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We derive loop quantum gravity corrections to the Raychaudhuri equation in the interior of a
Schwarzschild black hole and near the classical singularity. We show that the resulting effective equation
implies defocusing of geodesics due to the appearance of repulsive terms. This prevents the formation
of conjugate points, renders the singularity theorems inapplicable, and leads to the resolution of the
singularity for this spacetime.
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I. INTRODUCTION

It is well known that General Relativity (GR) predicts
that all reasonable spacetimes are singular, and therefore its
own demise. While a similar situation in electrodynamics
was resolved in quantum electrodynamics, quantum gravity
has not been completely formulated yet. One of the primary
challenges of candidate theories such as string theory and
loop quantum gravity (LQG) is to find a way of resolving
the singularities.
Singularities in GR are defined differently compared to

other field theories. While curvature scalars (such as the
Kretschmann scalar) approaching infinity (similar to the
electric field diverging at the seat of a charge) is a strong
indication of singularities, it is neither a necessary nor a
sufficient condition for singularities in GR. The necessary
and sufficient condition for a singular spacetime is the
existence of a set of geodesics which begin and/or end at a
finite proper time. Such geodesics are deemed incomplete.
Furthermore, the celebrated Hawking-Penrose singularity
theorems prove beyond doubt that under normal assump-
tions, all spacetime solutions of GR will have incomplete
geodesics, and will therefore be singular [1–3].
It may be mentioned that the proof of the singularity

theorems crucially depend on the fact that there exists
congruence or a collection of nearby geodesics, such that
they focus to the conjugate points in the past as well as in the
future at finite proper times. This implies that the geodesics
are no longer maximal curves in a pseudo-Riemannian

manifold, contrary to their very definition as solutions of
the geodesic equation. The only resolution of this apparent
contradiction is to conclude that such geodesics are incom-
plete. The existence of conjugate points is a straightforward
prediction of the Raychaudhuri equation [3].
In view of the above, in this article, we examine the

issue of singularity resolution via the LQG modified
Raychaudhuri equation, and in particular for the
Schwarzschild solution in GR. Since the classical singu-
larity is at the origin of the above black hole metric, r ¼ 0,
we focus on the region inside the classical horizon at
r ¼ 2GM, where M is the mass of the black hole and G is
Newton’s constant (we work in c ¼ 1 ¼ ℏ units). By
choosing the appropriate regularized tetrads and holono-
mies, which are the conjugate variables in LQG, computing
the corresponding expansion of geodesics and substituting
in the Raychaudhuri equation, we show that they include
effective repulsive terms, which prevents the formation of
conjugate points. This implies that the classical singularity
theorems are rendered invalid and the singularity is
resolved, at least for the spacetime under consideration.
While our results strictly pertain to the static Schwarzschild
spacetime, the robustness of our results indicate that the
resolution will continue to hold for more complicated
spacetimes, including those with little or no symmetries,
and when quantum corrections from other sources are taken
into account (e.g., in Refs. [4–6]).
As is well known, LQG [7] is one of the main non-

perturbative approaches to the quantization of gravity.
Within LQG, there have been numerous studies of both
the interior and the full spacetime of black holes in four and
lower dimensions [8–54]. These attempts were originally
inspired by loop quantum cosmology (LQC), more pre-
cisely a certain quantization of the isotropic Friedmann-
Lemaitre-Robertson-Walker (FLRW) model [55,56] which
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uses a certain type of quantization of the phase space called
polymer quantization [57–61]. This quantiztion introdu-
ces a parameter into the theory called the polymer scale
that sets the minimal scale of the model. Close to this scale
quantum effects become important. The approach in
which such a parameter is taken to be constant is called

the μ0 scheme (which in this paper we refer to as the μ
∘

scheme), while approaches where it depends on the phase
space variables are denoted by μ̄ schemes. These various
approaches were introduced to deal with some important
issues resulting from quantization, namely, to have the
correct classical limit (particularly in LQC), to avoid large
quantum corrections near the horizon, and to have final
physical results that are independent of auxiliary or fiducial
parameters. Other approaches to this model in LQG such as
Refs. [62–64] provide a derivation of a Schwarzschild
black hole modified dynamics for the interior and the
exterior regions, not relying on minisuperspace models.
Starting from the full LQG theory, this model performs the
symmetry reduction at the quantum level. This has led to
several differences in the effective dynamicswith respect to
previous polymer quantization-inspired models, one of
which is the absence of the formation of a white hole in the
extended spacetime region replacing the classical singu-
larity. All of these past studies in LQG and some other
approaches (see, e.g., Refs. [65–67]) point to the resolution
of the singularity at the effective level.
In this paper, we consider the interior of the

Schwarzschild black hole expressed in terms of connection
variables and follow the same polymer quantization as
previous works based on minisuperspace models but study
the behavior of modified effective geodesics in the interior
of the black hole using the modified Raychaudhuri equa-

tion. We will consider both the μ
∘
scheme and two of the

most common cases in μ̄ schemes.
This paper is organized as follows. In Sec. II, we

review the classical interior of the Schwarzschild black
hole. In Sec. III, we remind the reader of the classical
dynamics of the interior, derive the corresponding
Raychaudhuri equation, and show that this leads to the
expected presence of a singularity at the center of
the black hole. In Sec. IV, we present the effective
dynamics of the interior after polymer quantization in
a general setting. We then go on to derive the effective

Raychaudhuri equation of the μ
∘
scheme and two of the

most common μ̄ schemes in Secs. IVA, IV B, and IV C,
respectively, showing how the modified behavior of
geodesics shows the resolution of singularity in each
of these cases.

II. INTERIOR OF THE SCHWARZSCHILD
BLACK HOLE

The celebrated metric of the exterior of a Schwarzschild
black hole of mass M is given by

ds2 ¼ −
�
1 −

2GM
r

�
dt2 þ

�
1 −

2GM
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

where and r ∈ ð0;∞Þ is the radial coordinate distance and
the radius of the 2-spheres in Schwarzschild coordinates
ðt; r; θ;ϕÞ. It is well known that for such a black hole, the
timelike and spacelike curves switch their causal nature
upon crossing the event horizon located at Rs ¼ 2GM.
Thus, the interior metric can be written as

ds2 ¼ −
�
2GM
t

− 1

�
−1
dt2 þ

�
2GM
t

− 1

�
dr2

þ t2ðdθ2 þ sin2 θdϕ2Þ: ð2:2Þ

Here and throughout the paper, t is the Schwarzschild time
with the range t ∈ ð0; 2GMÞ. This metric is a special case
of a Kantowski-Sachs cosmological spacetime that is given
by the metric [68]

ds2KS ¼ −NðTÞ2dT2 þ gxxðTÞdx2 þ gθθðTÞdθ2
þ gϕϕðTÞdϕ2

¼ −dτ2 þ gxxðτÞdx2 þ gΩΩðτÞdΩ2: ð2:3Þ

Note that x here is not necessarily the radius r of the
2-spheres with area A ¼ 4πr2, where NðTÞ is the lapse
function corresponding to a generic time T. It is seen that
the metric (2.2) and (2.3) are related by a transformation,

dτ2 ¼ NðTÞ2dT2 ¼
�
2GM
t

− 1

�
−1
dt2: ð2:4Þ

The metric (2.3) represents a spacetime with spatial
homogeneous but anisotropic foliations. A quick way to
see this is that gxxðτÞ and gΩΩðτÞ can be considered as two
distinct scale factors that affect the radial and angular parts
of the metric separately. As is evident from (2.3), such a
system is a minisuperspace model due to incorporating a
finite number of configuration variables. Furthermore, it
can be seen that the spatial hypersurfaces have topology
R × S2, and the spatial symmetry group is the Kantowski-
Sachs isometry group R × SOð3Þ. Due to this topology
with a noncompact direction, x ∈ R in space, the sym-
plectic form

R
R×S2 d3xdq ∧ dp diverges. Therefore, one

needs to choose a finite fiducial volume over which this
integral is calculated [9]. This is a common practice in the
study of homogeneous minisuperspace models. Here, one
introduces an auxiliary length L0 to restrict the noncompact
direction to an interval x ∈ I ¼ ½0; L0�. The volume of the
fiducial cylindrical cell in this case is V0 ¼ a0L0, where a0
is the area of the 2-sphere S2 in I × S2.
In order to obtain the Hamiltonian of this system

in connection variables, one first considers the full
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Hamiltonian of gravity written in terms of (the curvature)
of the suð2Þ Ashtekar-Barbero connection Ai

a and its
conjugate momentum, the densitized triad Ẽi

a. Using
the Kantowski-Sachs symmetry, these variables can be
written as [9]

Ai
aτidxa ¼

c
L0

τ3dxþ bτ2dθ − bτ1 sin θdϕþ τ3 cos θdϕ;

ð2:5Þ

Ẽa
i τi∂a ¼ pcτ3 sin θ∂x þ

pb

L0

τ2 sin θ∂θ −
pb

L0

τ1∂ϕ; ð2:6Þ

where b, c, pb, and pc are functions that only depend on
time and τi ¼ −iσi=2 are a suð2Þ basis satisfying ½τi; τj� ¼
ϵij

kτk, with σi being the Pauli matrices. Substituting these
into the full Hamiltonian of gravity written in Ashtekar
connection variables, one obtains the symmetry reduced
Hamiltonian constraint adapted to this model as [9]

H ¼ −
N

2Gγ2

�
2bc

ffiffiffiffiffi
pc

p þ ðb2 þ γ2Þ pbffiffiffiffiffi
pc

p
�
; ð2:7Þ

while the diffeomorphism constraint vanishes identically
due to the homogenous nature of the model. Here, γ is the
Barbero-Immirzi parameter [7], and pc ≥ 0. γ is the term
whose inverse couples the first order Palatini action to a
topological Nieh-Yan term, yielding the Holst action.
Hence, it does not affect the equations of motion and
classically has no effect on the system. However, after
quantization, this parameter sets the size of the quantum of
area in Planck units.
Using symmetry of the model, the full symplectic form

Ω ¼ 1

8πGγ

Z
I×S2

d3xdAi
aðxÞ ∧ dẼa

i ðyÞ ð2:8Þ

reduces to [9]

Ω ¼ 1

2Gγ
ðdc ∧ dpc þ 2db ∧ dpbÞ; ð2:9Þ

and consequently the Poisson brackets

fAi
aðxÞ; Ẽb

j ðyÞg ¼ 8πGγδijδ
b
aδ

3ðx − yÞ ð2:10Þ

reduce to

fc; pcg ¼ 2Gγ; fb; pbg ¼ Gγ: ð2:11Þ

Furthermore, by substituting (2.5) and (2.6), and the
components of the inverse of the metric (2.3), into the
relation between the inverse triad and the spatial metric qab,

qqab ¼ δijẼa
i Ẽ

b
j ; ð2:12Þ

one obtains for the generic metric (2.3) adapted to (2.5)
and (2.6)

gxxðTÞ ¼
pbðTÞ2
L2
0pcðTÞ

; ð2:13Þ

gθθðTÞ ¼
gϕϕðTÞ
sin2ðθÞ ¼ gΩΩðTÞ ¼ pcðTÞ: ð2:14Þ

Note that the lapse NðTÞ is not determined and can be
chosen as suited for a specific situation. Hence, the adapted
metric using (2.13) and (2.14) becomes

ds2 ¼ −NðTÞ2dT2 þ p2
b

L2
0pc

dx2 þ pcðdθ2 þ sin2 θdϕ2Þ:

ð2:15Þ

Comparing this metric written in Schwarzschild coordi-
nates and lapse NðtÞ with the standard Schwarzschild
interior metric but with rescaled r → lx,

ds2 ¼ −
�
2GM
t

− 1

�
−1
dt2 þ l2

�
2GM
t

− 1

�
dx2

þ t2ðdθ2 þ sin2θdϕ2Þ; ð2:16Þ

we see that

NðtÞ ¼
�
2GM
t

− 1

�
−1
2

; ð2:17Þ

gxxðtÞ ¼
pbðtÞ2
L2
0pcðtÞ

¼ l2
�
2GM
t

− 1

�
; ð2:18Þ

gθθðTÞ ¼
gϕϕðTÞ
sin2ðθÞ ¼ gΩΩðTÞ ¼ pcðtÞ ¼ t2: ð2:19Þ

Hereafter, we use l ¼ 1. This shows that

pb ¼ 0; pc ¼ 4G2M2; on the horizon t ¼ 2GM;

ð2:20Þ

pb → 0; pc → 0; at the singularity t → 0: ð2:21Þ

Also, note that in the fiducial volume, we can consider
three surfaces Sx;θ, Sx;ϕ, and Sθ;ϕ, respectively, bounded
by I and a great circle along a longitude of V0, I and
the equator of V0, and the equator and a longitude with
areas [9]

Ax;θ ¼ Ax;ϕ ¼ 2πL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgΩΩ

p ¼ 2πpb; ð2:22Þ

Aθ;ϕ ¼ πgΩΩ ¼ πpc; ð2:23Þ
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with the volume of the fiducial region I × S2 given by [9]

V ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det Ẽj

q
¼ 4πL

ffiffiffiffiffiffi
gxx

p
gΩΩ ¼ 4πpb

ffiffiffiffiffi
pc

p
;

ð2:24Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det jẼj

p
¼ ffiffiffi

q
p

with q being the determinant of the
spatial metric.

III. CLASSICAL DYNAMICS

A. Classical Hamiltonian and equations of motion

We are interested in the classical dynamics of the interior
of the Schwarzschild black hole in Ashtekar-Barbero
connection formulation. As usual in gravity, the classical
Hamiltonian is the sum of constraints that generate space-
time diffeomorphisms and internal or Gauss [in our case
suð2Þ] symmetry. The full version of the classical
Hamiltonian constraint in this formulation is [7]

Hfull ¼
1

8πG

Z
d3x

Nffiffiffiffiffiffiffiffiffiffiffiffiffi
det jẼj

p n
ϵjki F

i
abẼ

a
j Ẽ

b
k

− 2ð1þ γ2ÞK½aiK
j
b�Ẽ

a
i Ẽ

b
j

o
; ð3:1Þ

where Ki
a is the extrinsic curvature of foliations and ϵijk is

the totally antisymmetric Levi-Civita symbol. Also,
F ¼ dAþ A ∧ A is the curvature of the Ashtekar-
Barbero connection. The symmetry reduced Hamiltonian
corresponding to the above full Hamiltonian is derived by
substituting (2.5) and (2.6) in (3.1). In this way, one obtains
[9,11,13,29,52]

H ¼ −
N

2Gγ2

�
ðb2 þ γ2Þ pbffiffiffiffiffi

pc
p þ 2bc

ffiffiffiffiffi
pc

p �
: ð3:2Þ

Given the homogeneous nature of the model, the diffeo-
morphism constraint is trivially satisfied, and after impos-
ing the Gauss constraint, one is left only with the classical
Hamiltonian constraint (3.2). In order to facilitate the
derivation of the solutions to the equations of motion,
we choose a gauge where the lapse function is

NðTÞ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffi
pcðTÞ

p
bðTÞ ; ð3:3Þ

for which the Hamiltonian constraint becomes

H ¼ −
1

2Gγ

�
ðb2 þ γ2Þpb

b
þ 2cpc

�
: ð3:4Þ

The advantage of this lapse function is that the equations of
motion of c, pc decouple from those of b, pb,

db
dT

¼ fb;Hg ¼ −
1

2

�
bþ γ2

b

�
; ð3:5Þ

dpb

dT
¼ fpb;Hg ¼ pb

2

�
1 −

γ2

b2

�
; ð3:6Þ

dc
dT

¼ fc;Hg ¼ −2c; ð3:7Þ

dpc

dT
¼ fpc;Hg ¼ 2pc: ð3:8Þ

These equations are also to be supplemented with the on-
shell condition of the vanishing of the Hamiltonian con-
straint (3.4) on the constraint surface

ðb2 þ γ2Þpb

b
þ 2cpc ≈ 0; ð3:9Þ

where ≈ stands for weak equality, i.e., on the constraint
surface.
It is clear from (2.19) that pc is the square of the radius of

the infalling 2-spheres. In order to better understand the
role of b, c, we use the relation of the proper time τ and a
generic time T for the metric (2.3),

dτ2 ¼ −NðTÞ2dT2; ð3:10Þ

and the form of the lapse function (3.3), to rewrite
Eqs. (3.8) as

b ¼ γ

2

1ffiffiffiffiffi
pc

p dpc

dτ
¼ γ

d
dτ

ffiffiffiffiffiffiffiffi
gΩΩ

p ¼ γffiffiffi
π

p d
dτ

ffiffiffiffiffiffiffiffi
Aθ;ϕ

p
; ð3:11Þ

where the last two terms on the right-hand side were
derived using (2.23). Hence, classically, b is proportional to
the rate of change of the square root of the physical area
of S2.
To interpret the role of c, we use the same method

for (3.8), and by using (3.9) to replace γ pb
b ¼ − bpb

γ − 2cpc
γ in

the resultant expression and then using (2.22) and (2.23),
we find out

c ¼ γ
d
dτ

�
pbffiffiffiffiffi
pc

p
�

¼ γ
d
dτ

ðL0

ffiffiffiffiffiffi
gxx

p Þ: ð3:12Þ

Hence, classically, c is proportional to the rate of change of
the physical length of I .
The solution to the classical equations of motion

(3.5)–(3.8) are be found to be

bðTÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2C1e−T − γ2

q
; ð3:13Þ

pbðTÞ ¼ C2e
T
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2C1 − γ2eT

q
; ð3:14Þ
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cðTÞ ¼ C3e−2T; ð3:15Þ

pcðTÞ ¼ C4e2T: ð3:16Þ

Since we know from (2.19) that in Schwarzschild coor-
dinates pcðtÞ ¼ t2, and considering the fourth equation
above, we see that a transformation T ¼ lnðtÞ can lead to
such a solution for pc. Under such a transformation, the
above equations become

bðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2C1

t
− γ2

r
; ð3:17Þ

pbðtÞ ¼ C2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2C1

t
− γ2

r
; ð3:18Þ

cðtÞ ¼ C3

t2
; ð3:19Þ

pcðtÞ ¼ C4t2: ð3:20Þ

Considering (2.19), we see that

C4 ¼ 1: ð3:21Þ

Also, from (2.20), we can deduce

0 ¼ pbð2GMÞ ¼ 2GMC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2C1

2GM
− γ2

r
; ð3:22Þ

which yields

C1 ¼
1

2
ln ð2GMγ2Þ: ð3:23Þ

Next, from (2.18), we see

pbðtÞ2 ¼ l2
�
2GM
t

− 1

�
L2
0t

2; ð3:24Þ

which if compared with (3.18) and using (3.23) yields

C2 ¼
lL0

γ
: ð3:25Þ

Finally, using (3.9), we get

C3 ¼ ∓γGMlL0: ð3:26Þ

Hence, the equations of motion in Schwarzschild written
in t become

bðtÞ ¼ �γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
t

− 1

r
; ð3:27Þ

pbðtÞ ¼ lL0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
t

− 1

r
; ð3:28Þ

cðtÞ ¼ ∓ γGMlL0

t2
; ð3:29Þ

pcðtÞ ¼ t2: ð3:30Þ

The behavior of these solutions as a function of t is depicted
in Fig. 1. From these equations or the plot, one can see that
pc → 0 as t → 0. This means that at the classical singu-
larity, the Riemann invariants such as the Kretschmann
scalar

K ¼ RabcdRabcd ∝
1

p3
c
; ð3:31Þ

all diverge, signaling the presence of a physical singularity
there as expected.
We can also see from Fig. 1 that b, the rate of change of

the square root of the physical area of S2, as well as c, the
rate of change of the physical length of I , diverge at the
classical singularity.

B. Classical Raychaudhuri equation

The celebrated Raychaudhuri equation [3]

dθ
dτ

¼ −
1

3
θ2 − σabσ

ab þ ωabω
ab − RabUaUb ð3:32Þ

describes the behavior of geodesics in spacetime purely
geometrically and independent of the theory of gravity
under consideration. Here, θ is the expansion term describ-
ing how geodesics focus or defocus; σabσab is the shear
which describes how, e.g., a circular configuration of

b(t)

c(t)

pb(t)

pc(t)

0.0 0.5 1.0 1.5 2.0
−3

−2

−1

0

1

2

3

t (GM )

FIG. 1. The behavior of canonical variables as a function of
Schwarzschild time t. We have chosen the positive sign for b and
negative sign for c. The figure is plotted using γ ¼ 0.5, M ¼ 1,
G ¼ 1, and L0 ¼ 1.

BLACK HOLE SINGULARITY RESOLUTION VIA THE … PHYS. REV. D 103, 084038 (2021)

084038-5



geodesics changes shape into, say, an ellipse; ωabω
ab is the

vorticity term; Rab is the Ricci tensor; andUa is the tangent
vector to the geodesics. Note that, due the sign of the
expansion, shear, and the Ricci term, they all contribute to
focusing, while the vorticity terms leads to defocusing.
In our case, since we consider the model in vacuum,

Rab ¼ 0. Also, in general in Kantowski-Scahs models, the
vorticity term is only nonvanishing if one considers metric
perturbations [68]. Hence, ωabω

ab ¼ 0 in our model, too.
This reduces the Raychaudhuri equation for our analysis to

dθ
dτ

¼ −
1

3
θ2 − σabσ

ab: ð3:33Þ

One can show that the above implies the convergence of
geodesics to conjugate points at a finite proper time
τ0 < 3=jθ0j, where θ0 is the starting expansion [3]. This
is due to the fact that the right-hand side of the above is
negative, which in turn is a direct consequence of the
universal and attractive nature of gravity. This also reiter-
ates the “inevitability” of geodesics focusing and the
consequent singularity theorems.
In order to adapt the Raychaudhuri equation to the

current LQG formalism, we write the quantities θ and
σ2 ¼ σabσ

ab appearing on the right-hand side of (3.33) in
terms of the canonical variables as [13]

θ ¼ _pb

Npb
þ _pc

2Npc
; ð3:34Þ

σ2 ¼ 2

3

�
−

_pb

Npb
þ _pc

Npc

�
2

: ð3:35Þ

Replacing these in (3.33) and using the equations of motion
(3.5)–(3.8), one obtains

dθ
dτ

¼ −
1

2pc

�
1þ 9b2

2γ2
þ γ2

2b2

�
: ð3:36Þ

As expected, the right-hand side is negative (since pc > 0)
and diverges at the singularity given the behavior of
canonical variables in Fig. 1. This can also be seen from
the expression (3.36) written in terms of t, by using the
solutions (3.27)–(3.30) and the lapse (2.17) in (3.36) to get

dθ
dτ

¼ −2t2 þ 8GMt − 9G2M2

t
5
2ð2GM − tÞ32 : ð3:37Þ

The behavior of dθdτ from (3.37) is presented in Fig. (2). This
figure confirms that dθ

dτ diverges at the classical singularity,
pointing to an infinite focusing of geodesics at that region.
All of these observations are well known. In what follows,
we show that the quantum effects modify this behavior
particularly close to the classical singularity.

IV. EFFECTIVE DYNAMICS AND
RAYCHAUDHURI EQUATION

The effective behavior of the interior of the
Schwarzschild black hole can be deduced from its effective
Hamiltonian (constraint). There are various ways to obtain
such an effective Hamiltonian from the classical one.
Usually, one first obtains the quantum Hamiltonian con-
straint. This is done by first writing the full Hamiltonian
(3.1), particularly the curvature term(s), in terms of hol-
onomies hx, hθ, hϕ along edges in the radial and angular
direction, and fluxes, instead of a connection and triad
[9,13,29,69]. The main reason to do so is that in loop
quantum gravity, the connection is not a well-defined
operator on the Hilbert space of the theory [7].
One then represents the holonomies and fluxes, and thus

the Hamiltonian constraint as an operator on a suitable
Hilbert space [7]. Note that, due to the nonexistence of
connection on the Hilbert space, such a representation is
unitarily inequivalent to the usual Schrodinger representa-
tion [7]. As a consequence, one obtains distinct physical
results compared to the Schrodinger representation.
Another property of LQG representation is that there exist
no infinitesimal diffeomorphisms, and one only has access
to finite diffeomorphisms. This leads to the discretization of
space. For finite dimensional systems, such a representation
is isomorphic to the polymer representation. This is a
representation in which some of the operators are not
weakly continuous in their parameters [58–61]. In this case,
the unitary inequivalence to the Schrodiner representation
follows directly from the Stone-von Neumann theorem
[70]. Due to the existence of only finite transformations
generated by some operators, minimal scales appear in the
theory, which then leads to the discretization of some
elements of the theory depending on what operators exhibit

0.0 0.5 1.0 1.5 2.0
−60

−40

−20

0

20

40

t (GM )

d d

FIG. 2. The right-hand side of the Raychaudhuri equation as a
function of Schwarzschild time t. At both the classical singularity
t → 0 and at the horizon t ¼ 2GM, dθdτ diverges. The former is due
to a physical singularity, while the latter happens because of the
choice of coordinate system. To draw this plot, we have set
M ¼ 1, G ¼ 1.
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only finite transformations. Usually, these minimal scales
are denoted by μ as we will see below.
After obtaining the quantum Hamiltonian as mentioned

above, one finds an effective Hamiltonian by either using a
path integral approach, or by acting the quantum
Hamiltonian on states peaked around some classical
solutions [52,57–61,71]. These methods will lead to an
effective Hamiltonian that can also be heuristically
obtained by replacing

b →
sin ðμbbÞ

μb
; ð4:1Þ

c →
sin ðμccÞ

μc
ð4:2Þ

in the classical Hamiltonian.
The free parameters μb, μc are the minimum scales

associated with the radial and angular directions [9,13,
29,69]. In LQG, there exist two general schemes regarding
these μ parameters. In one, called the μ0 scheme, μ
parameters are considered to be constant [9,42,48,72].
Applying such a scheme to isotropic and Bianchi-I cos-
mological models, however, has shown to lead to incorrect
semiclassical limit. To remedy this and other issues
regarding the appearance of large quantum effects at the
horizon or dependence of physical quantities on fiducial
variables, new schemes referred to as the μ̄ scheme or
“improved dynamics” have been proposed in which μ
parameters depend on canonical variables [11,29,69,73].
This scheme is itself divided into various different ways of
expressing the dependence of μ parameters on canonical
variables. In addition, new μ0 schemes have also been put
forward (e.g., Refs. [13,44]) with the intent of resolving the
aforementioned issues.
In case of the Schwarzschild interior due to lack of matter

content, it is not clear which scheme does not lead to the
correct semiclassical limit. Hence, for completeness,
in this paper, we will study the modifications to the
Raychaudhuri equation in the constant μ scheme, which here

we call the μ
∘
scheme, as well as in two of the most common

improved schemes, which we denote by μ̄ and μ̄0 schemes.
Applying any of the methods of deriving an effective

Hamiltonian or simply replacing (4.1) and (4.2) into the
classical Hamiltonian (3.2), one obtains an effective
Hamiltonian constraint,

HðNÞ
eff ¼ −

N
2Gγ2

��
sin2ðμbbÞ

μ2b
þ γ2

�
pbffiffiffiffiffi
pc

p

þ 2
sin ðμbbÞ

μb

sin ðμccÞ
μc

ffiffiffiffiffi
pc

p �
: ð4:3Þ

In order to be able to find the deviations from the classical
behavior, we need to use the same lapse as we did in the
classical part. Under (4.1), this lapse (3.3) becomes

N ¼ γμb
ffiffiffiffiffi
pc

p
sin ðμbbÞ

: ð4:4Þ

Using this in (4.3) yields

Heff ¼ −
1

2γG

�
pb

�
sin ðμbbÞ

μb
þ γ2

μb
sin ðμbbÞ

�

þ 2pc
sin ðμccÞ

μc

�
: ð4:5Þ

Note that both (4.3) and (4.5) reduce to their classical
counterparts (3.2) and (3.4), respectively, as is expected.

A. μ
∘
scheme

As mentioned before, in this scheme, one assumes that

the polymer or minimal scales μ
∘
b, μ

∘
c are constants. Hence,

the equations of motion corresponding to (4.5) become

db
dT

¼ fb;Heffg ¼ −
1

2

�
sin ðμ∘bbÞ

μ
∘
b

þ γ2
μ
∘
b

sin ðμ∘bbÞ

�
; ð4:6Þ

dpb

dT
¼ fpb;Heffg ¼ 1

2
pb cos ðμ∘bbÞ

�
1 − γ2

μ
∘2
b

sin2ðμ∘bbÞ

�
;

ð4:7Þ

dc
dT

¼ fc;Heffg ¼ −2
sin ðμ∘ ccÞ

μ
∘
c

; ð4:8Þ

dpc

dT
¼ fpc;Heffg ¼ 2pc cos ðμ∘ ccÞ: ð4:9Þ

Notice that the μ
∘
b → 0 and μ

∘
c → 0 limit of these equations

corresponds to the classical equations of motion (3.5)–
(3.8). The solutions to these equations in terms of the
Schwarzschild time t [after a transformation T ¼ lnðtÞ] and
choosing suitable initial conditions are given by

bðtÞ ¼
cos−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2μ

∘2
b

q
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2μ

∘2
b

q
ln
h
2

ffiffiffiffi
t

2M

p
γμ
∘
b

i��
μ
∘
b

;

ð4:10Þ
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pbðtÞ ¼
γμ
∘
bL0M

�
γ2μ

∘2
cL2

0
M2

4t2 þ t2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1þ γ2μ
∘2
bÞtanh2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2μ

∘2
b þ 1

q
ln
h
2

ffiffiffiffi
t

2M

p
γμ
∘
b

i�s

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2μ

∘2
cL2

0
M2

4t4 þ 1

q �
γ2μ

∘2
b − ð1þ γ2μ

∘2
bÞtanh2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2μ

∘2
b

q
ln
h
2

ffiffiffiffi
t

2M

p
γμ
∘
b

i�
þ 1

� ; ð4:11Þ

cðtÞ ¼ −
tan−1

�
γμ
∘
cL0M
2t2

�
μ
∘
c

; ð4:12Þ

pcðtÞ ¼
γ2μ

∘2
cL2

0M
2

4t2
þ t2: ð4:13Þ

The behavior of these solutions is plotted in Fig. 3. It is
seen that both pb and pc exhibit a bounce in this effective
regime. Particularly, there is a minimum radius at the bounce
due to the existence of a minimum value for pc. This leads to
the resolution of the classical singularity which can, e.g., be
seen from the fact that the Riemann invariants, which are
proportional to 1

pn
c
with n > 0, do not diverge anywhere in-

side the black hole.
Replacing the effective solutions (4.7) and (4.9) into

(3.34) and (3.35) and using them in the expression of the
Raychaudhuri equation (3.33), one obtains

dθ
dτ

¼ 1

γ2pc

sin2ðμ∘bbÞ
μ
∘2
b

�
cos ðμ∘bbÞ cos ðμ∘ ccÞ

−
cos2ðμ∘bbÞ

4
− 3cos2ðμ∘ ccÞ

�

þ cos ðμ∘bbÞ
pc

�
cos ðμ∘bbÞ

2
− cos ðμ∘ ccÞ

−
γ2

4
cos ðμ∘bbÞ

μ
∘2
b

sin2ðμ∘bbÞ

�
: ð4:14Þ

Before considering the full nonperturbative expression
above, let us look at its expansion up to the second order

in μ
∘
b and μ

∘
c,

dθ
dτ

≈ −
1

2pc

�
1þ 9b2

2γ2
þ γ2

2b2

�
þ μ

∘2
b

1

2pc

�
b4

γ2
þ γ2

3

�

þ μ
∘ 2
c
c2

2pc

�
1þ 5b2

γ2

�
: ð4:15Þ

One can see that the first term on the right-hand side is the
classical expression (3.36), which is always negative and
leads to the divergence of classical expansion rate at the
singularity, i.e., infinite focusing. However, Eq. (4.15) now

involves two additional effective terms proportional to μ
∘2
b

and μ
∘2
c, both of which are positive. Hence, the quantum

corrections up to the second order in polymer parameters

contribute to defocusing, which becomes particularly large
close to the singularity.
This is in fact confirmed by considering the full non-

perturbative expression (4.14) written in terms of the
Schwarzschild time t using the solutions (4.10)–(4.13).
We do not present this expression here since it is very
lengthy. However, we have plotted this expression in Fig. 4.
This plot includes the classical versus the effective behavior
of dθ

dτ for two different masses. First, we can see that, while
dθ
dτ diverges at the classical singularity, signaling an infinite

beff(t)

ceff(t)

pb
eff(t)

pc
eff(t)
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t (GM )

FIG. 3. The behavior of canonical variables as a function of
Schwarzschild time t. We have chosen the positive sign for b and
negative sign for c. The figure is plotted using γ ¼ 0.5, M ¼ 1,
G ¼ 1, L0 ¼ 1, and μ

∘
b ¼ 0.5 ¼ μ

∘
c. Notice the bounce in pb, pc,

and also in c.

eff M 1

cl M 1

eff M 4

cl M 4
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−40
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d d

FIG. 4. Plot of dθ
dτ as a function of the Schwarzschild time t, for

two different masses in classical vs effective regimes. The figure

is plotted using γ ¼ 0.5, G ¼ 1, L0 ¼ 1, and μ
∘
b ¼ 0.08 ¼ μ

∘
c.
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focusing of geodesics there for both masses, the quantum
effects actually reverse this situation for the effective case.
Consequently, dθdτ bounces back from a finite negative value
and goes to zero when we approach the classical singularity
region. This leads to the resolution of the singularity in the
effective theory. Second, note that this happens earlier for a
larger black hole.
Looking back at the Raychaudhuri equation (3.33), we

see that both terms in that equation carry a negative sign, so,
classically, they both contribute to focusing of geodesics,
and this focusing becomes larger and larger with no other
term being present to counter it. However, the nonpertur-
bative effective correction terms resulting from loop quan-
tization contribute to terms that have a positive sign and
only become significant when one gets close to the
singularity where quantum gravity effects should be sig-
nificant. These effective terms then take over and revert the
focusing property of the classical terms, so much so that
they return the value of dθ

dτ to zero at the region that used to
be the classical singularity.

To get more insight, we also have plotted dθ
dτ against the

(square of the) radius of 2-spheres, pcðtÞ, in Fig. 6. From
this figure, one can see that both pc and dθ

dτ bounce back.
However, dθdτ starts bouncing back much earlier than pc and
“knows” about the “repulsive” quantum gravity effects
much more earlier than pc does. By the time pc starts
bouncing back, dθ

dτ is already bouncing toward zero value.
Finally, in Fig. 5, we have plotted dθ

dτ as a function of both
t and the Barbero-Immirzi parameter γ. It is seen that with

given μ
∘
b and μ

∘
c, a decrease in value of γ deepens the

minimum of dθ
dτ but in μ

∘
scheme there always will be a

bounce anyway while γ > 0.

B. μ̄ scheme

In this scheme, μ̄b, μ̄c are assumed to depend on the triad
components as

μ̄b ¼
ffiffiffiffiffiffi
Δ
pb

s
; ð4:16Þ

FIG. 5. Left: plot of dθdτ as a function of both t and γ. Right: The same plot with the full interval of dθdτ in picture. The values used here are

G ¼ 1, L0 ¼ 1, and μ
∘
b ¼ 0.08 ¼ μ

∘
c.
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FIG. 6. Left: plot of dθ
dτ vs pcðtÞ as a function of the Schwarzschild time t. Right: the close-up of 0 ≤ t ≤ 0.5GM portion of the left

figure. The vertical dot-dashed line shows the time t ≈ 0.158GM when the minimum of pmin
c ¼ 0.05 happens in this case. These are

plotted using γ ¼ 0.5, G ¼ 1, L0 ¼ 1, and μ
∘
b ¼ 0.1 ¼ μ

∘
c.
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μ̄c ¼
ffiffiffiffiffi
Δ
pc

s
: ð4:17Þ

Using the same lapse as (4.4) but keeping in mind the above
dependence of μ̄b, μ̄c, one can easily obtain the equations of
motion as

db
dT

¼ 1

4

�
b cos ðμ̄bbÞ − 3

sin ðμ̄bbÞ
μ̄b

− γ2
μ̄b

sin ðμ̄bbÞ
�
1þ b cos ðμ̄bbÞ

μ̄b
sin ðμ̄bbÞ

��
;

ð4:18Þ

dpb

dT
¼ 1

2
pb cos ðμ̄bbÞ

�
1 − γ2

μ̄2b
sin2ðμ̄bbÞ

�
; ð4:19Þ

dc
dT

¼ c cos ðμ̄ccÞ − 3
sin ðμ̄ccÞ

μ̄c
; ð4:20Þ

dpc

dT
¼ 2pc cos ðμ̄ccÞ: ð4:21Þ

These solutions are plotted in Fig. 7. To obtain them, we
have solved the system numerically and used the same initial
conditions very close to the horizon as the classical solutions.
From Fig. 7, one can see that pc still retains a certain
minimum value and bounces after reaching this value.
Hence, again, none of the Riemann invariants will diverge.
The full Raychaudhuri equation now becomes

dθ
dτ

¼ 1

γ2pc

sin2ðμ̄bbÞ
μ̄2b

�
cos ðμ̄bbÞ cos ðμ̄ccÞ

−
cos2ðμ̄bbÞ

4
− 3cos2ðμ̄ccÞ

�

þ cos ðμ̄bbÞ
pc

�
cos ðμ̄bbÞ

2
− cos ðμ̄ccÞ

−
γ2

4
cos ðμ̄bbÞ

μ̄2b
sin2ðμ̄bbÞ

�
: ð4:22Þ

This looks similar in form to (4.14), but we should keep in
mind that the polymer parameters here depend on canonical
variables as in (4.16) and (4.17). As in the previous case, let
us consider the perturbative expansion of this expression
before considering the full nonperturbative version. Up to
first order in Δ (which can be considered as the second
order in μ̄ scales), we get

dθ
dτ

≈ −
1

2pc

�
1þ 9b2

2γ2
þ γ2

2b2

�
þ Δ
pc

�
1

6pb

�
3b4

γ2
þ γ2

�

þ c2

2pc

�
1þ 5b2

γ2

��
: ð4:23Þ

Once again, the first term on the right-hand side is the
classical expression of the Raychaudhuri equation (3.36),
which contributes to infinite focusing at the singularity.
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FIG. 7. The behavior of canonical variables as a function of
Schwarzschild time t in the μ̄ scheme. We have chosen the
positive sign for b and negative sign for c. The figure is plotted
using γ ¼ 0.5 M ¼ 1, G ¼ 1, L0 ¼ 1, and Δ ¼ 0.1.
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FIG. 8. Left: Raychaudhuri equation in the μ̄ scheme. Right: Raychaudhuri equation vs pc. The vertical dot-dashed line at t ≈ 0.43GM
is the position of the bounce of pc where its minimum pmin

c ¼ 0.29 happens in this case. The figure is plotted using γ ¼ 0.5,
M ¼ 1G ¼ 1, L0 ¼ 1, and Δ ¼ 0.1.
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However, all the correction terms are positive, and once
again, these terms contribute to defocusing, which becomes
significant close to the singularity.
The full nonperturbative form the modified Raychaudhuri

equation in terms of t is plotted in Fig. 8. We see that,
approaching from the horizon to where the classical singu-
larity used to be, an initial bump or bounce in encountered,
followed by a more pronounced bounce closer to where
the singularity used to be. Once again, the quantum
corrections become dominant close to the singularity and
turn back the dθ

dτ such that at t → 0 no focusing happens at all.

Furthermore, from the right plot in Fig. 8, we see that the first
bounce in the Raychaudhuri equation happens much earlier
than the bounce in pc.

C. μ̄0 scheme

Here, μ̄0b, μ̄
0
c have the following dependence on the triad

components:

μ̄0b ¼
ffiffiffiffiffi
Δ
pc

s
; ð4:24Þ
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FIG. 9. The behavior of the modified solutions in the μ̄0 scheme as a function of the Schwarzschild time t. The top left figure shows
bðtÞ, while top right figure shows the close-up of bðtÞ close to what used to be a singularity. The middle left figure depicts cðtÞ, and the
middle right one shows pbðtÞ. Finally, the behavior of pc and its close-up are depicted in bottom left and bottom right figures,
respectively. The figure is plotted using γ ¼ 0.5, M ¼ 1, G ¼ 1, L0 ¼ 1, and Δ ¼ 0.1.
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μ̄0c ¼
ffiffiffiffiffiffiffiffiffi
pcΔ

p
pb

: ð4:25Þ

The equations of motion in this case are

db
dT

¼ −
1

2
γ2

μ̄0b
sin ðμ̄0bbÞ

−
1

2

sin ðμ̄0bbÞ
μ̄0b

−
pc

pb

�
sin ðμ̄0ccÞ

μ̄0c
þ c cos ðμ̄0ccÞ

�
; ð4:26Þ

dpb

dT
¼ 1

2
pb cos ðμ̄0bbÞ

�
1 − γ2

μ̄02b
sin2ðμ̄0bbÞ

�
; ð4:27Þ

dc
dT

¼ pb

2pc

�
γ2

μ̄0b
sin ðμ̄0bbÞ

�
1 −

μ̄0b
sin ðμ̄0bbÞ

b cos ðμ̄0bbÞ
�

−
sin ðμ̄0bbÞ

μ̄0b

�
þ bpb cos ðμ̄0bbÞ

2pc

−
sin ðμ̄0ccÞ

μ̄0c
− c cos ðμ̄0ccÞ; ð4:28Þ

dpc

dT
¼ 2pc cos ðμ̄0ccÞ: ð4:29Þ

The behavior of some of these canonical variables as a
function of the Schwarzschild time t is now quite different
from the previous two schemes. Figure 9 shows the behavior
of b,pc and their close-ups near what used to be a singularity
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FIG. 10. Raychaudhuri equation in μ̄0 scheme. The top left figure shows the behavior over the whole 0 ≤ t ≤ 2GM range. Other plots
show various close-ups of that plot over smaller ranges of t. The figure is plotted using γ ¼ 0.5, M ¼ 1, G ¼ 1, L0 ¼ 1, and Δ ¼ 0.1.

BLANCHETTE, DAS, HERGOTT, and RASTGOO PHYS. REV. D 103, 084038 (2021)

084038-12



as well as the behavior of c, pb. Particularly, one notices that
pc behaves differently while still remaining nonzero in the
interior, hence leading singularity resolution once again.
Both b and pc show some sort of damped oscillatory
behavior close to the classical singularity which contributes
to a more volatile behavior of the Raychaudhuri equation.
The full Raychaudhuri equation in this case takes the

following form:

dθ
dτ

¼ 1

γ2pc

sin2 ðbμ̄0bÞ
μ̄02b

�
cos ðμ̄0bbÞ cos ðμ̄0ccÞ

−
cos2 ðμ̄0bbÞ

4
− 3 cos2 ðμ̄0ccÞ

�

þ cos ðμ̄0bbÞ
pc

�
cos ðμ̄0bbÞ

2
− cos ðμ̄0ccÞ

−
γ2

4
cos ðμ̄0bbÞ

μ̄02b
sin2 ðμ̄0bbÞ

�
: ð4:30Þ

This again looks identical to (4.14) and (4.22), except for
the different forms of μ̄0 scales compared to previous cases.
Before considering the full nonperturbative expression of
the above equation, we can check that up to first order in Δ,
one obtains

dθ
dτ

≈ −
1

2pc

�
1þ 9b2

2γ2
þ γ2

2b2

�

þ Δ
6γ2

�
1

p2
c
ð3b4 þ γ4Þ þ 3c2

p2
b

ð5b2 þ γ2Þ
�
: ð4:31Þ

Although this perturbative form of the Raychaudhuri
equation is a bit different from previous cases, nevertheless
it exhibits the property that the quantum corrections are all
positive and hence once again contribute to defocusing of
the geodesics.
The full nonperturbative Raychaudhuri equation and its

close-ups in this case are plotted in Fig. 10. It is seen that in
this scheme, the Raychaudhuri equation exhibits a more
volatile behavior and has various bumps particularly when
we get closer to where the singularity used to be. Very close
to the classical singularity, its form resembles those of b
and pc, behaving like a damped oscillation.
Two particular features are worth noting in this scheme.

First, as we also saw in previous schemes, quantum

corrections kick in close to the singularity and dominate
the evolution such that the infinite focusing is remedied,
hence signaling the resolution of the singularity. Second,
this scheme exhibits a nonvanishing value for dθ

dτ at or very
close to the singularity. In Fig. 10 with the particular choice
of numerical values of γ, M, G, L0, and Δ, the value of dθ

dτ
for t → 0 is approximately −5.5. Hence, although a non-
vanishing focusing is not achieved in this case where the
singularity used to be, nevertheless, there exists a relatively
small focusing.

V. CONCLUSIONS

In this paper, we have shown that the LQG corrections to
the interior of Schwarzschild black hole induce additional
terms in the Raychaudhuri equation. Importantly, these
terms are repulsive (positive) near the classical singularity
of the black hole. This is in contrast to the attractive
(negative) terms on the right-hand side of the classical
Raychaudhuri equation. So, while the former implies the
convergence of geodesics, as our explicit computation and
related plots show, the quantum generated terms that we
estimated are sufficient to negate this convergence. This in
turn implies that the primary condition for the Hawking-
Penrose singularity theorems to hold true is violated, and
the theorems themselves cease to hold. Consequently,
geodesics are no longer incomplete, and the classical
singularity is resolved. We emphasize that this result is
true only for the spherically symmetric Schwarzschild
black hole, but we expect it to continue to hold for realistic
astrophysical black holes as well, with little or no sym-
metries. After all, it is the more symmetric solutions which
are more likely to demonstrate singularities. While repeat-
ing our calculations for the most general black hole
singularity may prove technically challenging, we do hope
to extend our results to other black hole spacetimes, such as
Kerr or Reissner-Nordström. Furthermore, our approach
should shed light on cosmological singularities as well. We
hope to report on these elsewhere.
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[71] H. A. Morales-Técotl, D. H. Orozco-Borunda, and S.
Rastgoo, Polymerization, the problem of access to the
saddle point approximation, and thermodynamics, in 14th
Marcel Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity, Astro-
physics, and Relativistic Field Theories (World Scientific,
Singapore, 2017), Vol. 4, pp. 4054–4059.

[72] L. Modesto, Semiclassical loop quantum black hole, Int. J.
Theor. Phys. 49, 1649 (2010).

[73] A. Joe and P. Singh, Kantowski-Sachs spacetime in
loop quantum cosmology: Bounds on expansion and shear
scalars and the viability of quantization prescriptions,
Classical Quantum Gravity 32, 015009 (2015).

BLACK HOLE SINGULARITY RESOLUTION VIA THE … PHYS. REV. D 103, 084038 (2021)

084038-15

https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1016/0550-3213(93)90623-W
https://doi.org/10.1103/PhysRevD.102.041502
https://doi.org/10.1103/PhysRevD.102.041502
https://doi.org/10.1103/PhysRevD.94.104076
https://doi.org/10.1103/PhysRevD.94.104076
https://doi.org/10.1088/0264-9381/24/14/007
https://doi.org/10.1088/0264-9381/24/14/007
https://doi.org/10.1088/0264-9381/27/2/025002
https://doi.org/10.1088/0264-9381/27/2/025002
https://arXiv.org/abs/1304.7836
https://doi.org/10.1103/PhysRevD.94.084050
https://doi.org/10.1103/PhysRevD.94.084050
https://doi.org/10.1016/j.aop.2021.168401
https://doi.org/10.1016/j.aop.2021.168401
https://doi.org/10.1088/1475-7516/2020/03/041
https://doi.org/10.1088/1475-7516/2020/03/041
https://doi.org/10.1103/PhysRevD.102.124041
https://doi.org/10.1103/PhysRevD.102.124041
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1088/0264-9381/20/6/302
https://doi.org/10.1088/0264-9381/20/6/302
https://doi.org/10.1103/PhysRevD.76.044016
https://doi.org/10.1103/PhysRevD.76.044016
https://doi.org/10.1103/PhysRevD.95.065026
https://doi.org/10.1103/PhysRevD.92.104029
https://doi.org/10.1016/j.aop.2013.05.005
https://doi.org/10.1016/j.aop.2013.05.005
https://doi.org/10.1103/PhysRevD.98.046014
https://doi.org/10.1103/PhysRevD.98.046014
https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.1103/PhysRevD.102.066010
https://doi.org/10.1103/PhysRevD.102.066010
https://doi.org/10.1103/PhysRevD.89.044003
https://doi.org/10.1103/PhysRevD.89.044003
https://doi.org/10.1088/1126-6708/2008/06/042
https://doi.org/10.1088/1126-6708/2008/06/042
https://doi.org/10.1103/PhysRevD.80.124027
https://doi.org/10.1063/1.523191
https://doi.org/10.1103/PhysRevD.78.044019
https://doi.org/10.1103/PhysRevD.78.044019
https://doi.org/10.1007/BF01457956
https://doi.org/10.1007/s10773-010-0346-x
https://doi.org/10.1007/s10773-010-0346-x
https://doi.org/10.1088/0264-9381/32/1/015009

