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Approximate analytical description of apparent horizons for initial data
with momentum and spin
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We construct analytical initial data for a slowly moving and rotating black hole for generic orientations
of the linear momentum and the spin. We solve the Hamiltonian constraint approximately and work out the
properties of the apparent horizon and show the dependence of its shape on the angle between the spin
and the linear momentum. In particular, a dimple, whose location depends on the mentioned angle, arises
on the two-sphere geometry of the apparent horizon. We exclusively work in the case of conformally flat

initial metrics.
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I. INTRODUCTION

Since the first observation of black hole merger [1], there
have been many observations of the merger of compact
objects via gravitational waves. The gravitational waves
produced by these mergers are consistent with the numeri-
cal solutions of the field equations of general relativity.
Besides the highly accurate numerical results, it always
pays to have approximate solutions of relativistic gravitat-
ing systems. Here, we give an approximate analytical
description of a self-gravitating system that has a conserved
total energy, total spin, and a linear momentum in an
asymptotically flat spacetime. The initial configuration is
expected to evolve and settle to a single rotating black hole
after emitting some gravitational radiation.

The problem was studied in [2] in the case of vanishing
linear momentum but with a nonzero spin and in [3] in the
case of vanishing spin with a nonzero linear momentum.
See a remarkable exposition in [4]. Here, we assume both
of these quantities to be nonzero and pointing arbitrarily in
three-dimensional space. It will turn out that the shape of
the apparent horizon depends on the angle between the
linear momentum and the spin; even though at the next to
leading order, the magnitude of the spin does not appear in
the shape of the apparent horizon, its direction does. On the
other hand, the shape of the apparent horizon depends on
the magnitude of the linear momentum at the first order.
The area of the apparent horizon does not depend on the
angle between the spin and linear momentum. We also
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observe that a dimple arises on the two-sphere geometry of
the apparent horizon.

The layout of the paper is as follows. In the next section,
we discuss briefly the constraint equations in general
relativity and present the Bowen-York method [5] in finding
solutions to the initial value problem. In Sec. III, we give the
approximate solution of the Hamiltonian constraint for a
slowly rotating and moving black hole. In Sec. IV, we
compute the position of the apparent horizon as a function of
the angle between the spin and the linear momentum.

II. INITIAL DATA FOR A BLACK HOLE
WITH MOMENTUM AND SPIN

Assuming the usual Arnowitt-Deser-Misner (ADM) split
of the metric [6],
ds?* = (N;N' = N?)dt* + 2N, dtdx’ + y,;dx'dx’,
i,je (1,2,3), (1)
the Einstein equations in vacuum without a cosmological
constant split into constraints and the evolution equations.
The constraint equations are given as
-*R-K>+ Kinij =0,
—2D;K* +2D;K = 0, (2)

where X is the Cauchy surface; K;; = K;;(r,x*) is its
extrinsic curvature defined as

1 . 0

Kij = ﬁ(?zj —D;N; - DjNi)v Yij = Elﬁjv 3)
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with the trace K :=y"YK;;; and D;y;; = 0. For further
details of the construction, including the evolution equa-
tions that we do not depict here, see the Appendix of [7].
Following Bowen-York [5], let us assume that X is
conformally flat with the metric,

Yij = l//4fija v >0, (4)

with f;; denoting the flat metric in some generic coor-
dinates. One also sets the extrinsic curvature of the hyper-
surface to be given as K;; = l//_zkij. Furthermore, we
assume that ¥ is a maximally embedded hypersurface in the
spacetime such that the trace of the extrinsic curvature
vanishes,1

K=0. (5)

Under these conditions, the Hamiltonian constraint reduces
to a nonlinear elliptic equation,

DDy = _§W_7Ki2j7 (6)

D'K;; =0, (7)

with ﬁ,» fjx = 0. The momentum constraint equations can
be solved easily, following [5]. Let us choose the six-
parameter solution,

N 3
Ki; = 772 (pinj+ pjn; + (minj — fi)p - n)
3 jl k 8
+F n(egn; + €xjin;), (8)

where n' is the unit normal on a sphere of radius r. For
other solutions, see [8]. Assuming the following asymptotic
behavior for the conformal factor,

w(r) = 1—|—2—Er+(9(1/r2), 9)

one can easily show that (see [9]) the p' in the solution (8)
corresponds to the total conserved linear momentum via

P—l
1_871' SZ

. 1 A
Similarly, one can show that J; corresponds to the total
conserved angular momentum expressed in terms of the
coordinates and the extrinsic curvature as

'For physically relevant decay conditions in the case of
asymptotically flat initial data, we refer the reader to Sec. III
C of [7] where a slightly extended discussion is compiled.

1 . .
J; = ngjk/ dSn;(x/K* — xk Kt
JT Sgo
1 . Ny
:ngjk/ dSn;(x/ KX — x*K71). (11)
T " )s,

Finally, the ADM energy,

1 . ;
E =— dSn;(0;h — O;1’), 12
ADM 167 /sgc nl(aj al /) ( )

becomes

Expy = — 5= dSn'dy, (13)
2w S%o

and so using the asymptotic form (9), one finds E,p), = E.
This has been a brief description of the solution of the
momentum constraints. Now, the important task is to solve
the Hamiltonian constraint, which, as we noted, is a
nonlinear elliptic equation, and thus, generically, it can
only be solved numerically. However, in the next section,
we shall give an approximate solution for small momentum
and small rotation.

III. INITIAL DATA WITH SMALL MOMENTUM
AND SMALL SPIN

Computation of K ijf(ij [from Eq. (8)] yields

foa 9 18

KKV = oy (p* +2(p-1i)?) +F(J X 7i)-p
18 - . -
+— (I xn)- (J xn). (14)
;

Without loss of generality, let us assume that the direction
of the spin is the k direction, namely

J = Jk, (15)
and p is lying in the xz plane and given as
P = psin6yi + p cosyk, (16)

with 6, a fixed angle. To simplify the notation of the
following discussion, let us denote

cy = sin@,, ¢y = cos 0. (17)

The Hamiltonian constraint, after these conventions,

becomes
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A, 9J 9J2
DDy =y’ (4—’§c1 sinﬁsin(/)—ﬁsinzﬁ
9w’
~16r —— (14+2(cysinfcosp+cycos0)?) ). (18)

As it clear from the right-hand side, the correct perturbative
expansion in terms of the momentum and spin reads,

+J2 ( ) +p2y/(p) +Jpll/(‘]p)
+ 0(1) PP, (19)

w(r.0.¢) =

where the functions on the right-hand side depend on all
coordinates (r, @, ¢). At the lowest order, one has

DDy =0. (20)

To proceed, let us discuss the boundary conditions that we
shall employ. Following [10,3], we chose the following
boundary conditions:

limy(r) =1, w(r) >0, (21)
and
hr%y/(r) w0, (22)

At the lowest order, the solution satisfying these boundary
conditions reads,

w@=1+§- (23)

Inserting (19) into (18), one arrives at three linear partial
differential equations to be solved:

Aa 9 r
D.DiyY) = —Zgin20—— |
e UG ay
D DiyVr) = gcl sinasinqﬁriz, (24)
i 4 (r+a)’
and also
A A - 3
D, Diy) _E(l+2(c1sin900s¢+czc059)2)m.
(25)

In finding the solutions to these equations, we will need the
following spherical harmonics:

1 3
Y5(0. ) = N/ Y0(0.4) = \KL—;COS@»
Y5(0,¢) = \/1’2—”(300520— 1),
3

710, 9) = \/Esinesingb,
1 5 .
Y3(0.¢) = Esmﬁcosﬁcos o,
3
Y10, 9) = \/Esinecosqb. (26)

Then, ansatz for y/) can be taken as

D(r,0,¢) = w§ (NYY0.4) + v\ (NYA0.4),  (27)

which, upon insertion to the first equation of (24), yields
two ordinary differential equations,

d 2d1//éj>(r) B r
dr(r dr B 3ﬁ(r+a)7’

e 7 T
(P D) e -3\ T )

The solution obeying the boundary conditions (21) reads,

(a* +5a°r +10a%r? + Sar’ + r4)

(-’)(r, 9, ¢) = 40a3<a + r)s

r2

" W0alat (3cos?0 —1). (29)

Similarly, setting

WP (r,0,0) =y (NY(6.9) +w'\"” (YT (6.9) (30)

in the second equation of (24), one finds that u/(()Jp ) (r)=0

satisfies the boundary conditions, and the wﬁ’” )(r) piece
satisfies

(Ip) 4
d d 33
Ry QL 2 S SREAS A V)
dr dr 2 (r+a)

of which, the solution can be found, and one has

cir(a® + 5ar + 10r?)

Ur)(r. 0. ) = —
yr(r.0.4) 80a(a + r)’

sin@sin¢g. (32)

Finally, let us do the w(?)(r, 8, ¢) part, which is slightly
more complicated. One sets
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v = (Y3(0.0) +u” ()Y} (0. )
+yd (NYL6.9) + i (NY(6. ) (33)

to arrive at four equations, two of which are

d( dyd\ 3, 9 r
= — - . (34
(P ) ¢ ) VR (o4

(p) 5
d [ ,dy, w_ 3, T
o <r o ) oy, = 27101 rra)l (35)

The z//<2p )(r) equation can be obtained from (35) with the

replacement ¢? — \/%clcz, and the l//gp )(r) equation can

be obtained from (35) via ¢i — ¢3. The solutions read,

and respectively, as follows:
|
() VE(84a® + 378a’r + 653a*r? + 51413 + 142ar* — 35ar’ — 25¢°)  21./7ma a
wo (r)=— 5 3 - 5 log . (36)
80ar*(a + r) 20r a+r
and
WP () = nc3(84a 4+ 378a'r + 6585123r2 + 5359azr3 +192ar* + 151°) 217za3c% log—% (37)
40r-(a +r) 10r r+a
I
from which, one can find (), but we do not depict it here m;; =y — ;5. (41)

since it is a little long.

Recall that, for the ADM energy computation, we need
the dominant terms up to and including O(2) in y(r. 6, ¢).
Collecting these parts in the above solutions, one gets

a J? 5p? 1
=1+- o). 38
v(r) * r + 40a3r + 32ar + <r2> (38)

Therefore, from (9), the ADM energy of the solution reads,

J? 5p?
E =2a+—+—. 39
ADM = 245055 T 164 (39)
Observe that the J p term does not contribute to the energy
since it is of O(%).
Next, as in [3], let us express the ADM energy in terms
of the irreducible mass M, which is defined [11] as

My ==\ — (40)

with A being the area of a section of the event horizon.
However, as the event horizon is a four-dimensional
concept, which cannot be derived from the three-dimen-
sional initial data, we will approximate this with the area of
the apparent horizon, A,y, following [3].

IV. COMPUTATION OF THE APPARENT
HORIZON FOR THE BOOSTED,
ROTATING SOLUTIONS

Let S be a two-dimensional subspace of £ and s’ be the
normalized unit vector of S, i.e., s's; = 1. Then, the metric
on § is the pullback metric from X given as

The expansion of the null geodesic congruence vanishes at
the apparent horizon by definition; i.e., it is a marginally
trapped surface, and the defining equation becomes

(7/” - Sisj)(DiSj - KU) =0. (42)

Assuming the surface to be defined as a level set of a
function,

®:=r—h(0,¢)=0, (43)
then the normal one-form reads,
s; = Am; = A0, @, (44)
which explicitly becomes
s; = A1, =0gh, —04h). (45)

Recall that the metric on X is

1 0 0
Vij = l//4 0 r 0 , (46)
0 0 r2%sin?20
and then one has
st = Ay, —y?dyh, —y¢¢8¢h), (47)

and

A= (" +7%(0gh)* + y?(04h)*) 12 (48)
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Equation (42) reads more explicitly as

yH0;m; =y TN my — B2mimi 0;m; + PmimimyUf + Am'miK ;= 0, (49)

ij

where we have used yVK;; = K = 0. After working out each piece, one arrives at

1
=70 5h =y 05k =S ()01 = V1" Orvoo = Y"1 v 3 + Doy 1 " Dot )

+ 22((r%)*(Dph)*0gh + (r??)* (04 h)* 0%k + 27?97?00, hDphdd ,h)

2

2
- (3¢h)259h(7¢¢)27’99897¢¢)

A
+ = ((yrr>3aryrr + <y69>2},rr(89h)28r},09 + (},¢¢)2},rr(a¢h)28ry¢¢

+ Ay K, + (1) (9gh)* Koo + (r??)*(04h)* K yy — 27" y*OphK 1
= 2y"y?0,hK 4 2y7y? 0yhd 4hK py) = 0. (50)

An exact solution to this equation is beyond reach, and we
do not really need it. All we need is an approximate
solution of the form,

h(8,¢) = h° + ph? +Jh' + O(p?, 7%, Jp), (51)
where

0.h =0, 0,h° =0 = 9ph® = d4h°. (52)
Note that to compute the area of the apparent horizon and
the irreducible mass up to and including the O(p?,J?,Jp)
terms, one only needs the shape of the horizon up to and
including the O(p,J) terms, which becomes clear when
one studies the area integral. (See also [3].) Ignoring the
higher order terms such as (9gh)?, (0,h)?, and Dghd,h, the
apparent horizon equation becomes

1
=1 0h =" O5h =5 (V2001 =71 Or00
b rr Db 00 .
=777 0,Y pp + Oohy?? Y 0¥ 4p) +5(7 )20:7 1

+ 2"y K = 27?0 K g — 27?04 hK y) = 0.  (53)
To proceed, we need the components of the extrinsic

curvature in the (r,6,¢) coordinates. After coordinate
transformations, one finds

A 3
K, = —f(cl sin @ cos ¢ + ¢, cos ),
r

3
K,y = 2_p (cycosfcosg — c,sinb), (54)
r

and

|
N 3 3J
K,y= —2—’:c1 sinfsing + 3 sin?0. (53)
Therefore, the resulting equation is

oy  6J

1
8§h+maéh+cot989h—2r—4r2 +W8¢h
3p .
—— (cysinfcos g + ¢, cos0) = 0. (56)
W
At order O(p°, J?), this equation yields
129 o, (57)
W

where y = 1 + <. And, setting r = h, one finds
h = a. (58)

This explains the physical meaning of the parameter a; it is
the location of the apparent horizon at the lowest order. The
next order contribution, which we shall find below, will be
perturbations to this location. At O(p) and O(J), we have
the following equations, respectively:

1
sin%6

OphP + —— D2 P + cotOdsh? — hP

3
~16 (cysinfcos¢ + cycos0) =0,  (59)

and

1

o/
ot sin? @

02! + cotfdgh’ — b’ = 0. (60)
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These are linear partial differential equations, and a close
scrutiny shows that the /4’ equation is the homogenous
Helmholtz equation on a sphere (S?), while the 4* equation
is the inhomogeneous Helmholtz equation with a nontrivial
source. So, the next task is to find everywhere finite
solutions of the following equation:

(Ve + k) f(0,4) = 9(0.9). (61)

where V3 is the Laplacian on $2:
- 1
vsz = 85 + Cot989 + m@é (62)

It is clear that the Green’s function technique is the most
suitable approach to this problem. For the Helmholtz
operator on the sphere, the Green function G(%,%') is
defined as

(Vi + A4+ 1)GG &) =D G -%).  (63)

which can be found to be (for example, see [12])

1 &1 Tn-2)
G ¥) = 4 sinﬂl; (n!)? T(=4)
Cnta+1) (152"
TG ( 2 ) o

where & = sin @ cos ¢ + sin @sin ¢h] + cos Ok, and ¥ is a

similar expression with some other @ and ¢. Employing this

—1+iV3
2

Green’s function with A = , one finds

1
h? = _R(Cl sin@ cos ¢ + ¢, cos ), (65)

and 7’/ = 0. Therefore, the apparent horizon is located at

r=nh(0,¢)
1 N ~
:a_1_6(15'.JcosH—|—|ﬁ/\J|Sin9COS¢), (66)

where J = % In the limit 6, = 0, & reduces to the form

given in [3], that is, #(6) = a — {zcos 6, and the apparent
horizon in this axially symmetric case is a squashed sphere
from the North Pole. Note that the shape of the apparent
horizon (66) at this order does not depend on the magnitude
of the spin, but it does depend on its orientation with
respect to the linear momentum. In Fig. 1, we plot the
apparent horizon. To be able to see the dimple clearly in the
whole figure, we have chosen a high momentum value.

Let us now evaluate the area of the apparent horizon from
the formula,

FIG. 1. The shape of the apparent horizon when the angle
between p and J is 45 degrees; to be able to see the dimple, we

have chosen p/a = 8v/2, which is outside the validity of the
approximation we have worked with, but the dimple exists for
even small p.

2z T
AAH—/ d¢/ dov/detm, (67)
0 0

which, at the order that we are working, yields

27 n
AAH — / d¢/ dt9 Sin 9w4h2
0 0

1

1 1/2
X <1 +ﬁ(agh)2 +m(8¢h)2> . (68)

This is a pretty long computation since the conformal factor
is quite complicated. However, at the end, one finds

117J?
Apy = 64na* + 4zp? + 5”

(69)

(12‘

Note that the angle between the spin and the linear
momentum does not appear in the area. Then, the irreduc-
ible mass M;,, reads,

2 2
p 11J
M, =2a+-— . 70
I TR LTI (70)
Comparing with Espy, we have
2 2
p J
E =My, +—+—. 71
ADM i + WM, + M (71)

which matches the slow momentum and spin limit of the
result in [11].
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V. CONCLUSIONS

Momentum constraints in general relativity are easily
solved with the method of Bowen-York, while the
Hamiltonian constraint is a nontrivial elliptic equation.
Here, extending earlier works, [2-3], we gave an approxi-
mate analytical solution that describes a spinning and
moving system with a conserved spin and linear momen-
tum pointing in arbitrary directions. We computed the
properties of the apparent horizon, such as its shape and
surface area, and showed the dependence of the shape
on the angle between the spin and the linear momentum.

We calculated the relation between the conserved quan-
tities, such as the ADM mass, the spin, the linear momen-
tum, and the irreducible mass. The area of the apparent
horizon does not depend on the angle between the spin and
the linear momentum, but a dimple arises in the apparent
horizon whose location depends on this angle.
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