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We construct analytical initial data for a slowly moving and rotating black hole for generic orientations
of the linear momentum and the spin. We solve the Hamiltonian constraint approximately and work out the
properties of the apparent horizon and show the dependence of its shape on the angle between the spin
and the linear momentum. In particular, a dimple, whose location depends on the mentioned angle, arises
on the two-sphere geometry of the apparent horizon. We exclusively work in the case of conformally flat
initial metrics.
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I. INTRODUCTION

Since the first observation of black hole merger [1], there
have been many observations of the merger of compact
objects via gravitational waves. The gravitational waves
produced by these mergers are consistent with the numeri-
cal solutions of the field equations of general relativity.
Besides the highly accurate numerical results, it always
pays to have approximate solutions of relativistic gravitat-
ing systems. Here, we give an approximate analytical
description of a self-gravitating system that has a conserved
total energy, total spin, and a linear momentum in an
asymptotically flat spacetime. The initial configuration is
expected to evolve and settle to a single rotating black hole
after emitting some gravitational radiation.
The problem was studied in [2] in the case of vanishing

linear momentum but with a nonzero spin and in [3] in the
case of vanishing spin with a nonzero linear momentum.
See a remarkable exposition in [4]. Here, we assume both
of these quantities to be nonzero and pointing arbitrarily in
three-dimensional space. It will turn out that the shape of
the apparent horizon depends on the angle between the
linear momentum and the spin; even though at the next to
leading order, the magnitude of the spin does not appear in
the shape of the apparent horizon, its direction does. On the
other hand, the shape of the apparent horizon depends on
the magnitude of the linear momentum at the first order.
The area of the apparent horizon does not depend on the
angle between the spin and linear momentum. We also

observe that a dimple arises on the two-sphere geometry of
the apparent horizon.
The layout of the paper is as follows. In the next section,

we discuss briefly the constraint equations in general
relativity and present the Bowen-York method [5] in finding
solutions to the initial value problem. In Sec. III, we give the
approximate solution of the Hamiltonian constraint for a
slowly rotating and moving black hole. In Sec. IV, we
compute the position of the apparent horizon as a function of
the angle between the spin and the linear momentum.

II. INITIAL DATA FOR A BLACK HOLE
WITH MOMENTUM AND SPIN

Assuming the usual Arnowitt-Deser-Misner (ADM) split
of the metric [6],

ds2 ¼ ðNiNi − N2Þdt2 þ 2Nidtdxi þ γijdxidxj;

i; j ∈ ð1; 2; 3Þ; ð1Þ

the Einstein equations in vacuum without a cosmological
constant split into constraints and the evolution equations.
The constraint equations are given as

−ΣR − K2 þ KijKij ¼ 0;

−2DkKk
i þ 2DiK ¼ 0; ð2Þ

where Σ is the Cauchy surface; Kij ¼ Kijðt; xkÞ is its
extrinsic curvature defined as

Kij ¼
1

2N
ð_γij −DiNj −DjNiÞ; _γij ¼

∂
∂t γij; ð3Þ*emelaltas@kmu.edu.tr

†btekin@metu.edu.tr
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with the trace K ≔ γijKij; and Diγkl ¼ 0. For further
details of the construction, including the evolution equa-
tions that we do not depict here, see the Appendix of [7].
Following Bowen-York [5], let us assume that Σ is
conformally flat with the metric,

γij ¼ ψ4fij; ψ > 0; ð4Þ
with fij denoting the flat metric in some generic coor-
dinates. One also sets the extrinsic curvature of the hyper-
surface to be given as Kij ¼ ψ−2K̂ij. Furthermore, we
assume that Σ is a maximally embedded hypersurface in the
spacetime such that the trace of the extrinsic curvature
vanishes,1

K ¼ 0: ð5Þ
Under these conditions, the Hamiltonian constraint reduces
to a nonlinear elliptic equation,

D̂iD̂
iψ ¼ −

1

8
ψ−7K̂2

ij; ð6Þ

and the momentum constraint reduces to

D̂iK̂ij ¼ 0; ð7Þ

with D̂ifjk ¼ 0. The momentum constraint equations can
be solved easily, following [5]. Let us choose the six-
parameter solution,

K̂ij ¼
3

2r2
ðpinj þ pjni þ ðninj − fijÞp · nÞ

þ 3

r3
J lnkðεkilnj þ εkjlniÞ; ð8Þ

where ni is the unit normal on a sphere of radius r. For
other solutions, see [8]. Assuming the following asymptotic
behavior for the conformal factor,

ψðrÞ ¼ 1þ E
2r

þOð1=r2Þ; ð9Þ

one can easily show that (see [9]) the pi in the solution (8)
corresponds to the total conserved linear momentum via

Pi ¼
1

8π

Z
S2∞

dSnjKij ¼
1

8π

Z
S2∞

dSnjK̂ij: ð10Þ

Similarly, one can show that Ji corresponds to the total
conserved angular momentum expressed in terms of the
coordinates and the extrinsic curvature as

Ji ¼
1

16π
εijk

Z
S2∞

dSnlðxjKkl − xkKjlÞ

¼ 1

16π
εijk

Z
S2∞

dSnlðxjK̂kl − xkK̂jlÞ: ð11Þ

Finally, the ADM energy,

EADM ¼ 1

16π

Z
S2∞

dS nið∂jhij − ∂ih
j
jÞ; ð12Þ

becomes

EADM ¼ −
1

2π

Z
S2∞

dSni∂iψ ; ð13Þ

and so using the asymptotic form (9), one finds EADM ¼ E.
This has been a brief description of the solution of the
momentum constraints. Now, the important task is to solve
the Hamiltonian constraint, which, as we noted, is a
nonlinear elliptic equation, and thus, generically, it can
only be solved numerically. However, in the next section,
we shall give an approximate solution for small momentum
and small rotation.

III. INITIAL DATA WITH SMALL MOMENTUM
AND SMALL SPIN

Computation of K̂ijK̂
ij [from Eq. (8)] yields

K̂ijK̂
ij ¼ 9

2r4
ðp2 þ 2ðp⃗ · n⃗Þ2Þ þ 18

r5
ðJ⃗ × n⃗Þ·p⃗

þ 18

r6
ðJ⃗ × n⃗Þ · ðJ⃗ × n⃗Þ: ð14Þ

Without loss of generality, let us assume that the direction
of the spin is the k̂ direction, namely

J⃗ ¼ Jk̂; ð15Þ

and p⃗ is lying in the xz plane and given as

p⃗ ¼ p sin θ0îþ p cos θ0k̂; ð16Þ

with θ0 a fixed angle. To simplify the notation of the
following discussion, let us denote

c1 ≔ sin θ0; c2 ≔ cos θ0: ð17Þ

The Hamiltonian constraint, after these conventions,
becomes

1For physically relevant decay conditions in the case of
asymptotically flat initial data, we refer the reader to Sec. III
C of [7] where a slightly extended discussion is compiled.
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D̂iD̂
iψ ¼ψ−7

�
9Jp
4r5

c1 sinθ sinϕ−
9J2

4r6
sin2θ

−
9p2

16r4
ð1þ2ðc1 sinθcosϕþc2 cosθÞ2Þ

�
: ð18Þ

As it clear from the right-hand side, the correct perturbative
expansion in terms of the momentum and spin reads,

ψðr; θ;ϕÞ ≔ ψ ð0Þ þ J2ψ ðJÞ þ p2ψ ðpÞ þ Jpψ ðJpÞ

þOðp4; J4; p2J2Þ; ð19Þ

where the functions on the right-hand side depend on all
coordinates ðr; θ;ϕÞ. At the lowest order, one has

D̂iD̂
iψ ð0Þ ¼ 0: ð20Þ

To proceed, let us discuss the boundary conditions that we
shall employ. Following [10,3], we chose the following
boundary conditions:

lim
r→∞

ψðrÞ ¼ 1; ψðrÞ > 0; ð21Þ

and

lim
r→0

ψðrÞ ¼ ψ ð0Þ: ð22Þ

At the lowest order, the solution satisfying these boundary
conditions reads,

ψ ð0Þ ¼ 1þ a
r
: ð23Þ

Inserting (19) into (18), one arrives at three linear partial
differential equations to be solved:

D̂iD̂
iψ ðJÞ ¼ −

9

4
sin2θ

r
ðrþ aÞ7 ;

D̂iD̂
iψ ðJpÞ ¼ 9

4
c1 sin θ sinϕ

r2

ðrþ aÞ7 ; ð24Þ

and also

D̂iD̂
iψ ðpÞ ¼−

9

16
ð1þ2ðc1 sinθcosϕþc2 cosθÞ2Þ

r3

ðrþaÞ7 :

ð25Þ

In finding the solutions to these equations, we will need the
following spherical harmonics:

Y0
0ðθ;ϕÞ ¼

1ffiffiffiffiffiffi
4π

p ; Y0
1ðθ;ϕÞ ¼

ffiffiffiffiffiffi
3

4π

r
cos θ;

Y0
2ðθ;ϕÞ ¼

ffiffiffiffiffiffiffiffi
5

16π

r
ð3cos2θ − 1Þ;

Y−1
1 ðθ;ϕÞ ¼

ffiffiffiffiffiffi
3

4π

r
sin θ sinϕ;

Y1
2ðθ;ϕÞ ¼

ffiffiffiffiffiffi
15

4π

r
sin θ cos θ cosϕ;

Y1
1ðθ;ϕÞ ¼

ffiffiffiffiffiffi
3

4π

r
sin θ cosϕ: ð26Þ

Then, ansatz for ψ ðJÞ can be taken as

ψ ðJÞðr; θ;ϕÞ ¼ ψ ðJÞ
0 ðrÞY0

0ðθ;ϕÞ þ ψ ðJÞ
1 ðrÞY0

2ðθ;ϕÞ; ð27Þ

which, upon insertion to the first equation of (24), yields
two ordinary differential equations,

d
dr

�
r2

dψ ðJÞ
0 ðrÞ
dr

�
¼ −3

ffiffiffi
π

p r3

ðrþ aÞ7 ;

d
dr

�
r2

dψ ðJÞ
1 ðrÞ
dr

�
− 6ψ ðJÞ

1 ðrÞ ¼ 3

ffiffiffi
π

5

r
r3

ðrþ aÞ7 : ð28Þ

The solution obeying the boundary conditions (21) reads,

ψ ðJÞðr; θ;ϕÞ ¼ ða4 þ 5a3rþ 10a2r2 þ 5ar3 þ r4Þ
40a3ðaþ rÞ5

−
r2

40aðaþ rÞ5 ð3cos
2θ − 1Þ: ð29Þ

Similarly, setting

ψ ðJpÞðr;θ;ϕÞ¼ψ ðJpÞ
0 ðrÞY0

0ðθ;ϕÞþψ ðJpÞ
1 ðrÞY−1

1 ðθ;ϕÞ ð30Þ

in the second equation of (24), one finds that ψ ðJpÞ
0 ðrÞ ¼ 0

satisfies the boundary conditions, and the ψ ðJpÞ
1 ðrÞ piece

satisfies

d
dr

�
r2
dψ ðJpÞ

1 ðrÞ
dr

�
−2ψ ðJpÞ

1 ðrÞ¼ 3
ffiffiffiffiffiffi
3π

p

2
c1

r4

ðrþaÞ7 ; ð31Þ

of which, the solution can be found, and one has

ψ ðJpÞðr; θ;ϕÞ ¼ −
c1rða2 þ 5arþ 10r2Þ

80aðaþ rÞ5 sin θ sinϕ: ð32Þ

Finally, let us do the ψ ðpÞðr; θ;ϕÞ part, which is slightly
more complicated. One sets
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ψ ðpÞ ¼ ψ ðpÞ
0 ðrÞY0

0ðθ;ϕÞ þ ψ ðpÞ
1 ðrÞY1

1ðθ;ϕÞ2

þ ψ ðpÞ
2 ðrÞY1

2ðθ;ϕÞ þ ψ ðpÞ
3 ðrÞY0

1ðθ;ϕÞ2 ð33Þ
to arrive at four equations, two of which are

d
dr

�
r2
dψ ðpÞ

0

dr

�
þ 3ffiffiffi

π
p ðψ ðpÞ

1 þψ ðpÞ
3 Þ¼−

9

8

ffiffiffi
π

p r5

ðrþaÞ7 ; ð34Þ

and

d
dr

�
r2

dψ ðpÞ
1

dr

�
− 6ψ ðpÞ

1 ¼ −
3

2
πc21

r5

ðrþ aÞ7 : ð35Þ

The ψ ðpÞ
2 ðrÞ equation can be obtained from (35) with the

replacement c21 →
ffiffiffiffi
3
5π

q
c1c2, and the ψ ðpÞ

3 ðrÞ equation can

be obtained from (35) via c21 → c22. The solutions read,
respectively, as follows:

ψ ðpÞ
0 ðrÞ ¼ −

ffiffiffi
π

p ð84a6 þ 378a5rþ 653a4r2 þ 514a3r3 þ 142a2r4 − 35ar5 − 25r6Þ
80ar2ðaþ rÞ5 −

21
ffiffiffi
π

p
a

20r3
log

a
aþ r

; ð36Þ

and

ψ ðpÞ
1 ðrÞ ¼ πc21ð84a5 þ 378a4rþ 658a3r2 þ 539a2r3 þ 192ar4 þ 15r5Þ

40r2ðaþ rÞ5 þ 21πac21
10r3

log
a

rþ a
; ð37Þ

from which, one can find ψ ðpÞ, but we do not depict it here
since it is a little long.
Recall that, for the ADM energy computation, we need

the dominant terms up to and including Oð1rÞ in ψðr; θ;ϕÞ.
Collecting these parts in the above solutions, one gets

ψðrÞ ¼ 1þ a
r
þ J2

40a3r
þ 5p2

32ar
þO

�
1

r2

�
: ð38Þ

Therefore, from (9), the ADM energy of the solution reads,

EADM ¼ 2aþ J2

20a3
þ 5p2

16a
: ð39Þ

Observe that the Jp term does not contribute to the energy
since it is of Oð 1r2Þ.
Next, as in [3], let us express the ADM energy in terms

of the irreducible mass Mirr, which is defined [11] as

Mirr ≔
ffiffiffiffiffiffiffiffi
A
16π

r
; ð40Þ

with A being the area of a section of the event horizon.
However, as the event horizon is a four-dimensional
concept, which cannot be derived from the three-dimen-
sional initial data, we will approximate this with the area of
the apparent horizon, AAH, following [3].

IV. COMPUTATION OF THE APPARENT
HORIZON FOR THE BOOSTED,

ROTATING SOLUTIONS

Let S be a two-dimensional subspace of Σ and si be the
normalized unit vector of S, i.e., sisi ¼ 1. Then, the metric
on S is the pullback metric from Σ given as

mij ≔ γij − sisj: ð41Þ

The expansion of the null geodesic congruence vanishes at
the apparent horizon by definition; i.e., it is a marginally
trapped surface, and the defining equation becomes

ðγij − sisjÞðDisj − KijÞ ¼ 0: ð42Þ

Assuming the surface to be defined as a level set of a
function,

Φ ≔ r − hðθ;ϕÞ ¼ 0; ð43Þ

then the normal one-form reads,

si ≔ λmi ¼ λ∂iΦ; ð44Þ

which explicitly becomes

si ¼ λð1;−∂θh;−∂ϕhÞ: ð45Þ

Recall that the metric on Σ is

γij ¼ ψ4

0
B@

1 0 0

0 r2 0

0 0 r2 sin2 θ

1
CA; ð46Þ

and then one has

si ¼ λðγrr;−γθθ∂θh;−γϕϕ∂ϕhÞ; ð47Þ

and

λ ¼ ðγrr þ γθθð∂θhÞ2 þ γϕϕð∂ϕhÞ2Þ−1=2: ð48Þ
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Equation (42) reads more explicitly as

γij∂imj − γijΓk
ijmk − λ2mimj∂imj þ λ2mimjmkΓk

ij þ λmimjKij ¼ 0; ð49Þ

where we have used γijKij ¼ K ¼ 0. After working out each piece, one arrives at

− γθθ∂2
θh − γϕϕ∂2

ϕh −
1

2
ððγrrÞ2∂rγrr − γθθγrr∂rγθθ − γϕϕγrr∂rγϕϕ þ ∂θhγϕϕγθθ∂θγϕϕÞ

þ λ2ððγθθÞ2ð∂θhÞ2∂2
θhþ ðγϕϕÞ2ð∂ϕhÞ2∂2

ϕhþ 2γϕϕγθθ∂ϕh∂θh∂θ∂ϕhÞ

þ λ2

2
ððγrrÞ3∂rγrr þ ðγθθÞ2γrrð∂θhÞ2∂rγθθ þ ðγϕϕÞ2γrrð∂ϕhÞ2∂rγϕϕ

− ð∂ϕhÞ2∂θhðγϕϕÞ2γθθ∂θγϕϕÞ
þ λððγrrÞ2Krr þ ðγθθÞ2ð∂θhÞ2Kθθ þ ðγϕϕÞ2ð∂ϕhÞ2Kϕϕ − 2γrrγθθ∂θhKrθ

− 2γrrγϕϕ∂ϕhKrϕ þ 2γθθγϕϕ∂θh∂ϕhKθϕÞ ¼ 0: ð50Þ

An exact solution to this equation is beyond reach, and we
do not really need it. All we need is an approximate
solution of the form,

hðθ;ϕÞ ¼ h0 þ php þ JhJ þOðp2; J2; JpÞ; ð51Þ

where

∂rh ¼ 0; ∂rh0 ¼ 0 ¼ ∂θh0 ¼ ∂ϕh0: ð52Þ

Note that to compute the area of the apparent horizon and
the irreducible mass up to and including the Oðp2; J2; JpÞ
terms, one only needs the shape of the horizon up to and
including the Oðp; JÞ terms, which becomes clear when
one studies the area integral. (See also [3].) Ignoring the
higher order terms such as ð∂θhÞ2, ð∂ϕhÞ2, and ∂θh∂ϕh, the
apparent horizon equation becomes

− γθθ∂2
θh− γϕϕ∂2

ϕh−
1

2
ððγrrÞ2∂rγrr − γθθγrr∂rγθθ

− γϕϕγrr∂rγϕϕþ ∂θhγϕϕγθθ∂θγϕϕÞþ
λ2

2
ðγrrÞ3∂rγrr

þ λγrrðγrrKrr− 2γθθ∂θhKrθ − 2γϕϕ∂ϕhKrϕÞ ¼ 0: ð53Þ

To proceed, we need the components of the extrinsic
curvature in the ðr; θ;ϕÞ coordinates. After coordinate
transformations, one finds

K̂rr ¼
3p
r2

ðc1 sin θ cosϕþ c2 cos θÞ;

K̂rθ ¼
3p
2r

ðc1 cos θ cosϕ − c2 sin θÞ; ð54Þ

and

K̂rϕ ¼ −
3p
2r

c1 sin θ sinϕþ 3J
r2

sin2 θ: ð55Þ

Therefore, the resulting equation is

∂2
θhþ 1

sin2 θ
∂2
ϕhþ cot θ∂θh − 2r − 4r2

∂rψ

ψ
þ 6J
ψ4r2

∂ϕh

−
3p
ψ4

ðc1 sin θ cosϕþ c2 cos θÞ ¼ 0: ð56Þ

At order Oðp0; J0Þ, this equation yields

1þ 2r
∂rψ

ψ
¼ 0; ð57Þ

where ψ ¼ 1þ a
r. And, setting r ¼ h, one finds

h0 ¼ a: ð58Þ

This explains the physical meaning of the parameter a; it is
the location of the apparent horizon at the lowest order. The
next order contribution, which we shall find below, will be
perturbations to this location. At OðpÞ and OðJÞ, we have
the following equations, respectively:

∂2
θh

p þ 1

sin2θ
∂2
ϕh

p þ cot θ∂θhp − hp

−
3

16
ðc1 sin θ cosϕþ c2 cos θÞ ¼ 0; ð59Þ

and

∂2
θh

J þ 1

sin2 θ
∂2
ϕh

J þ cot θ∂θhJ − hJ ¼ 0: ð60Þ
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These are linear partial differential equations, and a close
scrutiny shows that the hJ equation is the homogenous
Helmholtz equation on a sphere (S2), while the hP equation
is the inhomogeneous Helmholtz equation with a nontrivial
source. So, the next task is to find everywhere finite
solutions of the following equation:

ð∇⃗2
S2 þ kÞfðθ;ϕÞ ¼ gðθ;ϕÞ; ð61Þ

where ∇⃗2
S2 is the Laplacian on S2:

∇⃗2
S2 ¼ ∂2

θ þ cot θ∂θ þ
1

sin2 θ
∂2
ϕ: ð62Þ

It is clear that the Green’s function technique is the most
suitable approach to this problem. For the Helmholtz
operator on the sphere, the Green function Gðx̂; x̂0Þ is
defined as

ð∇⃗2
S2 þ λðλþ 1ÞÞGðx̂; x̂0Þ ¼ δð2Þðx̂ − x̂0Þ; ð63Þ

which can be found to be (for example, see [12])

Gðx̂; x̂0Þ ¼ 1

4 sin πλ

X∞
n¼0

1

ðn!Þ2
Γðn − λÞ
Γð−λÞ

×
Γðnþ λþ 1Þ
Γðλþ 1Þ

�
1þ x̂ · x̂0

2

�n

; ð64Þ

where x̂ ¼ sin θ cosϕîþ sin θ sinϕĵþ cos θk̂, and x̂0 is a
similar expression with some other θ and ϕ. Employing this

Green’s function with λ ¼ −1þi
ffiffi
3

p
2

, one finds

hp ¼ −
1

16
ðc1 sin θ cosϕþ c2 cos θÞ; ð65Þ

and hJ ¼ 0. Therefore, the apparent horizon is located at

r¼hðθ;ϕÞ

¼a−
1

16
ðp⃗ · Ĵcosθþjp⃗∧ ĴjsinθcosϕÞ; ð66Þ

where Ĵ ¼ J⃗
J. In the limit θ0 ¼ 0, h reduces to the form

given in [3], that is, hðθÞ ¼ a − p
16
cos θ, and the apparent

horizon in this axially symmetric case is a squashed sphere
from the North Pole. Note that the shape of the apparent
horizon (66) at this order does not depend on the magnitude
of the spin, but it does depend on its orientation with
respect to the linear momentum. In Fig. 1, we plot the
apparent horizon. To be able to see the dimple clearly in the
whole figure, we have chosen a high momentum value.
Let us now evaluate the area of the apparent horizon from

the formula,

AAH ¼
Z

2π

0

dϕ
Z

π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffi
detm

p
; ð67Þ

which, at the order that we are working, yields

AAH ¼
Z

2π

0

dϕ
Z

π

0

dθ sin θψ4h2

×

�
1þ 1

h2
ð∂θhÞ2 þ

1

h2sin2θ
ð∂ϕhÞ2

�
1=2

: ð68Þ

This is a pretty long computation since the conformal factor
is quite complicated. However, at the end, one finds

AAH ¼ 64πa2 þ 4πp2 þ 11πJ2

5a2
: ð69Þ

Note that the angle between the spin and the linear
momentum does not appear in the area. Then, the irreduc-
ible mass Mirr reads,

Mirr ¼ 2aþ p2

16a
þ 11J2

320a3
: ð70Þ

Comparing with EADM, we have

EADM ¼ Mirr þ
p2

2Mirr
þ J2

8M3
irr

; ð71Þ

which matches the slow momentum and spin limit of the
result in [11].

FIG. 1. The shape of the apparent horizon when the angle
between p⃗ and J⃗ is 45 degrees; to be able to see the dimple, we
have chosen p=a ¼ 8

ffiffiffi
2

p
, which is outside the validity of the

approximation we have worked with, but the dimple exists for
even small p.
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V. CONCLUSIONS

Momentum constraints in general relativity are easily
solved with the method of Bowen-York, while the
Hamiltonian constraint is a nontrivial elliptic equation.
Here, extending earlier works, [2–3], we gave an approxi-
mate analytical solution that describes a spinning and
moving system with a conserved spin and linear momen-
tum pointing in arbitrary directions. We computed the
properties of the apparent horizon, such as its shape and
surface area, and showed the dependence of the shape
on the angle between the spin and the linear momentum.

We calculated the relation between the conserved quan-
tities, such as the ADM mass, the spin, the linear momen-
tum, and the irreducible mass. The area of the apparent
horizon does not depend on the angle between the spin and
the linear momentum, but a dimple arises in the apparent
horizon whose location depends on this angle.
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