r� < r < 3

2
α gives negative

K so we do not consider it here. Next, increasing r
continuously from 3

2
α, we have a stable branch until r reaches

the critical point rCCO. This point correspond to the sharp cusp
in Fig. 3(a). After this critical point, the remaining branch
rCCO < r < ∞ is a branch of stable circular orbits. In
summary, for the TS case we have two branches of stable
circular orbits, β < r < r� and rCCO < r < ∞.
If 3α−2β

3
ffiffi
α

p ffiffiffiffiffiffi
β−α

p < P < Pcrit for some Pcrit, then r� > 3
2
α.

Here we have a stable branch from r�, increasing until a
critical point, which we shall denote by rCCO1. The point
ðKðrCCO1Þ; E2

0ðrCCO1ÞÞ is the upper-right sharp cusp of
Fig. 3(b). As r increases further, we get the unstable branch
which ends at another critical point rCCO2, where its
corresponding point is the lower-left cusp in Fig. 3(b).
After which we reach a stable branch rCCO2 < r < ∞. As P
increases toward Pcrit, the two critical points rCCO1 and
rCCO2 approach each other, as can be seen in going from
Fig. 3(b) to Fig. 3(c).
As P → Pcrit, the two critical points coalesce. For the

example of α ¼ 1.5 and β ¼ 2, the value is about
Pcrit ≈ 0.354. Increasing P further beyond that results in
a smooth curve separating domains A2 and A3 [see
Fig. 3(d)], and this single branch is stable. This is highly

(a) (b)

(c)

(d) (e)

FIG. 4. Sketches of y ¼ RðrÞ for various cases of energy and angular momentum, corresponding to cases A1–A3, B1–B2 of the K-E2

plane of Fig. 3. The vertical green lines indicate r ¼ β. The allowed domains of r corresponding to RðrÞ ≥ 0 are marked as thick blue
lines. For each allowed domain, the labels escaping and bound are as defined in the main text. Since there are no horizons in this case,
there are no plunging orbits.
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reminiscent to the swallow-tail graphs of thermodynamics
depicting phase transitions.
Finally, as P increases further toward α

β−α, the single

circular orbit branch approaches the line E2 ¼ 1þ P2, thus
shrinking the domain A2. If P continues to increase beyond
that, K in Eq. (27b) becomes negative for any r and no
circular orbits can occur.

3. α < 2
3 β (TS)

For β > 3
2
α, the position r ¼ 3

2
α is beyond the physical

range. Then K0 only changes sign at r� > β. In this case,
the situation depicted in Fig. 3(a) does not exist here. The
remaining sequence of structure as P > 0 is gradually
increases is similar to the previous case, and is shown in
Fig. 5, in that there are two stable branches and one
unstable branch. As P reaches Pcrit, the unstable branch
disappears and the two stable branch merges into one,
shown in Fig. 5d. For the example α ¼ 1, β ¼ 2, the value
of the critical momentum is about Pcrit ≈ 0.53.

IV. EXAMPLES OF ORBITS AND SPECIAL CASES

A. The Poincaré cone

In Sec. III A, it was shown that the trajectory of the orbits
lie on a Poincaré cone whose orientation ψ and opening
angle χ is given by Eqs. (24) and (22), respectively. In this
section, we shall explore some concrete examples and plot
the orbits, thus demonstrating the geometrical significance
of the cone.
FromEqs. (24) and (22), we see that the angles ψ and χ are

determined byL,Q, and q. We first construct some examples
of circular orbits whose cones lie parallel to the x3-axis. For
this we require ψ ¼ 0 or ψ ¼ π. This is achieved when
Q ¼ −q2. For constant r, the requisite values of E andK are
determined by Eq. (27a) and (27b). Then the appropriate
value of L is chosen to satisfy the equation L2 ¼ K −Q.
Starting with q ¼ 0, we have a cone with opening angle

χ ¼ π, which is simply the flat x1-x2 plane. When q is
increased, the opening angles change in accordance to
Eq. (22). Some examples are shown in Fig. 6. Next if we

(a) (b)

(c) (d)

FIG. 5. Parameter space for the soliton/topological star with α ¼ 1, β ¼ 2, and various P. The horizontal direction represents
K ¼ L2 þQ and the vertical direction represents E2. The horizontal red lines correspond to E2 ¼ 1þ P2.
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wish to consider fixed opening angles, Eq. (22) tells us that
χ can be fixed if q and K ¼ Qþ L2 are fixed. So varying L
will now change the angle of the cone with respect to the
x3-axis. Some examples of this, with constant and non-
constant r are shown in Fig. 7.

B. Bound orbits around a TS

When α < β we have seen in the previous section that
there exist two distinct domains of bound orbits, which is

denoted as Case A1 and sketched in Fig. 4(a). Changing the
energy and angular momentum may cause two of the roots
to coalesce and become complex, leaving a single con-
nected domain of bound orbits, denoted Case A2 and
sketched in Fig. 4(b).

1. Low energy bound orbits (E <
ffiffiffiffiffiffiffiffiffiffiffiffi
1+P2

p
)

Let us first consider Case A1 in further detail. In this
case, RðrÞ has four real roots, which we denote to have the
following order:

r1 ≤ r2 ≤ r− ≤ rþ: ð33Þ

In Case A1, we have bound orbits where the particle can
exist either in the interval ½r1; r2� or ½r−; rþ�. If we place our
particle with initial conditions rð0Þ ¼ r1 and dr

dλ ð0Þ ¼ 0, the
trajectory of the particle is given by the analytical solution

rðλÞ ¼ ðrþ − r2Þr1 þ ðr2 − r1Þrþsnðηλ; pÞ2
rþ − r2 þ ðr2 − r1Þsnðηλ; pÞ2

; ð34Þ

where snðψ ; kÞ is the Jacobi elliptic function of the first
kind, and

η ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ P2 − E2Þðrþ − r2Þðr− − r1Þ

q
;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − r−Þðr2 − r1Þ
ðrþ − r2Þðr− − r1Þ

s
: ð35Þ

To describe bound orbits in the outer domain, let us
choose the initial conditions rð0Þ ¼ r− and dr

dλ ð0Þ ¼ 0.
Then its trajectory will be described by the solution

FIG. 6. Three spherical orbits of radius r ¼ 15 and momentum
P ¼ 0.2 around a black hole spacetime of parameters α ¼ 2,
β ¼ 1. From top to bottom, the values of q are 0, 3, and 9. The
values of E and K are as calculated from Eq. (27a) and (27b).
In each case, Q ¼ −q2, ensuring the cone is vertical and the
orbits are all parallel to the x1-x2 plane. The q ¼ 0 orbit lies on a
“cone” of opening angle π, which is simply the x3 ¼ 0 plane. For
q ¼ 3 and q ¼ 9, their opening angles are χ ¼ 1.9404 rad and
χ ¼ 0.90577 rad respectively, as determined from (22).

(a) (b)

FIG. 7. Orbits around a black hole spacetime of α ¼ 2 and β ¼ 1 of a particle of charge q ¼ 3 and momentum P ¼ 0.25. From highest
to lowest, the angular momenta are L ¼ 2 (blue), L ¼ 3 (green), and L ¼ 4 (orange). For Fig. 7(a), the values of E and K are determined
from Eq. (27). This time their underlying cones are not plotted to avoid cluttering the figure.
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rðλÞ ¼ ðrþ − r2Þr− − ðrþ − r−Þr2snðηλ; pÞ2
rþ − r2 þ ðr− − rþÞsnðηλ; pÞ2

: ð36Þ

An example of orbits in these two domains are shown
in Fig. 8.
In case A2, the function RðrÞ has two real roots, which

we denote by r1 ≤ r2. We further denote the other pair of
complex conjugate roots asm� in. Then the function RðrÞ
is written as

RðrÞ ¼ ð1þ P2 − E2Þðr2 − rÞðr − r1Þ½ðr −mÞ2 þ n2�:
ð37Þ

The particle can exist in the domain r1 ≤ r ≤ r2 where
RðrÞ ≥ 0. Choosing initial conditions rð0Þ ¼ r1 and the
upper sign for Eq. (13e), the analytical solution is

rðλÞ ¼ Br2 þ Ar1 cot f12 arcsin½snðδλ; ρÞ�g
Bþ A cot f1

2
arcsin½snðδλ; ρÞ�g ; ð38Þ

where

A ¼ ðm − r2Þ2 þ n2; B ¼ ðm − r1Þ2 þ n2;

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1þ P2 − E2Þ

q
;

ρ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðA − BÞ2 þ ðr2 − r1Þ2

AB

r
: ð39Þ

An example of such an orbit is shown in Fig. 9.

2. High energy bound orbits (E >
ffiffiffiffiffiffiffiffiffiffiffiffi
1+P2

p
)

For particles of “high” energy E >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

p
, bound

orbits may still exist for sufficiently small P where case B1
exists. In this case, the function RðrÞ has four real roots
r1 ≤ r2 ≤ r− ≤ rþ and is non-negative in the domain
r2 ≤ r ≤ r−. The leading coefficient of RðrÞ is positive.
So the function can be written as

FIG. 8. Orbits around a topological star spacetime with α ¼ 1.5,
β ¼ 2, for a particle with q ¼ 3, P ¼ 0.25, E ¼ ffiffiffiffiffiffiffiffiffi

0.97
p

, K ¼ 6.8,
Q ¼ 1, and L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

K −Q
p

. The particle in the inner domain r1 <
r < r2 is depicted with a blue curve, where r1 ¼ 2.24334 and
r2 ¼ 2.87916. The particle with the outer domain r− ≤ r ≤ rþ is
shown by the blue curve, where r− ¼ 3.82194 and rþ ¼ 8.89339.
The solid sphere represents the surface r ¼ β ¼ 2.

FIG. 9. Orbits around a topological star spacetime with α ¼ 1.5,
β ¼ 2, for a particle with q ¼ 3, P ¼ 0.25, E ¼ ffiffiffiffiffiffiffiffiffi

0.98
p

, K ¼ 7.2,
Q ¼ −1, and L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K −Q

p
. The particle moves in the domain

r1 < r < r2 where r1 ¼ 4.3744 and r2 ¼ 10.7069. The other two
roots of RðrÞ are complex and are given by m� in, where
m ¼ 2.3609 and n ¼ 0.1279. The solid sphere represents the
surface r ¼ β ¼ 2.

FIG. 10. Orbits around a topological star spacetimewithα ¼ 1.5,
β ¼ 2, for a particle with q ¼ 3, P ¼ 0.25, E ¼ ffiffiffiffiffiffiffiffiffiffiffi

1.066
p

,
K ¼ 8.44, Q ¼ 1, and L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

K −Q
p

. The particle moves in the
domain r2 < r < r− where r2 ¼ 2.3576 and r− ¼ 2.6231. The
solid sphere represents the surface r ¼ β ¼ 2.
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RðrÞ ¼ ðE2 − 1 − P2Þðr − r1Þðr − r2Þðr− − rÞðrþ − rÞ:
ð40Þ

Choosing initial conditions rð0Þ ¼ r2 and the upper sign in
Eq. (13e), the analytical solution is

rðλÞ ¼ ðr− − r1Þr2 − ðr− − r2Þr1snðζλ; bÞ2
r− − r1 − ðr− − r2Þsnðζλ; bÞ2

; ð41Þ

where

ζ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − P2 − 1Þðrþ − r2Þðr− − r1Þ

q
¼ iη;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr− − r2Þðrþ − r1Þ
ðrþ − r2Þðr− − r1ÞÞ

s
: ð42Þ

An example of such an orbit is shown in Fig. 10.

V. CONCLUSION

In this paper we have derived and analyzed the equations
of motion for a charged particle in the magnetic black

hole/topological star solution. The angular motion was
found to be similar to analogous systems involving inter-
acting electric and magnetic monopoles. In particular, the
electric charge moves along the surface of a Poincaré cone.
The angle and orientation of the cone depends on the
charge and the angular momentum, as is well-known since
Poincaré’s original nonrelativistic analysis.
On the other hand, the radial motion shows a richer

structure of possibilities in the topological star case.
In particular, up to two distinct domains of bound orbits
may exist for fixed energy and total angular momentum.
On the E2-K space, the points representing circular
orbits exhibit a swallow-tail structure where each branch
correspond to stable/unstable circular orbits. When the
w-momentum is varied, the swallow-tail kink disappears,
leaving just a single stable branch. This is highly
reminiscent of phase transitions behavior in thermody-
namics, where swallow-tail structures appear in the
graphs of intrinsic parameters. Investigating this simi-
larity and the possibility of carrying over thermodynamic
concepts into particle mechanics of this spacetime might
be a candidate of future study.
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