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We study the motion of particles in the background of a three-dimensional rotating Horava anti—de Sitter

black hole that corresponds to a Lorentz-violating version of the Bafiados-Teitelboim-Zanelli (BTZ) black
hole and we analyze the effect of the breaking of Lorentz invariance in such motion by solving analytically
the geodesic equations. Mainly, we find that the Lorentz-violating version of the BTZ black hole possesses
a more rich geodesic structure, where the planetary and circular orbits are allowed, which does not occur in

the BTZ background.
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I. INTRODUCTION

The three-dimensional models of gravity are of interest
because it is possible to investigate efficiently some of their
properties that are shared by their higher-dimensional
analogs and also exhibit interesting solutions such as
particlelike solutions and black holes. In this context,
three-dimensional general relativity (GR), which has no
local gravitational degrees of freedom and is Lorentz
invariant, presents the well-known Banados-Teitelboim-
Zanelli (BTZ) black hole solution with a negative cosmo-
logical constant [1]. Also, it presents interesting properties
at both classical and quantum levels and the BTZ solution
shares several features of the Kerr black hole [2]. An
important issue in gravitational physics is to know the kind
of orbits that test particles follow outside the event horizon
of a black hole. This information can be provided by
studying the geodesics around these black holes; in this
context, for the BTZ background, it was shown that, while
massive particles always fall into the event horizon and no
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stable orbits are possible [3], massless particles can escape
or plunge to the horizon [4].

The three-dimensional Horava gravity [5] admits a
Lorentz-violating version of the BTZ black hole, i.e., a
black hole solution with anti—de Sitter (AdS) asymptotics,
only in the sector of the theory in which the scalar degree of
freedom propagates infinitely fast [6]. Remarkably, in
contrast to GR, the three-dimensional Horava gravity also
admits black holes with positive and vanishing cosmologi-
cal constant. Nowadays, one could think that Lorentz
invariance may not be fundamental or exact, but is merely
an emergent symmetry on sufficiently large distances or
low energies. It has been suggested in Ref. [7] that giving
up Lorentz invariance by introducing a preferred foliation
and terms that contain higher-order spatial derivatives can
lead to significantly improved UV behavior; the corre-
sponding gravity theory is dubbed Horava gravity. It was
shown that the propagation of massive scalar fields is stable
in the background of rotating three-dimensional Horava
AdS black holes and, by employing the holographic
principle, the different relaxation times of the perturbed
system to reach thermal equilibrium were found for the
various branches of solutions [8]. Also, it was shown that
particles can collide on the inner horizon with arbitrarily
high c.m. energy if one of the particles has a critical angular

© 2021 American Physical Society
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momentum being possible the Bafiados-Silk-West proc-
ess, for the nonextremal rotating Horava AdS black hole.
Also, while for the extremal BTZ black hole the particles
with critical angular momentum only can exist on the
degenerate horizon, for the Lorentz-violating version of
the BTZ black hole, the particle with critical angular
momentum can exist in a region from the degenerate
horizon [9]. Concerning the null geodesics, it was shown
that for the motion of photons new kinds of orbits are
allowed, such as unstable circular orbits and trajectories
of the first kind. Also, it was shown that an external
observer will see that photons arrive at spatial infinity in a
finite coordinate time [10].

In this work we study the motion of particles in the
background of a three-dimensional rotating Horava AdS
black hole [6], with the aim of analyzing the effect of
breaking the Lorentz symmetry by calculating the timelike
geodesic structure. We will show that Lorentz-violating
version of the BTZ black hole possesses a more rich
geodesic structure, where the planetary orbits are allowed,
which does not occur in the BTZ background. Also, we will
have a complete knowledge of the geodesic structure for
the rotating three-dimensional Hotfava AdS black hole,
allowing us to understand in depth the Lorentz-violating
effects on the BTZ black hole. For other studies about
geodesics in three-dimensional spacetimes, see [11-14].

The work is organized as follows. In Sec. I, we give a
brief review of a three-dimensional rotating Horava AdS
black hole. In Sec. III, we find the motion equations for
particles, and we present the timelike geodesic structure in
Sec. IV. Finally, our conclusions are in Sec. V.

II. THREE-DIMENSIONAL ROTATING
HORAVA BLACK HOLES

The three-dimensional Hotava gravity is described in a
preferred foliation by the action [5]

= Td> L,+L 1
Sy 16nGH/ddXN*/§[2+ 4l (1)

being the line element in the preferred foliation
ds* = N*dT? — g;;(dx" + N'dT)(dx/ + N'dT), (2)

where g;; is the induced metric on the constant-T" hyper-
surfaces. Gy is a coupling constant with dimensions of a
length squared, g is the determinant of g,;;, and the
Lagrangian L, has the following form:

Ly = K;;K7 = JK? + (PR = 2A) + na;a’,  (3)

where K;;, K, and @R correspond to extrinsic, mean, and
scalar curvature, respectively, and a; is a parameter related
to the lapse function N via a; = —0; In N. L, corresponds

to the set of all the terms with four spatial derivatives that

are invariant under diffeomorphisms. For A =& =1 and
n = 0, the action reduces to that of general relativity. In the
infrared limit of the theory, the higher-order terms Ly (UV
regime) can be neglected, and the theory is equivalent to a
restricted version of the Einstein-aether theory, the equiv-
alence can be showed by restricting the aether to be
hypersurface orthogonal and the following relation is
obtained:

Uy = L ’ (4)

VI, ToT

where 1, is a unit-norm vector field called the aether, see
Ref. [15] for details. Another important characteristic of
this theory is that only in the sector # = 0, Horava gravity
admits asymptotically AdS solutions [6]. Therefore, assum-
ing stationary and circular symmetry, the most general
metric is given by

ds* = Z(r)?dt* —

FirP dr? — r*(d¢ + Q(r)dt)?,  (5)

and by assuming the aether to be hypersurface orthogonal,
it results in

u,—:I:\/Z

The theory admits the BTZ “analog” to the three-dimensional
rotating Horava black holes described by the solution

1+ P2 (DUAr),  u,=U(r).  (6)

F(r)2 = Z(r)2 = —M—f—Tz—Arz, Q(r) = —%,
1 a
U(r):F(r)<r+br>, (7)
where
j2:w’ [\:A_w. (8)

The sign of the effective cosmological constant A deter-
mines the asymptotic behavior (flat, de Sitter, or AdS) of
the metric. Also, J? can be negative; this occurs when either
E<Ooré>1, a>>J?/(4(6—1)). The aether configu-
ration for this metric is given explicitly by

2
_\/F2+(9+br>,
r
1
u, = F2< +br)

where a and b are constants that can be regarded as
measures of aether misalignment, with b as a measure of

l/t¢ = 0, (9)
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asymptotically misalignment, such that for b # 0 the aether
does not align with the timelike Killing vector asymptoti-
cally. Note that for £ = 1 and A = 1, the solution becomes
the BTZ black hole, and for £ = 1 and 4 # 1, the solution
becomes the BTZ black hole with a shifted cosmological
constant A = A —2b%*(A—1). However, there is still a
preferred direction represented by the aether vector field
that breaks Lorentz invariance for A# 1 and b #0.
The locations of the inner and outer horizons r = rg,
are given by

M J2A

2 2 1422 10
Y o (10)

Considering M > 0, a negative cosmological constant
A <0, and J? > 0, the condition —J>A < M? must be
fulfilled for the solution represents a black hole. For
0 < —J2A < M?, the black holes have inner and outer
horizons r_ and r,, the extremal case corresponds to
—J2A = M?, while that for J?> < 0 the black holes have
outer horizon r,, but no inner horizon r_.

Besides the existence of inner and outer horizons, also
there are universal horizons, which are given by [6]

M —2ab
£)2 _ .
(4 = 555
1

+—

27— (M —2ab)* = (4a® + 7) (52 ~ A)L

(11)

On the other hand, the existence of a well-defined spacelike
foliation is essential in Hotfava gravity. As it was shown in
Ref. [6], this can be achieved by imposing the condition
F?+ (a/r+br)> >0 or

12 ((zﬂ — A)r* + (2ab — M)P? + <§+a2>) >0. (12)

r

Figure 1 shows the behavior of the horizons as a function
of the parameter » and as a function of a in Fig. 2 for a
choice of parameters. There are different zones: one of
them is limited by r_ and r_, and it is described by the
existence of the aether, where the roots r are imaginary
and therefore there are no universal horizons. Other zones
are characterized by two real and distinct universal horizons
inside the region between r_ and r ., outside r_, and inside
r,; and an especial zone where both universal horizons
coincide and given by

M —2a,(M,J,b)b
2(b> = A(b))

2 =

(13)

r
200

-- ry-

FIG. 1. The behavior of the horizons as a function of parameter
b,withM=1,(=12,A=1,a=1,A=-1,and J = 1.2. For
b~-0.84, rf =r; [9]

FIG. 2. The behavior of the horizons as a function of parameter
a,withM=1,(=12,A=1,b=1,A=—1,and J = 1.2. For
a~-1.52 and -0.37, r;f = r; [9].

where a. are the roots of

(4a*> + J*)(b* — A(b))
E(M —2ab)?

=1 (14)

In the region between r;; and r;, the aether turns imaginary
and the foliation cannot be extended until the singularity.

In order to analyze the roots of the lapse function,
the case J = 0, we will consider a set of values for the
parameters that satisfied the existence of two horizons r_
and r_, so the condition 0 < —J>A < M? must be satisfied,
and also there are not universal horizons; thereby the roots
of rf are imaginary, as in our previous analysis. So, in order
to satisfy the above condition, the parameter £ must
satisfied &, < & < £, where £, corresponds to the value
of £ for which the black hole is extremal

 2a2 (/a2 (A—2b2(A—1))2+b*(2A—1)M> =2b*)— A)
b= M?*—4a?(b*+A) ’
(15)

and &, is the value of £ for which the black hole passes from
having two horizons to having one horizon and itis £, = 1
for nonrotating black holes. For £ > £, the black holes are
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The behavior of the horizons for nonrotating black holes as a function of the parameter b (left) with @ = 1 and as a function of

the parameter a (right) with b = 1. Here, M =1, £ =09, A= 1, and A = —1.

described by one horizon [8]. In Fig. 3, we plot the behavior
of the horizons for £ = 0.9 for nonrotating black holes.

In the following, we will focus mainly on a set of values
for the parameters that satisfied the existence of two
horizons r_ and r,, with a > 0 and b > 0, where there
are not universal horizons; thereby the roots of ri are
imaginary, see Figs. 1-3. Note that under the conditions
M >0, J*>>0,and A < 0, the roots of r; are imaginary
when M < 2ab from Eq. (11).

III. EQUATIONS OF MOTION

In this section, we find the motion equations of test
massive particles around the three-dimensional Hofava
AdS black hole. It is important to emphasize [16] that,
in a Lorentz-violating scenario, particles will be generically
coupled to the aether field, generating UV modifications of
the matter dispersion relations; furthermore, one can also
expect radiative corrections in the infrared sector, but these
contributions are suppressed by known mechanisms. In our
analysis we are interested in the infrared limit of the theory;
so the presence of higher-order terms (L,) related to the UV
behavior of the theory is ignored and in this case the theory
can be formulated in a covariant fashion. It then becomes
equivalent to a restricted version of Einstein-acther theory
[6]. Since our analysis is focused on the low energy part of
the theory, the interaction between the massive particle and
the aether field is ignored; thus the presence of the aether
field only affects the background spacetime geometry. It is
worth mentioning that a similar analysis was performed in
[17] where the authors analyzed the evolution of the photon
around the static neutral and charged aether black holes
using the Hamilton-Jacobi equation. Therefore, the massive
particles follow the typical geodesics in such given black
holes spacetime that can be derived from the Lagrangian of
a test particle, which is given by [18]

1 dx* dx?
=~ (g =), 1
£ 2(9”” dr dr) (16)

So, for the three-dimensional rotating Horava AdS black
hole described by the metric (5), the Lagrangian associated
with the motion of the test particles is given by

}2

F(r)

+ 27,
(17)

where ¢ = dq/dr, and 7 is an affine parameter along the
geodesic. Here, we have defined F(r)? = Z(r)? = F(r).
Since the Lagrangian (17) is independent of the cyclic
coordinates (7, ¢), then their conjugate momenta (I1,, IT,)
are conserved. Then, the equations of motion are obtained
from IT, — % =0 and yield

2L = —[F(r) = PQ ()] +2r°Q(r)i p +

I1,=0,

T ! / : Fl(r)rz 72

I, =—[F(r)/2-rQ%(r)—r*Q (r)]t2—2]__2(r)+r¢ ,
and I1,=0, (18)

where I, = 9L/0q are the conjugate momenta to the
coordinate ¢ and are given by

I, = —[F(r) = rPQ*(r)]t + rZQ(r)gb =-FE,

I, = , and Ty =rPQ(ri+r*¢=L, (19)

i
F(r)
where E and L are integration constants associated with
each of them. Therefore, the Hamiltonian is given by

H =TLi+ ¢ + L7 — L. (20)
Thus,
.
2H = —Ei + L + —— = —m? 21
H i+ ¢+F<r) m?, (21)

where m =1 for timelike geodesics or m =0 for null
geodesics. Therefore, we obtain

. 1 EJ _ J>-J?
b=~y 5 (A )|
(22)
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[Er —JL/2]
(r=r)(r* = r2)A’

JL\? Jr L2
22 = _ | S 2 247
= (E 2r2> ( M+4r2 Ar)(m + rz)

=(E-V_)(E=-V,),

=

(23)

(24)

where V_ (r) is the effective potential and is given by

JL o L?
-2 [ Bmad) ().

Since the negative branches have no classical interpreta-
tion, they are associated with antiparticles in the framework
of quantum field theory [19], We choose the positive
branch of the effective potential V = V.. In the next
section, we will perform a general analysis of the equations
of motion. Note that if 7 > 0 for all r > r, the motion is
forward in time outside the horizon; so from Eq. (23) for
A < 0 the following condition must be fulfilled:

Er*—JLJ2 > 0. (26)

On the other hand, Eq. (22) can be rewritten as

e ri)<1r2 A [ﬁ (Eﬂ ‘%) FLE W} ’
(27)

due to the term Er? — JL/2 > O and F(r)?> > O forr > r,;
when L and J have the same sign (JL > 0), the term in
square brackets does not have zeros outside the event
horizon. However, when L and J have different signs
(JL < 0), the zeros can be in the relevant domain, and it

15

10

V(r)

would not necessarily indicate a turning point. In fact, the
positive root (R) of the term in square brackets in Eq. (22) is

M \/(4LM —2JE)> — 16AL(J*L — J°L)
A SAL '
(28)

and it corresponds to the point where the angular velocity
of the test particle o(r),

dp B+ L(-AP-M-TF

7 4r2
t = =
PI=u Err—JL/2

o(r), (29)

is null. Also note that, for a motion with L = 0, w(r) = 217
Thus, a particle dropped “straight in” (L = 0) from a finite
distance is “dragged” just by the influence of gravity, so
that it acquires an angular velocity (@) in the same sense as
that of the source of the metric (J); this effect is called

“dragging of inertial frames.”

IV. TIMELIKE GEODESICS

In this section, we analyze the motion of particles,
m? = 1, so the effective potential is given by

JL - L?
V(ir) =— “M+—=—-Ar2)[1+=). (30
(r) 2r2+\/< Jr4r2 r)( +r2> (30)

whose behavior is shown in Fig. 4 for J > 0 and positive
values of the angular momentum of the particle (direct
geodesics) and for J < 0 and positive values of the angular
momentum of the particle (retrograde geodesics). We can
observe for direct geodesics (Fig. 4, left) there is a critical
value of the angular momentum (L;gco) where the last
stable circular orbit (LSCO) is present at r = ry gco; and for
L > Lygco we can distinguish four orbits: the planetary,

V(r)

Lo P P P P
o I ry 2 4 6 8 10

FIG. 4. The behavior of V(r) as a function of r, for different values of the angular momentum of the particle L, with
M=a=b=21=1, £=1.1, r, 0.87, and A =—1. Left: direct geodesics with J = 1.2. Right: retrograde geodesics with
J = —1.2. The points (right) indicate the extreme value of the potentials that are located at re < r..
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second kind, circular unstable at » = ry;, and circular stable
at r = rg, and critical orbits are allowed. We will study the
existence of circular orbit in detail in Sec. IV B. Note that
the BTZ background is allowed orbits of second kind. So,
the spacetime analyzed presents a richer geodesic structure.
Also, for retrograde geodesics (Fig. 4, right) we can
observe that, for r > r,, circular and planetary orbits are
not allowed. Here, the trajectory always has a turning point,
from which the particle plunges in the event horizon,
known as the trajectory of second kind.
The orbit in polar coordinates is given by [20]

r? EJ . J2 =
- _ =4 LA -M -
e e F L )

dr
. (j%) -

where we have used Eqgs. (22) and (24), P(r) corresponds to
the characteristic polynomial, and it is given by

P(r), (31)

P(r)=rSA+ r*(E* + L’A+ M)
+r2(L?M — JEL — J?/4) + (J> - J?)L?/4,

P(r) = —=A(=r% +ar* + pr* +7), (32)
where
E?>+ M+ AL?
a=— ; . (33)
A
JEL + J*/4 — ML?
(.]2 _ j2)L2
=" 35
4 ix (35)

Therefore, we can see that depending on the nature of its
roots, we can obtain the allowed motions for this spacetime.

A. Planetary orbit

The roots of P(r) = 0 allows us to define the distance rp,
which corresponds to a “periastron” distance at the trajec-
tory r,, which is interpreted as an “apoastron” distance, and
the distance rp that represents the turning point for the
trajectory, see Fig. 5. Thereby, planetary orbits of the first
kind occur when L > L, and the energy E lies in the range
Eg < E < Ey, so the radial coordinate will be r, < r < ry
for a certain value of E; the planetary orbits of the second
kind occur when E < Ej; and ry < r < rp.

Thus, the characteristic polynomial (32) can be written as

P(r) = -A( - P)(P = R)(P = 7). (36)

where

Vv(r)

FIG. 5. The behavior of V(r) as a function of r, for L = 12,
M=a=b=1=1, J=12, =11, rp~1.03, ry~ 117,
rp~ 149, rgm2.11, ry~288, E=1185 E;=11.79,
Ey=1192, and A = —1.

A 1 38 [311\"*
rA:<§+2\/;cos{§cos_l[7 E”) . (37)

a A 3B [37 4n]\'?
rpz<§+2\/;cos_§cos‘1_7 X +?> . (38)

and

a A [t _ 3B [3] 22]\'"?
rp= <§—|—2\/;cos _gcos 2V —|—? ) . (39)
where A :%2+ﬁ and B :%—F?—I—y. Now, we will
determine the angular coordinate of the trajectory for a

particle that starts at r = r,, and it is given by the solution
of the integral

, 2
00 = | R

x {—Ll_\rz + (%—ML) —L%} \/%,
(40)

where we have used Egs. (22) and (24), and whose
solution is

D(r) = koWo(r) + Kok, W (r) = k_W_(r)],  (41)

where
L2 -J?)
O 8(=A P
Po(r) = o~ [U(ra)] = o' [U(1)], (42)
) :EJ/2;LM_/_\L_L(12:J2) (43)
re 4
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This solution is plotted in Fig. 6 for direct orbits, where we
can observe the trajectory of the first and second kinds.
Note that the coordinate (¢) diverges at the event horizon.
Also, the solution (41) allows us to determine the pre-
cession angle, by considering that it is given by
® = 2¢p — 2z, where ¢p is the angle from the apoastron
to the periastron. Thus, we obtain

© =2koWo(rp) +2Kolk W (rp) —k_W_(rp)| —27. (44)

This is an exact solution for the angle of precession, and it
depends on the spacetime parameters M, J, and J and the
particle motion constants £ and L.

In Fig. 7, we plot the behavior of the retrograde orbits,
where clearly they correspond to second kind trajectories.
Here, we can observe the effect of the dragging of inertial
frames. The test particle starts at » = r,, then at r = R the

angular velocity is null, and ¢(r) is maximum; after that the
angle ¢(r) decreases and tends to —oo, when r — r,.

Now, in order to determine the proper and coordinate
period of rotation of the trajectories, we present the solution
for both times. The proper time (7) is given by the solution
of the integral

(45)

where we have used Eq. (24) and we have considered as
initial conditions that the particles are at r = r4, when
¢ =t =7 = 0. Thus, we obtain

] —

@ ()

FIG. 6. Direct orbits. The behavior of ¢(r) (left) and r(¢) (right) for bounded orbits of the first and second kind with E = 11.85,

L=12,M=a=b=2=1,A=-1,J=12,and { =1.1.

1.0

0.5

0.0

@(r)

—’LO"“:““

FIG.7. Retrograde orbits. The behavior of ¢)(r) (left) and r(¢) (right) for bounded orbits of the second kind with £ = 11.85, L = 12,

M=a=b=A=1,A=-1,J=-12,R=135,and £ =1.1.
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-1
Y(U,Q) = ZQ_IU IM]’
(U.Q) Q) Z(Q)p™( )+na[p_1(U)+Q]
(47)
and
_ra | P 1 pn
U(r)—m—kl—zy, U(m)—:L 127’ (48)
2
AP a S fap 287 1
n= s el o

In Fig. 8, we show the behavior of the proper time as a
function of r for direct orbits (Fig. 8, left). We can observe,
for the trajectory of the first and second kind, the particle
arrives in a finite proper time to rp and to reach the
singularity, respectively. Also, the period of a revolution
according to the proper time is T, = 2z(rp). Concerning
the retrograde orbits (Fig. 8, right), for the trajectory of the
second kind, the particle arrives in a finite proper time to the
singularity.

On the other hand, by considering Eqgs. (23) and (24),
and as initial condition that the particles are at » = r4, when
¢ =t =1 =0, the coordinate time (t) is

t(r)=— , (51)

/V r?Er* — JL/2] dr
ra (_A P(}’)

) =r2)

NGE

whose solution is

Time Axis

FIG. 8.

”

SRy A

where K, =

Yo(r) = Y[U(ra). Q] - Y[U(r). Q).

(5

Q. (r)=p
+(r) 4r§E 12y

(53)
Also, in Fig. 8, we show the behavior of the coordinate time
as a function of r. For direct orbits, we can observe, for the
trajectory of the first and second kind, the particle arrives in
a finite and infinity coordinate time to rp and r,,
respectively. Also, the period of a revolution according
to the coordinate time is 7, = 2¢(rp). Concerning the
retrograde orbits (Fig. 8, right), for the trajectory of the
second kind, the particle arrives in an infinite coordinate
time to 7. Also, we can observe that the zero located at R
does not affect the proper and coordinate times.

B. Circular orbits
The effective potential V(r) has to exhibit extrema for
fixed values of radial coordinate r = r.,, when
dv(r)
dr

=0.

Teo.

(54)

Now, for simplicity, we write the effective potential as

vy =2k Jrm e 2T sy
2r r
Therefore, using Eq. (55) into Eq. (54) yields
lr3.7-"(r) + L2[rF'(r) = 2F(r)]
2 F(r)

Time Axis

The behavior of the coordinate time () and the proper time (7) along a bounded timelike geodesic described by a test particle,

starting at r4, and rp = 1.03 with rp =149, R=135, L =12, M=a=b=A=1,A=-1, E=11.85¢(=1.1, r, #0.87, and
r_ =~ 0.59. Left: direct orbits with J = 1.2 and r, = 2.88. Right: retrograde orbits with / = —1.2 and r, = 5.03.
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Notice that this equation leads to a polynomial of twelfth
grade given by

F2—4L’M L2(J2+T%)
2[‘\ rC‘O.+ [‘\ rC.O.
16J2L2(AL? + M) +J*(J* =8L*M) + 16L*M*
+

res +

= T
16A? oo
L2(J?=J*)(4L*M - J?) JALAJP=T?)
AN2 rg.o._Tzoa (57)

so it is possible to find the roots numerically. On the other
hand, condition (56) allows us to obtain the angular
momentum for the stable L., = Lg at r., = rg and for
the unstable circular orbits L., = Ly at r., = ry, which
yields

ALY —BLZ, +C =0, (58)
where
. — [(4M J?
A= [4(M2+AJ2) + (J? —J2)<—2—J—4>} .
r r rC.O

72
B= [J—2 (2= 72— 2M(22 — )
-

- 4/_\r2(J2 +J* - 2Mr2)]

L%, = [w] : (60)

2A

Tco.

and the energy is given by E., =JL.,/2r%, +
\/f(rc.o.) + Lg.o.f(rc.o.)/r(zz‘o.'

Now, in Fig. 9, we show the behavior of the lapse
function and the effective potential for different values of J.
We can observe that J cannot take big values due to the
spacetime becomes in a naked singularity, and for a very
small value of J, the black hole presents only one event
horizon, because the J?> became negative. So, only in
spacetimes with sufficiently big |J| do the circular corotat-
ing orbits in the domain r > r, exist.

Also, the behavior of the effective potential for different
values of angular momentum L is shown in Fig. 10. We can
observe that, for L > L; gco, when the angular momentum
increases the radius of the stable circular orbit increases,
and the radius of the unstable circular orbit (r;;) decreases.
Also, when L — oo the ry — Ry is given by

—M(J2=T%) = |/ (=T (M> + AT7)) 2

Ry= - :
v 2(M?+AJ?)

(61)

which corresponds to the minimum radius for this orbit.
Note that the above equation diverges at J = J;_ =
V/—M?*/A. Also, for J> < —M?/A, R, became imaginary.
On the other hand, the radius of the last stable circular orbit

Feo. must satisfied V| =0 and V" =0, and
- risco-Lisco risco-Lisco
_ _ J it is given b
C= [4A2r8 +2AT 4 + 4] (59) g Y
rC.O. -
FLsco = [LIZ—SCO(JZ__JZ)} 1/6_ (62)
Thus, the real solution of the quartic equation for L., is 4(=A)

1.0 ' T
N v 151
\ |
\
\
H \
05F \
[ \ |
10|
1S r - [
- 00 = [ J L
l!\ L > [ Lsco fisco
b | ~_ 116 1247 1.66
[ 5t — 118 899 1.49
05 I — 120 659 134
-— 122 483 121
-1.0 'L A,—f/‘/ o 1 1 1 1 1 1 1
0.0 0 2 4 6 8 10 12 14
r r

FIG. 9. The behavior of the lapse function (left) and the behavior of V(r) (right) as a function of r, for different values of the angular
momentum of the black hole J, with M =a=b=4A=1,¢(=1.1,and A = —1. For J = J,, = 2a+/& — 1, the black hole has one
horizon at r = r, = 1.05; in the range J,, < J < Jj;, the black hole has two horizons at r = r_ = 0.40 and r = r, = 0.97; and for

J=Jy = w, the black hole is extremal at r = r, = 0.74.J = J, ., = v/—M?/A corresponds to the value of J for which
the minimum radius of the stable circular orbit diverges, see Eq. (61).
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V(r)
~

L=8

5F f - LeLc=66

FIG. 10. The behavior of V(r) as a function of r, for different
values of the angular momentum of the particle L, with
M=a=b=21=1, (=11, r,~087, J=12, A=-1,
Ry =1.15, and rigco =134. For L =8, ry =121 and
r¢=1.65. For L=9, ry =119 and rg=1.78. Here,

L. = Lysco-

Therefore, in the range J; _,, < J < J, the black hole has
two horizons and the effective potential allows circular and
planetary orbits for L > Ly gco.

Also, it is possible to determine the periods of revolution
of the circular orbits, both stabl_e and unstable, with respect
to the proper time 7, T, = 27/¢(r., ), and coordinate time
t, T, =T,t(r., ). Thereby, the period of a revolution
according to the proper time is

Tr _ i’ﬂ(_/_\)zrc.u(rg.o. B r%—)(rg.u B rz) ’ (63)
J\/(rC.O. + LC‘O.)f(rC.O.) + 2LC.O.rC.O.f(rC.O.)
and the period according to the coordinate time is

‘]\/(’%0 + L%O)f(rCO) + 2LC.O.rC.0.f<rC.O.> .

On the other hand, Taylor expanding the effective
potential around r=rg, one can write V(r)=
V(rs) + V'(rs)(r—rs) +3V"(rs)(r—rs)*>+---, where
" means derivative with respect to the radial coordinate.
Obviously, in these orbits V'(rg) = 0; so, by defining the
smaller coordinate x = r — rg, together with the epicycle
frequency x> = V”(rg) [21], we can rewrite the above
equation as V(x) = Eg + k*x*/2, where E is the energy of
the particle in the stable circular orbit. Also, it is easy to see
that test particles satisfy the harmonic equation of motion
¥ = —«’x. Therefore, the epicycle frequency is given by

2 JLeo [4 PF"+rPLL, F" —ArF'LE, + 6L, F
r PF +rF'L2, —2L% F
PF A rFLE - 2L§_o,f] (65)
2(rPF 4+ L:, F) s

In the case of nonrotating black holes, the polynomial
(57) has an analytical solution and at r = r,,, can be
written as

1 (J? J2L?
rgxt—i_K(Z_MLz)rezxt—i_T:O? (66)

where the quadratic term is null for L =L, = ﬁ The
root of this polynomial is

. | 3 1/2
) _
Fext = <\/;cosh [gcosh ! (3)(31 /)?%)]) . (67)

for0 <L <L,
B AL\ /6 B J4 O\ 1/6
ree=|—>5x] = =) . (68)
—2A —8SMA
for L =Ly, and

. . 3 1/2
Fext = ( % sinh [5 sinh~! (3)(3 _—)(3> ] ) . (69)
V \ -2

for L > L, where

4 (J? 27212
ST Ca R e

In Fig. 11 we show the behavior of the effective potential
for nonrotating black holes for large and small values of L,
and in Fig. 12, we show that the lapse function at r = r. is
negative for different values of L. Therefore, for J =0,
we have shown that there are no circular orbits in the
domain r > r,.

On the other hand, in Fig. 13, we show that there is no
circular orbit in the relevant domain r > r ., for black holes
with one horizon (Fig. 13, left) and for black holes with an
inner and outer horizon (Fig. 13, right). Moreover, in this
domain, the behavior for a nonrotating black hole is similar
to the behavior for small values of |J|.

C. Critical trajectories

There are two critical orbits that approach the unstable
circular orbit asymptotically. In the first kind, the particle
arises from r = r4, and in the second kind, the particle
starts from a finite distance r = r;: bigger than the horizon
radius, but smaller than the unstable radius, see Fig. 14.
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FIG. 11.

r

The behavior of V(r) as a function of r, for different values of the angular momentum of the particle L, with

M=a=b=1=1,J=0,£=09, and A = —1. Here r, =0.878, r_ = 0.360, and L; = 0.333.

(71)

By considering ¢ =t =17 =0 and Eq. (24), the proper
-0.24F time for the critical orbit of the first kind is
025 ] 1 r r’dr
E ] o(r)=- "1/2/ 2_ 2 PR
026 ] (=A) ra (PP —rp)\/ra—r
© -027t ] whose solution is given by
-0.28 E 1
Ty
() = s [y + )]
-0.30 E

s U

where

FIG. 12. The behavior of Fy(L) as a function of L, with

2
wlr] =tan™' /5 — 1,
M=a=b=1=1,J=0,6=09,L, =0.333, and A = —1. d
The metric function at r =r,,, tends to F, =—0.253 when L — o0
and it tends to F,;

and
—0.297 when L — 0. Here, the function
fO(L):}-[rexl(L)L where ]:1:-7:0(1‘_)0)

(72)

(73)

=-M+7/(=N),
_ __M_ =N
andfz—fo(L—)OO)—_7+ M -
T T T T ]
|
|
|
|
[ [
10 + B 10
|
r o
|
|
> sl 15 sl
0 0
L I | I |
I | I
1 1 1 1 1 1 n n n n 1 n n n n 1 n n n n 1 n n n n
0 1 2 3 4 5 0 1 2 3
r
FIG. 13.

The behavior of the effective potential V(r) as a function of r, for different values of the angular momentum of the black hole
JowithM=a=b=1=1, A= -1, and L = 12. Left: £ = 1.1. Right: £ =0.9.
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Now, for the critical trajectories of the second kind, the
proper time is

(1_/_\) |:l//(r)—l//(r[)—l-rU[WU(rz_WzU(ri)] ) (75)

rA—Try

On the other hand, by considering ¢ =t=17=0,
Egs. (23) and (24), the coordinate time for the critical
trajectory of the first kind is

: PIER - JL/2dr
l‘(r)_—/rA (_/—\)3/2(1/_2_’%_)(2 2)(2 2) 2 7

re=ro)(r-=ry)\/ri—r
(76)
whose solution is
1 Oy
(r) = Wzkﬂllj(r)’ (77)
=1
where
2 _ 2
ry ry ry —r
y(r) = ——tanh ! - r?—rz . (78)
ry — Ty A U
[ r2—r?
wo(r) = ~——tanh~ : r? —a | (79)
ry — Iy A + |
i 2 2
_ |- [fa— 7’
w3(r) = T tanh . ’%1 . (80)
and
L Er-JLp
RGN
P Eri —JL/2
2= b
7 -rP)2 — )
- Er: —JL/2
by =0 (81)

(r}, =r2)(r2 = r2)’

For the critical trajectories of the second kind, the coor-
dinate time is

Zl? w(r) —wy(r)l. (82)

In Fig. 14, we plot the behavior of the proper and
coordinate time as a function of r. We observe that, for both
times, the particle takes an infinity time to arrive to the
unstable circular orbit. Finally, by using Egs. (22), and (24),

3.5 [

Time Axis

ool v v w0 N L

0.0 r I, I, 15 20 25 30 I,

FIG. 14. The behavior of the proper (z) (thick line) and
coordinate (¢) (thin line) time as a function of r for critical
trajectories of the first and second kind with M =a =05 =
A=1, A=-1, J=12, &=11, r_=059, r, ~0.87,
ri=1.00, ry = 1.17, ry 2 3.25, and Ey =~ 11.92.

the angular coordinate ¢ for the trajectories of the first
kind is

¢C( 3/2 Z WI/: (83)
where
1
"R =R - )
ey . L(J?>=J?)
(% S L
-1
"R =R
o (B! r L(J*>=J?)
(5 SIEES s
1
BT -AE =)
2 _ 72
X(Egj (-A)Lﬁ—%). (36)

While that for critical trajectories of the second kind is

3

Zn;[v/j(r)

¢c(r) =

(_/—\)3/2 _W](rl)] (87)

In Fig. 15, we show the behavior of the angular coordinate
as a function of . We can observe that, for both trajectories
of the first and second kind, the angular coordinate diverges
at the unstable circular radius.
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FIG. 15.

Critical trajectory of the first and second kind, for particles with L = 12, M =a=b=1=1,A=-1,J=12,{=1.1,

Ey=1192,r_~0.59, r,. =0.87, and r; = 1.0. For orbit of the first kind (thin line), the test particle arrived from r, = 3.25, where
ry =~ 1.17 corresponds to the radius of the unstable circular orbit (dashed circle).

D. Motion with L=0

In this case, the particles are destined to fall toward the
event horizon, see Fig. 5. The effective potential Eq. (25) is

V(r) = (=M + > = Ar?)"/?, and Egs. (22)(24) yield

: EJ
. , 88
¢ AP =12 (rr = 12) (88)
. Er?
R : 89
PR -7 (59)
o
i'r—\/E2+M——2+Ar2, (90)
2r

where the (—) sign for 7 corresponds to particles falling into
the event horizon, and the (4) sign corresponds to particles
that have a return point ry > r, for E > E, given by

M+E 1. (JV-A\ =
ro = S A Gy —1—5, (91)

and a return point at dy < r_, given by

N 3T
dy = Mt E G, lsin‘1 / A2 . (92)
—-A 2 M+ E

Now, choosing as initial conditions that the particle starts
at r =ry and ¢ =t = 7 = 0, the solution of Eq. (90) is

1 (,_1{ M +2Ar? + E? ]
7(r) = ——— sin ——
2V-A VIPA+ (M + E?)?
[ M+2Ar: + E?
—sin”! | ——= 0 .
VA + (M + E?)?

Also, a straightforward integration of Egs. (89) and (90)
leads to

E 2 2 _ 2 F
TRNL I B S5
2(-A) p(ry) | =13 Fi(r)
2 2_ 2 F
S oz ) } (94)
p(r_) |rm—rZ F_(ro)
where

(95)

Temporal axis

FIG. 16. The behavior of the coordinate time (¢) and the proper
time (7) along an unbounded timelike radial geodesic described
by a test particle, starting at ry = 6 and falling toward the
singularity, for L=0 M =a=b=1A=1, A= -1, E =5.63,
J=12,¢(=1.1,r, =087, dy=0.085, and r_ ~ 0.59.
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FIG. 17. The behavior of the coordinate ¢(r), starting at r, = 6 and falling toward the singularity with L =0, M =a=b=1=11,
A=-1,J=12,¢(=1.1,r_%0.59, and r, = 0.87. In the polar plot, the trajectory approaching the horizon will spiral around the

black hole an infinite number of times.

EP+M J?
_ _ 4 _ 2
p(r)_ r + —A r 4(_A)’

2
P = ptra)+ (S5 -

2 ) (P =)= (=R
97)

In Fig. 16, we show the behavior of the proper and
coordinate time as a function of r; we can observe that the
particle arrives to the event horizon in a finite proper time,
then the particle does not reach the singularity, due to the
existence of a return point d, inside r_, see Fig. 4.
Concerning the coordinate time, the particle arrives in an
infinite coordinate time to the singularity. Finally, the
solution for the angular coordinate ¢ is

_ EJ 1 | r(z)—rﬁ.F+(r)
" =GR [m PR )
1 N r%—r%. F_(r)
p(r_)1 r*—r2 F_(ry) ]’ (98)

where we have used Egs. (88) and (90). In Fig. 17, we plot
the behavior of the angular coordinate, where we observe
that the angular coordinate becomes infinity at the event
horizon.

V. REMARKS AND CONCLUSIONS

In this work, we studied the motion of particles in the
background of a rotating three-dimensional Horava AdS
black hole described by a Lorentz-violating version of the
BTZ black hole, and we calculated the timelike geodesics,
which possess a rich structure and allow different kinds of
trajectories for the particles. This work, along with the null
geodesic described in Ref. [10], complements the geodesic
structure for the rotating three-dimensional Horava AdS
black hole. For direct orbits, we have shown the existence
of planetary orbits, where we have obtained an exact

solution and we have determined the periods of revolution.
Also, for circular orbits, we have shown the existence of the
stable and unstable circular orbits, and we determined the
periods of revolution, as well as the epicycle frequency for
the stable circular orbit, and also critical orbits of the first
and second kind that approach the unstable circular orbit
asymptotically. For the motion with 0 <L < L., the
trajectories are all bounded, and for L =0, we have
obtained exact solutions. However, their counterpart, i.e.,
the BTZ metric, allows geodesics for massive particles that
always fall into the event horizon and no stable orbits are
possible; thereby, the differences observed with respect to
the BTZ metric could be attributed to the breaking of the
Lorentz invariance. On the other hand, for retrograde orbits,
we have shown the existence of the second kind orbits,
similar to the behavior observed for retrograde orbits in a
BTZ black hole background [4]. In addition, by comparing
both orbits, direct and retrograde, in a rotating three-
dimensional Hotfava AdS black hole, it is possible to
observe trajectories with E < 0O for retrograde orbits, which
is not possible for direct orbits.

Therefore, the Lorentz-violating version of the BTZ
black hole turns on an effective potential with a more rich
structure, allowing different kinds of orbits. As it was
shown [10], for photons new kinds of orbits are allowed,
such as unstable circular orbits and trajectories of the first
kind. While for particles, the planetary and circular orbits
are allowed, which does not occur in the BTZ background.
In this way, the breaking of the Lorentz invariance could
generate orbits that could not occur in invariant Lorentz
theories.
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