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We consider the following question: may two different black holes (BHs) cast exactly the same shadow?
In spherical symmetry, we show the necessary and sufficient condition for a static BH to be shadow-
degenerate with Schwarzschild is that the dominant photonsphere of both has the same impact parameter,
when corrected for the (potentially) different redshift of comparable observers in the different
spacetimes. Such shadow-degenerate geometries are classified into two classes. The first shadow-
equivalent class contains metrics whose constant (areal) radius hypersurfaces are isometric to those of the
Schwarzschild geometry, which is illustrated by the Simpson and Visser (SV) metric. The second
shadow-degenerate class contains spacetimes with different redshift profiles and an explicit family of
metrics within this class is presented. In the stationary, axi-symmetric case, we determine a sufficient
condition for the metric to be shadow degenerate with Kerr for far-away observers. Again we provide two
classes of examples. The first class contains metrics whose constant (Boyer-Lindquist-like) radius
hypersurfaces are isometric to those of the Kerr geometry, which is illustrated by a rotating generalization
of the SV metric, obtained by a modified Newman-Janis algorithm. The second class of examples
pertains BHs that fail to have the standard north-south Z2 symmetry, but nonetheless remain shadow
degenerate with Kerr. The latter provides a sharp illustration that the shadow is not a probe of the horizon
geometry. These examples illustrate that nonisometric BH spacetimes can cast the same shadow, albeit
the lensing is generically different.
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I. INTRODUCTION

Strong gravity research is undergoing a golden epoch.
After one century of theoretical investigations, the last five
years have started to deliver long waited data on the strong
field regime of astrophysical black hole (BH) candidates.
The first detection of gravitational waves from a BH binary
merger [1] and the first image of an astrophysical BH
resolving horizon scale structure [2–4] have opened a new
era in testing the true nature of astrophysical BHs and the
hypothesis that these are well described by the Kerr
metric [5].
In both these types of observations a critical question to

correctly interpret the data is the issue of degeneracy. How
degenerate are these observables for different models? This
question, moreover, is two-fold. There is the practical issue
of degeneracy, due to the observational error bars. Different

models may predict different gravitational waves or BH
images which, however, are indistinguishable within cur-
rent data accuracy. But there is also the theoretical issue of
degeneracy. Can different models predict the same phe-
nomenology for some (but not all) observables? For the
case of gravitational waves this is reminiscent of an old
question in spectral analysis: can one hear the shape of a
drum [6]? (See also [7]). Or, in our context, can two
different BHs be isospectral? For the case of BH imaging,
this is the question if two different BHs capture light in the
same way, producing precisely the same silhouette. In other
words, can two different BH geometries have precisely the
same shadow [8]? The purpose of this paper is to inves-
tigate the latter question.
The BH shadow is not an imprint of the BH’s event

horizon [9]. Rather, it is determined by a set of bound null
orbits, exterior to the horizon, which, in the nonspherical
cases include not only light rings (LRs) but also non-planar
orbits; in Ref. [10] these were dubbed fundamental photon
orbits. In the Kerr case these orbits are known as spherical
orbits [11], since they span different latitudes at constant
radius, in Boyer-Lindquist coordinates [12].
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It is conceivable that different spacetime geometries
can have, in an appropriate sense, equivalent fundamen-
tal photon orbits without being isometric to one another.
In fact, one could imagine extreme situations in
which one of the spacetimes is not even a BH.1 It is
known that equilibrium BHs, in general, must have LRs
[14], and, consequently, also non-planar fundamental
photon orbits [15]. But the converse is not true: space-
times with LRs need not to have a horizon—see,
e.g., Ref. [16].
In this paper we will show such shadow-degenerate

geometries indeed exist and consider explicit examples.
For spherical, static, geometries, a general criterion
can be established for shadow-degenerate geometries.
The latter are then classified into two distinct equiv-
alence classes. Curiously, an interesting illustration of
the simplest class is provided by the ad hoc geometry
introduced by Simpson and Visser (SV) [17], describing
a family of spacetimes that include the Schwarzschild
BH, regular BHs and wormholes. In the stationary
axisymmetric case we consider the question of shadow
degeneracy with the Kerr family within the class of
metrics that admit separability of the Hamilton-Jacobi
(HJ) equation. We provide two qualitatively distinct
classes of examples. The first one is obtained by using
a modified Newman-Janis algorithm [18] proposed in
[19]; we construct a rotating version of the SV space-
time, which, as shown here, turns out to belong to a
shadow-degenerate class including the Kerr spacetime.
A second class of examples discusses BHs with the
unusual feature that they do not possess the usual north-
south Z2 symmetry present in, say, the Kerr family, but
nonetheless can have the same shadow as the Kerr
spacetime. This provides a nice illustration of the obser-
vation in [9] that the shadows are not a probe of the event
horizon geometry.
This paper is organized as follows. In Sec. II we discuss a

general criterion for shadow-degeneracy in spherical sym-
metry and classify the geometries wherein it holds into two
equivalence classes. Section III discusses illustrative exam-
ples of shadow-degenerate metrics for both classes. For
class I, the example is the SV spacetime. We also consider
the lensing in shadow-degenerate spacetimes, which is
generically non-degenerate. Section IV discusses shadow
degeneracy for stationary geometries admitting separability
of the HJ equation. Section V discusses illustrative exam-
ples of shadow-degenerate metrics with Kerr, in particular
constructing a rotating generalization of the SV spacetime
and a BH spacetime without Z2 symmetry, and analysing
their lensing/shadows. We present some final remarks
in Sec. VI.

II. SHADOW-DEGENERACY IN SPHERICAL
SYMMETRY

Let us consider a spherically symmetric, asymptotically
flat, static BH spacetime.2 Its line element can be written in
the generic form:

ds2 ¼ −VðRÞAðRÞdt2 þ dR2

BðRÞVðRÞ þ R2dΩ2: ð1Þ

Here, VðRÞ≡ 1–2m=R is the standard Schwarzschild
function, where m is a constant that fixes the BH horizon
at R ¼ 2m. The constant m needs not to coincide with the
ADM mass, denoted M. The two arbitrary radial functions
AðRÞ, BðRÞ are positive outside the horizon, at least C1 and
tend asymptotically to unity:

lim
R→∞

AðRÞ; BðRÞ ¼ 1: ð2Þ

In the line element (1), dΩ2 ≡ ½dθ2 þ sin2θdφ2� is the
metric on the unit round 2-sphere.
Due to the spherical symmetry of the metric (1), we can

restrict the motion to the equatorial plane θ ¼ π=2. Null
geodesics with energy E and angular momentum j have an
impact parameter

λ≡ j
E
; ð3Þ

and spherical symmetry allows us to restrict to λ ≥ 0.3

Following Ref. [16], we consider the Hamiltonian
H ¼ 1

2
gμνpμpν, to study the null geodesic flow associated

to the line element (1). One introduces a potential term
VðRÞ ⩽ 0 such that

2H ¼ V þ gRR _R
2 ¼ 0: ð4Þ

The dot denotes differentiation regarding an affine param-
eter. Clearly, a radial turning point ð _R ¼ 0Þ is only possible
when V ¼ 0 for null geodesics (H ¼ 0). One can further
factorize the potential V as

V ¼ j2gtt
�
1

λ
−H

��
1

λ
þH

�
⩽ 0; ð5Þ

which introduces the effective potential HðRÞ:

HðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðRÞVðRÞp

R
⩾0: ð6Þ

In spherical symmetry, the BH shadow is determined
by LRs. In the effective potential (6) description, a LR

1A rough, but not precise, imitation of the BH shadow
by a dynamically robust BH mimicker was recently discussed
in [13].

2The class of metrics (1) may describe non-BH spacetimes as
well.

3The case λ ¼ 0 has no radial turning points.
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corresponds to a critical point of HðRÞ, and its impact
parameter is the inverse of HðRÞ at the LR [16]:

H0ðRLRÞ ¼ 0; λLR ¼ 1

HðRLRÞ
; ð7Þ

where prime denotes radial derivative.
The BH shadow is an observer dependent concept.

Let us therefore discuss the observation setup. We consider
an astrophysically relevant scenario. First, the BH is
directly along the observer’s line of sight. Second, the
observer is localized at the same areal radius, Robs, in the
Schwarzschild and non-Schwarzschild spacetimes,4 both
having the same ADM mass M. Finally, the observer is
sufficiently far away so that no LRs exist for R > Robs in
both spacetimes, but Robs needs not to be at infinity.5 The
connection between the impact parameter λ of a generic
light ray and the observation angle β with respect to the
observer-BH line of sight is [20]:

λ ¼ sin β
HðRobsÞ

: ð8Þ

The degeneracy condition, that is, for the shadow edge
to be the same, when seen by an observer at the same
areal radius Robs in comparable spacetimes (i.e., with the
same ADM mass, M), is that the observation angle β
coincides in both cases, for both the metric (1) and the
Schwarzschild spacetime. This implies that the impact
parameter of the shadow edge in the generic spacetime
must satisfy:

λLR ¼
ffiffiffiffiffi
27

p
Mffiffiffiffiffiffiffiffiffi

Aobs
p ; ð9Þ

where we have used that, for Schwarzschild, the LR
impact parameter is λSchwLR ¼ ffiffiffiffiffi

27
p

M and Aobs ≡ AðRobsÞ.
Hence, only for the cases wherein A ¼ 1 does shadow
degeneracy amounts to having the same impact parameter
in the Schwarzschild and in the non-Schwarzschild space-
times, for an observer which is not at spatial infinity. In
general, the different gravitational redshift at the “same”
radial position in the two spacetimes must be accounted
for, leading to (9).
In the next two subsections we will distinguish two

different classes of shadow degenerate spacetimes
(class I and II), using the results just established. It is
important to remark that the fact that two non-isometric

spacetimes are shadow-degenerate does not imply that
the gravitational lensing is also degenerate. In fact, it is
generically not.
This will be illustrated in Sec. III with some concrete

examples for the two classes of shadow-degenerate space-
times. An interesting example of shadow, but not lensing,
degeneracy can be found in [21], albeit in a different
context.

A. Class I of shadow-degenerate spacetimes

Specializing (7) for (1) yields

λLR ¼ RLRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðRLRÞVðRLRÞ

p : ð10Þ

and

RLR ¼ 3mþ R4
LR

2λ2LR

A0ðRLRÞ
A2ðRLRÞ

; ð11Þ

where A0 ≡ dA=dR. The notorious feature is that regard-
less of BðRÞ, if AðRÞ ¼ 1, then it holds for the background
(1) that m ¼ M and

RLR ¼ 3M; λLR ¼
ffiffiffiffiffi
27

p
M; ð12Þ

which are precisely the Schwarzschild results. The con-
dition A ¼ 1 is thus sufficient to have the same shadow as
Schwarzschild, since (9) is obeyed. Spacetimes (1) with
A ¼ 1 define the equivalence Class I of shadow degenerate
spacetimes.
If the spacetime (1) with AðRÞ ¼ 1 but BðRÞ non trivial

describes a BH, it will have precisely the same shadow as
the Schwarzschild spacetime. Such family of spacetimes
is not fully isometric to Schwarzschild. But its constant
(areal) radius hypersurfaces are isometric to those of
Schwarzschild and thus have overlapping R ¼ constant
geodesics, which explains the result. This possibility will
be illustrated in Sec. III A.
These observations allow us to anticipate some shadow-

degenerate geometries also for stationary, axially symmet-
ric spacetimes. If the fundamental photon orbits are
“spherical,” not varying in some appropriate radial coor-
dinate, as for Kerr in Boyer-Lindquist coordinates, any
geometry with isometric constant radial hypersurfaces will,
as in the static case, possess the same fundamental photon
orbits, and will be shadow-degenerate with Kerr. We shall
confirm this expectation in an illustrative example
in Sec. V.

B. Class II of shadow-degenerate spacetimes

If AðRÞ ≠ 1 the solution(s) of (7) will not coincide, in
general, with (12). In particular, there can be multiple

4This is a geometrically significant coordinate, and thus can be
compared in different spacetimes.

5If a LR exists for R > Robs a more complete analysis can be
done, possibly featuring a BH shadow component in the opposite
direction to that of the BH, from the viewpoint of the observer.
However, this will not be discussed here in order to focus on a
more astrophysical setup.
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critical points of HðRÞ, i.e.. multiple LRs around the BH.
This raises the question: if multiple LRs exist, which will
be the one to determine the BH shadow edge?
We define the dominant LR as the one that determines

the BH shadow edge.6 To determine the dominant LR first
observe that:

(i) Since gtt < 0 outside the horizon, the condition
1=λ⩾HðRÞ must be satisfied along the geodesic
motion, see Eq. (5). In particular, at LRs, the smaller
the impact parameter λ is, the larger the potential
barrier HðRLRÞ is.

(ii) The radial motion can only be inverted (i.e., have a
turning point) when V ¼ 0 ⇔ 1=λ ¼ H.

(iii) The function HðRÞ vanishes at the horizon,
HjR¼2m ¼ 0.

The BH’s shadow edge is determined by critical light
rays at the threshold between absorption and scattering
by the BH, when starting from the observer’s position
Robs. Considering points (i)-(iii) above, these critical
null geodesics occur at a local maximum of H, i.e., a
LR. The infalling threshold is provided by the LR
that possesses the largest value of 1=λ, since this
corresponds to the largest potential barrier in terms of
HðRÞ. Any other photonspheres that might exist with a
smaller value of 1=λ do not provide the critical condition
for the shadow edge, although they might play a role in
the gravitational lensing. Hence, the dominant photon-
sphere has the smallest value of the impact parameter λ,
and shadow degeneracy with Schwarzschild is estab-
lished by constraining the smallest LR impact parameter
λ, via Eq. (9).
Combining Eq. (9) and λHðRÞ ⩽ 1, yields the

necessary and sufficient conditions on AðRÞ in order to
have shadow-degeneracy with Schwarzschild. Explicitly,
these are

(i)

AðRÞ ⩽ R3

ðR − 2mÞ
�

Aobs

27M2

�
; ð13Þ

(ii) the previous inequality must saturate at least once
outside the horizon for some Rdom

LR < Robs. At such
dominant LR, located at Rdom

LR , (9) is guaranteed
to hold.

Observe that 3M < Robs so that the observer is outside the
LR in the Schwarzschild spacetime. Spacetimes (1) with
A ≠ 1 obeying the two conditions above define the equiv-
alence Class II of shadow-degenerate spacetimes. One
example will be given in Sec. III B. We remark that class
I of shadow-degenerate spacetimes is a particular case of
class II.

III. ILLUSTRATIONS OF
SHADOW-DEGENERACY (STATIC)

A. Class I example: the SV spacetime

The SV spacetime is a static, spherically symmetric
geometry that generalizes the Schwarzschild metric with
one additional parameter b, besides the ADM mass M,
proposed in [17]. It is an ad hoc geometry. Its associated
energy-momentum tensor, via the Einstein equations,
violates the null energy condition, and thus all classical
energy conditions. Nonetheless, it is a simple and illus-
trative family of spacetimes that includes qualitatively
different geometries. It is given by the following line
element:

ds2 ¼ −
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
�
dt2 þ

�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
�

−1
dr2

þ ðr2 þ b2ÞdΩ2; ð14Þ

where the coordinates have the following domains:
−∞⩽ r⩽∞, −∞ ⩽ t ⩽ ∞, 0 < θ < π and −π ⩽ φ < π.
Depending on the value of the additional parameter b,
which without loss of generality we assume to be non-
negative, the spacetime geometry describes: (i) the
Schwarzschild geometry (b ¼ 0); (ii) a regular BH
(0 < b < 2M) with event horizon located at

rh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MÞ2 − b2

q
; ð15Þ

(iii) a one-way traversable wormhole geometry with a null
throat at rt ¼ 0 (b ¼ 2M); or (iv) a two-way traversable
wormhole geometry with a timelike throat at rt ¼ 0,
belonging to the Morris-Thorne class [24] (b > 2M).
The coordinate system in (14) is relevant to observe that

r ¼ 0 is not a singularity. Thus the geometry can be
extended to negative r. However, it hides some other
features of the geometry, since the radial coordinate in
(14) is not the areal radius for b ≠ 0. Introduce the areal
radius R as

R2 ≡ r2 þ b2: ð16Þ

The SV spacetime reads, in (t, R, θ, φ) coordinates,

ds2 ¼ −VðMÞdt2 þ dR2

VðMÞBSVðRÞ
þ R2dΩ2; ð17Þ

where

VðMÞ ¼ 1 −
2M
R

; ð18Þ

BSVðRÞ≡
�
1 −

b2

R2

�
: ð19Þ

6See [22,23] for a related discussion.
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The geometry is now singular at

R ¼ 2M ≡ Rh; and R ¼ b≡ Rt: ð20Þ

For 0 < b < 2M, Rh > Rt, the null hypersurface R ¼ Rh is
a Killing horizon and the event horizon of the spacetime. It
can be covered by another coordinate patch and then
another coordinate singularity is found at R ¼ Rt. This
is again a coordinate singularity, as explicitly shown in the
coordinate system (14). It describes a throat or bounce. A
free falling observer bounces back to a growing R, through
a white hole horizon into another asymptotically flat
region—see Fig. 4 in [17]. Thus, in the coordinate system
(t, R, θ, φ), b ⩽ R < ∞. The other coordinate ranges are
the same as before.
As it is clear from Eq. (20), the areal radius of the event

horizon (when it exists) is b-independent. Moreover, since
the SV spacetime is precisely of the type (1) with AðRÞ ¼ 1
and BðRÞ ¼ BSVðRÞ, it follows from the discussion of
the preceding section that Eq. (12) holds for the SV
spacetime. Thus, whenever the SV spacetime describes a
BH (0 < b < 2M) it is class I shadow-degenerate with a
Schwarzschild BH, for an equivalent observer. This result
can be also applied to the wormhole geometry if the LR is
located outside the throat, i.e., the LR must be covered by
the R coordinate range (b ≤ 3M). For b > 3M, the LR is
located at the throat and Eq. (12) does not hold [25].
The LR in this spacetime has the same areal radius as in

Schwarzschild, RLR ¼ 3M. However, the proper distance
between the horizon and the LR, along a t; θ;φ ¼ constant
curve is b-dependent:

ΔR¼
Z

RLR

Rh

ffiffiffiffiffiffiffi
gRR

p
dR¼

�≃3.049M; for b¼ 0;

→∞; for b¼ 2M:
ð21Þ

It is a curious feature of the SV spacetime that the
spatial sections of the horizon and the photonsphere have
b-independent proper areas, respectively 4πð2MÞ2 and
4πð3MÞ2. But the proper distance between these surfaces
is b-dependent and diverges as b → 2M.
Let us now consider the gravitational lensing in the SV

spacetime. We set the observer’s radial coordinate equal to
Robs ¼ 15M. In the top panel of Fig. 1 we plot the scattered
angle Δφ on the equatorial plane, in units of 2π, as a
function of the observation angle β. We choose three
distinct values of b, including the Schwarzschild case
(b ¼ 0). For large observation angles, the scattered angle
is essentially the same for different values of b. A slight
difference arises near the unstable LR, characterized by the
divergent peak, as can be seen in the inset of Fig. 1 (top
panel). In this region, for a constant β, the scattered angle
increases as we increase b. We note that the LR, and hence
the shadow region, is independent of b, as expected. In the
bottom panel of Fig. 1 we show the trajectories of light rays
for the observation angle β ¼ 0.33 and different values of

b. The event horizon, for the BH cases, is represented by
the dashed circle. We notice that higher values of b lead to
larger scattering angles.
We show in Fig. 2 the shadow and gravitational lensing

of the Schwarzschild BH, SV BH and SV wormhole
spacetimes, obtained using backwards ray-tracing. In the
backward ray-tracing procedure, we numerically integrate
the light rays from the observer position, backwards in
time, until the light rays are captured by the event horizon
or scattered to infinity. The results were obtained with two
different codes: a Cþþ code developed by the authors,
and the PyHole code [26] which was used as a cross-check.
In this work we only show the ray-tracing results obtained

FIG. 1. Top panel: scattering angle for null geodesics as a
function of the observation angle, for the Schwarzschild BH
(b ¼ 0), SV BH (b ¼ 1.99M) and SV wormhole (b ¼ 2.5M)
cases. The shaded area corresponds to the shadow region in the
observer’s local sky. Bottom panel: the trajectories described by
null geodesics in the Cartesian plane for the same choices of b
and with observation angle β ¼ 0.33. The observerO is located at
(x ¼ 15M, y ¼ 0), as shown in the bottom panel. The dashed
circle represents the event horizon of the BH cases.
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with the Cþþ code, since they are essentially the same as
the ones obtained with the PyHole code. The light rays
captured by the BH are assigned a black color in the
observer’s local sky. For the scattered light rays, we adopt a
celestial sphere with four different colored quadrants (red,
green, blue and yellow). A grid with constant latitude and
longitude lines, and a bright spot behind the BH/wormhole
are also present in the celestial sphere. This setup is similar
to the ones considered in Refs. [26–28]. On the other hand,
the light rays captured by the wormhole throat are assigned
with a different color pattern (purple, cyan, dark green and
dark yellow) on the celestial sphere on the other side of the
throat, but without the grid lines and the bright spot.
The white ring surrounding the shadow region in

Fig. 2 corresponds to the lensing of the bright spot behind
the BH, known as Einstein ring [29]. It is manifest in the
Schwarzschild and SV BHs, as well as in the SV wormhole
case. The Einstein ring has a slightly different angular size
in the three configurations shown in Fig. 2. This can be
confirmed in Fig. 1, since on the equatorial plane, the
Einstein ring is formed by the light rays scattered with
angle Δφ ¼ π, which corresponds to close values of β for
the three cases. Due to the spherical symmetry, a similar
analysis holds for light rays outside the equatorial plane,
which explains the formation of the Einstein ring with
similar angular size in Fig. 2.
Inside the Einstein ring, the whole celestial sphere

appears inverted. Next to the shadow edge, there is a
second Einstein ring (corresponding to a circular grid ring
best seen in the inset of the figures between the yellow and
green patches), in this case corresponding to the point
behind the observer, Δφ ¼ 2π in Fig. 1. A slight difference
between the three configurations is also observed in this
region, as can be seen in the inset of Fig. 2. In between the
second Einstein ring and the shadow edge there is an
infinite number of copies of the celestial sphere.

B. Class II example: A spacetime with A ≠ 1

Asa concrete example of the class II of shadow-degenerate
BHspacetimeswith respect to theSchwarzschildBH, as seen
by an observer at radial coordinate Robs, we consider (using
m ¼ M ¼ 1 units) the following AðRÞ function:

A ¼ 1þ
�
RLR − 3

b1 þ b2

��
a0

�
RLR

R

�
2

þ a1

�
RLR

R

�
4
�
;

a0 ¼ −2a1 − R3
LRð1 − 2u2 þ u4Þ;

a1 ¼ −36þ 24RLR − R2
LR þ R3

LRðu2 − 2Þ;
b1 ¼ 27ðRLR − 2Þ2;
b2 ¼ R3

LRu
2½ð7 − 3RLRÞ þ ð2RLR − 5Þu2�: ð22Þ

We have here introduced a free parameterRLR which sets the
radial position of the dominant photonsphere (after suitably
restricting the range ofRLR). This spacetime is alsomodified

FIG. 2. The shadow and gravitational lensing of the: Schwarzs-
child BH (panel a), SV BH spacetime with b ¼ 1.99M (panel b),
and SV wormhole spacetime with b ¼ 2.5M (panel c). The
observer is located on the equatorial plane and at the radial
coordinate Robs ¼ 15M. The angle of view is equal to 45°. We
present, in the top right corner of each panel, a zoom of the region
next to the shadow edge.
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by the quantity u≡ RLR=Robs, which depends on the
observer location. In particular, the choice u ¼ 0 corre-
sponds to setting the observer at spatial infinity. This
spacetime reduces to the Schwarzschild case for RLR ¼ 3
(provided than B ¼ 1), since it implies AðRÞ ¼ 1. However,
for RLR ≠ 3 the spacetime is not Schwarzschild.
Not every parameter combination fRLR; Robsg yields

an acceptable spacetime for our analysis. Considering
the discussion in Sec. II B, the spacetime outside the
horizon must satisfy both A > 0 and Eq. (13), together
with 2 < RLR < Robs and 3 < Robs. These conditions fix
the allowed range of parameters.
For concreteness, we can set Robs ¼ 15, which leads to

the following allowed range for the parameter RLR:

RLR ∈ ½2.22; 3.26�: ð23Þ

In contrast, the function BðRÞ can be left fairly uncon-
strained. Curiously, for some values of RLR in the range
(23) there can be three photonspheres (two unstable, and
one stable) outside the horizon. However, the LR at R ¼
RLR is always the dominant one by construction, as can be
seen in Fig. 3, where the horizontal dashed lines correspond
to 1=λLR—see Eq. (9). Each line intersects the maximum
point of the associated potential H, that determines the
dominant LR location.
Let us now consider the gravitational lensing in this

spacetime, assuming for simplicity BðRÞ ¼ 1. In the top
panel of Fig. 4 we plot the scattered angle, in units of 2π, as
a function of the observation angle β, for the two parameter
values RLR ¼ f2.227; 2.37g. The Schwarzschild case
RLR ¼ 3 is also included in Fig. 4, for reference. First
taking RLR ¼ 2.227, there are two diverging peaks on the
scattering angle, related to the existence of two unstable
LRs (there exists also a stable LR which leaves no clear
signature in the scattering plot). In contrast to the first case,
RLR ¼ 2.37 contains only a single diverging peak.
However, it presents a local maximum of the scattering

angle next to β ¼ 0.4, as can be seen in the inset of Fig. 4
(top panel). This local maximum leads to a duplication of
lensed images. Importantly, the shadow region, correspond-
ing to the shaded area in Fig. 4, is the same for the different
values of RLR, as expected.
On the bottom panel of Fig. 4 we show the trajectories

described by null geodesics, for different values of the
parameter RLR, given the same observation angle β ¼ 0.33.
Curiously, when RLR ¼ 2.227, the trajectory followed by
the light ray presents two inflection points when repre-
sented in the ðx ¼ R cosφ; y ¼ R sinφÞ plane, cf. Fig. 4

 0.05

 0.1

 0.15

 0.2

 2  4  6  8  10  12  14

(R
)

R

RLR=2.227
RLR=2.37
RLR=3

FIG. 3. The effective potentialHðRÞ for the class II of shadow-
degenerate BHs, with AðRÞ given by Eq. (22), for different
dominant LR radius RLR. The horizontal lines correspond to the
critical impact parameters for each RLR, see Eq. (9).

FIG. 4. Top: the scattered angle of null geodesics, as a function
of the observation angle β, for RLR ¼ f2.227; 2.37; 3g. The
shaded area corresponds to the shadow region in the observer’s
local sky. The horizontal dotted line represents the light rays
scattered at Δφ ¼ 2π (located behind the observer). Since there is
a black dot in the celestial sphere right behind the observer, the
gravitational lensing displays black Einstein rings (see Fig. 5).
Bottom: the corresponding trajectories described by null geo-
desics in the equatorial plane in Cartesian-like coordinates with
an observation angle β ¼ 0.33. The observer O is located at
ðx ¼ 15; y ¼ 0Þ. The dashed circle represents the event horizon
of these class II shadow degenerate examples.
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(bottom panel). Such inflection points are determined by
d2y=dx2 ¼ 0, which yields

R2 − R
d2R
dφ2

þ 2

�
dR
dφ

�
2

¼ 0 ⇔ R̈ ¼ j2

R3
; ð24Þ

where the last equivalence holds for j ≠ 0. This is also the
condition for the curve R ¼ RðφÞ to have vanishing
curvature. On the other hand, the equations of motion
(4) and _φ ¼ j=R2, give, for BðRÞ ¼ 1,

R̈ ¼ j2

R3
þ E2

2

d
dR

�
1

AðRÞ þ
2λ2

R3

�
: ð25Þ

Equating the last two results yields

3þ R4

2λ2
A0ðRÞ
AðRÞ2 ¼ 0; ð26Þ

as the condition at an inflection point. Observe the
similarity with (11) (recall m¼1 here); the latter has
R̈ ¼ 0, unlike (24). For the Schwarzschild case, AðRÞ¼1,
and there are no inflection points. But for AðRÞ given by
(22) and RLR ¼ 2.227 it can be checked that the function in
square brackets in (25) has a local maximum, which
explains the existence of inflection points.
To further illustrate the effect of different choices of the

parameter RLR, we display the shadows and gravitational
lensing in Fig. 5, obtained numerically via backwards ray-
tracing. Despite identical shadow sizes, the gravitational
lensing can be quite different for each value of the
parameter RLR. For instance, although Einstein rings are
present in all cases depicted, they have different angular
diameters. This is best illustrated by looking at the white
circular rings, which are mapping the point in the colored
sphere directly behind the BH.
There are also some curious features of the lensing that

can be anticipated from the scattering angle plot in Fig. 4
(top panel). For example, for a parameter RLR ¼ 2.227
there are multiple copies of the celestial sphere very
close to the shadow edge that are not easily identifiable in
Fig. 5(a). This is due to light rays scattered with angles
greater than π having an observation angle β very close to
the shadow edge. The diverging peak in the scattering
angle also has a clean signature in the image, in the form
of a very sharp colored ring which is just a little smaller in
diameter than the white circle. Additionally, taking the
parameter RLR ¼ 2.37, we can further expand our pre-
vious remark on the effect of the local maximum of the
scattering angle, which introduces an image duplication
of a portion of the colored sphere directly behind the
observer. This feature is best seen in Fig. 5(b) as an
additional colored ring structure that does not exist in
Fig. 5(c).

FIG. 5. The shadow and gravitational lensing for the class II
example of shadow degenerate BHs, with AðrÞ given in Eq. (22),
for RLR ¼ 2.227 (panel a), RLR ¼ 2.37 (panel b), and RLR ¼ 3

(panel c). The observer position and angle of view are the same as
in Fig. 2.
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IV. SHADOW-DEGENERACY IN
STATIONARY BHS

Let us now investigate possible rotating BHs with Kerr
degenerate shadows. We assume that the spacetime is
stationary, axi-symmetric and asymptotically flat. In con-
trast to the spherically symmetric case, the general motion
of null geodesics in rotating BH spacetimes is not con-
strained to planes with constant θ. This introduces an
additional complication in the analysis of the geodesic
motion, and in many cases it is not possible to compute the
shadows analytically. For Kerr spacetime, there is an
additional symmetry that allows the separability of the
HJ equation, thus the shadow problem can be solved
analytically. This symmetry is encoded in the so-called
Carter constant, that arises due to a non-trivial Killing
tensor present in the Kerr metric [30]. Here, we shall
investigate shadow degeneracy specializing for rotating BH
spacetimes that admit separability of the null geodesic
equation.7 A relevant previous analysis in the literature
regarding shadow degeneracy for general observers can be
found in [31], albeit restricted to the Kerr-Newman-Taub-
NUT BH family of solutions.

A. Spacetimes admitting HJ separability

Following the strategy just discussed, we need the
general form of the line element for a rotating BH
spacetime that admits separability of the HJ equation. It
is known that rotating spacetimes obtained through a
Newman-Janis and modified Newman-Janis algorithms
allow separability of the HJ equation [19,32,33]. Since it
is not guaranteed, however, that every spacetime allowing
separability of the HJ equation can be obtained by such
algorithms, we pursue a different strategy. In Ref. [34],
Benenti and Francaviglia found the form of the metric
tensor for a spacetime admitting separability of null geo-
desics in n-dimensions (see also [35]). This result is based
on the following general assumptions:

(i) There exist (locally) z independent commuting
Killing vectors Xα.

(ii) There exist (locally) n − z independent commuting
Killing tensors Ka, satisfying

½Ka;Xα� ¼ 0: ð27Þ

(iii) The Killing tensors Ka have in common n − z
commuting eigenvectors Xa such that

gðXa;XαÞ ¼ 0; ½Xa;Xα� ¼ 0: ð28Þ

We are interested in four-dimensional spacetimes (n ¼ 4)
admitting two Killing vectors (z ¼ 2), associated to the axi-
symmetry and stationarity. Hence the metric tensor that
admits separability of the HJ equation is given by [34]:

∂2
s ¼ gab∂a∂b ¼

1

Ã1ðRÞ þ B̃1ðθÞ
½ðÃ2ðRÞ þ B̃2ðθÞÞ∂2

t

þ 2ðÃ3ðRÞ þ B̃3ðθÞÞ∂t∂φ þ Ã4ðRÞ∂2
R þ B̃4ðθÞ∂2

θ

þ ðÃ5ðRÞ þ B̃5ðθÞÞ∂2
φ�: ð29Þ

For our purpose, it is convenient to rewrite the functions
ÃiðRÞ and B̃iðθÞ as

Ã1 ¼R2A1; B̃1¼ a2cos2θB1; Ã2¼−
ðR2þa2Þ2

Δ
A2;

B̃2 ¼ a2sin2θB2; Ã3¼−
2amR
Δ

A3; B̃3¼B3−1;

Ã4 ¼ΔA4; B̃4¼B4; Ã5 ¼−
a2

Δ
A5; B̃5¼

1

sin2θ
B5;

since we can recover the Kerr spacetime by simply taking
Ai ¼ 1 and Bi ¼ 1. The function Δ is given by

Δ ¼ R2 − 2mRþ a2; ð30Þ

where m and a are constants that fix the BH event
horizon at

Rh ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
: ð31Þ

Similarly to the spherically symmetric case, m and a need
not to coincide with the ADM mass and total angular
momentum per unit mass, respectively. The metric tensor in
terms of Ai and Bi assumes the following form:

∂2
s ¼

1

Σ̃

�
−
�ðR2 þ a2Þ2

Δ
A2 − a2sin2θB2

�
∂2
t

− 2

�
2amR
Δ

A3 þ 1 − B3

�
∂t∂φ þ ΔA4∂2

R þ B4∂2
θ

þ
�
−
a2

Δ
A5 þ

1

sin2θ
B5

�
∂2
φ

�
; ð32Þ

In Eq. (32), we have

Σ̃ ¼ R2A1 þ a2cos2θB1: ð33Þ

We assume that AiðRÞ are positive outside the event
horizon, and at least C1. Nevertheless, the general result
found by Benenti and Francaviglia may also describe non-
asymptotically flat spacetimes. Hence, we need to impose
constraints on the 10 functions present in the metric tensor
(32), in order to describe asymptotically flat BHs. For this

7Although this strategy implies a loss of generality it seems
unlikely (albeit a proof is needed) that a spacetime without
separability can yield precisely the same shadow as the Kerr one,
which is determined by separable fundamental photon orbits.
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purpose it is sufficient that they tend asymptotically to
unity, namely:

lim
R→∞

AiðRÞ ¼ 1: ð34Þ

The metric far away from the BH is given by [36]:

ds̃2 ¼ −
�
1 −

2M
R

�
dt2 −

2Jsin2θ
R

dtdφþ dR2 þ R2dΩ2;

ð35Þ

where J denotes the ADM angular momentum. Expanding
the metric tensor (32) for R ≫ m and R ≫ a, and compar-
ing with the BH metric far away from the BH, we find that

B3ðθÞ ¼ B4ðθÞ ¼ B5ðθÞ ¼ 1; ð36Þ

while B1ðθÞ and B2ðθÞ are left unconstrained. Hence we
conclude that the metric tensor for a spacetime admitting
separability and asymptotically flatness is given by

∂2
s ¼

1

Σ̃

�
−
�ðR2 þ a2Þ2

Δ
A2 − a2sin2θB2

�
∂2
t

− 2
2amRA3

Δ
∂t∂φ þ ΔA4∂2

R þ ∂2
θ

þ
�
−
a2

Δ
A5 þ

1

sin2θ

�
∂2
φ

�
: ð37Þ

This line element (37) have been obtained previously
in Ref. [37].

B. Fundamental photon orbits

We are now able to study the problem of shadow
degeneracy in stationary and axisymmetric BHs, using the
concretemetric form (37) for spacetimeswith a separableHJ
equation. It is straightforward to compute the following
geodesic equations for the coordinates fR; θg:

Σ̃2

A4

_R
E2

2

¼ RðRÞ; ð38Þ

Σ̃2
_θ

E2

2

¼ ΘðθÞ; ð39Þ

where

RðRÞ ¼ ðR2 þ a2Þ2A2 − 4λamRA3 þ a2λ2A5

− Δðηþ a2 þ λ2Þ; ð40Þ

ΘðθÞ ¼ ηþ a2ð1 − sin2θB2Þ −
λ2

tan2θ
: ð41Þ

The constant parameters λ and η are given by

λ ¼ j
E
; η ¼ Q

E2
: ð42Þ

As before, fE; jg are the energy and angular momentum of
the photon respectively. The quantity Q is a Carter-like
constant of motion, introduced via the separability of the HJ
equation.
The analysis of the spherical photon orbits (SPOs) is

paramount to determine the BH’s shadow analytically.
These orbits are a generalization of the LR orbit (photon
sphere) that was discussed in the introduction. SPOs have a
constant radial coordinate R and are characterized by the
following set of equations:

RðRÞ ¼ 0; ð43Þ

dRðRÞ
dR

¼ 0: ð44Þ

In general, the set of SPOs in the spacetime (37) will not
coincide with the Kerr one. However if we set

A2 ¼ A3 ¼ A5 ¼ B2 ¼ 1; ð45Þ

Eq. (40) is identical to the Kerr case in Boyer-Lindquist
coordinates, the samewill hold for the set of equations (43)–
(44), regardless of A1, B1 and A4. One might then have the
expectation that (45) is a sufficient condition to be shadow-
degenerate with Kerr. Although this will turn out to be
indeed true, caution is needed in deriving such a con-
clusion, since the influence of the observer frame also
needs to be taken into account.
The solutions to Eqs. (43)–(44) with (45) are the

following two independent sets:

η� ¼ −
R4

a2
; λ� ¼ R2 þ a2

a
; ð46Þ

and

η ¼ −
R3ðR3 − 6MR2 þ 9M2R − 4a2MÞ

a2ðR −MÞ2 ; ð47Þ

λ ¼ −
ðR3 − 3MR2 þ a2RþMa2Þ

aðR −MÞ : ð48Þ

The first set fλ�; η�g is unphysical because (41) is not
satisfied for real values. In contrast, the second set of
Eqs. (47)–(48) is physically relevant: it defines the con-
stants of motion for the different SPOs as a function of the
parametric radius R ∈ ½R1; R2�. In the latter, R1 and R2 are
defined as the roots of Eq. (47), given by

Rk

M
¼ 2þ 2 cos

�
2

3
arccos

�
ð2k − 3Þ jaj

M

��
; ð49Þ
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where k ∈ f1; 2g. Importantly, the physical range R ∈
½R1; R2� follows from the requirement that Θ⩾0 [from
Eq. (41)]. The set of equations (47)–(48) have been
extensively analyzed in the literature for the Kerr metric
[11,38]. Remarkably, this set of orbits does not depend on
the functions A1, B1 and A4.

C. Shadows

The BH shadow edge in the spacetime (37) is determined
by the set of SPOs discussed above. To analyze the former,
it is important to obtain the components of the light ray’s 4-
momentum pμ, as seen by an observer in a local ZAMO
(zero angular momentum observer) frame (see discussion
in Ref. [20]). In the following expressions, all quantities are
computed at the observer’s location:

pðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gφφ
g2tφ − gttgφφ

s �
Eþ gtφ

gφφ
j

�
; ð50Þ

pðRÞ ¼ pRffiffiffiffiffiffiffi
gRR

p ¼ ffiffiffiffiffiffiffi
gRR

p _R; ð51Þ

pðθÞ ¼ pθffiffiffiffiffiffi
gθθ

p ¼ ffiffiffiffiffiffi
gθθ

p _θ; ð52Þ

pðφÞ ¼ jffiffiffiffiffiffiffigφφ
p : ð53Þ

One generically requires two observation angles fα; βg,
measured in the observer’s frame, to fully specify the
detection direction of a light ray in the local sky. These
angles are defined by the ratio of the different components
of the light ray’s four momentum in the observer frame.
Following [20], we can define the angles α, β to satisfy:

sin α ¼ pðθÞ

pðtÞ ; tan β ¼ pðφÞ

pðRÞ : ð54Þ

In addition, one can expect the angular size of an object to
decrease like α ∼ 1=Rcirc in the limit of far away observers,
where the circumferential radius8 Rcirc is a measure of the
observer’s distance to the horizon [20,39]. Given this
asymptotic behavior, it is useful to introduce the impact
parameters:

X ¼ −Rcircβ; Y ¼ Rcircα: ð55Þ

By construction, these quantities fX; Yg are expected
to have a well defined limit when taking Rcirc → ∞.
The relation between fX; Yg and the constants of null

geodesic motion fλ; ηg can be obtained by considering
Eqs. (40)–(41) for _R and _θ, and then combining them with
Eqs. (50)–(54).
We can compute the shadow edge expression in the limit

of far-away observers (Rcirc → ∞):

X ¼ −
λ

sin θ0
; ð56Þ

Y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θ0 −

λ2

tan2θ0

s
: ð57Þ

The shadow degeneracy occurs when the quantities fX; Yg
coincide in the non-Kerr and Kerr spacetimes, for an
observer located at the same circumferential radius Rcirc
and polar angle θ0. This will certainly be the case if the set
of SPOs coincides in both Kerr and the non-Kerr geometry
for observers that are very far-away. Thus recalling
Eq. (45), we note that the latter is a sufficient condition
for shadow degeneracy at infinity.
We conclude with the following line element obtained

from (37) together with (45):

ds2 ¼ −
ðΔ − a2sin2θÞΣ̃

Σ2
dt2 þ Σ̃

A4Δ
dR2 þ Σ̃dθ2

−
4amRsin2θΣ̃

Σ2
dtdϕ

þ ½ðR2 þ a2Þ2 − a2Δsin2θ�Σ̃
Σ2

sin2θdϕ2; ð58Þ

where

Σ ¼ R2 þ a2cos2θ: ð59Þ

This geometry will be shadow degenerate with respect to
the Kerr spacetime for very far-away observers, with very
weak constraints on A1, B1 and A4.

V. ILLUSTRATIONS OF SHADOW-DEGENERACY
(STATIONARY)

A. Rotating SV spacetime

An example of a rotating, stationary and axisymmetric
BH with a Kerr degenerate shadow, can be obtained by
applying the method proposed in [19] to the static SV
geometry.9 This method consists on a variation of the
Newman-Janis algorithm (NJA) [18]. Starting from a static
seed metric, we can generate via this modified NJA a
rotating circular spacetime that can be always expressed in
Boyer-Lindquist-like coordinates. This comes in contrast to

8The quantity Rcirc is computed by displacing the observer to
the equatorial plane (θ ¼ π=2), while keeping its coordinate R
fixed; Rcirc ¼ ffiffiffiffiffiffiffigφφ

p at that new location.

9As this paper was being completed a rotating version
of the SV spacetime was independently constructed, using the
NJA, in [40,41].
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the standard NJA, for which the latter is not always
possible. However, the method introduces a new unknown
function (Ψ below) that may be fixed by additional
(physical) arguments, for instance, interpreting the compo-
nent of the stress-energy tensor Tμν to be those of a
fluid [19].
Applying the modified NJA discussed in Ref. [19] to the

seed metric (14) (class I spacetime—SV), we introduce the
functions:

FðrÞ ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
�
; ð60Þ

KðrÞ ¼ r2 þ b2: ð61Þ

The latter contains the same functional structure of some of
the metric elements of the seed metric (14). Combining
these functions F, K with a complex change of coordinates
(which introduces a parameter a), we obtain a possible
rotating version of the SV metric (14), namely:

ds2¼−
ðFKþa2cos2θÞ
ðKþa2cos2θÞ2 Ψdt

2þ Ψ
FKþa2

dr2

−2asin2θ

�
K−FK

ðKþa2cos2θÞ2
�
ΨdtdφþΨdθ2

þΨsin2θ
�
1þa2sin2θ

2K−FKþa2cos2θ
ðKþa2cos2θÞ2

�
dφ2; ð62Þ

where Ψ is an undefined function that can be fixed by an
additional requirement. Assuming a matter-source content
of a rotating fluid, we can check that setting Ψ ¼ r2 þ
a2 cos2 θ þ b2 leads to an Einstein tensor that satisfies the
suitable fluid equations detailed in Ref. [19]. We may then
rewrite the line element (62) in terms of the radial
coordinate R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
, which leads to the more com-

pact form:

ds2 ¼ −
�
1 −

2MR
Σ

�
dt2 þ Σ

Δ
dR2

BSVðRÞ
−
4MaRsin2θ

Σ
dtdφ

þ Σdθ2 þ Σ
�
1þ a2sin2θ

Σ2
ðΣþ 2MRÞ

�
sin2θdφ2;

ð63Þ

where

Σ ¼ R2 þ a2cos2θ; ð64Þ

Δ ¼ R2 − 2MRþ a2: ð65Þ

For simplicity, we shall designate the geometry (63) as the
rotating SV spacetime. Curiously, the line element (63) is
precisely the Kerr one, except for the extra factor BSVðRÞ in
the gRR component. For a ¼ 0, the SV line element (17) is

recovered; for b ¼ 0 we recover the Kerr metric in Boyer-
Lindquist coordinates.
An important remark is in order. Depending on the

coordinate choice of the seed metric (14), the latter might
be mapped to a different final geometry. For instance, had
we applied the modified NJA to the seed SV metric in the
coordinates of Eq. (17) rather than those of Eq. (14), then
we would have obtained a rotating spacetime different than
that of (63).
Let us now examine some of the properties of the

spinning SV geometry (63).

1. Singularities and horizons

The line element (63) presents singularities at:

R� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð66Þ

Rt ¼ b: ð67Þ

These are coordinate singularities and the spacetime is
regular everywhere. In particular (66) are Killing horizons
that only exist if R� > Rt, or

M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
⩾b: ð68Þ

Adopting the positive sign in Eq. (68), a BH only exists if
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
> b and a < M; for M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
¼ b

the geometry describes a wormhole with a throat, which
can be nulllike, spacelike or timelike, depending on the
value of a and b [40]. These singularities R� can be
removed by writing the line element in Eddington-
Finkelstein-like coordinates. On the other hand, the singu-
larity Rt can be removed by writing the line element in the
coordinates given by Eq. (62), in which Rt corresponds to
the radial coordinate r ¼ 0.
In order to inquire if the geometry (63) is regular

everywhere, let us consider some curvature invariants:
the Kretschmann scalar (K ¼ RμνβρRμνβρ), the Ricci scalar
(Rμνgμν), and the squared Ricci tensor (RμνRμν). The full
expressions of the curvature invariants are too large to write
down. However, we can write them in a compact form as:

K ¼ PðR; θÞ
2R6Σ6

; ð69Þ

Rμνgμν ¼
b2QðR; θÞ

R3Σ3
; ð70Þ

RμνRμν ¼
b4SðR; θÞ
2R6Σ6

; ð71Þ

where PðR; θÞ, QðR; θÞ and SðR; θÞ are polynomials of
powers of R, sin θ and cos θ. We observe that the curvature
invariants are all finite in the range of the radial coordinate
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R (b < R < ∞), for b ≠ 0. The Carter-Penrose diagram, as
well as further properties of this rotating SV geometry can
be found in Ref. [40].

2. Shadow and lensing

The rotating SV geometry is a particular case of Eq. (58),
since

A1 ¼ 1; B1 ¼ 1; A4 ¼ BSVðRÞ: ð72Þ

Hence, this BH geometry is shadow degenerate with
Kerr spacetime, regardless of b. A plot of the shadow
edge is presented in Fig. 6 (top panel) for the rotating SV
spacetime with different values of b. As was previously
mentioned, the shadow does not depend on the parameter b.
Notwithstanding, the dependence on b through BSVðRÞ
has a subtle impact on the gravitational lensing, as can be
seen in Fig. 7, where we show the shadow and gravitational
lensing of the rotating SV spacetime, obtained using
backwards ray-tracing.
We remark that applying the modified NJA to the

spherically symmetric and static geometries presented in
Sec. II does not generically result in a Kerr degenerate
shadow geometry. In particular, if one applies the modified
NJA to the class II shadow degenerate example (22), the
resulting rotating BH geometry is not shadow degenerate.

B. Black holes without Z2 symmetry

It has been pointed out that the BH shadow is not a probe
of the event horizon geometry [9]. As a second example of
shadow-degeneracy in rotating, stationary and axisymmet-
ric BHs, allowing separability of the HJ equation, we shall
provide a sharp example of the previous statement. We shall
show that a rotating, stationary and axisymmetric BH
without Z2 symmetry (i.e., without a north-south hemi-
spheres discrete invariance) can, nonetheless, be shadow
degenerate with the Kerr BH.
Geometries within the family (58) are Z2 symmetric if

invariant under the transformation

θ → π − θ; ð73Þ

which maps the north and south hemispheres into one
another. The Kerr [5], Kerr-Newman [42], Kerr-Sen [43]
and the rotating SV spacetimes are examples of BHswithZ2

symmetry. But BHswithoutZ2 symmetry are also known in
the literature. One examplewas constructed inRef. [44]; this
property was explicitly discussed in Ref. [45], where the
corresponding shadows were also studied.
The general line element displaying shadow degeneracy,

under the assumptions discussed above is given in Eq. (58).
It has a dependence on the θ coordinate through the
function B1 [see Eq. (33)]. B1ðθÞ needs not be invariant
under Z2 reflection:

B1ðθÞ ≠ B1ðπ − θÞ; ð74Þ

then, the BH geometry is shadow degenerate and displays
no Z2 symmetry.
In order to provide a concrete example, B1ðθÞ can be

chosen to be

cos2θB1ðθÞ ¼ α0 þ α1 cos θ þ α2cos2θ þ α3cos3θ; ð75Þ

FIG. 6. Panel a: Shadow of the rotating SV spacetime, for
different values of the parameter b and a ¼ 0.999M. Panel b:
Shadow of a BH without the Z2 symmetry, for different values of
αi and the same value of the BH spin (a ¼ 0.7M). The observer is
located at spatial infinity.
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while A1 and A4 are left unconstrained. In Eq. (75), α0, α1
and α2 are constant parameters for which Σ̃ > 0. If

α0 ¼ α1 ¼ α3 ¼ 0; and α2 ¼ 1; ð76Þ

we recover the Kerr metric (provided that A1 ¼ A4 ¼ 1). In
Fig. 8, we show the Euclidean embedding of the event
horizon geometry of this BH spacetime for a=m ¼ 0.7.10

We also show the corresponding result for the Kerr BH [46]
(top panel). In the middle panel, we have chosen the
constants ðα0;α1;α2;α3Þ¼ð0;−2.6;1;0Þ, while in the bot-
tom panel we have chosen ðα0;α1;α2;α3Þ¼ ð0;−4.2;1;2Þ.
We note that the Z2 symmetry is clearly violated.
Nonetheless, the shadow is always degenerate with the
Kerr BH one, as can be seen in the bottom panel of Fig. 6.

FIG. 7. The shadow and gravitational lensing for the rotating SV
spacetime, for a ¼ 0.999M and different values of b. In the top
panel, we have the Kerr spacetime (b ¼ 0). In the middle and
bottom panels, we have b ¼ 0.5M and b ¼ M, respectively. The
observer position and angle of view are the same as in Figs. 2 and 5.
Although the images look the same, there is a subtle difference in the
gravitational lensing observed mainly next to the shadow edge.

FIG. 8. Euclidean embedding of the (spatial sections of the)
event horizon geometry for the shadow degenerate BHs without
Z2 symmetry. In the top panel, we show the Kerr result, while in
the middle and bottom panels we have chosen ðα0; α1; α2; α3Þ ¼
ð0;−2.6; 1; 0Þ and ðα0; α1; α2; α3Þ ¼ ð0;−4.2; 1; 2Þ, respectively.
a=m ¼ 0.7 for all cases.

10For higher values of the spin parameter a=m, it may be
impossible to globally embed the spatial sections of the event
horizon geometry in Euclidean 3-space. This is also the case for
the Kerr spacetime [46]—see also [47].
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VI. CONCLUSIONS

The imaging of the M87 supermassive BH by the Event
Horizon Telescope collaboration [2–4] has established the
effectiveness of very large baseline interferometry to probe
the strong gravity region around astrophysical BHs. In due
time, one may expect more BHs, and with smaller masses,
will be imaged, increasing the statistical significance of the
data. It is then expected these data can be used to test the
Kerr hypothesis and even general relativity, by constraining
alternative gravity models. It is therefore timely to inves-
tigate theoretical issues related to the propagation of light
near BHs and, in particular, the properties of BH shad-
ows [8,39,48].
In this paper, we investigated the issue of degeneracy:

under which circumstances, two different BH spacetimes
cast exactly the same shadow?We have established generic
conditions for equilibrium BHs, both static and stationary
to be shadow degenerate with the Schwarzschild or Kerr
geometry, albeit in the latter case under the restrictive (but
plausible) assumption that precise shadow degeneracy
occurs for spacetimes admitting the separability of the
HJ equation and the same SPO structure as Kerr. We have
provided illustrative examples, in both cases, which
highlight, among other properties, that exact shadow
degeneracy is not, in general, accompanied by lensing
degeneracy, and that shadow degeneracy can occur even
for qualitatively distinct horizon geometries, for instance,
with and without north-south symmetry.
The examples herein are mostly of academic interest, as

a means to understand light bending near compact objects.

These examples could be made more realistic by consid-
ering general relativistic magneto-hydrodynamic simula-
tions in the BH backgrounds studied here, to gauge the
extent to which such precise shadow degeneracy survives a
more realistic astrophysical setup.
Finally, we remark there is also a trivial instance of

shadow degeneracy when the same geometry solves differ-
ent models. This is not the case discussed herein.
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