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We study odd parity perturbations of spherically symmetric black holes with time-dependent scalar hair
in shift-symmetric higher-order scalar-tensor theories. The analysis is performed in a general way without
assuming the degeneracy conditions. Nevertheless, we end up with second-order equations for a single
master variable, similarly to cosmological tensor modes. We thus identify the general form of the quadratic
Lagrangian for the odd parity perturbations, leading to a generalization of the Regge-Wheeler equation.
We also investigate the structure of the effective metric for the master variable and refine the stability
conditions. As an application of our generalized Regge-Wheeler equation, we compute the quasinormal
modes of a certain nontrivial black-hole solution. Finally, our result is extended to include the matter
energy-momentum tensor as a source term.
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I. INTRODUCTION

The remarkable first direct detection of gravitational
waves from a binary black-hole merger [1] has opened
a new era of astrophysics and gravitational physics.
Gravitational waves are becoming more and more impor-
tant as a probe of strong gravitational fields and as a tool for
testing gravity in the strong field regime. To establish
general relativity on a firmer basis, it is necessary to study
the predictions from alternative theories such as scalar-
tensor theories and test them against gravitational-wave
observations. In modified theories gravity, black holes may
have hair, i.e., nontrivial configurations of scalar or other
extra degrees of freedom around themselves, and the
perturbation dynamics may also differ from that in general
relativity. Therefore, identifying the general action for
perturbations around a hairy black hole will help to achieve
the above purpose. The results will be useful for instance
for the computation of quasinormal modes (QNMs) in
modified gravity.
In this paper, we determine the general action governing

odd parity perturbations around a spherically symmetric
black hole dressed with a linearly time-dependent scalar
field. To do so, we start from a covariant action for shift-
symmetric higher-order scalar-tensor theories admitting
such time-dependent scalar hair and second-order field
equations at least in the odd parity sector. In contrast to
Refs. [2–4], we do not take the effective-field-theory (EFT)
approach, because our background scalar-field configura-
tion depends not only on the radial coordinate but also on

time, which breaks the usual assumption of the EFT on the
symmetry. In such a case, it is probably more convenient to
start from a covariant action.
To make the results as general as possible, we work with

general shift-symmetric higher-order scalar-tensor theories
whose action depends on the curvature tensors and first and
second derivatives of the scalar field in such a way that
yields healthy second-order field equations for gravita-
tional-wave degrees of freedom. Probably the most well-
known example of such theories is the Horndeski theory [5]
or, equivalently, the generalized Galileon theory [6,7]. The
perturbation theory for spherically symmetric black holes
with static hair has been developed in Refs. [8,9]. When
restricted to the shift-symmetric subclass, the Horndeski
theory admits linearly time-dependent scalar hair, as was
first demonstrated in Ref. [10] and later generalized in
Ref. [11], thus evading the no-hair theorem in shift-
symmetric scalar-tensor theories [12]. The black-hole
perturbation theory can be extended to the case with
linearly time-dependent scalar hair [13,14] (see Ref. [15]
for a recent update). Though the Horndeski theory is the
most general scalar-tensor theory having second-order field
equations both for the metric and scalar field, later it was
noticed that it can further be generalized while maintaining
one scalar and two tensorial degrees of freedom [16–19]
(see also Ref. [20] for an earlier work seeking theories
beyond Horndeski by means of a disformal transformation
of the metric). The basic idea behind this generalization is
that if some of the field equations are degenerate then the
number of dynamical degrees of freedom is reduced, and
thus the system can retain one scalar and two tensorial
degrees of freedom even if the field equations are appa-
rently of higher order. Theories with such a structure are
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called degenerate higher-order scalar-tensor (DHOST)
theories. See Refs. [21–23] for a review. In DHOST
theories in which second derivatives of the scalar field
appear quadratically in the Lagrangian (i.e., quadratic
DHOST theories), odd parity perturbations of spherically
symmetric black holes with linearly time-dependent scalar
hair have been studied in Ref. [24], with the results showing
that the master variable for the odd parity perturbations
obeys a second-order equation having essentially the same
structure as that in the case of the Horndeski theory [13,14].
More recently, it was argued that the dangerous ghost
degrees of freedom remain to be absent even if one relaxes
the degeneracy conditions so that the system is degenerate
only in the unitary gauge, giving rise to the notion of
“U-degenerate” theories [25]. If a theory is treated as a low-
energy effective theory rather than a complete one, it is
sufficient to require that no ghost degrees of freedom
emerge within the regime of validity of the effective theory.
This viewpoint allows us to consider the theories in which
the degeneracy conditions are detuned slightly [26].
Detuning the degeneracy conditions help to resolve the
problem of infinite strong coupling in the even parity
sector [27,28].
In light of these developments, we will study black-hole

perturbations in higher-order scalar-tensor theories that are
most closely related to cubic DHOST theories [19], but
without imposing the degeneracy conditions. Still, at least
in the odd parity sector, we will have a second-order
equation for a single master variable and can thus determine
the general form of the action for the master variable,
generalizing the previous results [13,14,24].
This paper is organized as follows. In the next section,

we present the covariant action for scalar-tensor theories
which we will work with. In Sec. III, we give an example of
spherically symmetric background solutions with time-
dependent scalar hair. Then, in Sec. IV, we determine the
general action for odd parity perturbations and derive the
generalized Regge-Wheeler equation. We also refine
the previous notion of the stability conditions by inves-
tigating the structure of the effective metric for gravitons.
In Sec. V, we calculate the QNMs of the black-hole
solution we present in Sec. III. Section VI is devoted to
a summary of conclusions. In the Appendixes, we argue the
generality of our action for odd parity perturbations. We
also generalize the Regge-Wheeler equation derived in the
main text to include the matter energy-momentum tensor as
a source term.

II. HIGHER-ORDER SCALAR-TENSOR
THEORIES

We consider a system composed of the metric gμν and the
scalar field ϕ described by the action [17–19]

Sgrav ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F0ðXÞ þF1ðXÞ□ϕþF2ðXÞR

þ
X5
I¼1

AIðXÞLð2Þ
I þF3ðXÞGμνϕ

μν þ
X10
I¼1

BIðXÞLð3Þ
I

�
;

ð1Þ

where X ≔ −ϕμϕ
μ=2, ϕμ ≔ ∇μϕ, ϕμν ¼ ∇ν∇μϕ, R is the

Ricci scalar, and Gμν is the Einstein tensor. Here, Lð2Þ
I are

quadratic in the second derivatives of the scalar field and
are written explicitly as

Lð2Þ
1 ¼ ϕμνϕ

μν; Lð2Þ
2 ¼ ð□ϕÞ2; Lð2Þ

3 ¼ ð□ϕÞϕμϕμνϕ
ν;

Lð2Þ
4 ¼ ϕμϕμρϕ

ρνϕν; Lð2Þ
5 ¼ ðϕμϕμνϕ

νÞ2: ð2Þ

Similarly, Lð3Þ
I are cubic in the second derivatives of the

scalar field and are given by

Lð3Þ
1 ¼ ð□ϕÞ3; Lð3Þ

2 ¼ ð□ϕÞϕμνϕ
μν;

Lð3Þ
3 ¼ ϕμνϕ

νρϕμ
ρ; Lð3Þ

4 ¼ ð□ϕÞ2ϕμϕ
μνϕν;

Lð3Þ
5 ¼ □ϕϕμϕ

μνϕνρϕ
ρ; Lð3Þ

6 ¼ ϕμνϕ
μνϕρϕ

ρσϕσ;

Lð3Þ
7 ¼ ϕμϕ

μνϕνρϕ
ρσϕσ; Lð3Þ

8 ¼ ϕμϕ
μνϕνρϕ

ρϕσϕ
σλϕλ;

Lð3Þ
9 ¼ □ϕðϕμϕ

μνϕνÞ2; Lð3Þ
10 ¼ ðϕμϕ

μνϕνÞ3: ð3Þ

These exhaust possible terms built from ϕμ and ϕμν and
quadratic/cubic in ϕμν. The functions F0, F1, F2, F3, AI ,
and BI depend only on X, so that the theory has shift
symmetry, ϕ → ϕþ c.
In general, the action (1) yields higher-order equations of

motion for the metric and the scalar field, resulting in the
dangerous Ostrogradsky ghost. One can circumvent this by
imposing the degeneracy conditions among the functions
F2, F3, AI , and BI [17–19]. In such degenerate theories,
one arrives in the end at a set of second-order equations by
combining the different components of field equations, and
thus can remove the unstable ghost degrees of freedom.
One may relax the degeneracy conditions so that the theory
is degenerate at least in the unitary gauge, which can still
provide a healthy class of theories called U-degenerate
theories [25]. If the action (1) is regarded as a low-energy
truncation of some complete theory, detuning the degen-
eracy conditions is acceptable because a ghost degree of
freedom itself is not problematic from the effective-field-
theory viewpoint [26].
In this paper, we do not assume any particular relations

among the functions in the action. Nevertheless, we can
handle the relevant equations and derive the universal form
of the quadratic Lagrangian for odd mode perturbations
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around a spherically symmetric background with time-
dependent scalar hair.

III. SPHERICALLY SYMMETRIC BACKGROUND

Let us start with a background solution. We consider
static and spherically symmetric spacetime whose metric is
of the form

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2CðrÞdσ2; ð4Þ

where dσ2 ≔ dθ2 þ sin2 θdφ2. At this point, we introduce
CðrÞ to reproduce all the relevant field equations from the
action principle. After deriving the field equations, one may
put CðrÞ ¼ 1 by redefining the radial coordinate (see,
e.g., Ref. [29]).
The scalar field is assumed to be dependent linearly on

the time coordinate,

ϕðt; rÞ ¼ μtþ ψðrÞ; ð5Þ

where μ is a constant. Without loss of generality, we assume
that μ > 0. This configuration is consistent with the static
metric (4) because the action (1) depends on ϕ only through
its derivatives.
The crucial points of the ansatz (5) are the following.

First, by assuming a linearly time-dependent scalar field,
one can avoid the postulate in the no-hair theorem of [12],
which makes it easier to obtain hairy solutions. Indeed,
spherically symmetric black-hole solutions with such a
scalar field configuration have been found in the context
of the Horndeski theory [10,11,30–32] and beyond-
Horndeski/DHOST theories [33–37]. Second, it has been
assumed in the formulation of the EFT of black-hole
perturbations [3,4] that the scalar field depends only on
the radial coordinate. Therefore, for a time-dependent
scalar field configuration, the previous result from the
effective field theory approach cannot be used straightfor-
wardly, and it is interesting to explore a general form of the
effective action for black-hole perturbations in the presence
of time-dependent hair.
Substituting the metric (4) and the scalar field ansatz (5)

to the action (1) and varying it with respect to A, B, C, and
ψ , one is able to derive the background field equations. We
write the resultant field equations as EA ¼ 0, EB ¼ 0,
EC ¼ 0, and Eψ ¼ 0, whose explicit expressions are not
important in the present paper. These equations do not
reduce to second-order differential equations in general
because we do not impose any degeneracy conditions.
However, as far as the odd mode perturbations are con-
cerned, we do not need to care about the higher-order
nature of the background equations. We will just use (some
of) these background equations in their original form to
simplify the quadratic action for the odd mode perturba-
tions, whether they are of second order or higher.

Before proceeding to the analysis of perturbations, let us
present a simple explicit example of background solutions.
An interesting class of solutions often studied in the
literature is a stealth Schwarzschild black hole with
X ¼ X0 ¼ const. One can see that our field equations
admit the solution

A ¼ B ¼ 1 −
rh
r
; X ¼ X0 ¼

μ2

2
; ð6Þ

provided that the functions in the action (1) satisfy the
following equations (cf. Ref. [36]):

F0ðX0Þ ¼ 0; F0XðX0Þ ¼ 0; F1XðX0Þ ¼ 0

A1ðX0Þ þ A2ðX0Þ ¼ 0; A1XðX0Þ þ A2XðX0Þ ¼ 0;

B2ðX0Þ ¼ −
1

2
B3ðX0Þ ¼ 9B1ðX0Þ;

B4ðX0Þ þ B6ðX0Þ − B1XðX0Þ − B2XðX0Þ −
5

9
B3XðX0Þ

¼ 6

X0

B1ðX0Þ: ð7Þ

Note that these relations are compatible with the degen-
eracy conditions in the class 2N-Iþ 3M-I degenerate
theories in the terminology of Ref. [19], and therefore
the above solution is admitted even if one concentrates on a
degenerate theory. From 2X ¼ μ2 ¼ μ2=A − Bðdψ=drÞ2,
we have

ψ ¼ �μ

�
2

ffiffiffiffiffiffiffi
rhr

p þ rh ln

� ffiffiffi
r

p
− ffiffiffiffiffi

rh
pffiffiffi

r
p þ ffiffiffiffiffi

rh
p

��
: ð8Þ

We choose the “þ” branch because we have ϕ≃
μ½t� rh lnðr=rh − 1Þ� þ const near the horizon and it is
regular at the horizon only in the “þ” branch, as is clear
by expressing ϕ in terms of the ingoing null coordinate
v ¼ tþ rþ rh lnðr=rh − 1Þ [10].

IV. ODD PARITY PERTURBATIONS

A. Derivation of the quadratic lagrangian
and the effective metric

Let us consider the odd mode metric perturbations,

gμν ¼ ḡμν þ hμν; ð9Þ

where ḡμν is the background metric (4) with CðrÞ ¼ 1. The
scalar field does not have an odd mode perturbation.
Among the ten components, hta, hra, and hab are concerned
with odd parity modes, where a ¼ θ;φ. Using the spherical
harmonics Ylmðθ;φÞ, we follow the standard procedure
and expand the odd mode perturbations as
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htθ ¼ −
1

sin θ
∂φ

X∞
l¼2

Xl
m¼−l

hðlmÞ
0 ðt; rÞYlmðθ;φÞ; ð10Þ

htφ ¼ sin θ∂θ

X∞
l¼2

Xl
m¼−l

hðlmÞ
0 ðt; rÞYlmðθ;φÞ; ð11Þ

hrθ ¼ −
1

sin θ
∂φ

X∞
l¼2

Xl
m¼−l

hðlmÞ
1 ðt; rÞYlmðθ;φÞ; ð12Þ

hrφ ¼ sin θ∂θ

X∞
l¼2

Xl
m¼−l

hðlmÞ
1 ðt; rÞYlmðθ;φÞ: ð13Þ

The odd parity part of hab can also be expressed using
a single pseudoscalar function, say h2, but we adopt the
Regge-Wheeler gauge in which h2 ¼ 0 and accordingly
hab ¼ 0.
We substitute Eqs. (10)–(13) to the action (1) and expand

it to second order in perturbations. In doing so, one can
remove many terms by using the background equations.
Performing the angular integrations, we arrive in the end at
the general action

Sgrav ¼
X∞
l¼2

Xl
m¼−l

Z
dtdrLð2Þ

lm; ð14Þ

where, omitting the labels (lm) from h0 and h1,

Lð2Þ
lm ¼ 1

2

��
2

r2
ðra3Þ0 þ a1

�
jh0j2 þ a2jh1j2 þ a3

�
j _h1j2 − 2_h�1h00 þ jh00j2 þ

4

r
_h�1h0

�
þ a4h�1h0

�
þ c:c:: ð15Þ

The coefficients are given by

a1 ¼
cl

2r2
ffiffiffiffiffiffiffi
AB

p
�
F2 þ

μ2

A
A1 þ

Bψ 0X0

2
F3X þ μ2

Aψ 0

�
2Bðψ 0Þ2

r
−
ðAXÞ0
A

�
B2 þ

3μ2Bψ 0

rA
B3 −

μ2Bψ 0X0

A
B6

�
; ð16Þ

a2 ¼ −
cl
2

ffiffiffiffiffiffiffi
AB

p

r2

�
F2 − Bðψ 0Þ2A1 −

Bψ 0X0

2
F3X − Bψ 0

�
2Bðψ 0Þ2

r
−
ðAXÞ0
A

�
B2 −

3B2ðψ 0Þ3
r

B3 þ B2ðψ 0Þ3X0B6

�
; ð17Þ

a3 ¼
lðlþ 1Þ

2

ffiffiffiffi
B
A

r �
F2 þ 2XA1 −

Bψ 0X0

2
F3X þ 2X

ψ 0

�
2Bðψ 0Þ2

r
−
ðAXÞ0
A

�
B2 þ

3X
ψ 0

�
Bðψ 0Þ2

r
− X

A0

A
−
μ2X0

2AX

�
B3

− 2Bψ 0XX0B6

�
; ð18Þ

a4 ¼ −
cl
r2

ffiffiffiffi
B
A

r
μ

�
ψ 0A1 þ

X0

2
F3X þ

�
2Bðψ 0Þ2

r
−
ðAXÞ0
A

�
B2 þ

3Bðψ 0Þ2
r

B3 − Bðψ 0Þ2X0B6

�
; ð19Þ

with cl ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ. Here, a dot and a
prime denote differentiation with respect to t and r,
respectively. Following Ref. [24], it is convenient to write
these coefficients as

a1 ¼
cl

4r2
ffiffiffiffiffiffiffi
AB

p F ðrÞ; a2 ¼ −
cl
4

ffiffiffiffiffiffiffi
AB

p

r2
GðrÞ;

a3 ¼
lðlþ 1Þ

4

ffiffiffiffi
B
A

r
HðrÞ; a4 ¼

cl
2r2

ffiffiffiffi
B
A

r
J ðrÞ; ð20Þ

whereF , G,H, and J have a dimension of ðmassÞ2. For the
Schwarzschild solution in general relativity, we simply
have F ¼ G ¼ H ¼ M2

Pl ¼ ð8πGÞ−1 and J ¼ 0.
Before proceeding to further reduction of the Lagrangian

(15), let us point out two things, both of which come
essentially from the fact that the odd parity modes con-
stitute a part of tensorial metric perturbations. First, note

that only F2, F3, A1, B2, B3, and B6 participate in the above
result. Contributions from the other terms are dropped from
the action upon using the background equations. This is as
expected because it is known that only these terms
contribute to the tensor modes on a cosmological back-
ground [38,39]. More specifically, gravitational waves are
transverse and traceless metric perturbations, and hence
they cannot arise from the terms such as □ϕ and ϕνϕμν.
Only a few functions thus appear in the quadratic
Lagrangian for metric perturbations that correspond to
gravitational waves. Second, it should be emphasized that
the quadratic Lagrangian (15) is derived without using any
degeneracy conditions. This is also not surprising because
tensorial metric perturbations in the theory (1) obey
second-order equations without regard to the degeneracy
conditions. Therefore, our result can be used, for example,
to U-degenerate theories [25] and detuned (“scordatura”)
DHOST theories [26].
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Now, let us rewrite the Lagrangian (15) in terms of a
single master variable. This can be done straightforwardly,
following closely Refs. [13,14,24]. First, we introduce an
auxiliary field χ ¼ χðlmÞðt; rÞ and rewrite the Lagrangian
(15) in an equivalent way as

Lð2Þ
lm¼1

2

�
a1jh0j2þa2jh1j2þa4h�1h0

þ2a3χ�
�
−
1

2
χþ _h1−h00þ

2

r
h0

��
þc:c: ð21Þ

Variation with respect to h�0 and h�1 leads, respectively, to

a1h0 þ ða3χÞ0 þ
2a3
r

χ þ 1

2
a4h1 ¼ 0; ð22Þ

a2h1 − a3 _χ þ
1

2
a4h0 ¼ 0; ð23Þ

which can be solved for h0 and h1 to express them in terms
of χ, _χ, and χ0:

h0¼−
8a2a3ðχ=rÞþ4a2ða3χÞ0þ2a3a4 _χ

4a1a2−a24
; ð24Þ

h1 ¼
4a3a4ðχ=rÞ þ 2a4ða3χÞ0 þ 2a1a3 _χ

4a1a2 − a24
: ð25Þ

[Here, we assumed that FGþ ðB=AÞJ 2 ≠ 0.] Substituting
Eqs. (24) and (25) back to Eq. (21), we obtain

Lð2Þ
lm ¼ lðlþ 1Þr2

4ðl − 1Þðlþ 2Þ

ffiffiffiffi
B
A

r �
b1j_χj2 − b2jχ0j2 þ b3 _χ�χ0

−
�
lðlþ 1Þ

2

H
r2

þ V
2

�
jχj2

�
þ c:c:; ð26Þ

where

b1 ¼
F
2A

·
AH2

AFGþ BJ 2
; b2 ¼

GB
2

·
AH2

AFGþ BJ 2
;

b3 ¼
BJ
A

·
AH2

AFGþ BJ 2
; ð27Þ

and

V ¼ 2H
�
r2b2

ffiffiffiffi
B
A

r � ffiffiffiffiffiffiffiffiffi
A=B

p
r2H

�0�0
−
2H
r2

: ð28Þ

The equation of motion that follows from this Lagrangian is
given by

b1χ̈−
ffiffiffiffiffiffiffiffiffi
A=B

p
r2

�
r2

ffiffiffiffi
B
A

r
b2χ0

�0
þb3

2
_χ0

þ
ffiffiffiffiffiffiffiffiffi
A=B

p
2r2

�
r2

ffiffiffiffi
B
A

r
b3 _χ

�0
þ
�
lðlþ1Þ

2

H
r2
þV
2

�
χ¼0: ð29Þ

At this stage, it can be seen from the Lagrangian (26) that
we need to impose

H > 0; ð30Þ

as otherwise modes with large l would have large negative
energy and make the system unstable quickly.
One notices that Eq. (29) can be written in the form

HΩ2ZμνDμDνχ − Vχ ¼ 0; ð31Þ

where Zμν is the inverse of the effective metric Zμν [40],

Zμνdxμdxν ¼ Ω2

�
−
G
H
Adt2 −

2J
H

dtdrþF
H
dr2

B
þ r2dσ2

�
;

ð32Þ

with

Ω2 ≔
B
A

H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FGþ ðB=AÞJ 2

p ; ð33Þ

and Dμ is the covariant derivative operator defined in terms
of a connection compatible with Zμν. Note here that the
metric perturbations have already been expanded in terms
of the spherical harmonics and hence the spherical
Laplacian in ZμνDμDν must be replaced with its eigenvalue
−lðlþ 1Þ. Note also that

ζ2ðrÞ ≔ FGþ B
A
J 2 > 0 ð34Þ

must be imposed in order for the effective metric to be well
defined. It is easy to see that one has Zμν ¼ M2

Plḡμν in
general relativity, where F ¼ G ¼ H ¼ M2

Pl and J ¼ 0.
However, Zμν may not be proportional to ḡμν in modified
gravity. This fact itself has already been known in the
context of the Horndeski theory [41–43].
We introduce a new time coordinate τ defined by

dτ ¼ dtþ J
AG

dr: ð35Þ

Using τ, the effective metric (32) can be written in a
diagonal form as

PERTURBATIONS AND QUASINORMAL MODES OF BLACK … PHYS. REV. D 103, 084041 (2021)

084041-5



Zμνdxμdxν ¼ Ω2

�
−
G
H

Adτ2 þ ζ2

GH
dr2

B
þ r2dσ2

�
: ð36Þ

It is sometimes more convenient to work in the con-
formally related effective metric Z̃μν defined as

Z̃μν ¼ Ω−2Zμν: ð37Þ

In the tilded frame, Eq. (31) is written as

Z̃μνD̃μD̃ν

�
χ̃

r

�
−
�
V
H

þ Z̃μνD̃μD̃νΩ
Ω

�
χ̃

r
¼ 0; ð38Þ

where χ̃ ≔ Ωrχ and D̃μ is the covariant derivative operator
defined in terms of a connection compatible with Z̃μν.
Defining the generalized tortoise coordinate by

dr� ¼
ζ

G
ffiffiffiffiffiffiffi
AB

p dr; ð39Þ

Eq. (38) can further be rewritten in a more familiar form as

ð−∂2
τ þ ∂2

r� − ṼÞχ̃ ¼ 0; ð40Þ

where

Ṽ¼GA
H

�ðlþ2Þðl−1Þ
r2

þΩr
�
G

ffiffiffiffiffiffiffi
AB

p

ζ

�
1

rζ1=2

�0�0�
: ð41Þ

This generalizes the Regge-Wheeler equation known in
general relativity [44] to higher-order scalar-tensor theories.
In Appendix B, we extend the main result of this section to
include the energy-momentum tensor of matter and derive
the generalized Regge-Wheeler equation with a matter
source term.
So far, we have focused on the modes with l ≥ 2. The

dipole (l ¼ 1) mode must be treated separately, but here we
only comment that the dipole perturbation corresponds to
adding a slow rotation, as has been already discussed in
detail in the previous literature [8,13,14,24].

B. Propagation speed

In theories described by the action (1), the propagation
speed of gravitational waves differs in general from the
speed of light. In light of the constraint from GW170817
[45–47], let us identify the subclass of scalar-tensor
theories that admits a luminal speed of gravitational waves
at least at large r. This weak requirement was also
employed in Ref. [4] (see, however, Refs. [48,49]).
We assume that the background is given by

A ¼ 1þOðr−1Þ; B ¼ 1þOðr−1Þ;
ψ 0 ¼ ψ 0

∞ þOðr−1=2Þ; ð42Þ

for large r, where ψ 0
∞ is a constant. We then find

F ¼ 2½F2ðX∞Þ þ μ2A1ðX∞Þ� þOðr−1=2Þ; ð43Þ

G ¼ 2½F2ðX∞Þ − ðψ 0
∞Þ2A1ðX∞Þ� þOðr−1=2Þ; ð44Þ

H¼2½F2ðX∞Þþ2X∞A1ðX∞Þ�þOðr−1=2Þ; ð45Þ

J ¼ −2μψ 0
∞A1ðX∞Þ þOðr−1=2Þ; ð46Þ

where X∞ ≔ ½μ2 − ðψ 0
∞Þ2�=2. Thus, if one has

A1ðX∞Þ ¼ 0; ð47Þ

Eq. (40) reduces to ½−∂2
t þ ∂2

r − lðlþ 1Þ=r2�χ̃ ≃ 0 for
large r, rendering luminal propagation of gravitational
waves sufficiently away from a black hole. Note that F3

and BI appear only in the Oðr−1Þ or higher-order terms in
F , G, H, and J .
A comment is now in order. In the even parity sector,

there must be a mode that can be identified as gravitational
waves. It is expected that in general the propagation speed
of that mode coincides with that of the odd parity mode in
the absence of gravitational parity violating interactions.
This is indeed the case in the Horndeski theory [9]. Note in
passing that we also have a mode in the even parity sector
that can be identified as fluctuations of the scalar field, and
its propagation speed differs in general from the speed of
gravitational waves.

C. Horizons for photons and gravitons

Suppose that rh is the location of the horizon in the
metric ḡμν and the metric components are expanded as

AðrÞ ¼
X
n¼1

αnϵ
n; BðrÞ ¼

X
n¼1

βnϵ
n; ð48Þ

where ϵ ≔ r=rh − 1 > 0. We assume that X is regular at the
horizon, so that X is of the form

X ¼ Xh þ
X
n¼1

Xnϵ
n: ð49Þ

Accordingly, one has

ψ 0 ¼ μffiffiffiffiffiffiffiffiffi
α1β1

p 1

ϵ
þ
X
n¼0

γnϵ
n: ð50Þ

Note that ψ 0 diverges as r → rh, but this is not problematic.
See the comment below Eq. (8). Substituting Eqs. (48)–
(50) into Eqs. (16)–(19), we find, in the vicinity of the
horizon,
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F ¼−
d0
ϵ
−d1þOðϵÞ; G¼d0

ϵ
þd2þOðϵÞ;

H¼d3þOðϵÞ;
ffiffiffiffi
B
A

r
J ¼d0

ϵ
þd1þd2

2
þOðϵÞ; ð51Þ

and hence ζ ¼ constþOðϵÞ, where

d0 ¼ −
2μ2

α1
A1ðXhÞ þ

2μ

rh

ffiffiffiffiffi
β1
α31

s
½ðα1Xh − 2μ2ÞB2ðXhÞ

− 3μ2B3ðXhÞ þ μ2X1B6ðXhÞ�; ð52Þ

while the explicit expressions for d1, d2, and d3 are more
involved. Hereafter, we will consider the case where d0 is
nonvanishing. Thus, at r ≃ rh,

Ω ≃ const; Z̃ττ ≃ const; Z̃rr ≃ const; ð53Þ

which shows that nothing special happens in the effective
metric at the horizon of the metric ḡμν. In particular, this fact
implies that r ¼ rh is not an appropriate place to impose the
inner boundary conditions when solving the Regge-
Wheeler equation (40). Rather, the form of the effective
metric implies that a possible appropriate boundary will be
r ¼ rg, where GðrgÞ ¼ 0. To see this more explicitly, let us
study some concrete examples.
The first example is given by the special case of the

solution in Sec. III, with A1ðX0Þ ≠ 0 and B1ðX0Þ ¼ 0.
Essentially the same solution is also studied in Ref. [24].
This does not satisfy Eq. (47) but is a good illustrative
example. We have

G¼ 2F2ðX0Þ ·
1− rg=r

1− rh=r
; H¼ 2F2ðX0Þð1þAÞ; ð54Þ

where

rg ≔ ð1þAÞrh; A ≔
2X0A1ðX0Þ
F2ðX0Þ

; ð55Þ

and we assume that F2ðX0Þ > 0 and 1þA > 0. The
conformal factor is a nonvanishing constant, Ω2 ¼
2F2ðX0Þð1þAÞ3=2, and the components of the (tilded)
effective metric are given by

Z̃ττ ¼ −
1 − rg=r

1þA
; Z̃rr ¼

1

1 − rg=r
; ð56Þ

which shows that the horizon of the effective metric is at
r ¼ rgð≠rhÞ. In this case, the generalized tortoise coor-
dinate is given by r� ¼ ð1þAÞ1=2½rþ rg lnðr=rg − 1Þ� and
the potential in Eq. (40) reads

Ṽ ¼ 1 − rg=r

1þA

�
lðlþ 1Þ

r2
−
3rg
r3

�
: ð57Þ

Aside from the constant factor of ð1þAÞ−1, this coincides
with the well-known potential in the Regge-Wheeler
equation in general relativity with the horizon at r ¼ rg.
In this example, G is singular at r ¼ rh. One also notices

that G < 0 for rg < r < rh ifA < 0. However, the effective
metric and the potential do not depend on rh explicitly and
are free from any pathologies. In particular, the sign of G
does not directly related to the stability of the solution.
Indeed, it is now clear that the above solution is stable
provided that F2ðX0Þ > 0 and 1þA > 0 are satisfied.
The second example is again the special case of the

solution in Sec. III, but now with A1ðX0Þ ¼ 0 and
B1ðX0Þ ≠ 0. In this case, we have

G¼2F2ðX0Þ ·
fðrÞ

1−rh=r
; H¼2F2ðX0Þ; ð58Þ

where

fðrÞ ¼ 1−
rh
r
þB

�
rh
r

�
5=2

; B≔
81

2

μ3

rh

B1ðX0Þ
F2ðX0Þ

: ð59Þ

The conformal factor is given by

Ω2 ¼ 2F2ðX0Þ
g1=2ðrÞ ; ð60Þ

and the (tilded) effective metric reduces to

Z̃ττ ¼ −fðrÞ; Z̃rr ¼
gðrÞ
fðrÞ ; ð61Þ

where

gðrÞ ¼ 1 − B
�
rh
r

�
3=2

: ð62Þ

We see that the horizon of the effective metric is at
r ¼ rg ≠ rh, where fðrgÞ ¼ 0.
Let us investigate the structure of the effective metric

(61) in more detail. For B > 6=25ð ffiffiffiffiffiffiffiffi
3=5

p Þð≃0.186Þ, f has
no zeros, while g ¼ 0 at r ¼ B2=3rh. We are not interested
in this case. For 0 < B ≤ 6=25ð ffiffiffiffiffiffiffiffi

3=5
p Þ, we have f ¼ 0 at

r ¼ rg < rh. In this case, g remains positive outside the
horizon of the effective metric, but g ¼ 0 occurs at
r ¼ B2=3rh < rg. Finally, for B < 0, we have f ¼ 0 at
r ¼ rg > rh, and g is always positive for r > 0. Therefore,
in the latter two cases, the solution has an outer horizon of
the effective metric at r ¼ rg. It is straightforward to write
the potential Ṽ, but the expression is messy. The shape of
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the potential is shown for different values of B in Fig. 1.
One can check that r� → −∞ as r → rg.

V. QUASINORMAL MODES

In this section, we compute the QNMs of the second
example of the previous section. Quasinormal modes in the
Horndeski theory have been studied in the case of the
Schwarzschild background with a constant scalar field [50]
and a nearly Schwarzschild background with a nearly
constant scalar field [51].
We assume the time dependence of the master variable as

χ̃ ¼ QðrÞe−iωτ and solve

d2Q
dr2�

þ ½ω2 − ṼðrÞ�Q ¼ 0; ð63Þ

where Ṽ is the potential obtained from the second example
of the background solutions in the previous section, which
is characterized by the dimensionless parameter B (Fig. 1).
The boundary conditions for Q are given by

Q ∝
�
eþiωr� r� → ∞ðr → ∞Þ
e−iωr� r� → −∞ðr → rgÞ

: ð64Þ

Note again that the inner boundary is located at r ¼ rg
rather than at r ¼ rh. In order to obtain the QNMs, we
employ direct numerical integration.1 The lowest overtone
quasinormal frequencies for l ¼ 2 are given in Fig. 2,
showing how the frequencies depend on the modified
gravity parameter B.

VI. CONCLUSIONS

In this paper, we have studied odd parity perturbations of
black holes with linearly time-dependent scalar hair in
shift-symmetric scalar-tensor theories. Due to the time
dependence of the scalar field background, the EFT
approach [2–4] cannot be applied straightforwardly to
the present case. Therefore, we have started from a general
covariant action that is most similar to the action of cubic
degenerate higher-order scalar-tensor theories [19] and
derived the general quadratic action for odd parity pertur-
bations without imposing the degeneracy conditions.
The degeneracy conditions are not essential for retaining
the healthy odd parity perturbations that are not mixed with
the perturbation of the scalar field. We have thus derived a
second-order equation for a single master variable as a
generalization of the Regge-Wheeler equation in general
relativity. Starting from the more general action, we have
arrived at qualitatively the same results as the previous ones
[13,14,24], showing that no new terms appear in the
quadratic action for odd parity perturbations. Our gener-
alized Regge-Wheeler equation can be used in a wide class
of scalar-tensor theories such as U-degenerate theories [25]
and scordatura theories [26].
We have also refined the stability conditions explored

in the previous literature [24]. The previous conditions
were actually sufficient conditions, and we have argued
that one of the conditions is not directly related to the
stability.
As another application of our results, we have computed

the quasinormal modes of a certain nontrivial black-hole
solution. In doing so, we have demonstrated that it is
important to identify the correct location of the inner
boundary by inspecting the effective metric for gravitons.
It would be interesting to extend the present analysis to

the even parity sector, which would be much more involved
due to its higher derivative nature. It would also be
interesting to perform a complementary analysis based
on the EFT approach along the lines of Refs. [3,4].

FIG. 2. Lowest overtone quasinormal frequencies for l ¼ 2
and some representative values of B.
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FIG. 1. Potential Ṽ with l ¼ 2 as a function of r=rh.

1Taking B as a small expansion parameter, one may write the
potential as Ṽ ¼ VGR þ δV, where VGR is the Regge-Wheeler
potential in general relativity and δV is a small correction. In the
present case, δV contains fractional powers of r, which hinders us
from using the convenient formalism of Ref. [52].
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APPENDIX A: GENERALITY OF THE
QUADRATIC LAGRANGIAN

Starting from the action (1), we have shown in the main
text that the quadratic Lagrangian for the odd parity modes is
given by Eq. (15). Actually, one can show that more general
scalar-tensor theories lead to the quadratic Lagrangian for the
odd parity modes having the same structure as Eq. (15) as
long as the equationofmotion for gravitational-wave degrees
of freedom remains of second order.
For example, one may add to the action (1)

F̃3ðXÞR□ϕ; ðA1Þ

to consider a general derivative coupling of the form
F3Gμνϕ

μν þ F̃3R□ϕ ¼ F3Rμνϕ
μν þ ðF̃3 − F3=2ÞR□ϕ.

This only shifts the coefficients as

F ; G;H → F ; G;H þ
�
Bψ 0

r
−
ðAXÞ0
Aψ 0

�
F̃3; ðA2Þ

J → J ðA3Þ

and does not give rise to any new terms in Eq. (15).
Similarly, one may also add terms quartic in second

derivatives of ϕ such as

C1ðXÞϕμνϕ
νρϕρλϕ

λμ; C2ðXÞð□ϕÞ4; � � � : ðA4Þ

One can verify by direct computation that such quartic
terms merely shift the coefficients without altering the
structure of the Lagrangian (15) or have no contribution to
the odd parity sector.
We thus conclude that the form of the Lagrangian (15) is

generic to scalar-tensor theories in which gravitational-
wave degrees of freedom obey a second-order equation of
motion.

APPENDIX B: SOURCED
REGGE-WHEELER EQUATION

In this Appendix, we generalize our main result to
include the source term, which has not been considered
in the previous similar studies [8,13,14,24]. Assuming that
matter is minimally coupled to gravity, the source term can
be obtained from

Ssource ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
hμνTμν; ðB1Þ

where Tμν is the matter energy-momentum tensor. Similarly
to the metric perturbations, the odd parity part of the energy
momentum tensor can also be expanded as

Ttθ ¼ −
1

sin θ
∂φ

X∞
l¼2

Xl
m¼−l

SðlmÞ
0 ðt; rÞYlm; ðB2Þ

Ttφ ¼ sin θ∂θ

X∞
l¼2

Xl
m¼−l

SðlmÞ
0 ðt; rÞYlm; ðB3Þ

Trθ ¼ −
1

sin θ
∂φ

X∞
l¼2

Xl
m¼−l

SðlmÞ
1 ðt; rÞYlm; ðB4Þ

Trφ ¼ sin θ∂θ

X∞
l¼2

Xl
m¼−l

SðlmÞ
1 ðt; rÞYlm; ðB5Þ

Tθθ¼
2

sinθ
ð∂θ∂φ−cotθ∂φÞ

X∞
l¼2

Xl
m¼−l

SðlmÞ
2 ðt;rÞYlm; ðB6Þ

Tθφ ¼
�

1

sin θ
∂2
φ þ cos θ∂θ − sin θ∂2

θ

�

×
X∞
l¼2

Xl
m¼−l

SðlmÞ
2 ðt; rÞYlm; ðB7Þ

Tφφ ¼ −2 sin θð∂θ∂φ − cot θ∂φÞ
X∞
l¼2

Xl
m¼−l

SðlmÞ
2 ðt; rÞYlm:

ðB8Þ

The conservation of the matter energy-momentum tensor,
∇νTμν ¼ 0, yields

−
_SðlmÞ
0

A
þ

ffiffiffiffiffiffiffiffiffi
B=A

p
r2

ðr2
ffiffiffiffiffiffiffi
AB

p
SðlmÞ
1 Þ0

þ ðl − 1Þðlþ 2Þ
r2

SðlmÞ
2 ¼ 0: ðB9Þ

It is straightforward to perform the angular integrations
in Eq. (B1) to obtain

Ssource ¼ −
X∞
l¼2

Xl
m¼−l

lðlþ 1Þ
2

×
Z

dtdr

�
h�0S0ffiffiffiffiffiffiffi
AB

p −
ffiffiffiffiffiffiffi
AB

p
h�1S1 þ c:c:

�
; ðB10Þ

where we omitted the labels (lm) from S0 and S1. This is
the source action for the odd mode perturbations (see also
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Ref. [4]). We add the above source action to the gravita-
tional part of the action (14). Then, Eqs. (22) and (23) are
generalized to

a1h0 þ ða3χÞ0 þ
2a3
r

χ þ 1

2
a4h1 ¼

lðlþ 1Þ
2

ffiffiffiffiffiffiffi
AB

p S0; ðB11Þ

a2h1 − a3 _χ þ
1

2
a4h0 ¼ −

lðlþ 1Þ
2

ffiffiffiffiffiffiffi
AB

p
S1: ðB12Þ

Solving these equations for h0 and h1 and removing h0 and
h1 from the quadratic Lagrangian, we see that the
Lagrangian (26) is generalized to include the source as

Lð2Þ
lm;total ¼ Lð2Þ

lm −
lðlþ 1Þr2

4ðl − 1Þðlþ 2Þ

ffiffiffiffi
B
A

r
ðχ�Sodd þ c:c:Þ;

ðB13Þ

where Lð2Þ
lm in the right-hand side is the same Lagrangian as

the one defined as Eq. (26) and

SðlmÞ
odd ðt;rÞ≔2H

�
G
ζ2
SðlmÞ
0

�0
−
2FH
ζ2

_SðlmÞ
1

−
2HJ
Aζ2

_SðlmÞ
0 −2H

�
BJ
ζ2

SðlmÞ
1

�0
: ðB14Þ

Now, Eq. (31) with the source term reads

HΩ2ZμνDμDνχ − Vχ ¼ Sodd; ðB15Þ

and, accordingly, Eq. (40) with the source term is given by

ð−∂2
τ þ ∂2

r� − ṼÞχ̃ ¼ Gr
ffiffiffiffiffiffiffi
AB

p

Hζ1=2
Sodd: ðB16Þ

This is the generalization of the sourced Regge-Wheeler
equation.
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