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We propose a class of higher-derivative gravities that can be viewed as the Gauss-Bonnet extension of
the Starobinsky model. The theory admits the Minkowski spacetime vacuum whose linear spectrum
consists of the graviton and a massive scalar mode. In addition to the usual Schwarzschild black hole, we
use numerical analysis to establish that in some suitable mass range, new black holes carrying the massive
scalar hair can emerge. The new black hole serves as a “wall” separating the naked spacetime singularity
and wormholes in the parameter space of the scalar hair. Our numerical results also indicate that although
the new hairy black hole and the Schwarzschild black hole have different spacetime geometry, their entropy
and temperature are the same for the same mass.
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I. INTRODUCTION

A natural extension to Einstein’s theory of general
relativity is to include higher-order Riemann tensor poly-
nomial invariants. The simplest example is the quadratic
extension and the theory was proven renormalizable in four
spacetime dimensions, at the price of having massive spin-2
ghostlike excitations in the spectrum [1]. The origin of
ghost is due to the fact that the field equations can involve
up to fourth order derivatives, leading to new massive scalar
and massive spin-2 modes in the linearized spectrum, in
addition to the usual spin-2 massless graviton. There have
been various proposals to deal with the ghost excitations.
One is to consider critical values of the couplings such that
the massive spin-2 mode becomes massless [2–5], but it
typically leads to logarithmic ghost modes [6,7]. An
alternative is to consider combinations of the Riemann
tensor polynomials such that the field equations remain in
second order. These include the Gauss-Bonnet or more
generally the Lovelock series, which are nontrivial only in
dimensions D ≥ 5. The absence of massive modes in the
linearized spectrum in maximally symmetric vacua can be
achieved in four dimensions. This class of massless gravity
theories include quasitopological gravities and their var-
iants; see, e.g., [8–11].
In higher-derivative gravities, while the massive spin-2

modes are inevitably ghostlike, the massive scalar mode
can be unitary. The ghost-free condition can thus be

achieved by decoupling the massive spin-2 mode, which
amounts to a single condition on the coupling constants in
the theory. The simplest such example is the celebrated
Starobinsky Rþ R2 model [12]. The theory admits the
Schwarzschild black hole, but no static black holes can
carry the scalar hair [13,14]. By contrast, new black holes
with massive spin-2 hair do exist in quadratically extended
gravity [14]. This leads to an obvious question whether the
no-scalar-hair theorem is a general phenomenon in higher-
derivative gravities or only a special case for Starobinsky
gravity.
The absence of the scalar hairy black holes in the

Starobinsky model is analogous to the no-hair theorem
in Einstein gravity minimally coupled to a free scalar.
Recently, it was shown by numerical approach that scalar
hairy black holes can be constructed when the free massless
scalar field is further coupled to the Gauss-Bonnet term
[15–19]. Analogous construction for a massive scalar field
was subsequently obtained [20,21]. These motivate us to
consider extending the Starobinsky theory with the Gauss-
Bonnet combination in an appropriate way such that its
massive scalar mode can be excited by the black hole
curvature. The resulting theory remains pure gravity and
ghost-free, constructed from the Ricci scalar and the Gauss-
Bonnet term.
The advantage of studying the black hole scalarization in

the Gauss-Bonnet extended Starobinsky model is that the
theory is pure gravity and we do not need to introduce a
matter scalar that may not exist. In fact, the prevalence of
the scalar mode in higher-derivative gravities makes the
study of black hole scalarization an unavoidable topic.
Furthermore, the scalar mode in the Starobinsky model is
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necessarily massive and its effect is invisible in the long
range. The scalarization however implies that it can non-
trivially affect the black hole horizon.

II. NO-HAIR THEOREM AND ITS EVASION

The simplest higher-order extension to Einstein gravity
is to include the quadratic curvature invariants. In four
dimensions, owing to the fact that the Gauss-Bonnet
combination is a total derivative, the quadratic invariants
of the Riemann tensor have two independent structures, the
squared Ricci scalar and Weyl tensor, which excite,
respectively, a massive scalar mode and a massive spin-2
mode in the linear spectrum. This is because Weyl squared
gravity in four dimensions is conformal, with no scalar
excitation. The extended gravity admits the usual
Schwarzschild black hole; in addition, new black holes
carrying massive spin-2 hair were constructed [14].
However, a no-scalar-hair theorem can be established,
for which it is sufficient to consider only the R2 extension,
namely, the Starobinsky model

L ¼ ffiffiffiffiffiffi

−g
p ðRþ αR2Þ; α ≥ 0: ð1Þ

The trace of the Einstein equation is simply 6α□R ¼ R.
Since R acts like a free massive scalar field here, it is
straightforward to prove that R must vanish for black hole
solutions [14].
The Starobinsky gravity is the simplest example of fðRÞ

gravity and it is an effective scalar-tensor theory where the
scalar equation is algebraic. We can equivalently express
(1) as

L ¼ ffiffiffiffiffiffi

−g
p �

Rþ ϕR −
1

2
μ2ϕ2

�

; μ2 ¼ 1

2α
> 0: ð2Þ

Inspired by [16–18], we extend the theory with the Gauss-
Bonnet invariant, i.e.,

L ¼ ffiffiffiffiffiffi

−g
p �

Rþ ϕR −
1

2
μ2ϕ2 þ UðϕÞEGB

�

;

EGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð3Þ

The Einstein equation is

Rμν −
1

2
Rgμν þ ϕRμν −∇μ∇νϕþ□ϕgμν

−
1

2
ϕRgμν þ

1

4
μ2ϕgμν − 2R∇μ∇νU

− 4

�

Rμν −
1

2
Rgμν

�

□U þ 8Rρðμ∇νÞ∇ρU

− 4Rρσ∇ρ∇σUgμν þ 4Rμ
ρ
ν
σ∇ρ∇σU ¼ 0: ð4Þ

Combining the algebraic scalar field equation, i.e.,

R − μ2ϕþU0ðϕÞEGB ¼ 0; ð5Þ

with the trace of (4), we have

3□ϕ ¼ μ2ϕ − ð1þ ϕÞU0ðϕÞEGB − 2R□UðϕÞ
þ 4Rμν∇μ∇νUðϕÞ: ð6Þ

When the coupling function U vanishes, the equation
describes a standard free massive scalar and the no-hair
theorem applies for black hole solutions. The no-hair
theorem is no longer applicable when the scalar Gauss-
Bonnet term is included, making it possible for scalar hairy
black holes.
It is important that the scalar equation in the extended

theory is algebraic and hence can be integrated out to give
pure gravity. We present two concrete examples. For
U ¼ βϕ, we have ϕ ¼ 2αðRþ βEGBÞ and hence,

L ¼ ffiffiffiffiffiffi

−g
p ðRþ αðRþ βEGBÞ2Þ: ð7Þ

For U ¼ 1
2
βϕ2, we have ϕ ¼ 2αR=ð1 − 2αβEGBÞ and

hence,

L ¼ ffiffiffiffiffiffi

−g
p �

Rþ αR2

1 − 2αβEGB

�

: ð8Þ

Both above Gauss-Bonnet extensions of the Starobinsky
model are pure gravity theories. As we shall discuss next,
we focus on the second example, for which ϕ ¼ 0 is a
solution, giving rise to the Schwarzschild black hole. We
shall construct new scalar hairy black holes in this model.
By contrast, the first model (7) does not admit the
Schwarzschild black hole as a solution; in fact, any black
hole with nonvanishing EGB curvature necessarily involves
the scalar hair. We shall relegate the study of these black
holes to a future work.

III. NUMERICAL BLACK HOLE SOLUTIONS

We construct static and spherically symmetric black hole
solutions that are asymptotic to the Minkowski spacetime.
We consider the Lagrangian (3) with U ¼ 1

2
βϕ2, corre-

sponding to the Starobinsky model extended with the
Gauss-Bonnet invariant (8). The general ansatz is

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

ϕ ¼ ϕðrÞ: ð9Þ

Since ϕ ¼ 0 is clearly a solution of (6), the theory admits
the usual Schwarzschild black hole h ¼ f ¼ 1–2M=r.
Here we investigate whether there can exist new black
holes that carry the massive scalar hair. At asymptotic
infinity, the scalar has the Yukawa falloff
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ϕ ¼ ϕ0

r
e−

μ
ffiffi

3
p r þ � � � : ð10Þ

This modifies the metric functions, with leading falloffs

h ¼ 1 −
2M
r

−
ϕ0

r
e−

μ
ffiffi

3
p r þ � � � ;

f ¼ 1 −
2M
r

þ ϕ0

�

1

r
þ μ

ffiffiffi

3
p

�

e−
μ
ffiffi

3
p r þ � � � : ð11Þ

The Arnowitt-Deser-Misner mass is M, independent of the
scalar hair ϕ0, or the couplings ðμ; βÞ of the theory.
Consequently, the massive scalar is effectively invisible
in the long range. However, it can alter the horizon structure
significantly. The leading-order expansions in the vicinity
of the horizon r ¼ rþ are

h ¼ h1ðr − rþÞ þ � � � ; f ¼ f1ðr − rþÞ þ � � � ;
ϕ ¼ ϕþ þ ϕ1ðr − rþÞ þ � � � ; ð12Þ

with

f1 ¼
ð3þ 3ϕþ − βμ2ϕ3þÞrþ

12βϕþðϕþ þ 1Þ
−

1

48βϕþðϕþ þ 1Þ ½16r
2þð−βμ2ϕ3þ þ 3ϕþ þ 3Þ2

− 96βϕþðϕþ þ 1Þð4βμ2ϕ3þ − 3μ2ϕ2þr2þ

− 2ϕþðμ2r2þ − 6Þ þ 12Þ�12;

ϕ1 ¼
4ð1 − f1rþÞð1þ ϕþÞ − μ2ϕ2þr2þ

2f1ð4βϕþ þ r2þÞ
: ð13Þ

The near-horizon expansion has to be in integer powers so
that the metric does not suffer from the branch-cut
singularities. We find that all the coefficients can be solved
order by order, and the horizon is characterized by two
integration constants, the horizon radius rþ and the horizon
scalar hair ϕþ, matching the asymptotic M and ϕ0. The
constant h1 can be in principle arbitrary owing to the time
scaling invariance; it is determined by requiring the
resulting h approach unit asymptotically. We can then read
off the temperature and entropy

T ¼
ffiffiffiffiffiffiffiffiffiffi

h1f1
p
4π

; S ¼ πr2þð1þ ϕþÞ þ 2πβϕ2þ: ð14Þ

Here the temperature is obtained by the standard geometric
approach of finding the period of Euclidean time on the
horizon. The entropy follows from the Wald entropy
formula [22].
In the absence of exact solutions, we use a numerical

approach to connect the horizon data ðrþ;ϕþÞ to asymp-
totic ones ðM;ϕ0Þ. The theory itself contains two coupling
parameters ðμ; βÞ and they will be fixed to some appropriate

values. One way is to integrate the solution from the
horizon to large r. Since the equations are singular on the
horizon, we can perform the Taylor expansions and shift
the initial integration point slightly out from the horizon.
However, the complexity of the expressions for ðf1;ϕ1Þ
implies that we cannot analytically push the Taylor series to
much higher orders to improve the accuracy. Furthermore,
generic ðrþ;ϕþÞ values will in general excite the divergent
eþμr=

ffiffi

3
p

mode in the scalar, making the numerical analysis
very unstable. Only the extremely fine-tuned balance
between ðrþ;ϕþÞ may lead to a black hole solution.
This is typical for solutions involving a massive mode,
as in the case of the hairy black holes constructed in [14].
Alternatively, we can integrate the solution from large r

to the middle. Since the scalar mode falls off exponentially,
the higher-order corrections can be ignored numerically.
For appropriately chosen ðM;ϕ0Þ parameters, a black hole
is characterized by the fact that the functions ðh; fÞ will
vanish simultaneously somewhere that can be identified as
the horizon. In practice, this is difficult to achieve precisely
since the equations are singular on the horizon. One can
nevertheless establish the existence of the scalar hairy black
holes. For a concrete example, we consider μ ¼ 1=100,
β ¼ 50, and M ¼ 5. Its Schwarzschild radius is rsþ ¼ 10.
For negative values of ϕ0, we find that the function f
approaches zero at some r0 ≥ rsþ before h, giving rise to a
solution that describes half of a wormhole. The wormhole
throat r0 increases as ϕ0 becomes more negative. For
positive and small ϕ0, we find that naked singularity
develops where the function h reaches zero at r0 < rsþ,
and f diverges. As ϕ0 increases, r0 decreases and the
divergence of f becomes less and less severe until ϕ0

reaches a critical value ϕ�
0 ¼ 0.397 where f and h vanish

simultaneously at rþ ¼ 9.487. This leads to a new scalar
hairy black hole. If we keep on increasing ϕ0, we find that f
approaches zero at smaller r0 before h, giving rise to
wormholes again. The metric functions ðh; fÞ for these
three types of spacetime are plotted in Fig. 1. Thus, for
appropriately given massM, in the line of scalar hair ϕ0, the
Schwarzschild black hole and new black holes are “walls”
separating wormholes from naked singularities. However,
analogous transitions at ϕ0 ¼ −2.177 and ϕ0 ¼ 1.474 are
like “cliffs” with no black holes. We sketch this in Fig. 2.
While the mass of the Schwarzschild black hole can be

all positive values, new scalar hairy ones emerge only in the
restricted mass region. For μ ¼ 1=100 and β ¼ 50, we find
that Mmax ¼ 5.505 and Mmin ¼ 4.699. The mass/horizon
dependence is plotted in the left panel of Fig. 3. It is of
interest to note that for the same rþ, the new black hole has
bigger mass than that of the Schwarzschild black hole,
indicating the condensation of the scalar hair contributes to
the mass. In contrast, the mass would be smaller when the
black hole carries the ghostlike massive spin-2 hair [14].
The black hole solutions have three parameters, the

couplings ðμ; βÞ and mass M, which are all dimensionful.
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FIG. 2. This figure sketches the existence of a new scalar hairy black hole of mass M ¼ 5 for the μ ¼ 1=100 and β ¼ 50 theory. The
Schwarzschild black hole (rsþ ¼ 10) is hairless (ϕ0 ¼ 0) and a new black hole with rþ ¼ 9.487 emerges at ϕ0 ¼ 0.397. Both black holes
are at the boundaries transiting from naked singularity to wormholes. Analogous transitions at ϕ0 ¼ −2.177, 1.474, however, are like
cliffs and yield no black hole.
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FIG. 1. The metric functions ðh; fÞ for three asymptotically-flat spacetimes with scalar hair are plotted. All the three solutions have the
same coupling parameters μ ¼ 1=100, β ¼ 50, and the same massM ¼ 5. The first plot illustrates a black hole at critical ϕ�

0 ¼ 0.397, for
which h and f vanish simultaneously on the horizon rþ ¼ 9.487, which is smaller than the Schwarzschild black hole horizon of the
same mass. When ϕ ¼ 0.2, as depicted in the bottom left panel, the function f has no zero, indicating a naked singularity. The bottom
right panel corresponds to ϕ0 ¼ 0.9, where h is nonvanishing when f vanishes, characteristics of half a wormhole.
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We can form dimensionless parameters M̃ ¼ M=
ffiffiffi

β
p

,
μ̃ ¼ μ

ffiffiffi

β
p

, or μ̂ ¼ μM. All dimensionless quantities of
the black hole must be functions of either the pair
ðM̃; μ̃Þ or the alternative but equivalent choice ðM̃; μ̂Þ.
The dimensionless scalar hair parameter ϕþ on the horizon

and ϕ0=
ffiffiffi

β
p

of the asymptotic are shown in the right panel
of Fig. 3.
We now examine the black hole thermodynamics for the

new hairy solutions. It should be pointed out that the
massive scalar hair ϕ0 cannot enter the first law of black

hairy

Schwarzschild

9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4
r+

4.6

4.8

5.0

5.2

5.4

5.6

M

FIG. 3. The left panel shows the range of the allowed mass M for the new black holes with ðμ ¼ 1=100; β ¼ 50Þ and their mass
dependence on the horizon radius compared to the Schwarzschild black hole. The right panel shows that the (dimensionless) scalar hair
parameters ðϕþ;ϕ0=

ffiffiffi

β
p Þ are not independent, but functions of M̃ ¼ M=

ffiffiffi

β
p

, as well as either μ̃ ¼ μ
ffiffiffi

β
p

or μ̂ ¼ μM for a different choice
of parametrization. The solutions all have μ ¼ 1=100, and hence, the solid lines are for fixed μ̃ and the dashed lines are for fixed μ̂. The
extra μ parameter in the theory makes it no longer equivalent to varyM while fixing β versus to vary β while fixingM and the difference
can be seen from the solid and dashed scalar hair functions.
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FIG. 4. The first two graphs show the (dimensionless) entropy/mass relation for the new hairy black holes, indistinguishable from that
of the Schwarzschild black hole, for the μ ¼ 1=100. The left panel keeps μ̂ fixed, while the right panel keeps μ̃ fixed. The last graph
shows the numerical deviation of the new black hole entropy from the Schwarzschild one and the numerical deviation is within 0.3%,
where ΔS=S≡ ðShairy − SSchÞ=Shairy.
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hole thermodynamics since its thermodynamical conjugate
is associated with divergent mode in the solutions and set to
zero. Consequently, the first law remains dM ¼ TdS. The
intriguing property of our new solutions is that for given
mass M, although the horizon radius is smaller than the
Schwarzschild black hole, the entropy and hence temper-
ature appear to be the same as those of the Schwarzschild
black hole, as shown in Fig. 4. In other words, although the
new hairy black hole is very different geometrically from
the Schwarzschild black hole, the thermodynamical proper-
ties are the same.
We have analyzed a wide range of parameter space of the

couplings ðμ; βÞ and the properties described above hold in
general. The allowed mass ranges for the new hairy black
holes depend on the couplings ðμ; βÞ. For μ ¼ 1=10 and
1=100, we plot the mass range dependence on β in Fig. 5.
Data fitting up to the cubic order gives (for β ≥ 5,)

μ ¼ 1

100
∶Mmax ≈ 0.985þ 0.174β − 0.00278β2

þ 0.0000223β3;

Mmin ≈ 0.848þ 0.146β − 0.00226β2

þ 0.0000175β3;

μ ¼ 1

10
∶Mmax ≈ 0.984þ 0.145β − 0.00257β2

þ 0.0000207β3;

Mmin ≈ 0.850þ 0.127β − 0.00219β2

þ 0.0000173β3: ð15Þ

It shows that for the given μ, the bigger β gives a bigger
mass range and for the given β, the smaller μ yields
the bigger range. We verify the degeneracy of the black
hole thermodynamics of the new black hole and the
Schwarzschild black hole. Our numerical technique allows
us to obtain reliably the solutions with β ≥ 5. For smaller β,
the equations become too unstable to get trustworthy data.
The reason may be related to the fact that the solutions
cease to be black holes in the β → 0 limit.

IV. CONCLUSIONS

In this paper, we propose a class of higher-derivative
extensions to Einstein gravity, constructed from the Ricci
scalar and the Gauss-Bonnet combination. The theories are
ghost-free and the linear spectrum contains a massive scalar
mode, in addition to the usual graviton. We focus on the
simplest such examples, namely, the Gauss-Bonnet exten-
sions of the Starobinsky model. The extensions allow us to
overcome the black hole no-hair theorem in the Starobinsky
model and construct new hairy black holes for some
restricted range of black hole mass. Our result indicates
that black hole scalarization should be a common phenome-
non in general higher-derivative gravities involving massive
scalar modes. Owing to the massiveness, these black hole
scalarizations are invisible in the long range, but should play
important roles in quantumgravity and early cosmology.We
find numerically that the difference of the entropy between
the scalar hairy black hole and the Schwarzschild one of the
same mass is within 0.3%, strongly indicating the degen-
eracy of these black hole thermodynamics. It is of great
interest to investigate analytically whether the entropy
difference indeed vanishes.
It is worth noting that for the Gauss-Bonnet extended

Starobinsky model (8) that we focused on, in addition to the
Minkowski vacuum, there are two de Sitter vacua for
positive β and two anti–de Sitter vacua for negative β. It is
worth investigating the black hole scalarization in these
backgrounds as well. Our construction can also be easily
generalized to general fðRÞ gravity, by considering

L ¼ ffiffiffiffiffiffi

−g
p ðΦR − VðΦÞ þUðΦÞEGBÞ: ð16Þ

Integrating out the algebraic Φ gives rise a class of
fðR;EGBÞ gravities and the Gauss-Bonnet extended
Starobinsky model is the simplest example. It is of great
interest to study the general aspects of black hole scala-
rization and also implications in cosmology.
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